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Abstract

We report empirical results on factors that influence how
people reason with default rules of the form "Most x's have
property P", in scenarios that specify information about
exceptions to these rules and in scenarios that specify
default-rule inheritance. These factors include (a) whether
the individual, to which the default rule might apply, is
similar to a known exception, when that similarity may
explain why the exception did not follow the default, and
(b) whether the problem involves classes of naturally
occurring kinds or classes of artifacts. We consider how
these findings might be integrated into formal approaches
to default reasoning and also consider the relation of this
sort of qualitative default reasoning to statistical
reasoning.

Introduction
Default reasoning occurs whenever the evidence available

to the reasoner does not guarantee the truth of the conclusion
being drawn; that is, does not deductively force the reasoner
to draw the conclusion under consideration. For example,
from the statements ‘Most linguists speak more than three
languages’ and ‘Kim is a linguist’, one might draw the
conclusion, by default, ‘Kim speaks more than three
languages’. Subsequent information may force the reasoner
to withdraw that conclusion; default reasoning is also termed
non-monotonic, because the sentences held true at time 1
may not be true at time 2. We will call "Most linguists
speak more than three languages" a default rule.

 If an artificial agent were to wait for the information
necessary to draw an inference sanctioned by classical
deductive logic, then no conclusion might ever be drawn.
Much of what is considered to true in the world is true only
most of the time: there are exceptions and sometimes
interacting default assumptions that can lead to conflicting
conclusions. A good deal of work has been done in the AI
community at formalizing default reasoning, either through
qualitative approaches using conditional logics (e.g.,
Delgrande, 1987), probabilistic approaches (e.g., Bacchus,
1991), or approaches that attempt to capture quantitative
notions within a qualitative framework (Gefner, 1992; Pearl,
1989). In the last several years, there has been an increasing
attention in the default-reasoning community given to
formalizing the notions of relevance and irrelevance, i.e.,
what information would be (ir)relevant to deciding whether a
default rule applies in a particular case (see Greiner &

Subramanian, 1994). For example, these frameworks
propose ways of assessing the (ir)relevance of Kim's
membership in the class of "red-haired people" to the
application of the three-languages default rule and similarly,
of Kim's membership in the class of "graduates of
University X"—about which there may be a conflicting
default rule about language skills. In the latter case, default
reasoning theories aim to identify general and consistent
means of specifying which of possibly several conflicting
default rules should apply to an individual.

Generally speaking, the knowledge of other exceptions to
a default rule has not yet been a factor in whether a particular
default rule applies in a given case. As we see below,
information about known exceptions to a default rule are not
"supposed to" influence the application of that rule in a
particular case. The studies we report are a continuation of
previous work (Elio & Pelletier, 1993) aimed at
understanding how people reason with rules that have
exceptions, and what factors influence people's application
of those rules. How people reason with default rules and
exceptions per se has not received much attention within the
cognitive psychology community (see, however, Collins &
Michalski, 1989). However, there are overlaps between the
issues we investigate in this work and those that have been
considered in the literatures on statistical and inductive
reasoning by people. We highlight some of the relationships
we see in the sections that follow.

Benchmark Problems on Default
Reasoning

Table 1 presents the a subset of the problem types that we
used in this study.  These problems were taken from the so-
called "Nonmonotonic Benchmark Problems" (Lifschitz,
1989). These benchmarks formalized types of non-
monotonic reasoning and specified the answers generally
accepted by AI researchers in the area and which any non-
monotonic theory was supposed to validate. Put another
way, these are the defined "correct answers" for problems
that take this form, despite some acknowledged difficulties
in deciding just what the correct answers should be
(Touretsky, Horty, & Thomason, 1987). Elsewhere, we
have argued that, unlike human performance on symbolic
deductive logic problems, the kinds of default conclusions
people draw actually defines phenomenon of interest to be
achieved by artificial agents; and thus empirical data on



1 Blocks X and Y are heavy. 2 Blocks X and Y are heavy.
Heavy blocks are normally on the table. Heavy blocks are normally on the table.
X is not on the table X is not on the table. Y is red.

Q: Where is Block Y? A: on table Q: Where is Block Y? A: on table

3 Blocks X and Y are heavy. 4 Blocks X and Y are heavy.
Heavy blocks are normally on the table. Heavy blocks are normally on the table.
Most heavy blocks are red. Block X might be an exception to this rule.
X is not on the table. Y is not red.

Q: What color is Block X? A: red Q: Where is Block Y? A: on table
Q: Where is Block Y? A: on table

Table 1:  Four default reasoning problems and benchmark answers

human default reasoning has an important role to play in
validating default reasoning theories and in identifying
principles by which default answers can be assessed
(Pelletier & Elio, 1995). It is this rationale that motivates
our interest in understanding factors that influence people's
default conclusions on even these simple problems.

We call the four problems in Table 1 the "basic default
reasoning problems." They concern two objects governed by
one or more default rules. Additional information is given to
indicate that one of the objects (at least) does not follow one
of the default rules. We refer to this as the exception object
(for that default rule) or default violator. The problems then
ask for a conclusion about the remaining object. We refer to
this as the object-in-question. It is apparent from the
sanctioned benchmark answers for these problems that the
existence of known default violator, or any additional
information about the object-in-question (e.g., Problem 2 in
Table 1), should have no bearing on a conclusion drawn
about the object-in-question when using that rule.

Experiments on Basic Default Reasoning
Problems

In previous studies on these sorts of problems (Elio &
Pelletier, 1993), we reported evidence suggesting that
people's plausible conclusions about defaults and exceptions
are influenced by the apparent similarity between a given
default violator and the object-in-question. We were naturally
lead to wonder just what kind of similarity mattered to
deciding whether or not some object follows a default rule or
instead behaves like a known exception. Our conjecture was
that the similarity to a default violator may be relevant when
the shared features could account for why the exception
object violated the default rule in the first place.  If the
object-in-question also has those features, then it too may
behave like the known exception and also violate the default
rule. The results we report below are further investigations
of those findings.

Design

We defined three conditions in which to present the four
canonical default reasoning problems given in Table 1: (a) a

no-shared features condition, (b) a superficial shared-features
condition, and (c) an explanatory shared-features condition.
In the superficial case, the objects were described as having
certain features in common; these features corresponded to
those given by subjects in a separate norming study as
irrelevant to the conclusion offered by a default rule.
Typically, these were physical features for the actual cover
stories (example below) that we used for the problems. The
explanatory shared-features corresponded to features given by
subjects in the norming study as relevant to the conclusion
implicated by a default rule; these explanatory features
typically concerned an object's use or function. The
hypothesis was that subjects would apply the default rule to
the object-in-question most often when there was no
information about its similarity to the default violator, and
least often when the common features between the object-in-
question and the default violator could support an
explanation of why the default-violator itself did not obey
the default rule. The superficial condition should lie
somewhere in-between.
 Figure 1 illustrates this manipulation for Problem 1. For
all problems, the order of information was: the set-up
sentences, marked (a) in Figure 1; the sentences
corresponding to the similarity information (if any), which
are marked (b') and (b'') for the two similarity
manipulations; the default rule, marked (c); the sentence
marked (d) indicating the rule violator did not follow the
default rule; and finally the question (e) asking for a
plausible conclusion about the object-in-question. In
addition to the medical journals scenario, there were cover
stories about membership in university clubs, distribution
of student ID cards, and operations of campus parking lots.
Similarity was a between-subjects factor and problem type
was a within-subjects factor. Subjects saw each of the four
benchmark problems under one type of similarity, with each
benchmark having one of the four possible cover stories.
The assignment of cover-story to each problem type was
counterbalanced across subjects.

Subjects and Procedure

Seventy-two subjects were randomly assigned to one of the
three similarity conditions. The problems were randomly



No Similarity
(a) Cardiac News and Drug Developments are medical journals you need for a research paper.
(c) Medical journals are usually located in the Health Sciences library.
(d) Cardiac News is an exception: It is not in the Health Sciences library—It is kept in the Department of Medicine

Reading Room.
Superficial Similarity Additions

(b') Both Cardiac News and Drug Developments are published in Canada. New issues of both journals come out every
month. They are bound in light-blue covers.

Explanation Similarity Additions
(b'') Both Cardiac News and Drug Developments are among the most expensive journals the university purchases. There

have been problems with stolen or missing copies of these journals over the years. Both of them are consulted on a
daily basis by graduate students in Medicine.

Question
(e) What would be reasonable to conclude about where Drug Developments is located?

Figure 1: Components of alternative similarity versions for problem type 1

ordered in booklet form. Each problem's question (see Figure
1) was followed by four possible answers, corresponding to
these options (tailored to each cover story): (a) the object-in-
question followed the default rule, (b) the object-in-question
violated the default rule, (c) no conclusion was possible (a
"can't tell" option), and (d) "other", for which subjects could
write in another conclusion. The instructions emphasized
that we were interested in common-sense conclusions, and
that there were no right or wrong answers.

Results

The data from three of the 72 subjects had to be discarded,
due to a mis-assignment of experimental materials. This left
a total of 69 subjects, 23 in each of the three similarity
conditions. Table 2 shows the proportions of each answer
category as a function of answer category and similarity
level.

Because the data we collected are interval data, i.e.,
answers falling into one of four response categories, they do
not necessarily follow a normal distribution.  One
appropriate treatment of such data is a loglinear analysis of
models defined by particular combinations of main effect and
interaction terms. Under this approach, we evaluate whether
a given model's predicted data is significantly different from
the observed data, using a χ2 likelihood ratio statistic. A
model with fewer terms (and more degrees of freedom) is
preferred to a model with more terms, provided that the
predicted data does not differ significantly from the observed
data.  The simplest model we identified included a main-
effect term for answer category and an answer-category by

similarity interaction term ( χ2 = 32.48, df=38 , p = .722).
If the interaction term is removed, the difference between
observed and predicted data approaches significance (χ2 =
72.53, df=56,  p = .068).

It is clear from Table 2  that, most of the time, subjects
applied the default rule to the object in question (the model's
main-effect term for answer category) and it is also apparent
that this decision was influenced by the apparent similarity
to another object that violated the rule (the model's
interaction term).  The trend in the frequencies of applying
the default rule to the object-in-question was in line with our
predictions, occurring least often in the explanatory
condition. We note that subjects were conservative in their
reluctance to apply the default rule in this case, choosing the
"can't tell" (.21) option rather than the explicit rule-violation
option. We cannot account for the tendency for subjects in
the superficial condition to provide so many "other"
conclusions. Although the superficial features were identified
from a norming study as being irrelevant to the property
implicated in the default rule, it is possible they were not.
Hence, a possibility remains that subjects tended to reject
the default rule given any information they could use to
construct an alternative prediction about the object-in-
question. A laboratory manipulation of inter-object
similarity may be weaker than tapping into extant
knowledge of similarity between object classes; this is a line
of investigation we are currently following. Still, these
results are consistent with our previous findings that the
application of a default rule may be influenced by
information about other  exceptions to the rule.

Answer Category

Follows Default           Violates Default                  Other                  Can't Tell
Similarity: none .70 .12 .11 .07

superficial .54 .18 .25 .03
causal .45 .19 .15 .21

Table 2: Proportion of Responses as a Function of Similarity and Response Type



Birds-Fly Context Birds-&-Bats Fly Context
Animals normally do not fly  Animals normally do not fly.
Birds are animals. Birds normally fly. Birds are animals. Birds normally fly.
Ostriches are birds. Bats are animals. Bats normally fly.
Ostriches do not fly. Ostriches are birds. Ostriches do not fly.

Q: Do birds other than ostriches fly? A: Yes Q: Do birds other than ostriches fly?         A: Yes
Q: Do animals other than birds fly?  A: No Q: Do animals other than birds & bats fly? A: No

Table 3: Two  default inheritance problems

Reasoning about Inherited Default
Properties

In Table 3, we present two additional problems from
Lifschitz's (1989) nonmonotonic benchmark set. These
problems are easily recognized as canonical examples of
conflicting default knowledge about classes related in a
class-subclass hierarchy. These problems were included in
Lifschitz's benchmark set because they  capture several
essential questions that have been central to reasoning
theories about classes, subclasses, and individuals, namely
how should properties—some of which are definitional and
some of which are prototypical— be "inherited" by the next
element down the hierarchy? Other more complex
inheritance scenarios are accommodated by different formal
default reasoning theories, but these problems present
simple cases of conflicting default rules.

In some previous pilot work, we found that subjects
generally allowed the default properties to be inherited, as
per the "correct" answers given in Table 3. In this study, we
examined whether this application of default properties was
sensitive to the kind of taxonomic categories being
considered, namely natural kind categories or artifact
categories. The notion that "kinds" influences reasoning has
been considered in both the inductive inference and the
statistical reasoning literatures (Thagard & Nisbett, 1993).
People's tendency to reason statistically can also be
influenced by perceived variability and homogeneity in the
classes they are considering. For example, Nisbett et al.
(1983) reports that people expect a lower variability for
natural classes than for classes of human behaviors. Hence,
it seemed to us that this kind of metaknowledge,  implicated
in some statistical reasoning studies, may also impact upon
qualitative judgments concerning the inheritance of default
properties.

The second factor we manipulated was whether the
problems included class-size information for the classes and
subclasses that formed the inheritance hierarchy. Our
inclusion of this factor was also motivated by our desire to
bridge these qualitative default reasoning decisions with
some statistical reasoning results, that have indicated that
people are influenced by class size information in making
some kinds of  inferences (Nisbett et al., 1983). For this
initial study, we contrasted a class size absent case, in which
there was no mention of how large the subclasses were, with
a class size present case. In this latter condition, the problem
mentioned particular figures for class sizes, falling within
the 20-80 range. Our contrast of these two cases here was
not to assess how particular class-size values would lead to

different conclusions; rather, we wanted first to assess
whether framing these qualitative inheritance problems in a
somewhat more quantitative guise would influence people's
tendency to ascribe the inheritable default properties to
particular subclasses.

Design

Each subject received each of the two inheritance problems
with both a natural kinds cover story and an artifact cover
story. For the natural categories, we used stories about trees
and snakes; the artifact categories concerned taxation laws for
cigarettes and features of medieval musical instruments. No
cover story was repeated in any of the problems that a
subject saw, and the assignment of cover stories to problems
was counterbalanced across subjects. In addition to these four
problems, subjects solved two other inheritance problems
that were part of a different study.

Subjects and Procedure

Sixty-four subjects were randomly assigned to receive either
the class-size present problems or the class-size absent
problems. The problems were presented to subjects as "short
paragraphs that were extracted and adapted from newspapers
and popular science articles [which presented] some facts but
left other information unstated." Subjects were told that their
task was to specify the reasonable, common-sense
conclusion or inference they would draw, based strictly on
the information given to the reader in the excerpts presented.
Below is the text of a birds-fly context problem, using
natural categories and including class size information:

....The kind of trees you plant can also help
attract birds year round. Coniferous trees do
well in our region. Unfortunately, most of the
63 species of coniferous trees produce a bitter
sap. An example is the subclass "cedrus"
(cedar): taste the sap from any type of cedar tree
and you will be unpleasantly surprised at how
bitter it is....

There is, however, a subclass of coniferous
trees called "Pinaecea" that any good garden
nursery will know about. Most of the 22
Pinaecea species give sweet sap that attract
squirrels and certain types of birds.... [however]
one Pinaecea tree to be avoided is picea
mariana: it gives bitter sap. An attractive and



 Class Size Present Class Size Absent Mean

Natural Classes

Do birds other than ostriches fly?(yes) birds-fly context .72 .72 .72
birds-&-bats-fly context .69 .69 .69

Do animals other than birds fly?(no) birds-fly context .69 .71 .71
birds-&-bats-fly context .59 .56 .58

Artifact Classes
Do birds other than ostriches fly?(yes) birds-fly context .47 .69 .58

birds-&-bats-fly context .41 .69 .55

Do animals other than birds fly?(no) birds-fly context .59 .63 .61
birds-&-bats-fly context .63 .72 .68

Table 4: Proportion of "Correct" Answers Given for Inheritance Problems from Table 3

hardy pine tree, make sure your local garden
nursery doesn't try to sell you this one if
youraim is to attract local wildlife....

The class-size absent versions of these problems replaced
references to statements like "Most of the 63 species" with
"Most species". Two questions then followed about
subclasses that the alleged article did not mention. For the
above example, these questions were:

z(a) "The article mentioned one subclass of
conifers—Pinaecea —but did not discuss a
second subclass called Juniperous. From the
information presented in the article, what is
your common-sense conclusion about whether
species within the Juniperous subclass produces
sweet sap or bitter sap?" [do animals other than
birds fly?]

 (b) "The article failed to mention another
Pinaecea tree called libani chrysolitis. From the
information presented in the article, what is
your reasonable conclusion about the kind of
sap it produces?"  [do birds other than ostriches
fly?]

Subjects selected their answer to each question from one of
three possibilities that corresponded, in essence, to "yes [it
can fly]", "no [it can't fly]" and "can't tell."

Results

Even though subjects did not solve problems mentioning
birds, bats, and flying, it is easiest to talk about the results
by referring to these canonical terms. Table 4 presents the
proportion of subjects choosing the prescribed default answer
for each of the two possible questions.  A loglinear analysis
of the data  identified a model defined by three interaction

terms: category type X  quantifier X  question X  answer
category; category type X context type X answer category,
and context type X question X answer category ( χ2 = 2.89,
df = 15, p = 1.0).  We cannot at this stage propose an
account for all these interactions, particularly those
involving the birds-fly vs. birds-plus-bats fly context effect.
However, the response patterns that give rise to this model
are evident in Table 4.  First, the proportion of prescribed
default-inheritance answers was higher when subjects were
reasoning about natural categories and lower when they were
reasoning about artificial categories. Second, subjects were
less likely to allow the default property to be inherited for
artifact classes than for natural classes, particularly when the
problems mentioned class size information.  This finding is
consistent with the notion that people may perceive
artifact/artificial classes as inherently more variable than
natural kinds and that this impacts their willingness to
ascribe default properties. The impact of merely mentioning
class sizes may have triggered this consideration of
variability.  Unfortunately, this sort of conjecture does not
seem entirely consistent with the effect of the birds-fly
versus birds-&-bats-fly context for the natural classes
condition. For those problems, subjects were less likely to
apply the default rule to conclude that animals-other-than
birds don't fly, when bats were included as a second
exception.  This did not occur with the non-natural stimuli;
whether the number of known (or salient) exceptions
influences the application of a default rule needs further
study.

Discussion
These results suggest an aspect of plausible reasoning that is
missing from current non-monotonic theories, namely that
there are certain kinds of information that are relevant to
applying default rules. The findings outlined above suggest
some considerations about what is relevant in non-



monotonic reasoning: inter-object similarity, natural vs.
artificial categories, and class-size information. If an
unknown case is similar to an understood exception, then a
plausible conclusion may not be to apply the default rule,
but instead to predict that the unknown case behaves instead
like the exception. The influence of the latter two factors
border on a meta-knowledge effect: people may work certain
assumptions about class variability into their default
conclusions, e.g., there is greater regularity to how defaults
and exceptions operate in the "natural" world than there is
for non-natural classes and subclasses. Other researchers have
appealed to this distinction in the realm of inductive
reasoning (e.g., Thagard & Nisbett, 1993) and statistical
reasoning (Nisbett et al., 1983). Our results in this study are
suggestive, though by no means conclusive, that this
distinction may come into play in the sort of qualitative
default reasoning scenarios we have studied here. Indeed,
another interpretation from the inheritance problems is that,
in some arenas, human reasoners are much more cautious in
their attribution of default properties than we might
otherwise believe.

How can our findings, that knowledge about known
default-rule exceptions may influence the application of
default rules to similar cases, be worked into a specification
for non-monotonic reasoning? One idea might be called
"explanation-based default reasoning", in the same sense of
this notion used in the machine learning literature. That is, a
reasoner attempts to explain why some default rule does not
apply to the known exception, and then evaluates whether
that explanation applies to the object under consideration.
This emphasis on reasoning about one known individual
case in order to make a decision about another case may
sound like there can be no formalized rules for default
reasoning. But this account need not be taken as a
prescription for a strictly case-based approach to default
reasoning. First, the influence of a similar object might be
used to direct the selection of an appropriate "reference
class," about which some statistical properties could be
inherited. Second, some formal theories already appeal to the
notions of causality, explanation, or argumentation
processes to construct, and then select among, alternative
models that are defined by conflicting default rules (e.g.,
Pollock, 1987; Gefner, 1992). Along these lines, we note
that  the presence of a known rule violator in the problems
we investigated here may be a red herring, insofar as the
important aspect for subjects may have been the availability
of information that could support an explanation about why
a default rule may not apply (quite independent of whether
some other known violator was salient). In general, it does
not seem plausible that additional information about an
individual should necessarily have no impact on determining
whether it follows a  default rule  (e.g., whether a block's
color influences whether it is, by default, located on a table).
One interpretation of our findings is that such information is
relevant to the extent it supports explanations for (or
against) a default assumption; a known exception to a
default may serve as a touchstone for constructing these
explanations.
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