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ABSTRACT 

Our perceptual experience is influenced both by incoming sensory information and prior 

knowledge about the world: a concept recently formalized within Bayesian decision theory. We 

propose that Bayesian models can be applied to autism – a neurodevelopmental condition with 

atypicalities in sensation and perception – to pinpoint fundamental differences in perceptual 

mechanisms. We suggest specifically that attenuated Bayesian priors – hypo-priors – may be 

responsible for the unique perceptual experience of autistic people, leading to a tendency to 

perceive the world more accurately rather than modulated by prior experience. In this account, 

we consider how hypo-priors might explain the key features of autism – the broad range of 

sensory and other non-social atypicalities – in addition to the phenomenological differences in 

autistic perception. 
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Autism is a heritable, lifelong neurodevelopmental condition that has its most striking effects on 

social communication – the so-called social symptoms. Yet the condition is also defined by a 

less well-researched range of non-social symptoms. These symptoms present throughout 

development, are prevalent in autistic individuals regardless of intellectual ability, and vary 

widely from an intense desire for sameness (like following rigid routines) and sensory 

atypicalities (such as extreme sensitivity to florescent lighting or to the sound of the school bell) 

to remarkable talents (such as an excellent eye for detail).  

These symptoms feature prominently in the draft changes to the forthcoming diagnostic 

guidelines for autism [1] but the range and idiosyncrasy of sensory atypicalities in particular still 

represent some of the most puzzling features of autism. They include not only hypersensitivity 

to incoming stimuli but also hyposensitivity to stimuli and sensory seeking behaviours such as 

attraction to light, intense looking at objects and fascination with brightly coloured objects [2, 

3]. Indeed, they often oscillate between these states within the same individual. They can also 

have catastrophic effects on the lives of autistic people. As Donna Williams reports first hand: 

“the sensory overload caused by bright lights, fluorescent lights, colours, and patterns makes 

the body react as if being attacked or bombarded, resulting in such physical symptoms as 

headaches, anxiety, panic attacks or aggression” [4, p. 43].  

There has been renewed research interest in these sensory symptoms, prompted in 

part by the possibility that the non-social symptoms of autism might be attributable to 

fundamental differences in sensation and perception [5-10]. In this article, we propose a new 

account of the sensory and other non-social symptoms of autism, which we believe provides a 

parsimonious explanation for such atypicalities; that people with autism see the world more 

accurately – as it really is – as a consequence of being less biased by prior experiences. 
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We start with the suggestion that it is not sensory processing itself that is different in 

autism, but the interpretation of sensory input to yield percepts. We further propose that 

Bayesian decision theory, a principled description of the processes that enable observers to 

derive the most probable interpretations of their environment (see Box 1), provides a powerful 

tool to study the mechanisms underlying the diverse range of non-social features in autism. 

Such computational methods should formalise the process of generating experimentally testable 

hypotheses about the underlying functional atypicalities in autistic perception. Specifically we 

suggest that atypicalities exist at the level of our internal, working models of the world – priors 

in Bayesian terms – and that these lead to characteristic differences in autistic sensation and 

perception.  

 

Perceptual processing in autism 

It has long been known that perceptual processing is unusual in autism. Early studies reported 

autistic exceptional performance on the Embedded Figures Test, finding hidden figures (e.g., 

triangle) within larger meaningful drawings (e.g., pram) [11]. Other studies have shown less 

susceptibility to visual illusions [12], the prevalence of absolute pitch [13], enhanced 

performance on visual search tasks [14, 15] and superior visual discrimination [5, 16]. These 

initial studies spawned a raft of further investigations [see 17], generally revealing atypicalities in 

the perception of characteristically non-social stimuli, such as chromatic stimuli [18], isolated 

tones [19], coherently moving dots [20] and complex objects [21], as well as social stimuli, 

including faces [21, 22], eye-gaze direction [23, 24], biological motion [25, 26], and speech [27]. 

There have been several influential accounts of the non-social symptoms and perceptual 

processing differences in autism, which each differ with regard to the precise nature of the 
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atypicality. Frith and Happé’s weak central coherence hypothesis (1989; Happé & Frith, 2006) 

was the first to suggest that the non-social symptoms in autism – the weaknesses and the 

strengths – could be explained by a domain-general processing style that afforded “privileged 

access to parts and details” (Frith & Happé, 1994, p. 122) and resulted in difficulties processing 

information in context. Later, they suggested that problems in top-down modulation could lead 

to hypersensitivity to sensory stimuli in autism (“naming the pitch of the ‘pop’ of a cork”) and 

that a detail-focused processing style caused the characteristic “insistence on sameness” (Happé 

& Frith, 2006).  

Others have posited alternative accounts, which move beyond the focus on local-global 

processing in autism, and place autistic differences squarely in the realm of perception. 

Plaisted [9] proposed that autistic individuals’ perceptual atypicalities were due to 

enhanced discrimination, possibly from enhanced lateral inhibition in perception. Similarly, 

Mottron et al. [8] (2006) suggest within their “Enhanced Perceptual Functioning” (EPF) 

account that autistic perception is characterized by enhancements in bottom-up, feed-

forward perceptual operations. These authors [28] further suggest that autistic perception is 

autonomous from higher-level, top-down influences and may involve a one-to-one or veridical 

mapping process. On this account, hypersensitivity in autism results from an imbalance in 

inhibitory and excitatory connectivity between local neural networks in sensory regions [see 

also 5, 9, 10, 29, 30].  

Despite their prominence in the autism field, the impact of these accounts has been 

limited both by the lack of data demonstrating an empirical link between theoretical constructs 

– such as “top-down control” – and autistic sensory and other non-social atypicalities and, in 
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some cases, by their overly descriptive nature, failing to fully specify the underlying (altered) 

mechanisms, that is, the nature of the computations.  

Moreover, these accounts focus predominantly on enhancements in sensation and 

perception (hypersensitivity) in autism. Yet the nature and degree of sensory atypicalities in 

autism – hypersensitivity, hyposensitivity and sensory seeking behaviours – vary enormously and 

reportedly fluctuate even within the same individuals. These sensory but also the other non-

social features of autism present a serious challenge for current explanations of autism. 

Furthermore, such theories also have difficulty accounting for an apparent paradox, first noted 

by Kanner [31] in which “the child himself can happily make as great a noise as any that he 

dreads and move objects about to his heart’s content” (p. 245), despite being distressed by 

incoming noises or movements. What is particularly unsettling for autistic individuals is 

therefore the unexpected and unpredictable nature of external events. We suggest that 

understanding how perceptual systems deal with uncertainty is key to explaining atypicalities in 

autistic sensation and perception.  

 

Perception as inference 

Recognizing that retinal images are inherently ambiguous, Helmholtz [32] suggested that 

perception is a process of unconscious inference: automatic and unconscious “best 

guesses” about the structure of the world, consistent with both the retinal images and past 

experience. Gregory  [33] advanced a similar idea, that perception is an active process of 

formulating and testing hypotheses about the structure of the world. He richly illustrated his 

idea with vivid examples of visual illusions, such as perceiving a physical hollow mask as a 

convex face. Seeing familiar shapes or images in the clouds, or the “ghostly” surfaces of the 
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Kanizsa triangle, are examples of the brain postulating the most likely interpretation for noisy, 

ambiguous sensory signals (see Figure 1).  

Bayesian statistical decision theory, a principled method of optimal reasoning under 

uncertainty, formalizes Helmoltz’s and Gregory’s notions of perception as unconscious inference 

[34-37]. Box 1 lays out the basic principles of Bayesian inverse inference, illustrated by the 

specific example of Figure 2. The simple image of the figure is consistent with many different 

physical shapes, depending on viewpoint, described by the likelihood function; but some are 

more prevalent in normal viewing than others, leading to a probability distribution referred to 

as the prior. The prior is combined with the likelihood to yield the posterior probability 

distribution, narrower than either the prior or the likelihood, whose maximum is taken as the 

statistically best estimate of the shape creating that image. If the prior is appropriate, the 

Bayesian framework provides the most efficient method to infer the 3D shape corresponding to 

the simple 2D line drawing.  

In the real world, many other forms of knowledge are available as priors to aid 

disambiguation, such as the fact that light more probably comes from above, so shading can 

provide useful information [38]. Priors can explain many visual illusions. For example, the 

Kanizsa triangle (see Figure 1) is equally consistent with a continuous white triangle 

superimposed over three regular black circles, or three unlikely “pac-men” arranged 

symmetrically to face each other: the natural statistics of the world makes the single triangle 

more probable. Similarly, an a priori preference for slow speeds can aid disambiguation of 

motion direction, but is also consistent with many illusory perceptions of incorrect velocity 

[39]. Consistent with Gregory’s view, these authors regard illusions not as perceptual errors or 
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“sloppy computations”, but are a consequence of statistically optimal computations that are 

functionally beneficial in the real world [39].   

In general, priors improve the efficiency of computations by reducing overall noise or 

error. Even when images are not ambiguous, this can be advantageous. For example, 

psychophysical judgments of almost all quantities – length, duration, number, color, weight, 

force – show the tendency to gravitate towards mean magnitude [40]. This fact has been well 

known for at least 100 years, but still not well understood. Recently Jazayeri and Shadlen [41] 

suggested that central tendency may represent another statistically optimal strategy, 

incorporating prior knowledge of the statistics of the environment in psychophysical judgments. 

They suggest that the mean duration (or length, color, or weight) of the recent history acts as a 

prior, biasing judgments towards the mean. Although judgments are biased (“inaccurate”), 

reliability is improved and overall error-rate is reduced. Interestingly, this theoretical approach 

(supported by clear data [41, 42]) suggests that priors do not need to be learned over a 

lifetime, but can be modulated over a relatively short timescale, in the order of minutes.  

The above examples are intentionally simple, with only a few relevant variables such as 

curvature and slant, but the principles readily extend to high-dimensional space. Furthermore, 

advances in computational neuroscience are beginning to demonstrate how such probabilistic 

inference is instantiated in the brain. Some have shown that populations of neurons can code 

entire probability distributions relating to a stimulus and also the degree of uncertainty for 

computations like cue combination [43]. Others have suggested that probabilistic perception 

and learning should be better implemented with sampling-based approaches, whereby single 

neurons map on to inferred variables and uncertainty is represented by the variability of neural 

activity patterns [44]. Intriguingly, these authors have proposed that a priori beliefs about the 
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world (priors) reside in spontaneous cortical activity (activity in the absence of sensory 

stimulation) – activity which is thought to be atypical in autism [45].  

 

Autistic perception within a Bayesian framework 

We suggest that the Bayesian framework could be particularly useful for deriving testable 

hypotheses about functional atypicalities in autistic perception. Specifically, we propose that 

altered autistic perception results from atypicalities at the level of the prior – either in its 

construction or in combining appropriately with sensory information – yielding unusually 

attenuated priors or hypo-priors (see Figure 2). The suggestion here is not that individuals with 

autism have no priors, rather that their priors are broader. If true, we would expect that fewer 

internal constraints on perception – hypo-priors – should have substantial effects on autistic 

individuals’ perceptual experiences.  

One prediction is that hypo-priors should result in more “accurate” perception. As 

mentioned above, Bayesian priors sacrifice accuracy (understood as average closeness to 

physical reality) for improved precision (reliability), resulting in an overall reduction of error. 

Under many conditions, strong (narrow) priors can bias perception towards the prior, away 

from the maximum likelihood, which is based only on sensory information. Hypo-priors in 

autism should distort sensory signals less, consistent with the often-reported superior 

performance of autistic individuals [46-50]. They are, for example, less susceptible to illusions 

such as the Kanizsa, Titchener, Poggendorf and Shepard “table-illusion” [7, 12] (see Figure 1). 

Individuals with autism are also better at copying impossible figures [51] and are more accurate 

when asked to reproduce a slanted circle (ellipse) in the absence of perspective cues [52]. In all 

these somewhat artificial tasks, priors should actually impede performance.  
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A second prediction is that hypo-priors should impede performance in situations where 

priors help resolve ambiguity. For example, cast-shadows provided useful information about 

shape, if interpreted appropriately [38], and indeed make objects more recognizable for typical 

individuals. For autistic children, however, cast shadows hinder recognition [53] – a finding that 

is consistent with the suggestion that autistic children make less use of prior information to 

interpret shadows appropriately. In this case, cast shadows just add to the perceptual noisiness 

of an image [38].  

A third, and less obvious, prediction is that hypo-priors in autism could cause the often-

reported sense of being overwhelmed by sensory information. Mukchopadhyay describes the 

experience of seeing everything afresh, rather than mediated by prior knowledge and 

expectation: “I began to fear all those unknown paths, clothes, shoes, chairs and strange human 

voices. Each one challenged me by putting me in front of a new situation for me to face and 

understand...” [3]. There are two ways that hypo-priors may lead to this form of phenomenon. 

Priors – such as the example of central tendency – smooth variations in sensory input, often 

caused by measurement error rather than real variability: hypo-priors would result in more 

unexpected variability, even in constant stimuli. Alternatively, they could affect the learning 

process itself. Recent accounts show how knowledge of underlying image statistics is 

fundamental for learning [44] – as it is for perception. Attenuated priors could result in reduced 

capacity for generalization during learning, akin to what is known as “overfitting” in computer 

vision, fitting a model to noisy data rather than to the general trend. In both cases, hypo-priors 

would result in a mismatch between expectations and measurement, which could lead to 

phenomenological reports like Mukchopadhyay’s.  
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A Bayesian framework might also help us to interpret findings of reduced adaptation in 

autism. Adaptation – ubiquitous in perceptual systems – is a rapid form of experience-

dependent plasticity where sensory experience affects the response properties of neurons and, 

ultimately, perception [54]. It is generally accepted that adaptation serves to auto-calibrate 

perceptual systems to their environment [55, 56]. The effects of adaptation in autism have been 

investigated with the face aftereffect, where prolonged exposure to a specific facial identity 

biases subsequent perception away from that identity [57]. Children with autism showed 

significantly less adaptation than typical children. Critically, their perception was more accurate, in 

that the target face corresponded better to physical reality than to expectations. Subsequent 

studies have demonstrated diminished adaptation in autism for other sensory modalities, 

including touch [58], and for relatives of autistic children [59].   

Adaptation does not always cause negative effects. In a recent study, Chopin and 

Mamassian [60] have shown that the effects of adaptation depend on when in the past the 

adapting stimuli occur. Recent adaptors affect the current percept negatively, biasing – for 

example – the perceived tilt in the direction opposite to the adaptors; adapting stimuli further 

in the past act in the opposite way, biasing tilt in the same direction as the adaptors. These 

results have very important implication for Bayesian explanations of adaptation {Stocker, 2006 

#55; Clifford, 2012 #213}. Self-calibration theories of adaptation assume that the brain has 

some internal model of the expected distribution of response states. Within the Bayesian 

framework, the positive effects of adaptation of remote stimuli [60] suggest that the brain 

continually learns and updates the probability distributions of the world, over a moderately 

short timescale (5-10 minutes): the learnt distributions serve as priors, or standards for self-

calibration. The negative effects of recent stimuli could represent a recalibration of sensory 
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resources under the assumption that the recent history of sensory input should conform to the 

established priors. Clearly, any atypicality at the level of the prior – either in its construction or 

use as a calibration standard – should clearly impact on the magnitude of adaptation. That is, 

hypo-priors in autistic perception may lead to difficulties in using information from the remote 

past to drive expectations about incoming sensory signals. 

 

Hypo-priors may explain many of the non-social symptoms of autism 

Hypo-priors in autism should cause a greater reliance on bottom-up, incoming sensory signals, 

which could in turn result in enhancement of sensory stimuli more broadly. Enhanced 

sensations, or “super qualia” [62] are consistent with the often-reported hypersensitivity to 

sensory information [4, 63]. Attenuated prior knowledge could also explain the co-occurrence 

of hyposensitivity and hypersensitivity within the same individuals. Without a template against 

which to match observed sensory evidence, the individual is less able to anticipate the 

forthcoming sensory environment in order to resolve perceptual ambiguity. Fewer internal 

constraints could also lead to a sense of alarm and the often-reported experience of sensory 

overload. Sensory symptoms in autism would therefore not be due to fundamental differences 

in sensory processing per se but rather reflect atypicalities in the way that incoming information 

is interpreted by sensory systems.  

Furthermore, since it is assumed by Bayesian theory (see Box 1) that priors are altered 

according to the specific stimuli the individual encounters, the idiosyncratic pattern of sensory 

seeking (e.g., attraction to spinning objects) and hyper-sensitivity to stimuli (e.g., aversion to 

vacuum cleaners) is likely to be determined by the amount of and intensity of exposure to 

particular stimuli in the individual’s environment.  



13 

 

Hypo-priors might also explain why autistic behaviours can be stereotyped and resistant 

to change. Prior knowledge should aid in the interpretation of predictable sensory events. 

Sensory experiences that are less constrained by prior knowledge should therefore make it 

difficult to use knowledge derived from the past to generate predictions about the occurrence 

of new sensory events. This may shed light on the intense desire for sameness in autism, which 

may be not a problem with change per se, but in predicting the change. Becoming comfortable 

with new situations might also require many more exposures to a stimulus or context to 

overcome the potentially disadvantageous effects of less specific priors.  

Well-known repetitive or “stimming” behaviours such as rocking, finger flicking, hand 

flapping, might also be accounted for by hypo-priors. Less specific priors could result in reduced 

generalization, which in turn could constrain motor plans to those that are already known. 

Without the moderating effect of priors, self-generated repetitive behaviours – those over 

which the individual has full control – might be a means of reducing the uncertainty in the 

environment.  

  

Conclusion  

In this article we have proposed that the formal, computational principles of a Bayesian 

framework offer a way forward in identifying the causal mechanisms of altered autistic 

perception. We have suggested here that autistic people tend to perceive the world more 

accurately as a consequence of hypo-priors or less bias by prior experience – a notion that fits 

well with extant empirical data. Certain aspects of our account have been raised previously [6, 

7]. The distinct advantage of our account is that it has greater explanatory power than existing 
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theories by providing a unifying explanation of the sensory and other non-social features of 

autism, as well as atypicalities (both weaknesses and strengths) in autistic perception.  

The Bayesian framework also allows for concepts like top-down knowledge and 

contextual processing to be translated into testable theories about the strength or reliability of 

priors, and therefore serves as an excellent platform to assess the internal coherence and 

completeness of these ideas. Indeed, such methods should help to specify the precise nature of 

the atypicality – whether it lies either in the application of priors or in the learning and 

generating of new priors, or indeed in both [cf 44]. Future empirical work and computational 

modelling will no doubt determine its usefulness in elucidating the autistic experience of the 

world (see Outstanding Questions), and will hopefully lead to suggestions of how they may 

better cope with it. 
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Glossary 

Adaptation: A dynamic process in which neural sensitivity is continuously recalibrated to 

“match” the characteristics of the current environment. 

Aftereffect: The perceptual distortions that arise following lengthy exposure or adaptation to 

a stimulus.  

Autism: Autism spectrum disorders are a set of common, lifelong neurodevelopmental 

conditions defined in terms of the presence of difficulties in social communication and social 

interaction, and a range of restricted, repetitive patterns of behavior, interests, or activities, 

including sensory sensitivities.  

Bayesian inverse inference: A method of statistical inference in which Bayes’ rule is used 

with reference to an unknown variable (see Box 1).  

Hypo-priors: A term we use to describe attenuated prior knowledge in autism, which 

would be represented as a broad prior probability distribution.  

Likelihood: the function specifying the probability p(xjy) of observing a particular stimulus x 

for each possible state of the environment y.  

Non-social symptoms: The range of autistic symptoms, which include restricted, repetitive 

patterns of behavior, interests, or activities, and sensory sensitivities, which are relatively 

non-social in nature and content.   

Posterior: the probability distribution p(yjx) produced by probabilistic inference according 

to a particular probabilistic model of the environment. 
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Prior: the probability distribution p(y) defining the expectation about the environment 

being in any of its possible states, y, before any observation is available.  
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Box 1. The Bayesian approach to object perception  

The Bayesian framework for perception originates in Helmholtz’s [32] notion of perception as 

“unconscious inference”. Helmholtz realised that many images are inherently ambiguous, so 

prior knowledge is necessary to disambiguate them. Recently, this concept has been formalised 

by models based on Bayes’ formula for inverse inference: 

𝑝(𝑆|𝐼) =
𝑝(𝐼|𝑆)𝑝(𝑆)

𝑝(𝐼)
 

where S is the shape of the object and I the image formed by it. Figure 2 illustrates a 

simple example. The image (I) in panel A is ambiguous, consistent with multiple objects and 

viewpoints, including the three illustrated in the panel: most observers’ first impression is a half-

pipe (or Tuscan roof tile) viewed from above, but it can be “willed” into other configurations, 

such as a convex tile. The full range of shapes consistent with the (noisy) measurement of image 

I is given by the likelihood function (I|S: panel B). To be consistent with the image, the curvature 

of the physical object must increase as the object surface slant approaches zero (orthogonal to 

line of sight). However, it can never reach 0 or ±π/2, as neither extreme could produce the 

two crescents with connecting lines. The object curvature could either be positive (concave), 

or negative (convex), depending on slant, but could not be positive for negative slant or vice 

versa. The scatter of probabilities around the functions reflects the noisiness (imprecision) in 

measuring the image (I). Panel C shows an example of a typical prior, a distribution of probable 

shapes. Humans show a preference for the from-above viewpoint, and also for curvatures equal 

to or smaller than circles. When multiplied by the likelihood, it gives a posterior probability 

function (panel D), far more constrained than the likelihood. The maximum a posteriori (MAP) is 

the peak of this function, the best Bayesian guess of the shape to produce the image max(p(S|I)), 

falling close to shape Y. Note that there is also a small mound corresponding to negative 
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curvature, corresponding to the less favoured but possible interpretation, shape Z. If the prior 

were attenuated (more distributed), as in panel E, it would constrain the image less (panel F), 

leaving X, Y and Z almost equally probable. It is possible that this is the case with autism.  

How the prior is generated remains open to question, many believing it develops over 

the lifespan, and perhaps evolves over generations. However, several recent studies [41, 42, 60] 

suggest that even 5-10 minutes of learning can be sufficient to alter the prior.  
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Figures 

 

 

 

Figure 1. Some examples that powerfully demonstrate the importance of prior knowledge in 

interpreting ambiguous bottom-up information. A. The Kanizsa triangle: three circles with 

segments missing and a triangle placed directly in front of them. The edges of the triangle are 

not really there, but would be for the most probable physical interpretation, a white triangle 

overlaying three regular circles. B. The Hollow-face illusion. A strong bias (or “prior”) for 

natural concave faces offsets competing information (such as shadows) and causes one to 

perceive a concave, hollow mask (right) as a normal convex face (left). C. Shepard’s table 

illusion. The two-dimensional images of the tabletop parallelograms are in fact identical. 

However, the image is consistent with many three-dimensional shapes, the most probable being 

real tables slanting at about 45°: to be consistent with the identical 2-D images, the tables need 

to be of very different dimensions.  
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Figure 2. Illustration of how Bayesian priors can 

help resolve perceptual ambiguities (see Box 1 

for more detailed explanation). A. An image (I) 

of a Tuscan Coppo tile, consistent with many 

physical shapes (S), three of which are 

illustrated (X, Y & Z). B. The likelihood 

function I|S shows the physical compatibilities of 

scene interpretations S with image I, plotting 

curvature of the image (where 1/R is a half-

circle) against image slant (where 0 represents a 

top view, π/2 end-on). X, Y & Z correspond to 

the examples in A. C. An estimate of a typical 

observer’s prior, corresponding to a preference 

for low curvatures, and for perceiving objects 

from above. D. When the prior is multiplied by 

the likelihood to yield the posterior, the range 
of solutions is much more confined. The 

maximum of the posterior (MAP) is the best 

Bayesian estimate of the shape S to generate 

image I (corresponding to Z). E. A prior like 

that in panel C, except 10 times broader, as 

may be the case in autism. F. When this prior is 

multiplied by the likelihood, the posterior is far 

less constrained, and all three possibilities X, Y 

& Z are possible. 
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Outstanding Questions 

 Is the in-built prior knowledge (prior) of people with autism attenuated compared to 

typically developing individuals of similar age and ability? 

 Can people with autism modify prior knowledge – to the same extent as typically 

developing individuals? What are the effects of imposing an experimentally controlled prior 

[cf. 64]? 

 Do individual differences in the strength of priors relate to differences in the degree of 

autistic symptoms (e.g., sensory sensitivities)?  

 Can the idiosyncratic pattern of sensory atypicalities in an individual be accounted for by 

differences in exposure to particular environmental stimuli? 

 Why is social information processing especially at risk in autism? Is it because social stimuli 

are inherently more complex and ambiguous than non-social stimuli?  

 Is the way that people with autism view the world around them characterized by “Bayesian 

surprise” [65]?  

 How can this account be related to Bayesian models of other neuropsychiatric conditions? 

For example, in schizophrenia, hallucinations are assumed to result from hyper-priors [66, 

67], which would place autistic and schizophrenic symptoms at the extremes of a 

continuum. 
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