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The cooperative coevolution (CC) algorithm features a “divide-and-conquer” problem-solving process. This feature has great
potential for large-scale global optimization (LSGO) while inducing some inherent problems of CC if a problem is improperly
decomposed. In this work, a novel CC named selective multiple population- (SMP-) based CC (CC-SMP) is proposed to
enhance the cooperation of subproblems by addressing two challenges: finding informative collaborators whose fitness and
diversity are qualified and adapting to the dynamic landscape. In particular, a CMA-ES-based multipopulation procedure is
employed to identify local optima which are then shared as potential informative collaborators. A restart-after-stagnation
procedure is incorporated to help the child populations adapt to the dynamic landscape. A biobjective selection is also
incorporated to select qualified child populations according to the criteria of informative individuals (fitness and diversity). Only
selected child populations are active in the next evolutionary cycle while the others are frozen to save computing resource. In
the experimental study, the proposed CC-SMP is compared to 7 state-of-the-art CC algorithms on 20 benchmark functions with
1000 dimensionality. Statistical comparison results figure out significant superiority of the CC-SMP. In addition, behavior of the
SMP scheme and sensitivity to the cooperation frequency are also analyzed.

1. Introduction

Large-scale global optimization (LSGO) is a kind of optimi-
zation problem that includes hundreds or even thousands
of decision variables. The huge number of decision variables
may induce the curse of dimensionality and an extremely
complex interdependency of variables, both of which are
challenging for conventional optimization approaches. In
addition, the increase of the decision variables may also lead
to a change in the problem’s properties.

Cooperative coevolution (CC) algorithms have great
potential to conduct LSGO in a divide-and-conquer manner.
The original problem is decomposed into several subprob-
lems each of which is optimized by a separate coevolutionary
population. Since these subproblems are relative small and
optimized concurrently, highly efficient problem solving
is expected.

To properly use CC, two issues should be carefully
considered: cooperation among subproblems and problem

decomposition (also called variable grouping). Since each
subproblem just represents a segment of the original
problem, one subproblem needs to persistently combine its
individuals with collaborators provided by the other sub-
problems. The resultant whole solutions are then evaluated
according to the objective function of the original problem.
Obviously, improper collaborators may misguide the fitness
evaluation and therefore be harmful for global optimization.
In fact, early theoretical works have proved that the conven-
tional CC algorithms are likely to converge to a Nash equilib-
rium rather than a global optimum if the collaborators cannot
provide sufficient information for cooperation.

Plenty of work has been conducted on problem decom-
position to minimize the interdependency among subprob-
lems [1–6]. If the subproblems are fully independent from
each other, the divide-and-conquer feature of CC algorithms
could be directly utilized to optimize large-scale problems.
However, fully accurate decomposition is usually impractical
especially for large-scale problems. Although some pioneer
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works [7–10] have studied the way to address the inhabi-
tation problems of CC through collecting informative
collaborators, they cannot be directly applied to LSGO.

In our previous work [11], niching-based multimodal
optimization (NMMO) was incorporated into the optimiza-
tion procedure of each subproblem. The optima found by
the NMMO procedures are exchanged among subproblems,
which enhances the collection of informative collaborators
and significantly improves the performance on LSGO.
Nevertheless, in [11] we just trigger the NMMO optimizer
occasionally because the convergence efficiency of NMMO
is relatively low due to the simultaneous search in different
regions. Therefore, the optimization is still mainly conducted
by another local search optimizer.

According to our further study, we found that it is not
necessary to locate and refine all optima of a subproblem. If
some regions are properly selected to be searched, the con-
struction of informative collaborators can still be achieved.
In addition, since the number of the regions or nichings are
reduced the convergence rate of the NMMO procedure is
accordingly improved. Thus, a proper selection scheme is
expected to be helpful for optimizing subproblems and
providing informative collaborators simultaneously.

Bearing this idea in mind, in this work a selective
multipopulation scheme is proposed to enhance the cooper-
ation among subproblems. To find informative collaborators,
multiple populations are used to search different regions
simultaneously. Different from common multipopulation-
or niching-based methods that are essentially for multimodal
optimization, in our algorithm only some representative ones
are selected according to fitness and diversity, and evolved at
each iteration. Thus, only one multipopulation-based opti-
mizer is used to not only find an informative collaborator
but also conduct global optimization in each subproblem.
Besides, the collaborative information is adaptively updated
among subproblems. The proposed algorithm is tested on
20 LSGO benchmark functions [12] launched at the 2010
IEEE Congress on Evolutionary Computation (CEC’10)
and compared with 7 state-of-the-art CC algorithms. Exper-
imental results validate the effectiveness.

The remainder of this paper is organized as follows.
Background knowledge and motivation are presented in
Section 2. In Section 3, the detail of the proposed method is
described. Behavior analysis and comparison are given in
Section 4. In the last section, we summarize our work and
draw the conclusions.

2. Background and Motivation

In this section, we briefly introduce the CC algorithm and
CMA-ES. Then, the background knowledge and challenges of
CC are presented.We figure out that the optimizer of subprob-
lems should not only provide informative collaborators with
good diversity andfitness but also adapt to dynamic landscapes.

2.1. Background

2.1.1. CC Algorithm. The pseudocode of the general CC
framework is shown in Algorithm 1. At first, the original

problem is decomposed into N subproblems with a certain
grouping method, then the context vector is initialized. Note
that each subproblem is only a part of the original problem.
Therefore, we need collaborative information (CI) from
other subproblems to evaluate individuals in the current
subproblem. Typically, the collaborative information is the
current best solution in each subproblem. After initializing
the subproblem populations (SP), subproblems will be opti-
mized in a round-robin fashion. The optimizer could be
any evolutionary algorithm. The historical best solution of
each subproblem is often stored as the collaboration infor-
mation. The algorithm terminates when the number of fit-
ness evaluations (FEs) exceeds the maximum number. In
line 10, the best solution is output as the final result.

2.1.2. CMA-ES. In the multiple population framework used
in this work, each population is evolved by an independent
local search optimizer. The covariance matrix adaptation
evolution strategy (i.e., CMA-ES) is proposed by Hansen
and Ostermeier [13]. By sampling and updating a normal
distribution adaptively, the CMA-ES shows a powerful local
search ability in continuous space. The main formula of
CMA-ES is shown as follows:

xi =m + σNi 0, C , 1

where m is the sampling center, σ is step size, and C is the
covariance matrix which determines the shape of the distri-
bution. The parameters m, σ, and C update in different
recombination, cumulation, and selection strategies [14].

2.2. Challenges for CC

2.2.1. Dynamic Landscapes. Due to the divide-and-conquer
nature of CC, fitness evaluation in a subproblem is related
to the other subproblems, in other words, the fitness land-
scape is dynamic when there exists interdependency among
the decision variables in different subproblems. This can be
demonstrated by the following example.

Equation (2) is the Ackley function withD dimensions. A
D ×D orthogonal matrix M is used to rotate the coordinate,
which makes the function nonseparable. The Ackley function
is widely used to build benchmark functions for assessing
optimization methods. In this case, let D = 4 and the four
decision variables are arbitrarily grouped into two

1 Decompose the original problem into N subproblems;
2 Randomly initialize the context vector CI;
3 Initialize SP i , i = 1,…N ;
4 while Termination= false do
5 for i = 1 N do
6 CI =Optimizer SP i , CI ;
7 end
8 end
9 Best =Output CI ;
10 return Best

Algorithm 1: CC Algorithm.
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subproblems (each consists of 2 decision variables). Thus, the
resultant two subproblems are interdependent.

Fackley X = 20 + e − 20 exp −0 2
1
D
〠
D

i=1
x2i

− exp
1
D
〠
D

i=1
cos 2πxi ,

2

Frot−ackley X = Fackley Z , Z = X ×M 3

Figure 1 shows the corresponding landscapes of the first
subproblem when cooperating with four different collabora-
tors from the second subproblem. It can be seen that not only
the shape of the landscape but also the location of the
optimum may vary accordingly. This reveals the dynamic
nature of the optimization procedure in subproblems in the
context of CC. Therefore, the optimizer of subproblems
should be able to respond to the change of landscapes.

2.2.2. Inherent Problems of CC. The evolutionary game
theory (EGT) has been used to theoretically analyze the CC
[8, 15]. It has been proved that conventional CC is likely to
converge to the Nash equilibrium which is relatively easy to
reach. Specifically, if the Nash equilibrium is a local optimum
with a large attractive basin, local rather than global opti-
mization will be the resultant of conventional CC. We use
the maximum of two quadratics (MTQ) function to
visually demonstrate this phenomenon. The MTQ function
(formulated in (4)) is a typical function that may lead to

local optimization of CC and is widely used in the litera-
ture [7, 15–18] to test CC algorithms. H determines the
height of a peak, S affects the covering area, and X, Y
is the coordinate of a peak.

MTQ x, y =max←

H1 ∗ 1 −
16 ∗ x − X1

2

S1
−
16 ∗ y − Y1

2

S1
,

H1 ∗ 1 −
16 ∗ x − X2

2

S2
−
16 ∗ y − Y2

2

S2
,

4

Figure 2 shows the landscape of a MTQ function with
two optima. The global optimum (i.e., opt1 −0 6, −0 6 )
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Figure 1: Demonstration of the dynamic nature of CC landscapes.
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Figure 2: Landscape of the MTQ function with H1 = 50, S1 = 16,
X1 = 0 2, Y1 = 0 2, H2 = 70, S2 = 2 3, X2 = −0 6, and Y2 = −0 6.
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locates on the small peak (covers a small attractive basin)
while the local optimum (i.e., opt2 0 2,0 2 ) locates on the
large peak. According to the principle of EGT, it is easy to
reach the Nash equilibrium on a large peak (i.e., opt2) where
each subproblem could be awarded easily. From the perspec-
tive of optimization, global optimization is not necessary
until the global optimum locates in a large attractive basin
where the Nash equilibrium is easy to reach. Notably, this
is not similar to the premature genetic algorithms which
could be addressed by maintaining proper population diver-
sity. As for the CC, if the optimization of a subproblem has
converged (taking Figure 2 for instance, the population for
variable y converges to 0.2), due to the cooperative nature
of the CC, the search area for the other subproblem will be
particularly restricted (the search space of x is restricted to
the solid blue line L1). In such case, the population cannot
search the remaining area where the global optimum may
actually be located.

2.3. Motivation. The inherent problem of CC is caused by
its cooperative nature. Thus, the proper cooperation
scheme should be accordingly designed to provide and
utilize informative collaborators. Intuitively, representative
information is found and sent to the other subproblem
so as to help it “understand” the counterpart. We take
Figure 2 as an example, in case that x = −0 43 and the
search space for y is actually the solid red line L3. If both
the current best optimum (on large peak) and local optimum
(on small peak) can be properly obtained and provided to x,
the solid blue line L2 that represents an additional search
space of x could be drawn. Along L2, CC will definitely find
the real global optimum. Therefore, the current global and
local optima are good representatives of a subproblem. They
can be used as informative collaborators to help CC jump out
from the locally optimal Nash equilibrium.

Nevertheless, there is no need to find all optima like
multimodal optimization. To save the computing resource
and improve converging rate, only the optima with great
potential to be the real global optimum is worthy of being
exploited. Thus, selective property should be additionally
incorporated into multimodal optimization.

In this paper, we particularly designed a multipopulation
optimizer for CC. In such optimizer, a selection strategy is
used to allow potential optima to use more computing
resource. Besides, the populations in each subproblem can
be adaptively restated to address the dynamic landscape
challenge of CC.

3. Proposed Algorithm

In this paper, we propose a selective multipopulation (SMP)
scheme to enhance the cooperation among subproblems.
The resultant CC algorithm is named CC-SMP for short.
The main extension of the CC-SMP is obtaining and
sharing more information among subproblems in a uniform
selection-based multipopulation framework.

3.1. Algorithm Framework. The pseudocode of the CC-SMP
is described in Algorithm 2. First, the original problem is

decomposed into several subproblems with a given grouping
method (line 1). Then, the coevolutionary populations and
information pool are initialized. Specifically, each subprob-
lem is allocated a coevolutionary population with a size of
group i . These populations are randomly generated
according to the grouping result group i (lines 3–6).
Besides, 50 additional complete solutions are randomly
generated and evaluated. The fittest solution is copied to
the information pool as the initial collaborative information
(lines 7–10). The initial coevolutionary populations for
subproblems are evaluated via collaborating with initial
collaborative information (line 11).

After the initialization procedure, the main optimization
procedure is executed (lines 12–24) till the number of fitness
evaluations (FEs) exceedsMaxFes. A multipopulation-based
optimizer is used for each subproblem. This optimizer differs
from conventional multipopulation optimizers, since not all
of the child populations will have the same opportunity to
evolve. A biobjective selection is conducted to identify child
populations with good fitness and diversity (lines 14-15)
and let them be active to evolve. As for the child populations
that are not selected, they will be frozen in the current
iteration to save computing resources.

To address the challenge of dynamic landscape, a
stagnation check is made for the child populations in each
subproblem (line 17). The stagnated child populations are
restarted to react in response to the dynamic landscapes. In
order to efficiently find and exploit local optima, the CMA-
ES, a popular local search algorithm, is used for each child
population. Accordingly, several active child populations
may simultaneously search different areas of a subproblem.
If any child population gets stuck a new local optimum has
been found and sufficiently exploited. Since we use the
information of optima to construct collaborative information
(CI) of CC, a newly raised optimum means the CI should be
updated. In such case, CI is updated by selecting elements
from the information pool which consists of the historical
best solution (history best) and centers of the CMA-ES opti-
mizers (line 20). Those elements are also selected according
to fitness and diversity like the selection of active populations
to avoid combinational explosion.

3.2. Selective Multiple Populations (SMP). In this work, mul-
tiple child populations are used to continually explore and
exploit local optima in each subproblem. As mentioned
before, not all child populations evolve at every iteration.
For improving the converge rate and saving computing
resources, only some child populations with great potential
will be selected to evolve. The following biobjective selection
is proposed to identify potential child populations.

For a given subproblem, Np child populations are
randomly initialized at first with their own evolutionary
parameters (e.g., center, step size, and covariance matrix for
the CMA-ES). At each generation, a biobjective selection is
conducted to select child populations which have competi-
tive fitness and diversity. Then, the selected child populations
can evolve while the remaining child populations will be
frozen till the next generation. Particularly, the diversity of
a given child population is defined as its minimum
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Manhattan distance between other child populations. The
Manhattan distance indicates the similarity between vectors.
The Manhattan distance between n-dimensional vectors xi
and x j is formulated in (5).

dij = 〠
n

k=1
xi k − x j k , 5

where xi k is the kth dimension of vector xi. The diversity
of xi is measured as

D xi = min
j=1,…,Np ,j≠i

dij, 6

where Np is the number of vectors. Note that in this
work the diversity of a given population refers to its

center (in the context of CMA-ES). In other words, the
vectors xi, i = 1,… , n, used in (5) are actually the centers
of the child populations, and Np is the number of child
populations. Given the diversity D xi and fitness f xi of
the centers, selection could be conducted according to the
following biobjective minimization:

argmin −D xi , f xi 7

The nondominated sorting method used in NSGA-II [19]
is employed to rank the centers. Child populations with non-
dominated centers are selected to evolve in the next iteration.
Algorithm 3 shows the detail of the selection process.

Comparing with conventional multipopulation evolu-
tionary algorithms, the SMP is easy to conduct and evolves

Input: Dim,MaxFes, Pop size, Func,Ubound, Lbound
Result: One run of CC-SMP

1 group, FEused = grouping Func ; MaxFEs =MaxFEs − FEused;
2 FEs = 0;
3 for i = 1 to group do
4 sdim = group i ;
5 pop i = Lbound + rand Pop size, sdim ∗ Ubound − Lbound ;
6 end
7 inisolu = Lbound + rand 50, Dim ∗ Ubound − Lbound ;
8 inif it = evaluate inisolu ;
9 min ind =min inif it ;
10 CI = inisolu min ind ;
11 Evaluate all pop i via collaborating with CI;
12 while FEs <MaxFEs do
13 for i = 1 to group do
14 active ind = select pop i , f itness // see Algorithm 3;

active pop = pop i active ind ;
15 for j = 1 to active pop do
16 FEs1, active pop j , f itness =Multiple CMA-ES

group i , active pop j , CI ;
17 FEs2, active pop j , f itness, CI = check restart active pop j , inf pool

// see Algorithm 4;
18 end
19 pop i active ind = active pop;
20 Inf pool← history best, centers CMA − ES ;
21 FEs = FEs + FEs1 + FEs2;
22 end
23 end

Algorithm 2: Framework of CC-SMP.

Input: pop, f itness
Output: active ind
// active ind = select pop, f itness

1 for i = 1 to Np do
2 for j = 1 to Np do
3 Dij = diversity pop i , pop j // (6);
4 end
5 end
6 active ind = sorting −Dij, pop, f itness //nondominated sorting;

Algorithm 3: Select Active Populations.
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efficiently. In conventional algorithms, the management of
the child populations including parameters (search space,
step size, etc.), life time, and update strategy are relatively
complex and additional parameters may also be involved.
In contrast, in SMP, selected child populations evolve and
restart (as presented in Section 3.3) separately without a
merging/splitting operation. The biobjective selection makes
the child populations search in the distributed area with good
diversity. Besides, selecting potential populations to be active
for evolution also saves computing resources and speeds up
the rate of convergence.

3.3. Stagnation and Restart. In this work, we propose a restart
scheme so that multiple child populations are capable of
exploring local optima continually. In addition, this restart
scheme enhances the optimizer of each subproblem to react
to a dynamic landscape. In particular, the best fitness of
active optima is kept to identify stagnation. Stagnated popu-
lations are then restarted to maintain the proper diversity
which is essential to continually search (exploring new
optima and searching in a dynamic landscape).

The pseudocode of stagnation identification is shown in
Algorithm 4. As mentioned before, the CMA-ES is used as
the optimizer of each child population. Stagnation criteria
for a child population are borrowed from [20]. As for a given
child population, the best and median fitness values (termed
subbest and submedian, resp.) in the last 120 + 30D/lamda
generations are persistently archived and updated. D is the
dimension of the subproblem and lamda is the number of
the sampling points of CMA-ES in a generation. In this work,
lamda is set to 4 + 3 ∗ ln D as suggested in [21].

Three criteria (C1, C2, and C3) are used to check whether
a CMA-ES optimizer gets stuck. C1 and C2 depend on the
data sets in subbest and submedian. In particular, the
20 newest values in subbest and submedian should be
smaller than the 20 oldest ones. As for C3, the difference
between the maximum and minimum of the recent 10 +
30D/lamda fittest values should be larger than a prede-
fined threshold Tol. If either of these three criteria is not
fulfilled, the corresponding CMA-ES optimizer is identified
as stagnation.

In this work, we restart a child population in its opposite
position [22] (line 6). The opposite position of x is defined as
a + b − x. a, b bounds variable x. Reference [23] shows that

hybridization opposition-based learning (OBL) and CC can
improve the performance of CC. The key idea of OBL is that
the opposite of a candidate solution has relatively high
probability to obtain a better fitness value.

3.4. Select Collaborative Information. In the CC algorithm,
the cooperation between subproblems is achieved by
exchanging collaborative information. Each subproblem is
just a part of the original problem, but only complete
solutions can be evaluated. To evaluate individuals of a given
subproblem, the individuals needs to be combined with
collaborative information to form complete solutions. In
traditional CC algorithms, only the best individual of each
subproblem is provided as collaborative information. As
mention before, such cooperation will lead to the conver-
gence to Nash equilibrium which may be suboptimal.

To address this issue, it is necessary to provide collabora-
tors which are more informative to enhance the cooperation
among subproblems. According to the description of CC-
SMP, each subproblem provides its historical best solution
and centers of active CMA-ES populations. An intuitive
way to construct complete solutions is to fully mix the collab-
orators and the individual at hand. However, as the number
of subproblems increase, the number of the resultant
complete solutions increases exponentially, which may lead
to a large number of fitness evaluation. To avoid such combi-
natorial explosion, the number of informative collaborators
should be properly limited. In this work, the collaborative
information (historical best solution and centers of active
CMA-ES populations) is offered in terms of complete
solutions and archived in the information pool. As shown
in Figure 3, a complete solution consists of a solution
segment of the subproblem and the very collaborator which
is used to conduct fitness evaluation. Then, few informative
collaborators with good diversity and fitness are selected
according to the selection scheme illustrated in Algorithm 3.

Input: active pop i , inf pool, f itness
Output: FEs 2, active pop, CI, f itness

1 FEs2, active pop i , CI, f itness = check restart active pop i , f itness, inf pool ;
2 C1 = subbest 1 20 − subbest end − 19 end ;
3 C2 = submedian 1 20 − submedian end − 19 end ;
4 C3 = max xbest −min xbest ;
5 if C1 < 0 C2 < 0 C3 < Tol then
6 active pop i =Ubound + Lbound − active pop i ;
7 CI = select Inf pool ;
8 FEs, f itness = evaluate active pop ;
9 end

Algorithm 4: Check Stagnation and Restart.

Subproblem 1 Subproblem N

Active populations
History best solution

Active populations
History best solution

Information pool
Subproblem 2 ……

Active populations
History best solution

Figure 3: Demonstration of information pool.
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4. Experiments

In this section, we test and verify the proposed CC-SMP
algorithm. First, the CC-SMP is compared with seven state-
of-the-art CC algorithms for LSGO. Second, the behavior of
CC-SMP is analyzed in the context of CC. Third, parameter
sensitivity is analyzed to further understand the performance
of the CC-SMP.

4.1. General Parameter Settings. The following experiments
are conducted using the benchmark suite for LSGO which
was launched at CEC’10 (2010 IEEE Congress on Evolutionary
Computation). This benchmark suite includes twenty 1000-
dimensional real-valued functions. As shown in Table 1, differ-
ent basic functions and separability are considered to generate
the benchmark functions. According to the separability, the
benchmark functions can be classified into five categories:

(i) C1: fully separable (F1–F3)

(ii) C2: partially separable with a single 50-dimensional
nonseparable group (F4–F8)

(iii) C3: partially separable with 10 50-dimensional
nonseparable groups (F9–F13)

(iv) C4: partially separable with 20 50-dimensional
nonseparable groups (F14–F18)

(v) C5: fully nonseparable (F19–F20)

Unless otherwise specified, a given algorithm is run for
25 times on a function to obtain the average performance

for comparison. As for each run, an algorithm termi-
nates when the number of fitness evaluations (FEs)
exceeds 3 × 106. As for the CC-SMP, the subproblems
evolve one by one, and each subproblem evolves one genera-
tion in a single cycle. The differential grouping (DG) [2] is
used to decompose the original problem into several
subproblems before the CC-SMP algorithms are conducted.

Note that according to our preliminary experimental
results, in each cycle of the proposed CC-SMP the number
of active optimizers (i.e., the CMA-ES) is always limited
(from 1 to 6) even if there are 50 optimizers. In addition,
the number of optimizers will not significantly affect the
effectiveness and efficiency, because most of the optimizers
will not be selected to be active and run in the optimization
procedure according to our selection strategy. To make sure
there are enough to be selected, we set such number to be
10 in our following experiments.

4.2. Performance Comparison. Here we compare the CC-
SMP with seven state-of-the-art CC algorithms: DECC-D
[5], MLCC [24], DECC-DML [5], DECC-DG [2], DECC-I
[2], CBCC-1 [25], and CBCC-2 [25]. The grouping methods
of these CC algorithms are presented in Table 2. Note that in
some algorithms (i.e., CC-SMP, DECC-DG, CBCC-1, and
CBCC-2) problem decomposition has been conducted before
optimization. In the following experiments, the number of
FEs that are used for grouping is not counted. The accurate
FEs consumed by variable grouping on each function are
given in [2]. The optimizer of these seven large-scale optimi-
zation algorithms is the SaNSDE [26]. It is a self-adaptive
differential evolution algorithm with neighborhood search.

Table 1: Description of the CEC’2010 benchmark suite.

Category Functions Description

C1: fully separable
1000D-separable variables

F1 Shifted elliptic function Unimodal

F2 Shifted Rastrigin’s function Multimodal

F3 Shifted Ackley’s function Multimodal

C2: partially-separable
Single 50D-nonseparable group
950D-separable variables

F4 Shifted and rotated elliptic function Unimodal

F5 Shifted and rotated Rastrigin’s function Multimodal

F6 Shifted and rotated Ackley’s function Multimodal

F7 Shifted and Schwefel’s problem 1.2 Unimodal

F8 Shifted and Rosenbrock’s function Multimodal

C3: partially-separable
Ten 50D-nonseparable groups
500D-separable variables

F9 Shifted and rotated elliptic function Unimodal

F10 Shifted and rotated Rastrigin’s function Multimodal

F11 Shifted and rotated Ackley’s function Multimodal

F12 Shifted and Schwefel’s problem 1.2 Unimodal

F13 Shifted and Rosenbrock’s function Multimodal

C4: partially-separable
Twenty 50D-nonseparable groups

F14 Shifted and rotated elliptic function Unimodal

F15 Shifted and rotated Rastrigin’s function Multimodal

F16 Shifted and rotated Ackley’s function Multimodal

F17 Shifted and Schwefel’s problem 1.2 Unimodal

F18 Shifted and Rosenbrock’s function Multimodal

C5: fully-nonseparable
1000D-nonseparable variables

F19 Shifted Schwefel’s problem 1.2 Unimodal

F20 Shifted Rosenbrock’s function Multimodal
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The mean and standard deviation values of the
algorithms over 25 independent runs are compared in
Table 3. As for each function, the best result (with a signifi-
cance level of 0.05) is marked in bold. As can be seen, the
proposed CC-SMP performs the best on 12 out of 20
functions followed by DECC-I (4/20), DECC-DG (2/20),
and CBCC-2 (2/20). In addition, in Table 4 pairwise
Wilcoxon test comparisons between the CC-SMP and each
peer algorithm are made on each test function. The CC-
SMP performs significantly better in 77 8% (109 out of 140)
comparing cases but significantly worse in only 16 4%
(23 of 140) of the cases. Therefore, the selective multipo-
pulation strategy effectively enhances the CC algorithm
on LSGO problems.

To better understand the dynamics of the CC-SMP,
Figure 4 shows the average fitness values of the CC-SMP
and three compared algorithms over 25 independent runs.
It can also be seen that on most of the test functions the
CC-SMP converges more quickly.

The Friedman average rankings are given in Table 5 to
conduct multiple statistical comparison according to differ-
ent separabilities (fully, partially, and nonseparable) and
function features (unimodal and multimodal). It can be seen
that the CC-SMP also obtains the best ranking results.

4.3. Behavior Analysis. Although ten child populations are
initialized for each subproblem, at each iteration, only some
of them are selected to be active for evolution. In this section,
the behavior of SMP is studied to deeply understand how
does the SMP select active populations. For each subproblem,
we record the fittest value of each active (selected by SMP)
child population during the evolution process. Three typical
selective behaviors could be observed in Figures 5–7 which
are described as follows:

First, several child populations evolve simultaneously and
the best performed one is always selected to be active.
Figure 5 shows the dynamics of the selected child populations
in the 22nd subproblem when optimizing F1 (forty 25-D sub-
components). It can be seen that the 10th child population is
always selected to evolve till the number of FEs reaches about
9 × 105. Actually, the 10th child population has discovered
the global optimum and restarted after 9 × 105 FEs (avoiding
getting stuck for a long time). This means that the SMP
can provide the best-performed child population more
evolution opportunity. In addition to the best-performed

child population, the diversity-controlling criterion in the
SMP can also keep several other child populations from
occasionally being active to search the global optimum.

Second, if the landscape is unimodal or the diversity of
the child populations is relatively small only, the best-
performed child population is selected to persistently evolve.
Figure 6 shows the dynamics of the selected child populations
in the 17th subproblem when optimizing F9 (unimodal). It
can be seen that the 10th child population is always selected
to be active. Although several other child populations are also
selected at the beginning, only the 10th one is persistently
selected after about 1 × 105 FEs. In such case, the correspond-
ing subproblem could be optimized by only one child popu-
lation and computing resource is saved.

Third, in a multimodal landscape the always-being-
selected child populations easily get stuck but can be
restarted by the SMP to keep a proper level of diversity.
Figure 7 shows the dynamics of the selected child populations
in the 29th subproblem when optimizing F10 (multimodal).
It can be seen that the stagnation takes place in the 2nd and
7th child population, respectively. However, due to the
restart scheme in the SMP both can be selected to be active
again. In addition, every time a child population is restarted
an alternative one is selected to have the lead role of evolution
and to persistently evolve till stagnation.

4.4. Sensitivity Analysis to Cooperation Frequency. According
to the description in Section 3.2, the main idea of the SMP is
to improve the cooperation among subproblems by sharing
collaborators which are more informative. Whenever a
subproblem updates its collaborators from the information
pool, a cooperation takes place.

In the CC-SMP, a subproblem triggers a cooperation only
when it is stagnated and about to be restarted. To further
investigate the impact of the frequency with which the
subproblems cooperate, in the following experiments the
CC-SMP is implemented with four cooperation frequencies,
i.e. M = 1,100,500, restart . Note that M denotes the num-
ber of cycles (line 13–22 in Algorithm 2) that are executed
between every two occurrences of cooperation.

Table 6 shows the performance with M = 1,100,500,
restart . It can be seen that in 13 out of 20 functions
the performance changes obviously (the maximal value is
larger than 1.5 times the minimal value). In particular,
M = 1 always leads to a relatively poor performance and
therefore an obvious change of performance. This is
because M = 1 means that the subproblems need to update
their collaborators in each cycle. In such case, the landscape
may change in a high frequency and there is not sufficient
time for the optimizer to explore the new landscape. Accord-
ingly, the quality of the informative collaborators and the
resultant cooperation is decreased. This can also be verified
by convergence curves on selected functions, as shown in
Figure 8. It can be seen that the algorithm withM = 1 always
obtains the lowest convergence rate.

Although a clear superiority of M = restart (used in CC-
SMP by default) is not observed in Table 6 and Figure 8 com-
paring with M = 100,500 , the restart strategy implies an
adaptive behavior when conducting cooperation. There is

Table 2: Description of compared algorithms.

Algorithm Grouping method

DECC-D Delta grouping

MLCC
Random grouping with a pool of potential

subcomponent sizes

DECC-DML
Delta grouping with a pool of potential

subcomponent sizes

DECC-DG Differential grouping (DG)

DECC-I Ideal grouping

CBCC-1 DECC-DG with contribution-based CC algorithm

CBCC-2 DECC-DG with contribution-based CC algorithm
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Table 3: Performance comparison on CEC’10 LGSO benchmark functions.

Functions DECC-D MLCC DECC-DML DECC-DG DECC-I CBCC-1 CBCC-2 CC-SMP

F1
Mean
Std

0.00E+ 00
0.00E+ 00

8.24E− 07
4.28E− 7

2.77E− 07
9.60E− 07

2.08E+ 06
2.05E+ 06

3.83E+ 05
6.51E+ 05

1.96E+ 06
1.99E+ 09

6.38E+ 06
1.82E+ 07

0.00E+ 00
0.00E+ 00

F2
Mean
Std

6.52E+ 01
4.47E+ 01

2.61E− 03
5.34E− 03

1.04E+ 01
2.24E+ 01

4.22E+ 03
3.80E+ 02

4.39E+ 03
2.96E+ 02

4.33E+ 03
3.04E+ 02

4.18E+ 03
5.38E+ 02

1.31E+ 03
4.03E+ 01

F3
Mean
Std

2.29E+ 00
1.75E− 01

1.27E− 02
2.65E− 02

2.57E− 01
7.06E− 01

1.09E+ 01
8.53E− 01

1.10E+ 01
6.23E− 01

1.12E+ 01
8.96E− 01

1.10E+ 01
7.32E− 01

0.00E+ 00
0.00E+ 00

F4
Mean
Std

2.98E+ 12
9.35E+ 11

1.17E+ 14
4.12E+ 13

1.18E+ 14
1.69E+ 14

5.06E+ 11
1.96E+ 11

2.71E+ 10
1.24E+ 10

1.81E+ 11
1.08E+ 11

1.65E+ 10
3.62E+ 09

1.87E+ 11
5.08E+ 10

F5
Mean
Std

2.86E+ 08
1.08E+ 08

5.04E+ 08
1.36E+ 08

4.99E+ 08
1.28E+ 08

7.36E+ 07
9.56E+ 06

6.86E+ 07
1.24E+ 07

7.02E+ 07
1.05E+ 07

6.43E+ 07
1.31E+ 07

8.69E+ 07
1.66E+ 07

F6
Mean
Std

5.89E+ 06
5.43E+ 06

1.90E+ 07
2.12E+ 06

1.68E+ 07
6.08E+ 06

1.58E+ 01
7.30E− 01

1.63E+ 01
9.69E− 01

8.14E+ 04
2.84E+ 05

4.11E+ 04
2.05E+ 05

1.10E+ 03
2.78E+ 03

F7
Mean
Std

1.47E+ 05
2.47E+ 05

4.88E+ 10
1.64E+ 10

3.42E+ 10
5.19E+ 10

2.79E+ 04
2.03E+ 04

1.17E+ 04
3.96E+ 03

1.23E+ 05
1.09E+ 05

1.26E+ 10
1.48E+ 10

1.06E+ 08
8.94E+ 07

F8
Mean
Std

1.27E+ 08
1.52E+ 08

8.23E+ 08
1.92E+ 08

3.10E+ 10
6.90E+ 10

2.78E+ 07
3.19E+ 07

8.06E+ 05
1.63E+ 06

7.50E+ 06
1.84E+ 07

3.72E+ 07
3.47E+ 07

5.83E+ 07
2.65E+ 07

F9
Mean
Std

1.01E+ 08
9.09E+ 06

1.69E+ 09
2.54E+ 08

1.05E+ 09
1.13E+ 09

3.65E+ 07
1.49E+ 07

4.76E+ 07
5.30E+ 07

1.02E+ 07
3.84E+ 06

3.40E+ 08
2.67E+ 08

1.41E+ 03
1.64E+ 03

F10
Mean
Std

4.07E+ 03
1.26E+ 03

5.19E+ 03
1.72E+ 03

4.30E+ 03
1.77E+ 03

3.33E+ 03
1.92E+ 02

3.13E+ 03
1.68E+ 02

2.59E+ 03
1.48E+ 02

4.90E+ 03
6.37E+ 02

1.59E+ 03
7.16E+ 1

F11
Mean
Std

9.98E+ 01
1.01E+ 02

2.00E+ 02
2.24E+ 00

1.91E+ 02
3.56E+ 01

2.64E+ 01
2.95E+ 00

2.51E+ 01
2.72E+ 00

2.69E+ 01
2.64E+ 00

2.75E+ 01
3.18E+ 00

0.00E+ 00
0.00E+ 00

F12
Mean
Std

9.14E+ 03
1.08E+ 03

8.68E+ 05
1.24E+ 05

4.76E+ 05
4.69E+ 05

3.21E+ 04
1.06E+ 04

2.44E+ 04
7.12E+ 03

3.53E+ 04
1.11E+ 04

5.07E+ 04
1.10E+ 04

0.00E+ 00
0.00E+ 00

F13
Mean
Std

5.44E+ 03
2.76E+ 03

3.24E+ 04
2.61E+ 04

8.62E+ 04
1.95E+ 05

2.89E+ 07
1.57E+ 07

1.29E+ 04
4.34E+ 03

9.06E+ 04
6.11E+ 04

1.29E+ 07
7.36E+ 06

1.51E+ 03
1.39E+ 03

F14
Mean
Std

3.00E+ 08
2.19E+ 07

3.62E+ 09
5.43E+ 08

2.22E+ 09
2.04E+ 09

2.10E+ 07
2.25E+ 06

2.14E+ 07
2.06E+ 06

2.24E+ 07
2.27E+ 06

5.35E+ 09
6.00E+ 08

0.00E+ 00
0.00E+ 00

F15
Mean
Std

1.30E+ 04
2.18E+ 02

1.17E+ 04
2.05E+ 03

1.10E+ 04
2.77E+ 03

2.88E+ 03
2.76E+ 02

2.84E+ 03
1.86E+ 02

2.84E+ 03
2.65E+ 02

3.22E+ 03
4.17E+ 02

1.69E+ 03
3.96E+ 01

F16
Mean
Std

2.02E+ 02
1.58E+ 02

3.99E+ 02
3.43E+ 00

3.62E+ 02
1.09E+ 02

1.97E+ 01
3.61E+ 00

1.93E+ 01
3.77E+ 00

1.87E+ 01
3.83E+ 00

1.91E+ 01
2.76E+ 00

0.00E+ 00
0.00E+ 00

F17
Mean
Std

7.47E+ 04
4.72E+ 03

1.79E+ 06
1.78E+ 05

9.71E+ 05
1.05E+ 06

7.76E+ 00
1.89E+ 00

7.08E+ 00
1.76E+ 00

1.49E+ 01
7.01E+ 00

1.24E+ 02
5.72E+ 01

0.00E+ 00
0.00E+ 00

F18
Mean
Std

1.44E+ 04
1.27E+ 04

1.07E+ 05
2.68E+ 04

7.77E+ 04
1.75E+ 05

2.01E+ 10
4.82E+ 09

1.15E+ 03
1.65E+ 02

4.10E+ 09
1.83E+ 09

1.23E+ 11
1.45E+ 10

2.42E+ 04
1.62E+ 04

F19
Mean
Std

1.59E+ 06
1.32E+ 06

2.96E+ 06
4.29E+ 05

2.70E+ 06
3.37E+ 06

9.01E+ 05
6.14E+ 04

8.95E+ 05
6.24E+ 04

9.12E+ 05
7.11E+ 04

9.11E+ 05
6.02E+ 04

1.05E+ 06
1.49E+ 05

F20
Mean
Std

2.27E+ 03
2.44E+ 02

1.75E+ 05
2.08E+ 05

5.42E+ 03
1.46E+ 04

6.53E+ 08
6.71E+ 08

1.67E+ 07
3.30E+ 07

1.41E+ 07
1.96E+ 07

6.97E+ 09
1.12E+ 09

1.19E+ 03
1.76E+ 02

Table 4: Wilcoxon test with a significant level of 0.05. +, −, and ~ denote significantly better, significantly worse and not significantly
different, respectively.

Function number
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

DECC + − + + + + − + + + + + + + + + + − ~ +

MLCC + − + + + + + + + + + + + + + + + + + +

DECC-DML + − + + + + + + + + + + + + + + + ~ ~ +

DECC-DG + + + + − ~ − − + + + + + + + + + + − +

DECC-I + + + − − ~ − − + + + + + + + + + − − +

CBCC-1 + + + ~ − ~ − − + + + + + + + + + + − +

CBCC-2 + + + − − ~ + − + + + + + + + + + + − +
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no need to carefully set a fixed cooperation frequency. A
cooperation is triggered as long as a stagnation takes
place. Seen from Figure 9, on different functions the algo-
rithm with a restart scheme may adaptively adjust its
cooperation frequency. More cooperation takes place
when solving multimodal functions (see F5 and F8),

because more child populations are needed to search
simultaneously to obtain better informative collaborators
from the multimodal landscape. These child populations
need to jump out from the local optima and update
collaborative information, which increases the number of
occurrences of cooperation.

DECC−DG
CCBC−1

CCBC−2
CC−SMP
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Figure 4: Convergence curves on CEC’10 benchmark function.

10 Complexity



Table 5: Friedman average rankings.

Algorithm
Friedman average rankings

Fully separable Partially separable Nonseparable Unimodal Multimodal

DECC-D 2.83 4.13 3.5 3.68 4.0

MLCC 2.33 6.26 5.5 6.37 5.08

DECC-DML 2.66 5.60 4.5 5.62 4.66

DECC-DG 5.66 3.06 3.5 2.75 4.0

CBCC-1 6.33 2.86 4.0 3.0 3.74

CBCC-2 6.0 4.26 4.5 4.5 4.58

CC-SMP 2.16 1.79 2.5 2.06 1.91
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Figure 5: Convergence curves of active child populations in the 22nd subproblem when optimizing F1.
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11Complexity



5. Conclusions

In this paper, we have proposed a novel CC named CC-SMP
whose cooperation among subproblems is enhanced by the
selective multiple population (SMP) scheme. The main moti-
vation of this paper is to provide informative collaborators

among subproblems throughout the CC process. By properly
utilizing those collaborators, the inherent problem of CC
algorithms caused by inaccurate problem decomposition is
expected to be addressed. We have argued two challenges
to obtain informative collaborators. First, the informative
collaborators should be some representative individuals with
good fitness and diversity. Second, due to the interactive
nature of CC algorithms the landscape of the subproblems
is dynamic rather than static.

To address two such challenges, the SMP scheme has
been proposed to enhance the cooperation of CC algorithms.
A multipopulation scheme with a restart-after-stagnation
procedure has been designed to conduct optimization for
each subproblem. Several child populations simultaneously
search in different local areas and locate corresponding
local optima as the informative collaborators. The restart-
after-stagnation procedure has been incorporated to help
the child populations adapt to a dynamic landscape. To
save computing resource and speed up converging rate,
not all child populations can evolve all the time. A biob-
jective selection has also been incorporated to identify
the qualified child populations according to the criteria
of representative individuals (fitness and diversity). Only
selected child populations are active in the next evolution-
ary cycle while the others are frozen to save computing
resource. In the experimental studies, the proposed CC-
SMP has been compared with 7 state-of-the-art CC
algorithms on twenty 1000D benchmark functions. Both
pairwise comparison (Wilcoxon test) and multiple com-
parison (Friedman ranking) results figure out the signifi-
cant superiority of the proposed CC-SMP. In addition,
behavior analysis of the SMP scheme and sensitivity to
the cooperation frequency have been conducted to further
understand the CC-SMP.

More work can focus on realizing cooperation among
subproblems more efficiently and accurately in the future.
Some techniques from the machine learning field may be
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Figure 7: Convergence curves of active child populations in the 29th subproblem when optimizing F10.

Table 6: Performance comparison with different M. Bold values
denote the best performance. Bold function number indicates that
in such function the maximal value is larger than 1.5 times the
minimal value.

Function 1 100 500 Restart

F1 7.1E+ 04 0.00E+ 00 0.00E+ 00 0.00E+ 00

F2 1.54E+ 03 1.21E+ 3 1.36E + 3 1.27E+ 3

F3 3.56E− 02 0.00E+ 00 0.00E+ 00 0.00E+ 00

F4 1.35E+ 11 6.83E+ 10 1.45E + 11 2.06E+ 11

F5 9.47E+ 07 6.08E+ 07 6.87E + 07 9.17E+ 07

F6 6.43E+ 04 3.14E− 02 2.60E− 03 9.94E+ 01

F7 1.09E+ 08 4.59E+ 06 4.47E+ 06 2.41E+ 07

F8 5.93E+ 07 4.63E+ 07 4.71E + 07 4.76E+ 07

F9 1.94E+ 07 3.34E+ 02 1.44E + 03 9.31E+ 01

F10 1.58E+ 03 1.43E+ 03 1.52E + 03 1.65E+ 03

F11 3.60E-02 0.00E+ 00 0.00E+ 00 0.00E+ 00

F12 6.29E+ 03 0.00E+ 00 0.00E+ 00 0.00E+ 00

F13 1.67E+ 04 1.29E+ 03 7.93E + 02 6.88E+ 02

F14 1.34E+ 06 0.00E+ 00 0.00E+ 00 0.00E+ 00

F15 1.62E+ 03 1.67E+ 03 1.69E + 03 1.77E+ 03

F16 0.00E+ 00 0.00E+ 00 0.00E + 00 0.00E+ 00

F17 0.00E+ 00 0.00E+ 00 0.00E + 00 0.00E+ 00

F18 2.26E+ 06 3.01E+ 04 2.07E + 04 1.84E+ 04

F19 1.06e + 06 5.22E+ 05 1.30E + 06 9.46E+ 05

F20 4.12E+ 08 1.24E+ 03 1.02E+ 03 1.32E+ 03
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Figure 8: Convergence curves of the CC-SMP with a different collaboration frequency.
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used to settle the combinatorial explosion problem between
subproblems. The data generated in the optimization process
may be utilized to improve the quality of collaboration
information in our follow-on work.
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