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Constructing a powerful graph that can effectively depict the intrinsic connection of data points is the critical step to make the
graph-based semisupervised learning algorithms achieve promising performance. Among popular graph construction algorithms,
low-rank representation (LRR) is a very competitive one that can simultaneously explore the global structure of data and recover the
data from noisy environments. Therefore, the learned low-rank coefficient matrix in LRR can be used to construct the data affinity
matrix. Consider the existing problems such as the following: (1) the essentially linear property of LRR makes it not appropriate to
process the possible nonlinear structure of data and (2) learning performance can be greatly enhanced by exploring the structure
information of data; we propose a newmanifold kernelized low-rank representation (MKLRR) model that can perform LRR in the
data manifold adaptive kernel space. Specifically, the manifold structure can be incorporated into the kernel space by using graph
Laplacian and thus the underlying geometry of data is reflected by thewrapped kernel space. Experimental results of semisupervised
image classification tasks show the effectiveness of MKLRR. For example, MKLRR can, respectively, obtain 96.13%, 98.09%, and
96.08% accuracies on ORL, Extended Yale B, and PIE data sets when given 5, 20, and 20 labeled face images per subject.

1. Introduction

Since it is usually not easy to collect a large number of
labeled samples to train learning models, the semisupervised
learning (SSL) paradigm, which can harness both labeled
and unlabeled samples to improve the learning performance,
draws a lot of attention in recent studies [1–7]. Among
existing SSL algorithms, graph-based algorithms are a class of
the most popular approaches in which the label propagation
can be performed on the graph [8–11]. The underlying idea
for graph-based algorithms is to characterize the relation-
ship between data pairs by an affinity matrix. Although
researchers have pointed that sparsity, high discriminative
power, and adaptive neighborhood are desirable properties
for a good graph [12], how to learn a good graph that can
accurately uncover the latent relationship in data is still a
challenging problem.

Among existing graph construction methods, the 𝑘-
nearest neighbors and 𝜀-neighborhood are the two most
widely used algorithms. However, they are usually sensitive
to noisy environments, especially when data points contain
outliers. To construct more effective graph, many new algo-
rithms were proposed. The sparse graph [8] is parameter-
free and insensitive to outliers, which is derived by encoding
each datum as a sparse representation of the remaining
samples. Sparse graph can automatically select the most
informative neighbors for each datum. However, since sparse
representation encodes each datum individually, the resultant
sparse graph only emphasizes the local structure of data,
while it neglects considering the global structure of data.This
property will deteriorate its performance, especially when
data are grossly corrupted [13]. Different from sparse repre-
sentation that enforces the representation coefficient to be
sparse [14], low-rank representation aims to learn the data
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affinities jointly, which can reveal the global structure of data
and preserve the membership of samples that belong to the
same class in noisy environments [15, 16]. The learned LRR
graph can capture the global mixture of subspaces structure
via the low rankness property and thus it is generative and
discriminative for semisupervised learning tasks [9].

Apart from the conventional LRRmodel, many advanced
variants were proposed recently. To efficiently explore the
structure information of data, Zheng et al. imposed the local
constraint characteristic on the representation coefficient
and thus formulated the low-rank representation with local
constraint (LRRLC) model [10]. Lu et al. proposed the graph
regularized LRR (GLRR) that introduces the graph regular-
izer to enforce the local consistency of data [17]. Zhuang
et al. proposed incorporating the sparse and nonnegative
constraints into low-rank representation and formulated the
NNLRS model [9]. The manifold low-rank representation
(MLRR) [18] first uses a sparse learning objective to identify
the data manifold and then incorporates the manifold infor-
mation into low-rank representation as a regularizer. Addi-
tionally, [19] proposed preserving the structure information
of data from two aspects: local affinity and distant repulsion.
Li and Fu proposed constructing graph based on low-rank
coding and 𝑏-matching constraint for obtaining a sparse
and balanced graph [20]. All the above-mentioned low-rank
models are linear; therefore, they inevitably have limitations
in modeling complex data distribution, which does not
strictly follow a linearmodel but a nonlinear one. Tomake the
low-rank model effectively deal with the nonlinear structure
of data, [11] proposed the kernel low-rank representation
(KLRR) graph for semisupervised classification by using
kernel trick. As a nonlinear extension of LRR, KLRR also
showed excellent performance in face recognition [21].

Recent studies [22–26] have shown that learning perfor-
mance can be greatly enhanced by considering the geomet-
rical structure and local invariant idea [27]. It is obvious that
this idea should be considered in both original data space and
the reproducing kernelHilbert space (RKHS).However, there
is no existing LRR variant that takes into account the intrinsic
manifold structure in RKHS. In this paper, we propose a
novel manifold adaptive kernelized LRR for semisupervised
classification. By using a data-dependent norm on RKHS
proposed by [28], we can warp the structure of the RKHS
to reflect the underlying geometry of the data. Then, the
conventional low-rank representation can be performed in
the manifold adaptive kernel space. The main contributions
of this paper can be briefly summarized as follows:

(1) We construct the manifold adaptive kernel space,
where the underlying geometry of data can be
reflected by the graph Laplacian.

(2) We give the model formulation, the optimization
method, and the complexity analysis of MKLRR in
detail.

(3) We conduct extensive experiments on semisuper-
vised image classification tasks to evaluate the effec-
tiveness ofMKLRRand the experimental results show
that MKLRR can get pretty promising performance.

The remainder of this paper is organized as follows.
In Section 2, we give a brief review on the conventional
LRR model and the semisupervised learning framework
to be used in our work. Section 3 describes the model
formulation, optimization method, and complexity analysis
of the manifold adaptive kernelized LRR model in detail.
Experimental studies of MKLRR on semisupervised image
classification task will be introduced in Section 4. Section 5
concludes the whole paper and presents an extension of
MKLRR as our future work.

2. Related Work

In this section, we give a brief review of the conventional low-
rank representation model [15] and the semisupervised clas-
sification framework based onGaussian Fields andHarmonic
Functions (GHF) [1].

2.1. LRR. Given a set of samples X = [x1, x2, . . . , x𝑛] ∈ R𝑑×𝑛,
LRR aims to represent each sample as a linear combination
of the bases in A = [a1, a2, . . . , a𝑚] ∈ R𝑑×𝑚 by X = AZ,
where Z = [z1, z2, . . . , z𝑛] is the matrix in which each z𝑖
is the representation coefficient corresponding to sample x𝑖.
Therefore, each entry in z𝑖 can be viewed as the contribution
to the reconstruction of x𝑖 with A as the dictionary. LRR
seeks to find the lowest rank solution by solving the following
optimization problem [15]:

min
Z

rank (Z) ,
s.t. X = AZ. (1)

It is NP-hard to directly optimize the rank function. There-
fore, we usually use the trace norm (also called nuclear norm)
as the closest convex surrogate to the rank norm, which leads
to the following objective [29]:

min
Z

‖Z‖∗ ,
s.t. X = AZ, (2)

where ‖ ⋅‖∗ is the sum of its singular values of a certainmatrix
[30]. Considering the fact that samples are usually noisy or
even grossly corrupted, a more reasonable objective for LRR
can be expressed as

min
Z,E

‖Z‖∗ + 𝜆 ‖E‖2,1 ,
s.t. X = AZ + E, (3)

where E ∈ R𝑑×𝑛 and ‖E‖2,1 = ∑𝑛𝑗=1√∑𝑑𝑖=1 𝑒2𝑖𝑗. The second
term in (3) is to characterize the error term by modeling
the sample-specific corruptions. Also, some existing studies
employed the ℓ1-norm to measure the error term [31, 32].
The optimal solution Z∗ can be obtained via the inexact
augmented Lagrange multiplier method [31].

2.2. GHF. Assume that we have a data set X = [x1, . . . , x𝑙,
x𝑙+1, . . . , x𝑛] ∈ R𝑑×𝑛 from 𝑐 classes, where x𝑖, 𝑖 = 1, . . . , 𝑙, and
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x𝑖, 𝑖 = 𝑙 + 1, . . . , 𝑛, are the labeled and unlabeled samples,
respectively.The label indicator matrixY ∈ R𝑛×𝑐 is defined as
follows: for each sample x𝑖 (𝑖 = 1, . . . , 𝑛), y𝑖 ∈ R𝑐 is its label
vector. If x𝑖 is from the 𝑘th (𝑘 = 1, 2, . . . , 𝑐) class, then only
the 𝑘th entry of y𝑖 is one and all the other entries are zeros. If
x𝑖 is an unlabeled data, then y𝑖 = 0.

GHF is a well-known graph-based semisupervised learn-
ing framework in which the predicted label matrix F ∈ R𝑛×𝑐

is estimated on the graph with respect to the label fitness and
the manifold smoothness. Let f𝑖 and y𝑖, respectively, denote
the 𝑖th rows of F and Y. GHF tries to minimize the following
objective:

min
F

12
𝑛∑
𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩f𝑖 − f𝑗
󵄩󵄩󵄩󵄩󵄩2 𝑠𝑖𝑗 + 𝜆∞ 𝑙∑

𝑖=1

󵄩󵄩󵄩󵄩f𝑖 − y𝑖
󵄩󵄩󵄩󵄩2 , (4)

where 𝜆∞ is a very large value such that ∑𝑙𝑖=1 ‖f𝑖 − y𝑖‖2 can
be approximately satisfied. S ∈ R𝑛×𝑛 is an affinity matrix to
depict the pairwise similarity of samples. Obviously, (4) can
be rewritten in the compact matrix form as

min
F

12Tr (F𝑇LsF) + Tr ((F − Y)𝑇U (F − Y)) , (5)

where the graphLaplacianmatrixLS ∈ R𝑛×𝑛 can be calculated
as LS = D − S; 𝑑𝑖𝑖 = ∑𝑗 𝑠𝑖𝑗 (or ∑𝑖 𝑠𝑖𝑗 since S is usually a
symmetric matrix) is a diagonal degree matrix. U is also a
diagonal matrix with the first 𝑙 and the remaining 𝑛 − 𝑙
diagonal entries as 𝜆∞ and 0, respectively.

3. Manifold Adaptive Low-Rank
Representation

3.1. Manifold Adaptive Kernel. In this section, we show how
to incorporate the manifold structure into the reproducing
kernel Hilbert space (RKHS), which leads to manifold adap-
tive kernel space.

Kernel trick is usually applied with the hope of dis-
covering the nonlinear structure in data by mapping the
original nonlinear observations into a higher dimensional
linear space [33]. The most commonly used kernels are
Gaussian and Polynomial kernels. However, the nonlinear
structure captured by the data-independent kernels may not
be consistent with intrinsicmanifold structure, such geodesic
distance, curvature, and homology [34, 35].

In this work, we adopt the manifold adaptive kernel
proposed by [28]. Let V be a linear space with a positive
semidefinite inner product (quadratic form) and let 𝑆 : H →
V be a bounded linear operator. We define H̃ to be the space
of functions fromH with manifold inner product:

⟨𝑓, 𝑔⟩
H̃

= ⟨𝑓, 𝑔⟩
H̃
+ ⟨𝑆𝑓, 𝑆𝑔⟩

V
; (6)

H̃ is still a RKHS [28].
Given samples x1, . . . , x𝑚, let 𝑆 : H → R𝑚 be the

evaluation map.

𝑆 (𝑓) = (𝑓 (x1) , . . . , 𝑓 (x𝑚))𝑇 . (7)

Denote f = (𝑓(x1), . . . , 𝑓(x𝑚))𝑇 and g = (𝑔(x1), . . . , 𝑔(x𝑚))𝑇.
Note that f , g ∈ V; thus we have

⟨𝑆𝑓, 𝑆𝑔⟩
V
= ⟨f , g⟩ = f𝑇Mg, (8)

where M is a positive semidefinite matrix. For a data vector
x, we define

𝜅x = (𝜅 (x, x1) , . . . , 𝜅 (x, x𝑚)) . (9)

It can be shown that the reproducing kernel in H̃ is

𝜅 (x, z) = 𝜅 (x, z) − 𝛾𝜅𝑇x (I +MK)−1M𝜅z, (10)

where I is an identity matrix, K is the kernel matrix in H,
and 𝛾 ≥ 0 is a constant controlling the smoothness of the
functions. The key issue now is the choice of M, so that the
deformation of the kernel induced by the data-dependent
norm is motivated with respect to the intrinsic geometry of
the data.

Without loss of generality, we assume that there are 𝑛𝑞
data points to be utilized to derive the linear space V. It is
easy to rewrite formulation (10) in compact matrix form as

K̃H̃ = KH − 𝛾K𝑇H𝑞𝑛 (IH𝑞 +MH𝑞
KH𝑞

)−1MH𝑞
KH𝑞𝑛

, (11)

where the matrices KH ∈ R𝑛×𝑛, KH𝑞𝑛
∈ R𝑛𝑞×𝑛, and KH𝑞

∈
R𝑛𝑞×𝑛𝑞 are all inH. Here, I is an identitymatrix with the same
size as KH𝑞

. K̃H̃ was referred to as the kernel matrix in the
warped RKHS.

Thekey issue now is the choice ofM. Asmentioned above,
manifold structure can be discovered by the graph Laplacian
associated with the data points.

3.2.The Objective Function. From [11], the objective of kernel
low-rank representation was formulated as

min
Z,E

rank (Z) + 𝜆 󵄩󵄩󵄩󵄩󵄩E󵄩󵄩󵄩󵄩󵄩2,1 ,
s.t. K = KZ + E.

(12)

In order to learn the low-rank representation that is con-
sistent with the manifold geometry, it is natural to take
advantage of the manifold adaptive kernel in KLRR.

In order to model the manifold structure, we construct
a nearest-neighbor graph 𝐺. For each data point x𝑖, we find
its 𝑝 nearest neighbors denoted by N(x𝑖) and put an edge
between x𝑖 and its neighbors. There are many choices for the
weight matrix on the graph andwe use the “0-1” form defined
as follows:

𝑤𝑖𝑗 = {{{
1, if x𝑖 ∈ N𝑝 (x𝑗) or x𝑗 ∈ N𝑝 (x𝑖)
0, otherwise. (13)

The graph Laplacian [36] is defined as L = D−W, whereD is
a diagonal degreematrix given by 𝑑𝑖𝑖 = ∑𝑗 𝑤𝑖𝑗 (or∑𝑖 𝑤𝑖𝑗 since
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Figure 1: Connections between several LRR models.

W is symmetric).The graph Laplacian provides the following
smoothness penalty on the graph:

f𝑇Lf = 𝑛∑
𝑖=1

(𝑓 (x𝑖) − 𝑓 (x𝑗))2 𝑤𝑖𝑗. (14)

Therefore, it is natural to substitute M with the graph
Laplacian L. For convenience, wemake use of all the available
data points to derive the linear spaceV in the warped RKHS
(i.e., 𝑛𝑞 = 𝑛); then (11) can be rewritten as

K̃M = K − 𝛾K𝑇 (I + LK)−1MK, (15)

where K̃M indicates that this kernel matrix is in a manifold
RKHS.

Using the nuclear norm to replace the rank function,
we arrive at the following objective of manifold adaptive
kernelized LRR as

min
Z,E

󵄩󵄩󵄩󵄩󵄩Z󵄩󵄩󵄩󵄩󵄩∗ + 𝜆 󵄩󵄩󵄩󵄩󵄩E󵄩󵄩󵄩󵄩󵄩2,1 ,
s.t. K̃M = K̃MZ + E.

(16)

Figure 1 shows the connection betweenMKLRR and LRR
as well as its variants. As we can see, LRR variants such as
GLRR, LRRLC, and MLRR can be reached by incorporating
manifold information. By using the kernel trick, the KLRR
model can find the lowest rank representation in RKHS.
Further, by considering the geometric structure of data in
RKHS, we can formulate theMKLRRmodel. Both KLRR and
MKLRR are nonlinear models, since an implicit nonlinear
mapping is employed.

3.3. Optimization. To make objective (16) separable, we
introduce an auxiliary variable J with respect to Z and then
we have the following objective:

min
Z,E,J

‖J‖∗ + 𝜆 󵄩󵄩󵄩󵄩󵄩E󵄩󵄩󵄩󵄩󵄩2,1 ,
s.t. K̃M = K̃MZ + E, Z = J.

(17)

The corresponding augmented Lagrangian function is

min
Z,J,E,Y1,Y2

‖J‖∗ + 𝜆 󵄩󵄩󵄩󵄩󵄩E󵄩󵄩󵄩󵄩󵄩2,1 + ⟨Y1, K̃M − K̃MZ − E⟩
+ ⟨Y2,Z − J⟩
+ 𝜇2 (󵄩󵄩󵄩󵄩󵄩K̃M − K̃MZ − E󵄩󵄩󵄩󵄩󵄩2𝐹 + 󵄩󵄩󵄩󵄩󵄩Z − J󵄩󵄩󵄩󵄩󵄩2𝐹) ,

(18)

where Y1 and Y2 are Lagrange multipliers and 𝜇 > 0 is
a penalty parameter. The inexact augmented Lagrange mul-
tiplier (ALM) algorithm is employed to optimize objective
(18) [31]. The detailed optimization process is summarized in
Algorithm 1.

The updating rule for J is based on singular value thresh-
olding operator which is given by the following theorem [30].

Theorem 1. Let C ∈ R𝑚×𝑛 and C = UΣV𝑇 be the SVD of C,
where U ∈ R𝑚×𝑟 and V ∈ R𝑛×𝑟 have orthonormal columns,
Σ ∈ R𝑟×𝑟 is diagonal, and 𝑟 = rank(C). Then

T𝜆 (C) = argmin
W

{12 ‖W − C‖2𝐹 + 𝜆 ‖W‖∗} (19)

is given by T𝜆(C) = UΣ𝜆V𝑇, where Σ𝜆 is diagonal with(Σ𝜆)𝑖𝑖 = max{0, Σ𝑖𝑖 − 𝜆}.
Theupdating rule for E can be obtained by soft-shrinkage

operator [15], which is given as below.

Theorem 2. LetQ = [q1, q2, . . . , q𝑖, . . .] be a givenmatrix and
let ‖ ⋅ ‖𝐹 be the Frobenius norm. If the optimal solution to

min
W

𝜆 ‖W‖2,1 + 12 ‖W −Q‖2𝐹 (20)

isW∗, then the 𝑖th column ofW∗ is

W∗ (:, 𝑖) = {{{{{

󵄩󵄩󵄩󵄩q𝑖󵄩󵄩󵄩󵄩 − 𝜆󵄩󵄩󵄩󵄩q𝑖󵄩󵄩󵄩󵄩 q𝑖, if 𝜆 < 󵄩󵄩󵄩󵄩q𝑖󵄩󵄩󵄩󵄩
0, otherwise. (21)

3.4. Algorithm Workflow and Complexity Analysis. As a
whole, we summarize the manifold adaptive kernelized
low-rank representation-based semisupervised classification
algorithm as follows:

(i) Construct the graph Laplacian: construct a 𝑝 nearest-
neighbor graph 𝐺 with weight matrix defined in (13)
and then calculate the graph Laplacian by L = D −W

(ii) Calculate the manifold adaptive kernel: assume that
the kernel matrix K in H can be induced from
any data-independent kernel (e.g., Gaussian kernel or
linear kernel). Then calculate the manifold adaptive
kernel K̃M in the warped RKHS according to (15)

(iii) Manifold kernel low-rank representation: optimize the
MKLRR model and obtain the low-rank representa-
tion coefficientmatrixZ via Algorithm 1. Shrink some
small values in Z and then make it symmetric and
nonnegative as Z = (|Z| + |Z𝑇|)/2
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Input: data points {(x𝑖, y𝑖)}𝑙𝑖=1⋃{x𝑖}𝑛𝑖=𝑙+1, regularization parameters 𝜆,
Z = J = 0, E = 0, Y1 = Y2 = 0, 𝜇 = 1𝑒 − 6, 𝜇max = 1𝑒6, 𝜌 = 1.1, and 𝜀 = 1𝑒 − 8;

Output: the low-rank representation coefficient matrix Z.
(1) while not converged do
(2) Fix the other variables and update J by

J = argmin
J

1𝜇 ‖J‖∗ + 12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩J − (Z + Y2𝜇 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

(∗)
(3) Fix the others and update Z by

Z = (I + K̃𝑇MK̃M)−1 (K̃𝑇MK̃M − K̃𝑇ME + J + (K̃𝑇MY1 − Y2)𝜇 )
(4) Fix the others and update E by

E = argmin
E

𝜆𝜇 󵄩󵄩󵄩󵄩󵄩E󵄩󵄩󵄩󵄩󵄩2,1 + 12
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩E − (K̃M − K̃MZ + Y1𝜇 )󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

(5) Update the multipliers
Y1 = Y1 + 𝜇 (K̃M − K̃MZ − E)
Y2 = Y2 + 𝜇 (Z − J)

(6) Update the parameter 𝜇 by 𝜇 = min(𝜌𝜇,max𝜇)
(7) Check the convergence conditions‖K̃M − K̃MZ − E‖∞ < 𝜀,󵄩󵄩󵄩󵄩󵄩Z − J󵄩󵄩󵄩󵄩󵄩∞ < 𝜀
(8) end while

Algorithm 1: Optimization to (18).

(iv) Semisupervised classification: calculate the Laplacian
matrix L𝑠 = D − Z and do semisupervised classifica-
tion based on (5)

Below we give a brief analysis on the computational
complexity of MKLRR. Constructing the 𝑝 nearest-neighbor
graph in the first step of MKLRR needs 𝑂(𝑝𝑛2). In the
second step, computing the data-independent kernel matrix
K needs 𝑂(𝑛2) and computing the manifold adaptive kernel
matrix needs 𝑂(𝑛3). In the fourth step, the complexity of
semisupervised learning based on GHF is 𝑂(𝑛3) (𝑐 ≪ 𝑛).
Below we give a detailed description on the complexity of
Algorithm 1. Obviously, the main computation burden of
MKLRR lies in the updating of J, since it involves the singular
value decomposition (SVD). Specifically, in equation (∗)
in Algorithm 1, the SVD is operated on an 𝑛 × 𝑛 matrix,
which is time-consuming if the number of samples (i.e., 𝑛)
is large. As referred to in [37], by substituting A with the
orthogonal basis of the dictionary, the computation can be
reduced to 𝑂(𝑟2𝑛), where 𝑟 is the rank of dictionary A. The
computational complexity of updating Z is trivial owing to its
simple closed form solution. The complexity of updating E is𝑂(𝑛2𝑟). Thus, the computation complexity of MKLRR-based
semisupervised learning is𝑂(𝑡(𝑟2𝑛+𝑛2𝑟)+𝑝𝑛2+𝑛3) in general,
where 𝑡 is the number of iterations of loop in Algorithm 1.

4. Experiments

This section evaluates the effectiveness of the proposed
MKLRR algorithm on semisupervised classification task.
Specifically, we will compare the performance of MKLRR

with some state-of-the-art graph construction methods on
four representative image data sets. All experiments are
conducted on platform Intel(R) Core(TM) i7-4700MQ CPU
@2.40GHz 16.0 GB RAM Windows 8.1 System and Matlab
2013a.

4.1. Experimental Settings. For the comparison methods,
several baseline methods are compared including some state-
of-the-art graph-based semisupervised learning methods:

(i) 𝑘NN: if one sample is among the 𝑘 nearest neighbors
of the other, then these two samples are viewed as
connected. In 𝑘NN-1, 𝑘 is set to 5; and in 𝑘NN-2, 𝑘
is set to 8. The distance information is measured by
the “Heatkernel” function, where the variance 𝛿 is the
average of squared Euclidean distances for all edged
pairs on graph

(ii) ℓ1 graph [8, 38]: the ℓ1-norm regularized least squares
problem is optimized by the ℓ1-𝑙𝑠 package [39]. The
regularization parameter to enforce the sparsity is
searched from {10−3, 10−2, 10−1, 1, 10, 102}

(iii) LNP (linear neighborhood propagation): we follow
the pipeline in [40] to construct the graph. The
neighborhood size in LNP is set to 40

(iv) SPG (sparse probability graph) [41]: we implement
the SPG algorithm by setting 𝑛𝑘𝑛𝑛 as one-quarter of
the size of data set and 𝜆 is set to 0.001 as suggested by
[41]

(v) LRR (low-rank representation) [15]: for all data sets,
we tune the parameter in the range {10−3, 10−2, 10−1,1, 10, 102} to achieve the best performance
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Table 1: Classification accuracies (%) of different graphs on synthetic data set.

# labeled 𝑘NN-1 𝑘NN-2 LNP ℓ1-graph SPG
1 93.67 ± 0.74 93.81 ± 2.32 86.22 ± 4.72 75.12 ± 8.73 85.30 ± 4.70
2 93.98 ± 0.34 94.61 ± 0.20 89.99 ± 1.49 85.57 ± 5.66 87.91 ± 2.62
3 93.93 ± 0.13 94.65 ± 0.24 90.80 ± 0.92 90.32 ± 2.95 91.59 ± 1.97
4 93.98 ± 0.20 94.59 ± 0.26 90.91 ± 0.72 91.11 ± 2.33 93.74 ± 1.75
5 93.95 ± 0.24 94.67 ± 0.24 91.22 ± 0.33 92.83 ± 1.26 95.52 ± 1.45
LRR NNLRS GLRR LRCB KLRR MKLRR
86.83 ± 5.35 90.32 ± 4.58 89.44 ± 5.82 90.51 ± 2.37 92.59 ± 2.00 92.33 ± 1.8792.34 ± 1.00 93.81 ± 2.17 94.10 ± 1.25 94.10 ± 1.98 94.69 ± 0.58 94.98 ± 0.5592.86 ± 0.62 94.21 ± 1.34 94.84 ± 0.51 94.67 ± 1.17 95.13 ± 0.47 95.67 ± 0.4393.11 ± 0.56 94.79 ± 0.57 94.92 ± 0.49 94.98 ± 0.62 95.32 ± 0.34 96.04 ± 0.3793.20 ± 0.41 95.26 ± 0.35 95.12 ± 0.51 95.43 ± 0.41 95.30 ± 0.31 96.48 ± 0.28

(vi) GLRR (graph regularized low-rank representation)
[17]: in [17], the accelerated gradient method [42] was
employed to optimize GLRR by updating J, which is
the corresponding auxiliary variable with respect to
Z, while in our implementation, the GLRR objective
function was relaxed as described in [10] and J was
updated by using the SVT operator [31]

(vii) NNLRS (nonnegative low-rank and sparse graph) [9]:
we construct the LRR graph with nonnegative and
sparse properties. The weighted parameters are set as
guided in [9]

(viii) LRCB (low-rank representation with 𝑏-matching
constraint) [20]: as suggested in [20], we set the
parameters 𝜆1 and 𝜆2 as 2 and 0.03 for all the four
data sets. The parameter 𝑏 is set as 5, 5, 10, and 5 in
the ORL, Extended Yale B, PIE, and USPS data sets,
respectively.

(ix) KLRR (kernel low-rank representation) [11]

For both KLRR and MKLRR, we use the Gaussian
kernel function defined as 𝜅(x𝑖, x𝑗) = exp(−‖x𝑖 − x𝑗‖2/2𝜎2)
and the band width parameter is set as the mean value
of all the distances of each data pair. When construct-
ing the weight matrix, the number of nearest neighbors𝑝 is set as 5. The regularization parameter 𝜆 in conven-
tional LRR model is searched from the candidate values of{10−3, 10−2, 10−1, 1, 10, 102}. Similar to the usage in [43], we
fix the parameter 𝛾 = 1 in all experiments below.

4.2. Experiment on Synthetic Data. Similar to studies [11, 15],
a synthetic data set is constructed as follows. We construct 5
independent subspaces {S𝑖}5𝑖=1 ⊂ R100 whose bases {U𝑖}5𝑖=1
are computed by U𝑖+1 = TU𝑖, 𝑖 ≤ 𝑖 ≤ 4, where T is
a random rotation and U1 is a random orthogonal matrix
with dimension 100 × 100. Therefore, each subspace has a
dimension of 100. We sample 200 data vectors from each
subspace by X𝑖 = U𝑖Q𝑖, 1 ≤ 𝑖 ≤ 5, with Q𝑖 being a 100× 200 i.i.d. N(0, 1) matrix. We randomly choose 30% of the
total samples to corrupt. For example, if data vector x is
chosen, its observed vector is computed by adding Gaussian
noise with zero mean and variance 0.3‖x‖2.

We select different numbers of labeled samples to evaluate
the performance of different graph construction methods.
Table 1 shows the classification accuracies of different graphs
on the synthetic data set. The results are obtained from ten
independent runs. From the results, we can find that all LRR
variants can achieve good performance even when given only
a few labeled samples. KLRR is slightly better than MKLRR
by 0.26% when there is only one labeled sample per class.
MKLRR obtains the best results in all the remaining cases.

Since GLRR is also related to incorporating the structure
information of data into LRR, we show the learned block
diagonal structure, respectively, by LRR, GLRR, KLRR, and
MKLRR in Figure 2. Generally, although the visual discrep-
ancies between MKLRR and its counterparts are minor, the
block diagonal structure obtained by MKLRR is clearer than
the others. Most of the values within each block of MKLRR
graph are obviously larger than those of KLRR graph.

4.3. Experiment on ORL Data Set. TheORL data set contains
ten different images of each of 40 distinct subjects. The
images were taken at different times, varying the lighting,
facial expressions, and facial details. Each image is manually
cropped and normalized to size of 32 × 32 pixels. Figure 3
shows some example images of two subjects from the ORL
data set.

We repeat all the experiments ten times. In each time,
we randomly select a subset of images from each subject to
create a labeled sample set. In this experiment, 1, 2, 3, 4, and 5
images per subject are randomly selected as labeled samples
and the remaining images are regarded as unlabeled samples.
The random indices are kept the same for all compared algo-
rithms. The classification accuracies of different algorithms
with different numbers of labeled samples on the ORL data
set are shown in Table 2, in which MKLRR outperforms all
the compared algorithms. For example, when we select 1, 2, 3,
4, and 5 images per person as labeled samples, the accuracies
ofMKLRR are higher than those of the second best algorithm
by 1.88% (LCRB), 3.18% (KLRR), 2.18% (SPG), 0.85% (SPG),
and 1.28% (SPG), respectively.

4.4. Experiment on Extended Yale B Data Set. The Extended
Yale B data set consists of 2414 human face images of 38
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Table 2: Classification accuracies (%) of different algorithms with different number of labeled samples on ORL data set.

# labeled 𝑘NN-1 𝑘NN-2 LNP ℓ1-graph SPG
1 64.11 ± 2.74 56.69 ± 3.76 71.50 ± 2.25 65.58 ± 2.36 74.03 ± 3.14
2 72.53 ± 2.23 65.47 ± 2.28 82.44 ± 2.20 77.47 ± 2.03 85.41 ± 1.25
3 76.75 ± 2.52 69.93 ± 2.65 87.79 ± 2.53 84.71 ± 2.67 89.39 ± 2.55
4 79.96 ± 2.61 73.42 ± 1.49 91.17 ± 2.32 88.87 ± 2.55 93.04 ± 1.63
5 82.20 ± 1.87 75.70 ± 1.70 93.70 ± 1.93 92.10 ± 2.25 94.85 ± 1.33
LRR NNLRS GLRR LRCB KLRR MKLRR67.28 ± 3.23 71.58 ± 3.64 67.33 ± 2.95 75.98 ± 2.39 74.67 ± 2.27 77.86 ± 2.1981.34 ± 2.23 83.63 ± 2.56 82.56 ± 2.10 83.11 ± 1.83 85.97 ± 1.68 89.15 ± 1.8186.71 ± 2.25 88.46 ± 2.39 88.29 ± 2.19 87.91 ± 1.42 88.25 ± 1.25 91.57 ± 1.3190.58 ± 1.52 91.50 ± 1.80 91.88 ± 0.97 91.07 ± 1.35 91.92 ± 2.21 93.89 ± 1.1992.60 ± 1.65 93.20 ± 1.78 94.35 ± 2.15 94.26 ± 1.12 94.10 ± 1.56 96.13 ± 0.88
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Figure 2: Block diagonal structures, respectively, learned by LRR, GLRR, KLRR, and MKLRR.

Figure 3: Example face images of two subjects from the ORL data
set.

subjects. Each subject has about 64 images taken under
different illuminations. Half of the images are corrupted by
shadows or reflection. Each image is cropped to 32 × 32

Figure 4: Example face images of two subjects from the Extended
Yale B data set.

pixels. Figure 4 shows some images of two subjects from the
Extended Yale B data set.

We use the first 20 subjects and get 1262 images in total in
the Extended Yale B data set to evaluate different methods.
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Table 3: Classification accuracies (%) of different algorithms with different number of labeled samples on the Extended Yale B data set.

# labeled 𝑘NN-1 𝑘NN-2 LNP ℓ1-graph SPG
4 58.15 ± 2.41 44.77 ± 2.24 78.10 ± 2.09 82.75 ± 1.26 82.20 ± 1.17
8 66.04 ± 2.14 52.67 ± 2.16 86.74 ± 1.48 90.05 ± 1.60 89.80 ± 1.42
12 70.10 ± 2.45 57.92 ± 2.44 89.68 ± 1.38 92.47 ± 1.05 92.46 ± 0.97
16 72.62 ± 1.88 60.62 ± 2.62 91.09 ± 1.34 93.62 ± 0.93 93.98 ± 0.92
20 74.48 ± 1.84 63.93 ± 2.62 92.30 ± 1.09 94.74 ± 0.79 95.20 ± 0.86
LRR NNLRS GLRR LRCB KLRR MKLRR
77.86 ± 1.89 92.11 ± 1.02 82.24 ± 1.38 91.03 ± 1.07 91.12 ± 0.57 94.08 ± 1.1287.28 ± 1.27 94.12 ± 0.79 89.85 ± 1.33 91.72 ± 0.83 94.44 ± 1.00 96.12 ± 0.8690.97 ± 1.08 94.92 ± 0.85 92.53 ± 1.06 92.43 ± 0.79 95.69 ± 0.74 96.84 ± 0.7792.90 ± 1.15 95.49 ± 0.75 93.90 ± 0.98 95.11 ± 0.81 96.39 ± 0.68 97.47 ± 0.5994.35 ± 1.24 95.97 ± 0.71 95.58 ± 1.01 95.87 ± 0.75 96.96 ± 0.63 98.09 ± 0.64

Figure 5: Example face images of two subjects from the PIE data set.

In this experiment, 4, 8, 12, 16, and 20 images per subject
are randomly selected as labeled samples and the remaining
images are regarded as unlabeled samples. The random
indices are kept the same for all compared algorithms. Table 3
shows the classification accuracies of different algorithms
with different numbers of labeled samples on the Extended
Yale B data set. We can easily find that, with increasing
number of labeled samples, all algorithms can obtain better
classification results. Although the results are close to being
saturated, MKLRR still can make some improvements. For
example, it gets the accuracy of 98.09%when given 20 labeled
images per person, which is 1.13% higher than that of KLRR.
In particular, when given small number of labeled samples,
MKLRR shows great superiority to the remaining algorithms.
There is about 3% improvement when comparing MKLRR
with KLRR when the number of labeled samples of each
person is only 4. Since there are some noises in this data
set, the performance of the basic KNN algorithm greatly
decreases.

4.5. Experiment on PIE Data Set. The CMU PIE data set
contains 41368 images of 68 subjects with different poses,
illumination, and expression.We only use their images in five
near frontal poses (C05, C07, C09, C27, and C29) and under
different illumination and expressions. The first 15 subjects
are selected and there are 2550 face images in total. Each
image is manually cropped and resized to 32 × 32 pixels.
Figure 5 shows some images of two subjects from the PIE data
set.

Identical to the Extended Yale B data set, we also select
4, 8, 12, 16, and 20 images per subject as labeled samples and
let the remaining images be unlabeled samples. The random
indices are kept the same for all compared algorithms. Table 4

Figure 6: Example digit images from the USPS data set.

shows the classification accuracies of different algorithms
with different numbers of labeled samples on the PIE data set.
It is obvious that MKLRR outperforms the other algorithms
in all cases. Particularly, MKLRR performs much better than
the others when given 4 labeled samples per person.

4.6. Experiment on USPS Data Set. The USPS digit database
[44] consists of 9298 handwritten digit images of 10 numbers
(0–9). The size of each image is 16 × 16 pixels. We select 200
samples from each class and thus the resultant data set has
2000 images in total. Figure 6 shows some images of the 10
numbers from the USPS data set.

In this experiment, we randomly select 10%, 20%, 30%,
40%, and 50% samples per digit as labeled samples and let
the remaining images be unlabeled samples. The random
indices are kept the same for all compared algorithms. Table 5
shows the classification accuracies of different algorithms
with different numbers of labeled samples on the USPS
data set. All algorithms can obtain excellent performance
on this data set including the simple KNN algorithm. The
classification accuracies of MKLRR are higher than other
algorithms in most cases.

4.7. Parameter Sensitivity Analysis. There are two important
parameters in MKLRR, which are the regularization param-
eter 𝛾 to construct the manifold adaptive kernel and 𝜆 to
control the impact of the noise term. It is obvious that
MKLRRwill boil down to KLRRwhenwe set the parameter 𝛾
as zero. In our previous experiments, the usage we employ is
to empirically fix the value of 𝛾 to one that follows the similar
ideas in [43, 45]. In this section, wewill analyze the parameter
sensitivity of 𝛾 and 𝜆 by the way of investigating one while
fixing the other.
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Table 4: Classification accuracies (%) of different algorithms with different number of labeled samples on the PIE data set.

# labeled 𝑘NN-1 𝑘NN-2 LNP ℓ1-graph SPG
4 56.84 ± 3.03 55.42 ± 2.63 78.10 ± 2.09 78.79 ± 2.55 84.71 ± 3.15
8 71.01 ± 2.99 67.18 ± 2.72 86.74 ± 1.48 88.85 ± 1.52 91.31 ± 1.63
12 76.93 ± 2.60 71.15 ± 1.46 89.68 ± 1.38 91.96 ± 1.59 93.82 ± 1.21
16 81.25 ± 1.41 74.67 ± 1.57 91.09 ± 1.34 93.58 ± 1.21 95.03 ± 1.06
20 83.89 ± 1.77 77.18 ± 2.36 92.30 ± 1.09 94.61 ± 1.11 95.84 ± 0.73
LRR NNLRS GLRR LRCB KLRR MKLRR
73.00 ± 2.45 86.82 ± 2.30 84.59 ± 1.69 84.81 ± 2.29 86.01 ± 2.43 88.31 ± 2.2886.83 ± 1.54 92.25 ± 1.20 92.46 ± 0.80 90.79 ± 1.16 91.32 ± 1.01 93.68 ± 0.9391.69 ± 0.83 94.44 ± 0.95 94.37 ± 0.39 92.94 ± 0.76 93.62 ± 1.13 95.81 ± 0.6494.21 ± 0.72 95.53 ± 0.73 95.69 ± 0.52 94.72 ± 0.58 94.91 ± 0.95 96.41 ± 0.4295.39 ± 0.51 96.13 ± 0.50 96.08 ± 0.48 96.08 ± 0.41 95.54 ± 0.65 96.98 ± 0.57

Table 5: Classification accuracies (%) of different algorithms with different number of labeled samples on the USPS data set.

# labeled 𝑘NN-1 𝑘NN-2 LNP ℓ1-graph SPG
20 94.33 ± 0.35 93.16 ± 0.33 94.31 ± 0.61 92.95 ± 0.79 92.89 ± 0.45
40 94.64 ± 0.35 93.69 ± 0.43 95.26 ± 0.54 94.54 ± 0.69 94.76 ± 0.60
60 94.70 ± 0.45 93.74 ± 0.40 95.64 ± 0.44 95.37 ± 0.51 95.54 ± 0.60
80 94.92 ± 0.45 93.99 ± 0.43 96.02 ± 0.43 95.90 ± 0.53 96.18 ± 0.72
100 94.98 ± 0.52 93.99 ± 0.39 96.10 ± 0.43 96.35 ± 0.63 96.43 ± 0.68
LRR NNLRS GLRR LRCB KLRR MKLRR
86.96 ± 0.78 92.09 ± 0.67 90.49 ± 0.77 90.23 ± 0.81 90.50 ± 0.90 93.61 ± 0.5888.64 ± 0.55 93.58 ± 0.45 91.53 ± 0.97 92.38 ± 0.57 93.17 ± 0.83 95.60 ± 0.4988.96 ± 0.72 94.04 ± 0.57 91.84 ± 0.83 93.67 ± 0.61 94.12 ± 0.60 96.13 ± 0.5190.08 ± 0.41 94.34 ± 0.56 92.34 ± 0.77 94.51 ± 0.59 94.90 ± 0.59 96.51 ± 0.5790.42 ± 0.83 94.67 ± 0.63 92.49 ± 0.89 94.77 ± 0.43 95.19 ± 0.68 96.87 ± 0.37

Figure 7 shows how the performance of MKLRR varies
with the change of 𝛾 on the Extended Yale B and PIE data sets,
respectively, where we fix 𝜆 = 1. Here, four images per person
are labeled and the remaining are unlabeled. For making
it easier to do comparison, we also include the results of
KLRR in the figure.We can find that [10−2, 10] is a reasonable
interval for the selection of values of 𝛾.

Figure 8 shows how the performance of MKLRR varies
with the change of 𝜆 on the ExtendedYale B and PIE data sets,
respectively, where we fix 𝛾 = 1. There are also four labeled
samples for each person. Generally, MKLRR is insensitive to
the variation of 𝜆 if it is set as a slightly large value.

For the remaining data sets, the parameter sensitivities of
MKLRR with respect to 𝛾 and 𝜆 have similar tendencies as
shown in Figures 7 and 8.

5. Conclusion and Future Work

In this paper, we have proposed a new low-rank represen-
tation model for semisupervised image classification, which
is called manifold adaptive kernel low-rank representation
(MKLRR). Different from most existing LRR variants that
consider the structure information in the original data space,
our proposed model explicitly takes the intrinsic manifold

structure depicted by nearest-neighbor graph into consider-
ation. The graph Laplacian corresponding to the local geom-
etry of the data is incorporated into the manifold adaptive
kernel space, in which the low rank representation model is
then calculated. Extensive experiments performed on both
synthetic and benchmark data sets have shown excellent
performance of MKLRR-based graph for semisupervised
classification when given limited labeled samples.

As a limitation of general two-stage graph-based semisu-
pervised learning methods, the information of labeled sam-
ples is neglected in graph construction stage. Therefore, it
is necessary to take this point into consideration in order
to construct more discriminative graph. This will be our
future work and one of possible approaches is to introduce a
constraintmatrix that can depict the partial label information
of data into LRR model.
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Figure 7: The performance of MKLRR versus parameter 𝛾 by fixing 𝜆 = 1.
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