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ANDRÉS PEREA

A MODEL OF MINIMAL PROBABILISTIC BELIEF
REVISION

ABSTRACT. In the literature there are at least two models for probabi-
listic belief revision: Bayesian updating and imaging [Lewis, D. K. (1973),
Counterfactuals, Blackwell, Oxford; Gärdenfors, P. (1988), Knowledge in
flux: modeling the dynamics of epistemic states, MIT Press, Cambridge,
MA]. In this paper we focus on imaging rules that can be described
by the following procedure: (1) Identify every state with some real val-
ued vector of characteristics, and accordingly identify every probabilis-
tic belief with an expected vector of characteristics; (2) For every initial
belief and every piece of information, choose the revised belief which is
compatible with this information and for which the expected vector of
characteristics has minimal Euclidean distance to the expected vector
of characteristics of the initial belief. This class of rules thus satisfies an
intuitive notion of minimal belief revision. The main result in this paper
is to provide an axiomatic characterization of this class of imaging rules.
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JEL CLASSIFICATION: C73, D81, D83

1. INTRODUCTION

Consider the following thought experiment: Suppose you may
glimpse for a few seconds at a transparent urn which is filled
with black balls and white balls. Afterwards, you must form a
probabilistic belief about the number of black balls and white
balls. More precisely, you are given three possible options:

• 30 black balls and 30 white balls (state a);
• 30 black balls and 20 white balls (state b);
• 20 black balls and 20 white balls (state c);
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One of these options is true, you are said, but you do not
know which one since the observation only gave you a vague
impression of the number of balls of each color. Your task
is to assign probabilities to each of these three options. You
recall to have seen approximately the same number of black
and white balls, but time was to short to count the balls you
have seen. Based on these considerations, you deem the states
a and c equally likely, but at the same time you deem the
event “a or c” twice as likely as the state b. Hence, you assign
probability 1/3 to each of the states.

Now, you are told that state c is false. Your new task
is to assign probabilities to the two remaining states a and
b. How would you do this? Bayesian updating suggests that
we should not change our belief about the relative likeli-
hood of the two remaining states, and hence our revised belief
by Bayesian updating would assign probability 1/2 to states
a and b. In other words, if we hear that c is false and use
Bayesian updating, then we loose much of our confidence in
the event that the number of black and white balls is equal.
This seems counterintuitive, however, since you were rather
confident that you have seen an equal number of black and
white balls, but much less confident about the precise num-
ber of balls. Therefore, the information that c is false should
not be a reason to drastically change your belief about the
proportion of black and white balls. As an extreme case, one
could decide to maintain the belief that the event “a or c” is
twice as likely as state b, which would yield a revised belief in
which you assign probability 2/3 to a and probability 1/3 to b.

In fact, the last way of revising your belief is an exam-
ple of imaging, as proposed by Lewis (1973, 1976). The idea
behind imaging is that, upon observing that some state x is
impossible, you transfer the probability initially assigned to x

completely towards the remaining state you deem most similar
to x. In the example above, you deem state c much more sim-
ilar to a than to b, since c and a share the same proportion
of black and white balls, and the observation has given you a
pretty good idea of this proportion. Therefore, if we hear that
c is false and use imaging, then we transfer the probability
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1/3 initially assigned to c completely towards the most similar
state, a, and hence our revised belief would assign probability
2/3 to a and probability 1/3 to b.

The main difference between Bayesian updating and imag-
ing in this context is thus that imaging makes explicit use
of the perceived similarity between states when revising the
belief, whereas Bayesian updating ignores this perceived sim-
ilarity. Although the theory of imaging makes intuitive sense
in contexts where similarity between states plays a promi-
nent role, as the example above hopefully illustrates, it has
received little attention, especially among decision theorists,
game theorists and economists.

In Chapter 5 of his book, Gärdenfors (1988) extends Lewis’
idea by allowing to transfer a part λ of the probability 1/3,
initially assigned to c, towards state a and the remaining part
1 −λ to state b. Important is that these fractions λ and 1 −λ

should be independent of the initial belief. That is, if the ini-
tial belief would not be (1/3,1/3,1/3) but (1/8,3/8,1/2), then
the person should transfer the fraction λ of the probability
1/2 to a and the fraction 1 − λ of 1/2 to b, where λ is the
same fraction as above. Gärdenfors’ model is also known as
general imaging.

A possible interpretation of λ is that it represents the simi-
larity between c and a, as compared to the similarity between
c and b. For instance, if λ is very close to 1, this indicates that
the person deems c much more similar to a than to b, and
for that reason shifts almost all the weight initially assigned
to c towards a. If λ is close to 1/2, this indicates that the
person deems c almost as similar to a as to b, and therefore
redistributes the weight initially assigned to c almost equally
among a and b. Lewis’ model of imaging is thus a special
case of Gärdenfors’ model, by choosing λ equal to 0 or 1.
Figure 1 graphically illustrates the differences between Bayes-
ian updating, Lewis imaging and general imaging. The figure
represents a situation with three states, a, b and c, where the
person deems c more similar to a than to b. For three differ-
ent initial beliefs, the picture indicates how the person would
revise his belief in each of the three models, upon observing
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Figure 1. Bayesian updating versus imaging.
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Figure 2. Not every general imaging rule is plausible.

the event {a, b}. By the event {a, b} we mean that the person
observes that the true state must be in {a, b}.

In this paper we take the interpretation of λ as described
above very seriously. Given this interpretation, however, not
every general imaging rule seems reasonable. Suppose that
the person initially holds the belief (1/3,1/3,1/3), and would
revise this belief to (5/8,3/8,0) when observing the event
{a, b}, would revise the belief to (3/8,0,5/8) when observ-
ing {a, c}, and would revise the belief to (0,5/8,3/8) when
observing {b, c}. See Figure 2 for an illustration. These belief
revisions indicate that, in the person’s mind,
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1. the distance between a and c is smaller than the distance
between b and c,

2. the distance between b and c is smaller than the distance
between a and b,

3. the distance between a and b is smaller than the distance
between a and c,

assuming that the person uses a symmetric distance measure
to visualize his notion of similarity between states.1 This is
counterintuitive since 1 and 2 seem to suggest that the person
should deem the distance between a and c smaller than the
distance between a and b.

In order to overcome this problem, we assume in this paper
that the similarity relation between states, used to govern the
person’s belief revisions, should be given by Euclidean dis-
tances between points in some Euclidean space. We thus take
the notion of “perceived distance” between states very liter-
ally. More precisely, we assume that the person identifies each
state with some real valued vector of characteristics, describ-
ing its main properties, and measures the distance between
two states by taking the Euclidean distance between the cor-
responding vectors of characteristics. Every belief, being a
probability distribution over states, thus corresponds to an
expected vector of characteristics, and the distance between
two beliefs can be measured by taking the Euclidean distance
between the corresponding expected vectors of characteristics.
The general imaging rule induced by it assigns to every initial
belief and every observable event (that is, a subset of states)
the belief that (1) assigns positive probability only to states
in the event, and (2) for which the expected vector of charac-
teristics has minimal Euclidean distance to the expected vec-
tor of characteristics of the initial belief. Important is that
these vectors of characteristics should be independent of the
initial belief and independent of the observed event. That is,
the perceived similarity between states and beliefs should be
an inherent characteristic of the person, and should therefore
not depend on his initial belief, nor on the information he
receives.
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Figure 3. A non-plausible and a plausible general imaging rule.

Yet, not every imaging rule of this kind is plausible.
Suppose the person identifies the state a with the vector
of characteristics ϕ([a]) = (0,0), identifies b with ϕ([b]) =
(0,1), and c with ϕ([c]) = (2,2). See the first triangle of
Figure 3 for an illustration. If the person holds the initial
belief (1/4,1/4,1/2) and observes {a, b}, the revised belief
would be the opinionated2 belief [b], assigning probability 1
to b. This is unreasonable, since there should be no reason
to take away the probability 1/4 from state a as long as
the information does not rule out a. In general, if the ini-
tial belief assigns probability α to state x, and the observed
event does not rule out x, the revised probability attached
to x should be at least α. This property will be guaranteed
if we require that the triangle in Figure 3, representing the
possible expected vectors of characteristics, only has acute
angles. In this case, the revised belief upon observing {a, b}
will be obtained by first taking the expected vector of char-
acteristics of the initial belief, and then taking the orthogonal
projection of this vector on the line segment through ϕ([a])
and ϕ([b]). See the second triangle of Figure 3. The same
holds for the revised belief upon observing the events {a, c}
and {b, c}. In general, the requirement is that the mapping ϕ,
assigning an expected vector of characteristics ϕ(β) to every
belief β, is “closed under orthogonal projections”. By the lat-
ter we mean that for every state [x] and every subset of states
E = {x1, . . . , xk}, the orthogonal projection of ϕ([x]) on the
affine space spanned by {ϕ([x1]), . . . , ϕ([xk])} should be in the
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convex hull of {ϕ([x1]), . . . , ϕ([xk])}. This property guaran-
tees that, for every initial belief β and observed event E =
{x1, . . . , xk}, the revised belief will always be obtained by first
taking ϕ(β), and then taking the orthogonal projection of
ϕ(β) on the convex hull of {ϕ([x1]), . . . , ϕ([xk])}.3

The road taken so far has thus led us to the following class
of general imaging rules:

1. Construct a linear one-to-one mapping ϕ, which uniquely
identifies every belief β with some expected vector of char-
acteristics ϕ(β).

2. Make sure that ϕ is closed under orthogonal projections.
3. For every initial belief β and observed event E, choose the

revised belief β ′ that attaches only positive probability to
states in E, and for which ϕ(β ′) has minimal Euclidean dis-
tance to ϕ(β).

For the remainder of this paper, we shall refer to this class
as Euclidean distance based imaging rules. Such rules thus
take the idea of minimal belief revision very literally, as they
always look for the expected vector of characteristics that is
as close as possible, in the sense of Euclidean distance, to the
expected vector of characteristics of the initial belief. Schulte
(2002) provides an excellent discussion of the idea of mini-
mal belief revision, and gives an overview of the various ways
in which this idea has been implemented in belief revision
theory.

The main result in this paper, Theorem 3.3, is to show that
the class of Euclidean distance based imaging rules can be
characterized by three axioms: linearity, transitivity and infor-
mation-order independence.

Linearity states that for a fixed observable event {a, b} with
two states, the revised belief should depend linearly upon the
initial belief. In the example of Figure 1, this means that for
the fixed event {a, b}, the arrows connecting the initial beliefs
with their corresponding revised beliefs should all be paral-
lel. Intuitively, linearity can be defended as follows. Consider
three different states a, b and c and a person who initially
assigns probability α to c. If this person finds out later that



170 ANDRÉS PEREA

the true state must be in {a, b}, he should shift some fraction
λα towards a, and the remaining fraction (1 − λ)α towards
b. Linearity states that these fractions λ and 1 −λ should be
independent of the initial belief, since λ reflects the perceived
similarity between c and a, as compared to the perceived sim-
ilarity between c and b. Among the three axioms, linearity is
the one that rules out Bayesian updating as a possible candi-
date. It is easily seen that Bayesian updating violates linearity,
but satisfies the other two axioms to be defined below.

The axiom of linearity is almost identical to Gärdenfors’
(1988) homomorphism condition. There are two subtle differ-
ences. First, the homomorphism condition requires that the
revised belief should also depend linearly upon the initial
belief if the observed event contains more than two states. The
reason why we do not choose this stronger version is that the
intuition behind linearity, as given in the previous paragraph,
would not work as nicely if we consider an event with more
than two states. For instance, if there are four states {a, b, c, d}
and the initial belief [d] is mapped to (1/8,3/8,1/2,0) upon
observing the event {a, b, c}, the numbers 1/8,3/8 and 1/2
cannot be interpreted that easily. For instance, these numbers
do not automatically imply that d is deemed more similar to b

than to a, since it may well be that the initial belief is mapped
to (5/8,3/8,0,0) upon observing the event {a, b}. The second
difference is that our linearity axiom assumes that if the ini-
tial belief assigns probability 1 to a, then the revised belief
upon observing {a, b} should also assign probability 1 to a.
Formally, the homomorphism condition does not require this.
In a non-probabilistic framework, Katsuno and Mendelzon
(1992) formulate a condition called disjunction rule which is
similar in spirit to linearity and the homomorphism condi-
tion.

While linearity basically makes sure that the belief revi-
sion rule is a general imaging rule (at least if we restrict
to observable events with two states), the other two axioms
guarantee that the perceived similarity between beliefs can be
represented by expected vectors of characteristics. The sec-
ond axiom, transitivity, states that the “equally similar to”
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relation between beliefs should be transitive. That is, when-
ever a person deems the belief β equally similar to the opin-
ionated beliefs [a] and [b], and deems β equally similar to
[b] and [c], then he should deem β equally similar to [a] and
[c]. In terms of belief revision, this means that if the revised
belief upon observing {a, b} would assign equal probabilities
to a and b, and the revised belief upon observing {b, c} would
assign equal probabilities to b and c, then the revised belief
upon observing {a, c} should assign equal probabilities to a

and c. This condition rules out intuitive problems as in Fig-
ure 2.

The last axiom, information-order independence, states that
the revised belief should not depend on the order in which
information is received. For instance, revising the belief upon
observing the event {x1, x2} at once should give the same result
as first observing the event {x1, x2, x3}, and then observing the
event {x1, x2}. This axiom thus guarantees that iterated belief
revision does not lead to problems. Majumdar (2004) calls
this condition path independence.

It is easy to show that every Euclidean distance based
imaging rule satisfies these three axioms. Showing the oppo-
site direction, namely that every belief revision function sat-
isfying these axioms is an Euclidean distance based imaging
rule, turned out to be a very difficult task. The complete
proof involves many steps. In order to help the reader, we pro-
vide in Section 4 an overview of the proof of our main theo-
rem. In that section, we present the lemmas that are used to
show the main result, and present for each lemma an intu-
itive, often geometrical, argument. The full algebraic proofs
are presented in the Appendix. The reader is advised to first
read the intuitive arguments before going through the formal
proof.

The outline of the paper is as follows. In Section 2, we
introduce the concept of a belief revision function and the
axioms of linearity, transitivity and information-order inde-
pendence. In Section 3, we present the main theorem. Section
4 provides a non-technical overview of the proof. We conclude
in Section 5 with a discussion.
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2. BELIEF REVISION FUNCTIONS

In this section we introduce the notion of a belief revi-
sion function, and propose the axioms of linearity, transitivity
and information-order independence. Let X ={x1, x2, . . . , xn} be
some finite set of states. A probabilistic belief (or simply belief)
on X is a probability distribution on X. We denote by B(X)

the set of all beliefs on X. For two beliefs β1, β2 in B(X) and
a number λ∈ [0,1], let λβ1 + (1−λ)β2 be the belief that assigns
to every state x ∈ X the probability λβ1(x) + (1 − λ)β2(x). For
a given state x, let [x] be the opinionated belief that assigns
probability one to x. A subset E ⊆ X of states is called an
event. By B(X|E) we denote the set of beliefs on X that assign
positive probability only to states in E.

DEFINITION 2.1. (Belief revision function). A belief revision
function on X is a function br that assigns to every belief β ∈
B(X) and every event E ⊆X some belief br(β|E)∈B(X|E).

Here, β represents the initial belief a person holds about
the state in X, whereas br(β|E) represents the revised belief
after receiving the information that the state is in E.

In order to introduce the axiom of linearity, assume that
the decision maker initially assigns probability one to some
state c, but later observes that the true state is in {a, b}. Sup-
pose that, after observing this event, he attaches probabil-
ity α > 1/2 to a and probability 1 − α < 1/2 to b, that is,
br([c]|{a, b})=α[a] + (1 −α)[b]. Then, the revised belief reveals
that the decision maker deems c more similar to a than to
b, since he shifts more weight towards a than towards b.
Moreover, the precise numbers α and 1 − α reveal how much
more similar he deems c to a compared to b: the higher α,
the higher the perceived similarity between c and a compared
to the perceived similarity between c and b. Consider now
a different situation in which he initially assigns probability
β(c)<1 to c, and later observes the event {a, b}. He then faces
a similar task as before, since he must shift the total weight
β(c) initially assigned to c towards the non-excluded states
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a and b. Since we may assume that the relative perceived
similarities between c and a as compared to c and b are still
given by the numbers α and 1 −α above, he should shift the
fraction α of β(c) to a, and shift the fraction 1 − α of β(c)

to b. That is, the fractions of weight β(c) that are shifted
towards a and b, respectively, are given by the revised belief
br([c]|{a, b}), and are independent of the initial weight β(c)

assigned to the excluded state c. By applying this reasoning to
every state x that is excluded by the event {a, b}, we obtain the
axiom of linearity.

AXIOM 2.2. (Linearity). For every initial belief β ∈ B(X) and
every two states a, b∈X, it should hold that

br(β|{a, b})=β(a)[a]+β(b)[b]+
∑

x∈X\{a,b}
β(x)br([x]|{a, b}).

The second axiom, transitivity, states that, whenever a
belief β is perceived “equally similar” to the opinionated
beliefs [a] and [b], and is perceived “equally similar” to [b] and
[c], then the belief β should be perceived “equally similar” to
[a] and [c]. Here, this “equally similar to” relation may be
deduced from the belief revision function. Suppose, namely,
that the initial belief β ∈B(X) and the states a, b∈X are such
that br(β|{a, b}) = 1

2 [a] + 1
2 [b]. Then, the revision of the belief

β upon observing that all states but a and b are excluded is
exactly halfway between [a] and [b], and hence, intuitively, the
initial belief β was deemed equally similar to the opinionated
beliefs [a] and [b]. The transitivity axiom simply imposes that
this “equally similar to” relation be transitive.

AXIOM 2.3. (Transitivity). For every initial belief β ∈ B(X)

and every three different states a, b, c∈X for which br(β|{a, b})=
1
2 [a]+ 1

2 [b] and br(β|{b, c})= 1
2 [b]+ 1

2 [c], it should also hold that
br(β|{a, c})= 1

2 [a]+ 1
2 [c].

Geometrically speaking, within the state space X ={a, b, c}
the transitivity axiom connects the direction of revision upon
receiving information {a, c} to the revision directions with
respect to the events {a, b} and {b, c}. Figure 4 provides an



174 ANDRÉS PEREA

a b

c

β1
2 [a] + 1

2 [c]
1
2 [b] + 1

2 [c]

1
2 [a] + 1

2 [b]

Figure 4. Transitivity.

illustration of this fact. The last axiom, information-order
independence, states that it should not matter in which partic-
ular form information is received. For instance, it should not
make a difference whether the information that states a and
b are no longer possible is received at once, or that first the
information excluding a is received followed by the informa-
tion excluding b.

AXIOM 2.4. (Information-order independence). For every ini-
tial belief β ∈B(X) and every two events E1,E2 ⊆X with E2 ⊆
E1, it holds that

br(β|E2)=br(br(β|E1)|E2).

Figure 5 illustrates this axiom for the case of four states,
with state space X = {a, b, c, d} , and events E1 = {a, b, c} and
E2 ={b, c}.

3. REPRESENTATION THEOREM

Let the set X contain n states. Let ϕ be a one-to-one function
from the set B(X) of beliefs to some Euclidean space R

m, with
m≥n−1.
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Figure 5. Information-order independence.

DEFINITION 3.1. (Linear function). The function ϕ:B(X)→
R

m is called linear if for every belief β ∈B(X) we have that

ϕ(β)=
∑

x∈X

β(x)ϕ([x]).

In this paper, we interpret a linear function ϕ as follows:
For every state x, the vector ϕ([x]) is chosen as a vector
of characteristics for x. If the function ϕ is linear, the vec-
tor ϕ(β) for a given belief β may then be interpreted as the
expected vector of characteristics induced by the belief β and
the vectors {ϕ([x]) | x ∈X}. For every two beliefs β and β ′, let∥∥ϕ(β)−ϕ(β ′)

∥∥ denote the Euclidean distance between the cor-
responding expected vectors of characteristics.

DEFINITION 3.2. (Closed under orthogonal projections). A
linear one-to-one function ϕ: B(X) → R

m is called closed under
orthogonal projections if for every β1 ∈ B(X) and every E ⊆ X

there is some β2 ∈B(X|E) such that

(ϕ(β2)−ϕ(β1))⊥ (ϕ(β3)−ϕ(β4))

for all β3, β4 ∈B(X|E).



176 ANDRÉS PEREA

Here, ⊥ means “orthogonal to”. Hence, ϕ(β2) is the
orthogonal projection of ϕ(β1) on ϕ(B(X|E)). Note that this
orthogonal projection is always unique. We are now ready to
present the main theorem of this paper.

THEOREM 3.3. (Representation Theorem). Let X be a finite
set of n states, and br a belief revision function on X. Then, the
following two statements are equivalent:

(1) The belief revision function br is linear, transitive and infor-
mation-order independent;

(2) There is a Euclidean space R
m (m ≥ n − 1) and a linear

one-to-one function ϕ: B(X)→ R
m, closed under orthogonal

projections, such that for every initial belief β and every
event E

br(β|E)= arg min
β ′ ∈B(X|E)

∥∥ϕ(β ′)−ϕ(β)
∥∥ .

For the remainder of this paper, whenever we say that ϕ

represents the belief revision function br, we mean that br is
given by the formula above. In the proof of this theorem we
will show that, if the belief revision functions br satisfies the
three axioms above, then it can be represented by some ϕ :
B(X)→R

n−1. That is, theoretically one can always choose m=
n−1. However, in practical cases it is often natural to identify
states x with vectors ϕ([x]) of dimension larger than n−1. For
that reason, we allow in the theorem above for the possibility
that m>n−1, although theoretically we do not need it.

4. PROOF OF THE REPRESENTATION THEOREM

4.1. (2) Implies (1)

The easy part is to show the implication from (2) to (1).
Assume that br is represented by a linear one-to-one func-
tion ϕ:B(X)→R

m that is closed under orthogonal projections.
We show that br is linear, transitive and information-order
independent.
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Linearity. Choose a pair of states a, b ∈ X. We first show
that br(β1|{a, b}) = β1 whenever β1 ∈ B(X|{a, b}). Let β1 ∈
B(X|{a, b}) and β2 =br(β1|{a, b}). Then,

‖ϕ(β2)−ϕ(β1)‖≤‖ϕ(β3)−ϕ(β1)‖
for all β3 ∈ B(X|{a, b}). However, as β1 ∈ B(X|{a, b}) and
ϕ is one-to-one, this is only possible when β2 = β1, hence
br(β1|{a, b})=β1.

Now, choose β1, β2 ∈B(X) and α ∈ [0,1]. Let β :=αβ1 + (1−
α)β2, and let βrev

1 := br(β1|{a, b}), βrev
2 := br(β2|{a, b}), βrev :=

br(β|{a, b}). We show that βrev = αβrev
1 + (1 − α)βrev

2 . Since ϕ

represents br,
∥∥ϕ(βrev

1 )−ϕ(β1)
∥∥≤‖ϕ(β3)−ϕ(β1)‖

for all β3 ∈B(X|{a, b}). Since ϕ is closed under orthogonal pro-
jections, this is equivalent to

ϕ(βrev
1 )−ϕ(β1)⊥ϕ([a])−ϕ([b]). (1)

Similarly,

ϕ(βrev
2 )−ϕ(β2)⊥ϕ([a])−ϕ([b]). (2)

Define β̃rev :=αβrev
1 + (1−α)βrev

2 . Then, by (1), (2), and linearity
of ϕ,

ϕ(β̃rev)−ϕ(β)⊥ϕ([a])−ϕ([b]),

which implies that βrev = β̃rev. Hence, βrev =αβrev
1 + (1 −α)βrev

2 .
Together with the insight that br(β1|{a, b})=β1 whenever β1 ∈
B(X|{a, b}), it follows that br is linear.

Transitivity. Suppose that br(β|{a, b}) = 1
2 [a] + 1

2 [b] and
br(β|{b, c}) = 1

2 [b] + 1
2 [c]. Since ϕ is closed under orthogonal

projections, this is equivalent to stating that

ϕ
(

1
2 [a]+ 1

2 [b]
)−ϕ(β)⊥ϕ([a])−ϕ([b]),

ϕ
(

1
2 [b]+ 1

2 [c]
)−ϕ(β)⊥ϕ([b])−ϕ([c]).

This, in turn, implies that

‖ϕ(β)−ϕ(a)‖=‖ϕ(β)−ϕ(b)‖ and
‖ϕ(β)−ϕ(b)‖=‖ϕ(β)−ϕ(c)‖ .
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As such,

‖ϕ(β)−ϕ(a)‖=‖ϕ(β)−ϕ(c)‖
yielding

ϕ
(

1
2 [a]+ 1

2 [c]
)−ϕ(β)⊥ϕ([a])−ϕ([c])

and hence, br(β|{a, c})= 1
2 [a]+ 1

2 [c]. We may thus conclude that
br is transitive.

Information-order independence. Let E1,E2 be two events
with E2 ⊆E1, and let β be some initial belief. Then, we have
that

ϕ(br(β|E1))−ϕ(β)⊥ϕ([a])−ϕ([b])

for all a, b∈E1, and

ϕ(br(br(β|E1)|E2))−ϕ(br(β|E1))⊥ϕ([a])−ϕ([b])

for all a, b ∈ E2. By combining these two facts, we may con-
clude that

ϕ(br(br(β|E1)|E2))−ϕ(β)= (ϕ(br(β|E1))−ϕ(β))

+(ϕ(br(br(β|E1)|E2))

−ϕ(br(β|E1)))

⊥ϕ([a])−ϕ([b])

for all a, b ∈ E2. As such, br(β|E2) = br(br(β|E1)|E2), and
hence we may conclude that br is information-order indepen-
dent.

4.2. (1) Implies (2)

The difficult part is to show that the axioms linearity (LIN),
transitivity (TRA) and information-order independence (IOI)
imply that br is represented by some linear one-to-one func-
tion ϕ : B(X) → R

m that is closed under orthogonal projec-
tions. For a given such function ϕ, let brϕ be the (unique)
belief revision function that is represented by it. Take some
belief revision function br that satisfies LIN, TRA and IOI.
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We shall prove that there is some linear one-to-one function
ϕ: B(X)→R

m, closed under orthogonal projections, such that
br =brϕ.

The outline of this proof is as follows: Take a belief revi-
sion function br that satisfies the three axioms. For a given
function ϕ, let dϕ(a, b) := ‖ϕ([a])−ϕ([b])‖ be the induced dis-
tance between states a and b. In Section 4.2.1, we present
a system of equations for dϕ that is shown to be necessary
and sufficient for br = brϕ. In Section 4.2.2 we construct a
distance function d that satisfies this system of equations. In
Section. 4.2.3, finally, we prove that there is some linear one-
to-one function ϕ:B(X)→R

m, closed under orthogonal projec-
tions, with dϕ =d. Hence, for this particular ϕ we would have
that br =brϕ , which would complete the proof. In this section,
we give for each lemma an intuitive argument that is easy
to understand, and at the same time reveals the main idea
behind the proof. The formal algebraic proofs are included in
the Appendix. The philosophy is to first provide the reader
with a picture of how the proof works, before confronting the
reader with all the technical details.

4.2.1. Necessary and sufficient conditions for br =brϕ

In this part we derive a system of equations for dϕ that is
both necessary and sufficient for br =brϕ. We proceed in two
steps. As a first step, we show that br and brϕ coincide if and
only if they coincide on every triangle {a, b, c}. Hence, a belief
revision function satisfying the axioms LIN, TRA and IOI is
completely determined by its behavior on triangles. In the sec-
ond step, we provide a system of equations for dϕ that is nec-
essary and sufficient for the event that br and brϕ coincide on
every triangle. Combined with the first step, this system is also
necessary and sufficient for br =brϕ.

In order to prove the first step we need the following
lemma.

LEMMA 4.1. If br([a]|{b, c}) = [b], then br([c]|{a, b}) = [b] and
br([b]|{a, c}) /∈{[a], [c]}.
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a b
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B C
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Figure 6. A geometrical argument for Lemma 4.1.

Intuitive argument. Consider the second triangle of Figure
6 as an illustration. Suppose that br([a]|{b, c})= [b], and let

A :=br([c]|{a, b}), B := 1
2

[a]+ 1
2

[c], C :=br(B|{b, c}) and

D :=br(B|{a, b}).

By LIN, line BC must be parallel to line ab, and hence C =
1
2 [b]+ 1

2 [c]. But then, br(B|{a, c})= 1
2 [a]+ 1

2 [c] and br(B|{b, c})=
1
2 [b] + 1

2 [c]. By TRA, it must then hold that D = 1
2 [a] + 1

2 [b].
Since, by LIN, cA must be parallel to BD, it follows that A=
[b], as was to show.

Hence, we know that br([a]|{b, c})=[b] implies br([c]|{a, b})=
[b]. We now show that, under this assumption, br([b]|{a, c}) /∈
{[a], [c]). Suppose, on the contrary, that br([b]|{a, c}) = [a].
Consider the first triangle of Figure 6 as an illustration. Let

A := 1
2

[b]+ 1
2

[c], B :=br(A|{a, c}) and C :=br(A|{a, b}).

By LIN, AB is parallel to ba, and hence B = 1
2 [a]+ 1

2 [c]. Then,
br(A|{b, c})= 1

2 [b] + 1
2 [c] and br(A|{a, c})= 1

2 [a] + 1
2 [c]. By TRA,

it follows that C = 1
2 [a] + 1

2 [b]. But then, AC is not parallel to
cb, which contradicts LIN. Similarly, br([b]|{a, c}) = [c] would
lead to a contradiction as well. �

We now prove that it is sufficient to check that br and brϕ

agree on every triangle.
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a

b

c

d

A
E

D
B

C
F

Figure 7. Belief revision on triangles is decisive.

LEMMA 4.2. (Belief revision on triangles is decisive). If br([c]|
{a, b})=brϕ([c]|{a, b}) for all a, b, c∈X, then br =brϕ.

Intuitive argument. We provide an argument for the case
of four states. Consider the state space X = {a, b, c, d}. By
LIN of br and brϕ, it follows immediately that br(β|{x, y})=
brϕ(β|{x, y}) for all x, y ∈ X. Consider the belief simplex in
Figure 7 for the state space X = {a, b, c, d}. We show that
the belief revision br([d]|{a, b, c}) is completely determined
by the belief revisions br([d]|{a, b}), br([d]|[b, c}), br([a]|{b, c})
and br([c]|{a, b}). Let the beliefs A, . . . , F be as depicted
in this figure. Hence, we must prove that br([d]|{a, b, c})
is completely determined by A,B,E and F . The line CA

denotes all the beliefs in B(X|{a, b, c}) that, upon observ-
ing {a, b}, are mapped to A. Similarly, the line DB denotes
all the beliefs in B(X|{a, b, c}) that, upon observing {b, c},
are mapped to B. By LIN, CA is parallel to cE, and DB

is parallel to aF . By Lemma 4.1, we know that it can-
not be the case that E = [a] and F = [c]. As such, the
lines cE and aF cannot coincide, implying that the lines CA

and DB cannot be parallel. Hence, CA and DB have at
most one intersection point. On the other hand, IOI of br
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ϕ([a]) ϕ([b])

ϕ([c])

ϕ(β1)

ϕ(β2)
α

Figure 8. Necessary conditions for br =brϕ .

implies that br(br([d]|{a, b, c})|{a, b}) = br([d]|{a, b}) = A and,
similarly, br(br([d]|{a, b, c})|{b, c}) = br([d]|{b, c}) = B. Hence,
br([d]|{a, b, c}) should be on CA and DB. Since we have seen
that CA and DB intersect at most once, br([d]|{a, b, c}) is
completely determined by A,B,C and D. By LIN, C and D

are completely determined by E and F . Hence, br([d]|{a, b, c})
is completely determined by A,B,E and F .

Since the same holds for brϕ, it follows that if br and brϕ

coincide on the triangles {a, b, d}, {b, c, d} and {a, b, c}, then
br([d]|{a, b, c})=brϕ([d]|{a, b, c}), and hence, by LIN of br and
brϕ, br(β|{a, b, c}) = brϕ(β|{a, b, c}) for every β. By repeating
this argument for {a, b, d}, {a, c, d} and {b, c, d}, we may con-
clude the following: if br and brϕ coincide on every triangle,
then br =brϕ, as was to show. �

We are now ready to derive necessary and sufficient con-
ditions for br = brϕ. Assume for the moment that br = brϕ.
Take some states a, b, c∈X, let β1 :=br([a]|{b, c}) and let β2 :=
br([c]|{a, b}). By definition of brϕ, it must then hold that

ϕ(β1)−ϕ([a])⊥ϕ([b])−ϕ([c]) and ϕ(β2)−ϕ([c])⊥ϕ([a])

−ϕ([b]).

Figure 8 provides an illustration of these facts. Let the angle
α be as in Figure 8. Assume first that α is less than 90◦. Then,
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ϕ([a]) ϕ([b])

ϕ([c])

ϕ(β3)

γ

Figure 9. Necessary conditions for br = brϕ .

β1(c)>0, and

cosα = β1(c) dϕ(b, c)

dϕ(a, b)
= β2(a) dϕ(a, b)

dϕ(b, c)

which implies

dϕ(b, c)

dϕ(a, b)
=

√
β2(a)

β1(c)
. (3)

If the angle α is exactly 90◦, then β1(c) = β2(a) = 0, and
(3) would not be well-defined. In that case, consider the angle
γ (less than 90◦) in Figure 9. Let β3 := br([b]|{a, c}). Then,
β3(c)>0 and

cosγ = β3(c) dϕ(a, c)

dϕ(a, b)
= dϕ(a, b)

dϕ(a, c)
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which implies that

dϕ(a, c)

dϕ(a, b)
=

√
1

β3(c)
.

Since dϕ(b, c)=√
dϕ(a, c)2 −dϕ(a, b)2, it follows that

dϕ(b, c)

dϕ(a, b)
=

√
1

β3(c)
−1=

√
β3(a)

β3(c)
. (4)

The necessary conditions (3) and (4) for br = brϕ lead us to
the following definition: For every three states a, b, c define

λbr(a, b, c) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
br([c]|{a, b})(a)

br([a]|{b, c})(c) , if br([a]|{b, c})(c)>0
√

br([b]|{a, c})(a)

br([b]|{a, c})(c) , if br([a]|{b, c})(c)=0

(5)

By Lemma 4.1 we know that br([a]|{b, c})(c) = 0 implies
br([b]|{a, c})(c) > 0, and hence (5) is well-defined. Note also
that λbr(a, b, c) > 0 for all a, b, c. Assume, namely, that
br([c]|{a, b})(a) = 0. Then, by Lemma 4.1, br([a]|{b, c})(c)=0
and br([b]|{a, c})(a) > 0, which means that λbr(a, b, c) > 0. On
the other hand, if br([b]|{a, c})(a) = 0, then, by the same
lemma, br([a]|{b, c})(c)= 1 and br([c]|{a, b})(a)> 0, and hence
λbr(a, b, c)>0.

By our insights above, we know that the system

dϕ(b, c)

dϕ(a, b)
=λbr(a, b, c) for all pairwise different

a, b, c∈X (6)

provides a set of necessary conditions for br =brϕ. The follow-
ing lemma states that this system is also sufficient for br =brϕ.

LEMMA 4.3. (Necessary and sufficient conditions for br =
brϕ). The belief revision functions br and brϕ coincide if and
only if λbr and dϕ satisfy system (6).
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a b
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C

B

A
α

β

γ

Figure 10. System (6) is sufficient for br =brϕ .

Intuitive argument. From above, it should be clear that br =
brϕ only if λbr and dϕ satisfy (6). Now, suppose that λbr and
dϕ satisfy (6). Choose some states a, b, c ∈ X. We prove that,
for fixed ϕ, the system (6) completely determines the belief
revision function br on {a, b, c}. Since, clearly, λbrϕ and dϕ sat-
isfy the system (6) as well, it would follow that br and brϕ

agree on {a, b, c}. As this would hold for every a, b, c, Lemma
4.2 would imply that br =brϕ.

Consider the belief revisions

A :=br([a]|{b, c}), B :=br([b]|{a, c}) and C :=br([c]|{a, b}),
as depicted in Figure 10. We show that A,B and C are com-
pletely determined by (6). Consider the triangle ABC and the
angles α,β and γ as shown in the same figure. Let the func-
tion ϕ be fixed. Then, the equation

dϕ(b, c)

dϕ(a, b)
=λbr(a, b, c)

determines the ratio between br([c]|{a, b})(a) and br([a]|{b, c})(c).
As such, it determines the ratio between the lengths of the line seg-
ments bC and bA, and thereby determines the angle γ . Similarly,
the equations
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dϕ(c, a)

dϕ(b, c)
=λbr(b, c, a) and

dϕ(a, b)

dϕ(c, a)
=λbr(c, a, b)

determine the angles α and β, respectively. However, there is
only one triangle ABC with A on bc, B on ac and C on ab,
inducing exactly these angles α,β and γ . Hence, A,B and C

are completely determined by (6). As such, the behavior of br

on {a, b, c} is completely determined by (6), as was to show.
�

4.2.2. Existence of distance function d solving system (6)

In this part we prove that there is some symmetric4 distance
function d, assigning to each pair a, b of states some positive
number d(a, b), that satisfies the system of equations (6). That
is, we show that for the given belief revision function br there
is some symmetric d with

d(b, c)

d(a, b)
=λbr(a, b, c)

for all pairwise different a, b, c ∈ X. We show this result in
three steps. In step 1, we prove that the system (6) admits a
solution d if and only if “every cycle of λbr ’s has product 1”.
Below, we explain what we exactly mean by this. In step 2, we
show that it is sufficient to check that every cycle of three λbr ’s
has product 1. In step 3 we show that, indeed, every cycle of
three λbr ’s has product 1.

We first explain what we mean by a cycle of λbr ’s. Consider
two numbers λbr(a1, b1, c1) and λbr(a2, b2, c2), where (a1, b1, c1)

and (a2, b2, c2) are ordered triples of states. We say that
λbr(a1, b1, c1) and λbr(a2, b2, c2) are adjacent if {a2, b2}={b1, c1}.
Hence, (a2, b2)= (b1, c1) or (a2, b2)= (c1, b1). A cycle of λbr ’s is
a sequence

(λbr(a1, b1, c1), λbr(a2, b2, c2), . . . , λbr(aK, bK, cK))

of finite length such that λbr(ak, bk, ck) and λbr(ak+1, bk+1, ck+1)

are adjacent for all k ∈ {1, . . . ,K − 1}, and λbr(aK, bK, cK) is
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adjacent to λbr(a1, b1, c1). The product of this cycle is defined
as λbr(a1, b1, c1) ·λbr(a2, b2, c2) · · · · ·λbr(aK, bK, cK).

LEMMA 4.4. (Every cycle of λbr ’s must have product 1). The
system of equations (6) admits a solution d if and only if every
cycle of λbr ’s has product 1.

Intuitive argument. Obviously, (6) has a solution d only if
every cycle of λbr ’s has product 1. Assume, now, that every
cycle of λbr ’s has product 1. We show, for the case of four
states, that there is a solution d to (6). Let X={a, b, c, d}, and
define the distance function d by

d(a, b) :=1,

d(a, c) :=λbr(b, a, c), d(a, d) :=λbr(b, a, d),

d(b, c) :=λbr(a, b, c), d(b, d) :=λbr(a, b, d),

d(c, d) :=λbr(a, b, c)λbr(b, c, d).

Then, it may easily be checked that d and λbr satisfy (6). For
instance,

d(d, c)

d(a, d)
= λbr(a, b, c)λbr(b, c, d)

λbr(b, a, d)

=λbr(a, b, c)λbr(b, c, d)λbr(d, a, b)

= 1
λbr(c, d, a)

λbr(a, b, c)λbr(b, c, d)λbr(c, d, a)

λbr(d, a, b)

= 1
λbr(c, d, a)

=λbr(a, d, c).

Here, the second and the fifth equality follow from the fact
that 1/λbr(x, y, z) = λbr(z, y, x). The fourth equality follows
from the assumption that the product of the four λbr ’s is 1,
since this sequence is a cycle of λbr ’s. Similarly, one can verify
that the other equations in (6) are satisfied. �

We next show that it is sufficient to check for the products
of 3-cycles. A 3-cycle of λbr ’s is simply a cycle containing 3



188 ANDRÉS PEREA

a b

c

a

b

c d

Figure 11. Triangle-3-cycles and star-3-cycles.

λbr ’s. It is easily seen that there exist two types of 3-cycles:

(λbr(a, b, c), λbr(b, c, a), λbr(c, a, b)) and (λbr(b, a, c),

λbr(c, a, d), λbr(d, a, b)).

We refer to these two types as triangle-3-cycles and star-3-
cycles, respectively. See Figure 11 for an illustration. From
this picture, it also becomes clear why we have chosen these
names.

LEMMA 4.5. (Checking for 3-cycles is sufficient). Every cycle
of λbr ’s has product 1 if and only if every 3-cycle of λbr ’s has
product 1.

Intuitive argument. We illustrate this lemma by means of
the following example. Consider the state space X={a, b, c, d},
and assume that every 3-cycle of λbr ’s has product 1. We show
that the 4-cycle

(λbr(a, b, c), λbr(b, c, d), λbr(c, d, a), λbr(d, a, b))

has product 1. Since every star-3-cycle has product 1, we have
that

λbr(a, b, c)λbr(c, b, d)λbr(d, b, a)=1 and
λbr(c, d, a)λbr(a, d, b)λbr(b, d, c)=1,
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a b

cd

a b

cd

Figure 12. Decomposition of cycle into 3-cycles.

or, equivalently,

λbr(a, b, c)=λbr(a, b, d)λbr(d, b, c) and λbr(c, d, a)

=λbr(c, d, b)λbr(b, d, a).

We thus obtain

λbr(a, b, c)λbr(b, c, d)λbr(c, d, a)λbr(d, a, b)

=λbr(a, b, d)λbr(d, b, c)λbr(b, c, d)λbr(c, d, b)λbr(b, d, a)

×λbr(d, a, b)

= [λbr(a, b, d)λbr(b, d, a)λbr(d, a, b)]

× [λbr(d, b, c)λbr(b, c, d)λbr(c, d, b)]=1,

where the latter sequence consists of two triangle-3-cycles
for which the product, by assumption, is 1. Hence, we have
decomposed the 4-cycle into two triangle-3-cycles, using the
fact that every star-3-cycle has product 1. See Figure 12 for
an illustration of this method. The formal proof is based on
exactly this method. �

We now prove that, indeed, every 3-cycle of λbr ’s has prod-
uct 1. This would eventually imply that there exists a distance
function d such that d and λbr satisfy the system (6).

LEMMA 4.6. Every triangle-3-cycle of λbr ’s has product 1.

Intuitive argument. Consider a triangle {a, b, c}. We show
that λbr(a, b, c)λbr(b, c, a)λbr(c, a, b) = 1. Let A := br([a]|{b, c}),
B := br([b]|{a, c}) and C := br([c]|{a, b}). By Ab we denote
the probability that A assigns to state b. Similarly, we define
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Figure 13. Every triangle-3-cycle of λbr ’s has product 1.

Ac,Ba,Bc,Ca and Cb. We focus on the case where A and C are
in the interior of the line segments bc and ab, respectively, as
illustrated in Figure 13. Then, by Lemma 4.1, also B must be
in the interior of the line segment ac, and hence

λbr(a, b, c)=
√

Ca

Ac

, λbr(b, c, a)=
√

Ab

Ba

, λbr(c, a, b)=
√

Bc

Cb

.

Showing that λbr(a, b, c)λbr(b, c, a)λbr(c, a, b)=1 thus amounts
to proving that

AbBcCa =AcBaCb.

By Ceva’s theorem, this is equivalent to showing that the
three lines aA, bB and cC are concurrent.5 More precisely,
Ceva’s theorem states that the three lines aA,bB and cC are
concurrent if and only if

‖A−[c]‖‖B−[a]‖‖C−[b]‖=‖A−[b]‖‖B−[c]‖‖C−[a]‖ . (7)

However, since

Ab = ‖A− [c]‖
‖[b]− [c]‖ ,Ac = ‖A− [b]‖

‖[b]− [c]‖ ,

and similarly for Bc,Ba,Ca and Cb, (7) is equivalent to
AbBcCa =AcBaCb.

We now show that aA,bB and cC are concurrent. Note
that the lines aA and cC intersect at some point D in
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Figure 14. Every star-3-cycle of λbr ’s has product 1.

the triangle (see Figure 13). That is, br(D|{b, c}) = A and
br(D|{a, b}) = C. Let a′ := 1

2 [b] + 1
2 [c], b′ := 1

2 [a] + 1
2 [c] and c′ :=

1
2 [a] + 1

2 [b], and let D′ be the “image” of D in the triangle
a′b′c′. That is,

D′ =Daa
′ +Dbb

′ +Dcc
′.

Similarly, let A′ and C ′ be the images of A and C, as depicted
in the second triangle of Figure 13. Then, the lines A′a′ and
C ′c′ intersect at the point D′. Since the lines A′a′ and C ′c′

are parallel to the lines aA and cC, respectively, we may
conclude that br(A′|{b, c}) = a′ and br(C ′|{a, b}) = c′. Hence,
br(D′|{b, c})=a′ and br(D′|{a, b})=c′. By TRA, it follows that
br(D′|{a, c}) = b′. Let B ′ be the point on a′c′ such that B ′b′

contains D′. Then, br(B ′|{a, c}) = b′, which implies that the
line B ′b′ is parallel to the line bB, and hence B ′ must be the
image of B. Since the lines A′a′,B ′b′ and C ′c′ are concurrent,
and A′, a′,B ′, b′,C ′, c′ are the images of A,a,B, b,C, c, respec-
tively, it follows that the lines aA,bB and cC must be concur-
rent, which was to prove. �

LEMMA 4.7. Every star-3-cycle of λbr ’s has product 1.
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Intuitive argument. Let a, b, c, d ∈ X. We show that
λbr(a, d, b)λbr(b, d, c)λbr(c, d, a) = 1. Assume that the beliefs
A,B, . . . , P are as depicted in Figure 14. Here, A :=br([a]|{b, c}),
and similarly for B,C, . . . , I . We define J := br([d]|{a, b, c}). By
K,L and M we denote the mapping of J on {a, b, d}, {b, c, d} and
{a, c, d}, respectively. Finally, N,O and P are the mappings of J

on {a, d}, {b, d} and {c, d}, respectively. By IOI of br, the mappings
of K and M on {a, d} are both equal to N . Similarly for O and P .
By definition,

λbr(a, d, b)=
√

Ba

Ab

, λbr(b, d, c)=
√

Eb

Dc

, λbr(c, d, a)=
√

Hc

Ga

,

where Ba is the probability that B assigns to a, and so on.
Hence, showing that

λbr(a, d, b)λbr(b, d, c)λbr(c, d, a)=1

is equivalent to proving that

BaEbHc =AbDcGa.

Note that, by Lemma 4.6, the lines aA,bB and dC are con-
current. The same holds for the lines bD, cE and dF and for
the lines cG,aH and dI . Note also that, by IOI,

br(K|{a, b})=br(J |{a, b})=br([d]|{a, b})=C,

and hence K lies on the line dC. Similarly, L and M lie on
the lines dF and dI , respectively. Since we have seen that
br(K|{a, d})=N , it follows by LIN that line KN is parallel to
line bB. Similarly for the lines KO,LO,LP,MP and MN .

But then, it is easily seen from the figure that

Ba

Ab

= Na

Ob

,
Eb

Dc

= Ob

Pc

,
Hc

Ga

= Pc

Na

,

which implies that

Ba

Ab

Eb

Dc

Hc

Ga

=1.

Hence, BaEbHc =AbDcGa, which was to show. �
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Combining Lemmas 4.4, 4.5, 4.6, and 4.7 thus leads to the
following conclusion.

COROLLARY 4.8. There is a symmetric distance function d

such that d and λbr satisfy system (6).

4.2.3. Existence of function ϕ with brϕ =br

By Corollary 4.8 we know that there is some distance func-
tion d such that d and λbr solve (6). We shall now explicitly
construct a linear one-to-one mapping ϕ:B(X)→R

n−1, closed
under orthogonal projections, for which the induced distance
function dϕ coincides with d. As before, n denotes the num-
ber of states. Then, dϕ and λbr would satisfy (6). By Lemma
4.3 it would then follow that brϕ =br, and hence br would be
represented by ϕ. This would thus complete the proof of our
Theorem 3.3.

We first show the reader how we construct ϕ for the case of
three and four states, respectively, and provide for both cases
a geometrical argument as to why the induced distance func-
tion coincides with d. We then provide a general formula for
ϕ, and show that dϕ =d.

Case of three states. Let X = {a, b, c}, and let the distance
function d be such that d and λbr satisfy (6). We construct ϕ:
B(X)→R

2 as follows. We choose

ϕ([a]) := (0,0) and ϕ([b]) := (d(a, b),0).

Since ϕ must be linear, we define

ϕ(β) :=β(a)ϕ([a])+β(b)ϕ([b])

for all β ∈ B(X|{a, b}). Now, let A := br([c]|{a, b}) and B :=
br(A|{a, c}), as depicted in Figure 15. Since ϕ is to be con-
structed such that br = brϕ, the vector ϕ(A) − ϕ([c]) must be
orthogonal to ϕ([b])−ϕ([a]), and hence

ϕ([c])=ϕ(A)+h(0,1)

for some h > 0. The question is how to choose h. Let α be
the angle as depicted in Figure 15. Since ϕ(B)−ϕ(A) must be
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ϕ([a]) ϕ([b])

ϕ([c])

ϕ(A)

ϕ(B)

ϕ(C)
ϕ(E)

ϕ(D)

h

α

Figure 15. Construction of ϕ for three states.

orthogonal to ϕ([c])−ϕ([a]), we have

cosα = h

‖ϕ([c])−ϕ([a])‖ = Ba ‖ϕ([c])−ϕ([a])‖
h

.

Since, moreover, we want to construct ϕ such that dϕ =d, we
may substitute ‖ϕ([c])−ϕ([a])‖=d(a, c), and obtain

h=
√

Bad(a, c). (8)

Hence,

ϕ([c]) :=ϕ(A)+
√

Bad(a, c)(0,1).

By defining

ϕ(β) :=β(a)ϕ([a])+β(b)ϕ([b])+β(c)ϕ([c])

for all β ∈B(X), the construction of ϕ is complete.
We shall now show that dϕ = d. Clearly, dϕ(a, b) = d(a, b).

By construction,

‖ϕ([c])−ϕ([a])‖2 =‖ϕ([c])−ϕ(A)‖2 +‖ϕ(A)−ϕ([a])‖2

=Bad
2(a, c)+‖ϕ(A)−ϕ([a])‖2

=d2(a, c)−Bcd
2(a, c)+‖ϕ(A)−ϕ([a])‖2 . (9)
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We show that Bcd
2(a, c)=‖ϕ(A)−ϕ([a])‖2, which would imply

that ‖ϕ([c])−ϕ([a])‖=d(a, c). By LIN of br, we have that B =
Aa[a]+AbC and hence Bc =AbCc. As such,

Bcd
2(a, c)=AbCcd

2(a, c).

Since d and λbr satisfy (6), it follows that d(a, c)/d(a, b) =
λbr(b, a, c). By definition,

λbr(b, a, c)=
√

Ab

Cc

,

which implies that Ccd
2(a, c)=Abd

2(a, b). Consequently,

Bcd
2(a, c)=AbCcd

2(a, c)=A2
bd

2(a, b)=‖ϕ(A)−ϕ([a])‖2 .

Hence, by (9), ‖ϕ([c])−ϕ([a])‖ = d(a, c) and hence dϕ(a, c) =
d(a, c).

We now prove that ‖ϕ([c])−ϕ([b])‖ = d(b, c). From Figure
15, it is clear that Ba/Db =Ca/Eb. Moreover, since d and λbr

satisfy (6), we have that d(b, c)/d(a, c)=λbr(a, c, b). By defini-
tion,

λbr(a, c, b)=
√

Ca

Eb

=
√

Ba

Db

,

which yields Ba/Db = d2(b, c)/d2(a, c). Hence,
√

Bad(a, c) =√
Dbd(b, c). By (8) we may conclude that

h=
√

Dbd(b, c).

By using a similar argument as we used above for dϕ(a, c), we
may then show that dϕ(b, c)=d(b, c). Hence, dϕ =d, as was to
show. �

Case of four states. Let X = {a, b, c, d}, and let d be such
that d and λbr satisfy (6). We construct ϕ: B(X) → R

3 as fol-
lows. From the case of three states, we know how to con-
struct ϕ([a]), ϕ([b]), ϕ([c]) ∈ R

3, with the last coordinate of
each of these vectors being zero, such that dϕ and d coin-
cide on B(X|{a, b, c}). We show how to construct ϕ([d]). Let
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ϕ([a])

ϕ([b])

ϕ([c])

ϕ([d])

ϕ(B) h

ϕ(A)

α

Figure 16. Construction of ϕ for four states.

A := br([d]|{a, b, c}) and B := br(A|{a, d}), as depicted in Fig-
ure 16. As ϕ has to be constructed such that brϕ =br, it must
be the case that ϕ(A) − ϕ([d]) is orthogonal to the triangle
spanned by ϕ([a]), ϕ([b]) and ϕ([c]). Hence,

ϕ([d])=ϕ(A)+h(0,0,1)

for some h>0. It remains to determine h. Let α be the angle
as depicted in Figure 16. Since ϕ(B) − ϕ(A) is orthogonal to
ϕ([d])−ϕ([a]), we have

cosα = h

‖ϕ([d])−ϕ([a])‖ = Ba ‖ϕ([d])−ϕ([a])‖
h

,

hence we must set

h=
√

Ba ‖ϕ([d])−ϕ([a])‖=
√

Bad(a, d), (10)

as we wish to achieve that ‖ϕ([d])−ϕ([a])‖=d(a, d). By defin-
ing

ϕ(β)=β(a)ϕ([a])+β(b)ϕ([b])+β(c)ϕ([c])+β(d)ϕ([d])

for all β ∈B(X), the construction of ϕ is complete.
We now show that dϕ = d. By the case of three states, we

already know that dϕ and d coincide on {a, b, c}. We first show
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ϕ([a])

ϕ([b])

ϕ([c])

ϕ([d])

ϕ(B)
h

ϕ(A)

ϕ(I)

ϕ(J)

ϕ(D)
ϕ(H)

ϕ(G)

ϕ(E)
ϕ(C)

ϕ(F )

Figure 17. Construction of ϕ for four states.

that dϕ(a, d)=d(a, d). Let the beliefs C, . . . ,H be as depicted
in Figure 17. By construction, and by (10),

‖ϕ([d])−ϕ([a])‖2 =h2 +‖ϕ(A)−ϕ([a])‖2 =Bad
2(a, d)

+‖ϕ(A)−ϕ([a])‖2

=d2(a, d)−Bdd
2(a, d)+‖ϕ(A)−ϕ([a])‖2 .

(11)

We show that Bdd
2(a, d)=‖ϕ(A)−ϕ([a])‖2. By LIN of br, we

have that B =Aa[a]+AbD+AcH , and hence Bd =AbDd +AcHd .
As such,

Bdd
2(a, d)=AbDdd

2(a, d)+AcHdd
2(a, d). (12)

Since d and λbr satisfy (6), we have that d(a, d)/d(a, b) =
λbr(b, a, d). By definition,

λbr(b, a, d)=
√

Cb

Dd

,
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which implies that Ddd
2(a, d) = Cbd

2(a, b). Similarly, d(a, d)/

d(a, c)=λbr(c, a, d). By definition,

λbr(c, a, d)=
√

Gc

Hd

,

implying that Hdd
2(a, d)=Gcd

2(a, c). Substituting these iden-
tities in (12) yields

Bdd
2(a, d)=AbCbd

2(a, b)+AcGcd
2(a, c)

=AbCb ‖ϕ([b])−ϕ([a])‖2 +AcGc ‖ϕ([c])−ϕ([a])‖2 .

(13)

By IOI of br, we have that C =br(A|{a, b}). From the case of
three states we know that br coincides with brϕ on {a, b, c}.
Hence, ϕ(C) − ϕ([a]) is the orthogonal projection of ϕ(A) −
ϕ([a]) on ϕ([b])−ϕ([a]), which means that

ϕ(C)−ϕ([a])=〈ϕ(A)−ϕ([a]), ϕ([b])−ϕ([a])〉
‖ϕ([b])−ϕ([a])‖2 (ϕ([b])−ϕ([a])),

where 〈·〉 denotes the dot product between vectors. Hence,

‖ϕ(C)−ϕ([a])‖= 〈ϕ(A)−ϕ([a]), ϕ([b])−ϕ([a])〉
‖ϕ([b])−ϕ([a])‖ . (14)

Since

Cb ‖ϕ([b])−ϕ([a])‖=‖ϕ(C)−ϕ([a])‖ ,

it follows that

Cb ‖ϕ([b])−ϕ([a])‖2 =‖ϕ(C)−ϕ([a])‖‖ϕ([b])−ϕ([a])‖
=〈ϕ(A)−ϕ([a]), ϕ([b])−ϕ([a])〉 ,

where the last equality follows from (14). Similarly, we may
conclude that

Gc ‖ϕ([c])−ϕ([a])‖2 =〈ϕ(A)−ϕ([a]), ϕ([c])−ϕ([a])〉 .
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Together with (13), this yields

Bdd
2(a, d)=Ab 〈ϕ(A)−ϕ([a]), ϕ([b])−ϕ([a])〉

+Ac 〈ϕ(A)−ϕ([a]), ϕ([c])−ϕ([a])〉
=Aa 〈ϕ(A)−ϕ([a]), ϕ([a])−ϕ([a])〉

+Ab 〈ϕ(A)−ϕ([a]), ϕ([b])−ϕ([a])〉
+Ac 〈ϕ(A)−ϕ([a]), ϕ([c])−ϕ([a])〉

=〈ϕ(A)−ϕ([a]), (Aaϕ([a])+Abϕ([b])

+Acϕ([c]))−ϕ([a])〉
=〈ϕ(A)−ϕ([a]), ϕ(A)−ϕ([a])〉=‖ϕ(A)−ϕ([a])‖2 .

Substituting this result in (11) leads to the conclusion that

‖ϕ([d])−ϕ([a])‖2 =d2(a, d),

which implies that dϕ(a, d) = d(a, d). We now prove that
dϕ(b, d) = d(b, d). Let I := br(A|{b, d}) and J := br([a]|{b, d}),
as depicted in Figure 17. From the discussion of Figure
14 earlier in this paper we know that Ba/Ib = Da/Jb. Since
d(b, d)/d(a, d)=λbr(a, d, b), and

λbr(a, d, b)=
√

Da

Jb

it follows that Da/Jb = d2(b, d)/d2(a, d), and hence Ba/Ib =
d2(b, d)/d2(a, d). As such,

√
Bad(a, d) = √

Ibd(b, d). Since we
have seen in (10) that h= √

Bad(a, d), it follows that

h=
√

Ibd(b, d).

But then, by using the same argument as above, one can show
that dϕ(b, d)=d(b, d). The proof for dϕ(c, d)=d(c, d) is similar.
Hence, we may conclude that dϕ =d, as was to show. �

The case of n states. The cases for three and four states
already suggest how the general construction of the function
ϕ for the case of n states should look like. Let X={x1, . . . , xn}.
We define a linear one-to-one function ϕ : B(X)→R

n−1 as
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follows: Let 0 denote the zero vector in R
n−1, and let {e1, . . . , en−1}

denote the canonical basis for R
n−1. Define

ϕ([x1]) :=0, ϕ([x2]) :=d(x1, x2)e1,

and

ϕ(β) :=β(x1)ϕ([x1])+β(x2)ϕ([x2])

for all β ∈ B(X|{x1, x2}). For every k ∈ {3, . . . , n}, let Xk−1 =
{x1, . . . , xk−1}, and recursively define

ϕ([xk]):=ϕ(br([xk]|Xk−1))

+
√

br(br([xk]|Xk−1)|{x1, xk})(x1) ·d(x1, xk)ek−1,

and

ϕ(β) :=
k∑

i=1

β(xi)ϕ([xi ])

for all β ∈B(X|{x1, . . . , xk}). In the following lemma, we show
that this function ϕ has all the desired properties.

LEMMA 4.9. (Existence of ϕ with dϕ =d). Let ϕ be the func-
tion defined above. Then, ϕ is linear, one-to-one and closed
under orthogonal projections, and dϕ =d.

Intuitive argument. We first show, by induction on k, that dϕ

and d coincide on {x1, . . . , xk} for every k ∈{3, . . . , n}. For k =
3, this follows from our argument above for three states. Sup-
pose that k ≥ 4 and that dϕ and d coincide on {x1, . . . , xk−1}.
We show that dϕ(x1, xk) = d(x1, xk). Define A := br([xk]|Xk−1)

and B :=br(A|{x1, xk}). Then, we have that

ϕ([xk])=ϕ(A)+√
Bx1d(x1, xk)ek−1.

Clearly,

‖ϕ([xk])−ϕ([x1])‖2 =‖ϕ([xk])−ϕ(A)‖2 +‖ϕ(A)−ϕ([x1])‖2

=Bx1d
2(x1, xk)+‖ϕ(A)−ϕ([x1])‖2

=d2(x1, xk)−Bxk
d2(x1, xk)+‖ϕ(A)

−ϕ([x1])‖2 .
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By using the same techniques as in our proof for four states,
one can show that

Bxk
d2(x1, xk)=‖ϕ(A)−ϕ([x1])‖2 ,

and hence ‖ϕ([xk])−ϕ([x1])‖2 = d2(x1, xk), implying that dϕ

(x1, xk)=d(x1, xk).
We now show that dϕ(xi, xk)= d(xi, xk) for every i ∈ {2, . . . ,

k−1}. Let C :=br(A|{xi, xk}). Then, using the same method as
in our argument for four states, one can show that

√
Bx1d(x1, xk)=√

Cxi
d(xi, xk)

and hence

ϕ([xk])=ϕ(A)+√
Cxi

d(xi, xk)ek−1.

Using the same argument as above, one can then show that
dϕ(xi, xk)=d(xi, xk). By induction, it then follows that dϕ =d.

Since it is clear, by construction, that ϕ is linear and
one-to-one, it only remains to show that ϕ is closed under
orthogonal projections. It is sufficient to show that for every
cornerpoint ϕ([xk]) of the polytope ϕ(B(X)), and for every
face ϕ(B(X|E)) with E ⊆ X, the orthogonal projection of
ϕ([xk]) on ϕ(B(X|E)) lies in ϕ(B(X|E)).

By construction of ϕ, the orthogonal projection of ϕ([xk])
on ϕ(B(X|{x1, . . . , xk−1})) is equal to ϕ(br([xk]|{x1, . . . , xk−1)),
which lies in ϕ(B(X|{x1, . . . , xk−1})).

Now, choose some arbitrary state yk ∈ X, and some arbi-
trary event E = {y1, . . . , yk−1} ⊆ X containing k − 1 states, but
not containing yk. We show that the orthogonal projection of
ϕ([yk]) on ϕ(B(X|E)) is contained in ϕ(B(X|E)). Let X\(E ∪
{yk}) = {yk+1, . . . , yn}. Suppose that we would apply the algo-
rithm above, used to compute ϕ, not with respect to the order
x1, x2, . . . , xn, but with respect to the order y1, y2, . . . , yn. This
would yield some other function, say ϕ̃, and hence some other
polytope, ϕ̃(B(X)). However, by using the same argument as
above, one could then still prove that ‖ϕ̃([a])− ϕ̃([b])‖=d(a, b)

for all a, b ∈ X. That is, ‖ϕ̃([a])− ϕ̃([b])‖ = ‖ϕ([a])−ϕ([b])‖
for all a, b ∈ X, and hence the two polytopes ϕ(B(X)) and
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ϕ̃(B(X)) are isomorphic. By construction, the orthogonal
projection of ϕ̃([yk]) on ϕ̃(B(X|{y1, . . . , yk−1})) is equal to
ϕ̃(br([yk]|{y1, . . . , yk−1})), which lies in ϕ̃(B(X|{y1, . . . , yk−1})).
Hence, the orthogonal projection of ϕ̃([yk]) on ϕ̃(B(X|E))

is contained in ϕ̃(B(X|E)). Since ϕ(B(X)) is isomorphic to
ϕ̃(B(X)), it follows that also the orthogonal projection of
ϕ([yk]) on ϕ(B(X|E)) is contained in ϕ(B(X|E)). Since this
holds for all yk ∈X and all E ⊆X\{yk}, we may conclude that
ϕ is closed under orthogonal projections. This completes the
argument for this lemma. �

We are now fully equipped to prove the representation the-
orem. Let br be a belief revision function that satisfies the
axioms LIN, TRA and IOI. Then, by Corollary 4.8, there
is some distance function d such that d and λbr satisfy the
system (6) of equations. Moreover, by Lemma 4.9, there is
some linear one-to-one function ϕ:B(X)→R

n−1, closed under
orthogonal projections, with dϕ = d. Hence, dϕ and λbr satisfy
(6), which, by Lemma 4.3, implies that br =brϕ. Hence, br is
represented by the function ϕ, which is linear, one-to-one and
closed under orthogonal projections. This completes the proof
of the representation theorem.

5. DISCUSSION

5.1. Imaging versus Bayesian updating

For some reason, the idea of imaging has not received much
attention in decision theory and game theory. A possible
explanation is that imaging would lead to a violation of
dynamic consistency, a behavioral principle that plays a prom-
inent role in both areas. In order to explain dynamic consis-
tency, consider three possible states, a, b and c, and a decision
maker who must choose between two acts, f and g. The final
outcomes of f and g depend on the state. Suppose that there
are three possible outcomes, x, y and z, and that the outcomes
of the acts are given by the following table:
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a b c

f x y z

g y x z

Hence, f and g deliver the same outcome if the state would
be c. Now, assume that the decision maker initially prefers
f over g, indicating that he initially deems a or b possi-
ble. Dynamic consistency states that, if the decision maker
would come to observe that the true state must be in {a, b},
he should still prefer f over g.

The connection between dynamic consistency and Bayesian
updating has been studied in several decision theoretic models.
Ghirardato (2002) studies a model in which the decision
maker, for any possible event, holds a conditional preference
relation over Savage-acts (Savage, 1954), and imposes axioms
which guarantee that these conditional preferences can be rep-
resented by subjective expected utility functions. The paper
shows that the conditional preferences are dynamically con-
sistent if and only if the decision maker uses the same util-
ity function for every observable event, and the induced belief
revision function satisfies Bayesian updating. Epstein and
Schneider (2003) prove that a similar result is true for con-
ditional preferences over Anscombe-Aumann acts (Anscombe
and Aumann, 1963), although studying a broader framework
in which conditional preferences may, but need not, be of the
subjective expected utility type.

Since the class of general imaging rules does not satisfy
Bayesian updating, the two results above imply that embed-
ding imaging rules into a dynamic decision problem with
expected utility preferences necessarily leads to dynamically
inconsistent preferences. Consequently, if a subjective expected
utility maximizer in a dynamic decision problem uses a gen-
eral imaging rule to revise his probabilistic beliefs, he should
anticipate on the fact that his preferences over acts may
change in the future due to new information about the state.
A similar phenomenon is studied in Epstein (2005), who pro-
poses an alternative model in which the decision maker’s
preferences over acts change over time due to non-Bayesian
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belief revision. Epstein’s model, which is based upon Gul and
Pesendorfer (2001), considers a decision maker who has pref-
erences over menus of acts, rather than over single acts alone.
When choosing a menu of acts, the decision maker should
anticipate on the fact that his preferences over acts within the
menu may change in the future, when receiving new infor-
mation about the state. Epstein then imposes axioms on the
decision maker’s preference relation over menus of acts which
allow the decision maker to use a belief revision function that
differs from Bayesian updating. More precisely, a preference
relation that satisfies the axioms induces a belief revision func-
tion which, upon receiving new information about the state,
generates a revised belief that can be written as a convex com-
bination of the Bayesian update of the initial belief and some
other revised belief which may significantly differ from this
Bayesian update.

In the game-theoretic literature on belief revision, an impor-
tant role is played by the relationship between belief revision
and the one-deviation property. In order to explain the latter,
consider a dynamic game in which a player must choose an
action at two subsequent information sets, h1 and h2. Sup-
pose that the player chooses action a1 at h1 and action a2

at h2. Assume, moreover, that a1 is optimal at h1 given his
belief at h1 about the opponents’ actions and given his own
future choice a2, and assume that a2 is optimal at h2 given
his revised belief about the opponents’ actions at h2. The
one-deviation property states that in this case, the stream of
actions (a1, a2) should be optimal given the player’s belief at
h1 about the opponents’ actions. That is, there should be no
other stream of actions (a′

1, a
′
2) that, given the player’s belief

at h1 about the opponents’ actions, would lead to a higher
expected utility.

It may be verified that dynamic consistency of prefer-
ences implies the one-deviation property. Hendon et al. (1996)
prove, within an equilibrium framework, that every pre-
consistent belief revision function satisfies the one-deviation
principle, whereas Perea (2002) shows that an appropriate
weakening of pre-consistency, termed updating consistency, is
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not only a sufficient condition, but also a necessary con-
dition for the one-deviation principle. Both conditions, pre-
consistency and updating consistency, are closely related to
Bayesian updating. Since general imaging rules will typi-
cally not satisfy updating consistency when incorporated in a
dynamic game, it follows that our model of belief revision is
in conflict with the one-deviation property. The reason is that
within our model, a player who must choose an action at the
present information set h1 and at some future information set
h2, cannot evaluate the optimality of his actions at h2 with
his present belief at h1, since his conditional preferences at h2

are in conflict with his initial preferences at h1. Rather, at h1

he should correctly anticipate on the action he would choose
at h2, given his future revised belief at h2, and subsequently
should choose the action at h1 that is optimal given his belief
at h1 about the opponents’ actions, and given his own future
choice at h2.

Summarizing, Bayesian updating is, roughly speaking,
equivalent to dynamic consistency in decision problems and
to the one-deviation property in dynamic games. Hence, if
one insists on the latter two principles, one should accept
Bayesian updating as the only reasonable candidate for belief
revision. This may be the reason that decision theory and
game theory have almost exclusively concentrated on Bayesian
updating so far. However, it is not obvious that dynamic con-
sistency should always be satisfied. The key idea in dynamic
consistency is that the decision maker should be able to eval-
uate future choice problems, which would occur after receiv-
ing some new information, by beliefs that are held before
receiving this new information. But why should this be the
case? It seems natural to evaluate every separate choice prob-
lem by the revised belief you hold at the time you have to
make the choice, and not by the beliefs you held before. It
also seems natural to anticipate on future revised beliefs, and
accordingly on future choices, when evaluating a choice prob-
lem today. Hence, a decision maker may analyze a dynamic
choice problem in a perfectly sensible way while violating
the dynamic consistency principle. I therefore believe that the
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idea of imaging certainly deserves a place in the theory on
dynamic choice problems and dynamic games.

In non-probabilistic belief revision theory, there is a simi-
lar discussion on the difference between the AGM axioms for
belief revision (Alchourrón and Makinson, 1982; Gärdenfors,
1988) and the Katsuno–Mendelzon axioms for belief update
(Katsuno and Mendelzon, 1992). The AGM model may be
viewed as a non-probabilistic version of Bayesian updat-
ing, while the Katsuno–Mendelzon model represents a non-
probabilistic version of imaging. For an intriguing compari-
son of both models, the reader is referred to Katsuno and
Mendelzon (1992).

5.2. Independence of the axioms

It can easily be shown that the three axioms LIN, TRA and
IOI are independent.

1. Let X1 = {a, b, c}, and let br1 be such that br1([a]|{b, c}) =
[b], br1([b]|{a, c}) = br1([c]|{a, b}) = [a], and br1(β|{x, y}) is
the revised belief obtained by Bayesian updating whenever
β assigns positive probability to x or y, for all x, y ∈ X1.
Then, br1 satisfies TRA and IOI, but not LIN.

2. Let X2 = {a, b, c}, and let br2 be such that br2([a]|{b, c}) =
[b], br2([b]|{a, c}) = br2([c]|{a, b}) = [a], and br2(β|{x, y}) =
β(x)[x] + β(y)[y] + β(z)br2([z]|{x, y}) for all beliefs β, and
all x, y, z ∈ X2. Then, br2 satisfies LIN and IOI, but not
TRA, since br2(

1
2 [a] + 1

2 [c]|{b, c}) = 1
2 [b] + 1

2 [c], br2(
1
2 [a] +

1
2 [c]|{a, c})= 1

2 [a] + 1
2 [c], whereas br2(

1
2 [a] + 1

2 [c]|{a, b})= [a] �=
1
2 [a]+ 1

2 [b].
3. Let X3 = {a, b, c, d}, and let br3 be the linear belief revi-

sion function generated by br3([x]|{y, z})= 1
2 [y]+ 1

2 [z] for all
x, y, z∈X3, br3([d]|{a, b, c})= [a] and br3([x]|X3\{x})= [d] for
every x ∈X3\{d}. Then, br3 satisfies LIN and TRA, but not
IOI, since br3([d]|{a, b})= 1

2 [a]+ 1
2 [b], whereas

br3(br3([d]|{a, b, c})|{a, b})=br3([a]|{a, b})
= [a]�=br3([d]|{a, b}).
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5.3. Uniqueness of the function ϕ

By the representation theorem we know that for every belief
revision function br satisfying LIN, TRA and IOI there is
some linear one-to-one function ϕ, closed under orthogonal
projections, such that br =brϕ. Moreover, the proof of the rep-
resentation theorem provides an algorithm to compute one
such ϕ. Namely, the proof of Lemma 4.4 shows how for a
given br we may compute a distance function d such that d

and λbr satisfy (6). In Section 4.2.3 we show how for such
a distance function d we may subsequently compute a linear
one-to-one function ϕ, closed under orthogonal projections,
with dϕ =d. Hence, br =brϕ for this particular ϕ.

We now focus on the question to what extent this func-
tion ϕ is unique. That is, how much freedom do we have when
choosing a function ϕ such that br =brϕ? Assume that br sat-
isfies the three axioms, and that ϕ, ϕ̃ are two different such
functions with br =brϕ =brϕ̃. Then, by Lemma 4.3, it follows
that dϕ and λbr satisfy (6), but also dϕ̃ and λbr satisfy (6).
By the structure of the system (6), this implies that there is
some scalar α > 0 such that dϕ̃(a, b) = αdϕ(a, b) for all a, b ∈
X. Hence, ‖ϕ̃([a])− ϕ̃([b])‖=α ‖ϕ([a])−ϕ([b])‖ for all a, b ∈X,
which means that the polytopes ϕ(B(X)) and ϕ̃(B(X)) are iso-
morphic. We thus arrive at the following conclusion:

LEMMA 5.1. (Uniqueness of ϕ). Let br be a belief revision
function satisfying LIN, TRA, and IOI. Let ϕ, ϕ̃ be two lin-
ear one-to-one functions, closed under orthogonal projections,
such that br = brϕ = brϕ̃. Then, there is some α > 0 such that
‖ϕ̃([a])− ϕ̃([b])‖=α ‖ϕ([a])−ϕ([b])‖ for all a, b∈X.

Obviously, the other direction is also true: If br = brϕ and
ϕ̃ is such that ‖ϕ̃([a])− ϕ̃([b])‖=α ‖ϕ([a])−ϕ([b])‖ for all a, b∈
X, then br =brϕ̃. In other words, if we have found one ϕ with
br =brϕ, then we know how to generate all other ϕ̃ with br =
brϕ̃.
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5.4. Representing states by Boolean vectors

From the main theorem we know that for a given belief revi-
sion function br satisfying the three axioms we may construct
a function ϕ that represents br. In many practical exam-
ples it seems plausible that the decision maker reasons in the
other direction: He first chooses a function ϕ, identifying each
state with some appropriately chosen vector of characteristics,
and then revises his beliefs according to brϕ. The question
remains how to choose ϕ in an adequate manner. A pos-
sible way to do this would be as follows: One first makes
a list of properties that states may have or not have, and
that seem relevant for the decision problem at hand. Subse-
quently, one defines for each state x a Boolean vector ϕ([x])
of zeros and ones which specifies for each property whether
it is “true” (1) or “false” (0) at state x. For every belief β,
the vector ϕ(β) would then be a vector of true-false-proba-
bilities, specifying for each property the probability that it is
deemed true in the belief β. For every two states, the induced
distance ‖ϕ([a])−ϕ([b])‖ would then be equal to

√
dis(a, b),

where dis(a, b) denotes the number of properties on which a

and b disagree. This distance is also called the Hamming dis-
tance. By the proof of Lemma 4.3, the belief revision function
br represented by ϕ would be such that

br([c]|{a, b})(a)= dis(a, b)+dis(b, c)−dis(a, c)

2dis(a, b)

for all states a, b, c ∈ X. (We must make sure that ϕ is
closed under orthogonal projections such that this number is
between 0 and 1). That is, upon observing that the real state
is in {a, b} and state c is impossible, more weight is shifted
towards the state in {a, b} that has minimal Hamming distance
to c. More generally, the belief revision function br would
select for every initial belief β1 and every event E the revised
belief β2 ∈B(X|E) for which the vector of true-false-probabili-
ties is as close as possible to the vector of true-false-probabil-
ities for β1.
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APPENDIX: ALGEBRAIC PROOFS

PROOF OF LEMMA 4.1 The proof of this lemma is basi-
cally a direct translation of the geometrical argument, as pro-
vided in Section 4, into formal algebraic statements. It is
therefore omitted here. �

For the proof of Lemma 4.2, we need the following prop-
erty.

LEMMA 6.1. Let br satisfy LIN, TRA, and IOI. Then, for
every belief β ∈B(X) and every event E ⊆X it holds that

br(β|E)=
∑

x∈E

β(x)[x]+
∑

x∈X\E
β(x)br([x]|E). (15)

This lemma thus states that a belief revision function sat-
isfying our axioms also satisfies Gärdenfors’ homomorphism
condition.

PROOF OF LEMMA 6.1 We prove (15) by induction on |E|,
where |E| denotes the cardinality of E.

If |E|=2, (15) follows directly from LIN of br.
Now, take some E with |E| = k > 2, and suppose that (15)

holds for all β ′ ∈B(X) and all E′ with |E′|<k. Choose some
a, b∈E, some belief β ∈B(X), and define

βE :=br(β|E),βE\a :=br(βE|E\{a}) and
βE\b :=br(βE|E\{b}).

By the induction assumption,

βE\a =βE(a)br([a]|E\{a})+
∑

x∈E\{a}
βE(x)[x],

βE\b =βE(b)br([b]|E\{b})+
∑

x∈E\{b}
βE(x)[x].
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Since, by IOI, βE\a = br(β|E\{a}) and βE\b = br(β|E\{b}),
we have

br(β|E\{a})=βE(a)br([a]|E\{a})+
∑

x∈E\{a}
βE(x)[x],

br(β|E\{b})=βE(b)br([b]|E\{b})+
∑

x∈E\{b}
βE(x)[x].

In particular,

br(β|E\{a})(b)=βE(a)br([a]|E\{a})(b)+βE(b),

br(β|E\{b})(a)=βE(b)br([b]|E\{b})(a)+βE(a),

or, equivalently,
[

br([a]|E\{a})(b) 1
1 br([b]|E\{b})(a)

][
βE(a)

βE(b)

]

=
[

br(β|E\{a})(b)

br(β|E\{b})(a)

]
. (16)

The determinant of the matrix above is

br([a]|E\{a})(b) ·br([b]|E\{b})(a)−1.

We show that this determinant is not zero. Assume, on
the contrary, that the determinant would be zero. Then,
br([a]|E\{a})(b)=1 and br([b]|E\{b})(a)=1, which means that
br([a]|E\{a}) = [b] and br([b]|E\{b}) = [a]. Choose some c ∈
E\{a, b}. By IOI,

br([a]|{b, c})=br(br([a]|E\{a})|{b, c})=br([b]|{b, c})= [b],

br([b]|{a, c})=br(br([b]|E\{b})|{a, c})=br([a]|{a, c})= [a],

which would contradict Lemma 4.1. Hence, the determinant
is not zero. As such, the system (16) has a unique solution
(βE(a), βE(b)) with, in particular,

br(β|E)(a)=βE(a)

= br(β|E\{b})(a)−br([b]|E\{b})(a) ·br(β|E\{a})(b)

1−br([a]|E\{a})(b) ·br([b]|E\{b})(a)
. (17)
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By the induction assumption, we know that

br(β|E\{a})=
∑

x∈E\{a}
β(x)[x]+β(a)br([a]|E\{a})

+
∑

x∈X\E
β(x)br([x]|E\{a}),

br(β|E\{b})=
∑

x∈E\{b}
β(x)[x]+β(b)br([b]|E\{b})

+
∑

x∈X\E
β(x)br([x]|E\{b}),

which implies that

br(β|E\{a})(b)=β(b)+β(a)br([a]|E\{a})(b)

+
∑

x∈X\E
β(x)br([x]|E\{a})(b),

br(β|E\{b})(a)=β(a)+β(b)br([b]|E\{b})(a)

+
∑

x∈X\E
β(x)br([x]|E\{b})(a).

By substituting these two equations in (17), we eventually
obtain

br(β|E)(a)=β(a)+
∑

x∈X\E
β(x)

×br([x]|E\{b})(a)−br([b]|E\{b})(a) ·br([x]|E\{a})(b)

1−br([a]|E\{a})(b) ·br([b]|E|{b})(a)

=β(a)+
∑

x∈X\E
β(x)br([x]|E)(a), (18)

where the latter equality follows from applying (17) to the ini-
tial belief β := [x]. Since (18) holds for every a ∈ E, we may
conclude that

br(β|E)=
∑

x∈E

β(x)[x]+
∑

x∈X\E
β(x)br([x]|E),

which was to show. �



212 ANDRÉS PEREA

PROOF OF LEMMA 4.2 Assume that br and brϕ coincide
on every triangle. We prove that br =brϕ. To that purpose, we
show that

br(β|E)=brϕ(β|E) (19)

for every belief β ∈B(X) and every event E ⊆X. We show (19)
by induction on |E|.

If |E|=2, say E={a, b}, (19) follows by the assumption that
br([x]|{a, b})=brϕ([x]|{a, b}) for every x ∈X\{a, b}, and the fact
that br and brϕ satisfy LIN.

Now, let |E| = k > 2, and assume that (19) holds for every
belief β ′ and every event E′ with |E′| < k. Since br and brϕ

satisfy LIN, TRA and IOI, we know, by the proof of Lemma
6.1, that both br and brϕ satisfy (17). That is,

br(β|E)(a)= br(β|E\{b})(a)−br([b]|E\{b})(a) ·br(β|E\{a})(b)

1−br([a]|E\{a})(b) ·br([b]|E|{b})(a)
,

brϕ(β|E)(a)= brϕ(β|E\{b})(a)−brϕ([b]|E\{b})(a) ·brϕ(β|E\{a})(b)

1−brϕ([a]|E\{a})(b) ·brϕ([b]|E\{b})(a)

for every a, b ∈ E. Since, by the induction assumption, br(β|
E\{a}) = brϕ(β|E\{a}), br(β|E\{b}) = brϕ(β|E\{b}), br([a]|
E\{a}) = brϕ([a]|E\{a}) and br([b]|E\{b}) = brϕ([b]|E\{b}) for
every a, b ∈ E, it follows that br(β|E)(a) = brϕ(β|E)(a) for
every a ∈E, and hence br(β|E)=brϕ(β|E). This completes the
proof. �

PROOF OF LEMMA 4.3 We have already seen that br and
dϕ must satisfy (6) if br = brϕ. Now, assume that λbr and
dϕ satisfy system (6). We show that this implies br = brϕ. In
view of Lemma 4.2 it is sufficient to show that br([c]|{a, b})=
brϕ([c]|{a, b}) for every triple a, b, c of pairwise different states.
Choose some arbitrary triple a, b, c of states, and define

β1 :=br([a]|{b, c}), β2 :=br([c]|{a, b}) and β3 :=br([b]|{a, c}).

By Lemma 4.1, there are four possible cases to distinguish.
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Case 1. If β1 /∈ {[b], [c]}, β2 /∈ {[a], [b]} and β3 /∈ {[a], [c]}.
Then,

λ2
br(a, b, c)= β2(a)

β1(c)
, λ2

br(b, c, a)= β1(b)

β3(a)
and

λ2
br(c, a, b)= β3(c)

β2(b)
.

Since λbr and dϕ satisfy (6), it follows that

β1(c) d2
ϕ(b, c)=β2(a) d2

ϕ(a, b),

β3(a) d2
ϕ(c, a)=β1(b) d2

ϕ(b, c),

β2(b) d2
ϕ(a, b)=β3(c) d2

ϕ(c, a).

It can easily be shown that this system, for fixed dϕ, has a
unique solution β1, β2, β3. In particular, this system implies
that

br([c]|{a, b})(a)=β2(a)= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

.

Case 2. If β2 = [a], β3 = [a], and β1 /∈{[b], [c]}. Then,

λ2
br(a, b, c)= 1

β1(c)
, λ2

br(b, c, a)=β1(b) and λ2
br(c, a, b)

= β1(c)

β1(b)
.

Since λbr and dϕ satisfy (6), it follows that

β1(c) d2
ϕ(b, c)=d2

ϕ(a, b),

d2
ϕ(c, a)=β1(b) d2

ϕ(b, c),

β1(b) d2
ϕ(a, b)=β1(c) d2

ϕ(c, a).

Consequently,

d2
ϕ(a, b)+d2

ϕ(c, a)=β1(c) d2
ϕ(b, c)+β1(b) d2

ϕ(b, c)=d2
ϕ(b, c).

Hence,

br([c]|{a, b})(a)=β2(a)=1= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

.
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Case 3. If β2 = [b], β1 = [b] and β3 /∈ {[a], [c]}. By the same
method as in Case 2, one can show that

d2
ϕ(a, b)+d2

ϕ(b, c)=d2
ϕ(c, a)

and hence

br([c]|{a, b})(a)=β2(a)=0= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

.

Case 4. If β1 = [c], β3 = [c] and β2 /∈{[a], [b]}. Then,

λ2
br(a, b, c)=β2(a), λ2

br(b, c, a)= β2(b)

β2(a)
and λ2

br(c, a, b)

= 1
β2(b)

.

Since λ and dϕ satisfy (6), we have that

d2
ϕ(b, c)=β2(a) d2

ϕ(a, b),

β2(a) d2
ϕ(c, a)=β2(b) d2

ϕ(b, c),

β2(b) d2
ϕ(a, b)= d2

ϕ(c, a).

Hence,

β2(a)= d2
ϕ(b, c)

d2
ϕ(a, b)

and

d2
ϕ(b, c)+d2

ϕ(c, a)=β2(a) d2
ϕ(a, b)+β2(b) d2

ϕ(a, b)=d2
ϕ(a, b).

As such,

br([c]|{a, b})(a)=β2(a)= d2
ϕ(b, c)

d2
ϕ(a, b)

= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

.

Since these are all possible cases, we may conclude that, in
general,

br([c]|{a, b})(a)= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

(20)
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for all a, b, c∈X.
On the other hand, also λbrϕ and dϕ satisfy (6), since this

system provides necessary conditions for br =brϕ. By the same
method as above, one can then show that

brϕ([c]|{a, b})(a)= d2
ϕ(a, b)+d2

ϕ(b, c)−d2
ϕ(c, a)

2d2
ϕ(a, b)

for all a, b, c ∈ X. Hence, br([c]|{a, b}) = brϕ([c]|{a, b}) for all
a, b, c∈X. But then, Lemma 4.2 guarantees that br =brϕ. �

PROOF OF LEMMA 4.4 Obviously, if (6) has a solution
d, then every cycle of λbr ’s must have product 1. Assume
now that every cycle of λbr ’s has product 1, and let X =
{x1, x2, . . . , xn}. We define the distance function d by

d(x1, x2) :=1,

d(x1, xi) :=λbr(x2, x1, xi) for all i ≥3,

d(x2, xi) :=λbr(x1, x2, xi) for all i ≥3,

d(xi, xj ) :=λbr(x1, x2, xi)λbr(x2, xi, xj ) for all 3≤ i <j.

Finally, let d(xi, xj ) := d(xj , xi) whenever i > j . We prove that
d satisfies (6). To that purpose, we show that

d(xj , xk)

d(xi, xj )
=λbr(xi, xj , xk)

for all triples (xi, xj , xk). We must distinguish various cases,
depending on whether some of the states in {xi, xj , xk} is x1 or
x2, whether j < k or not, and whether i < j or not. For the
sake of brevity, we shall only deal with one case here, since
the proofs for all other cases are similar. Consider the case
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where xi, xj , xk /∈{x1, x2}, and where i <j <k. Then,

d(xj , xk)

d(xi, xj )
= λbr(x1, x2, xj )λbr(x2, xj , xk)

λbr(x1, x2, xi)λbr(x2, xi, xj )

=λbr(x1, x2, xj )λbr(x2, xj , xk)λbr(xi, x2, x1)

×λbr(xj , xi, x2)

= 1
λbr(xk, xj , xi)

λbr(x1, x2, xj )λbr(x2, xj , xk)

×λbr(xk, xj , xi)

×λbr(xj , xi, x2)λbr(xi, x2, x1)

= 1
λbr(xk, xj , xi)

=λbr(xi, xj , xk).

Here, the fourth equality follows from the assumption that the
product of the 5 λbr ’s is 1, since this sequence is a cycle of
λbr ’s. The other cases can be shown in a similar fashion. �
PROOF OF LEMMA 4.5 Assume that every 3-cycle of λbr ’s
has product 1. We show that every K-cycle of λbr ’s has prod-
uct 1. We proceed by induction on K.

For K = 3, the statement follows trivially. Assume there-
fore that K ≥4, and that the statement holds for all cycles of
length less than K. Consider a K-cycle

C := (λbr(a1, b1, c1), λbr(a2, b2, c2), . . . , λbr(aK, bK, cK)).

We distinguish three possible cases.
Case 1. Suppose that (a2, b2)= (b1, c1) and (bK, cK)= (a1, b1).

Then, since star-3-cycles have product 1,

λbr(a2, b2, c2)=λbr(b1, c1, c2)=λbr(b1, c1, a1)λbr(a1, c1, c2),

λbr(aK, bK, cK)=λbr(aK, a1, b1)=λbr(aK, a1, c1)λbr(c1, a1, b1).

Consequently, the product of C is equal to

[λbr(aK, bK, cK)λbr(a1, b1, c1)λbr(a2, b2, c2)]

· [λbr(a3, b3, c3) · · · · ·λbr(aK−1, bK−1, cK−1)]

= [λbr(aK, a1, c1)λbr(c1, a1, b1)λbr(a1, b1, c1)λbr(b1, c1, a1)

× λbr(a1, c1, c2)] ·
· [λbr(a3, b3, c3) · · · · ·λbr(aK−1, bK−1, cK−1)]
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= [λbr(c1, a1, b1)λbr(a1, b1, c1)λbr(b1, c1, a1)] ·
· [λbr(aK, a1, c1)λbr(a1, c1, c2)λbr(a3, b3, c3) · · · · ·
× λbr(aK−1, bK−1, cK−1)]

= [λbr(c1, a1, b1)λbr(a1, b1, c1)λbr(b1, c1, a1)] ·
· [λbr(aK, a1, b2)λbr(a1, b2, c2)λbr

(a3, b3, c3) · · · · ·λbr(aK−1, bK−1, cK−1)]=1,

since the latter sequence consists of a triangle-3-cycle and a
cycle of length K −1 for which the product, by the induction
assumption, is 1.

Case 2. Suppose that (a2, b2) = (c1, b1). Since star-3-cycles
have product 1,

λbr(a1, b1, c1)λbr(a2, b2, c2)=λbr(a1, b1, c1)λbr(c1, b1, c2)

=λbr(a1, b1, c2).

Hence, the product of C is equal to

λbr(a1, b1, c2)λbr(a3, b3, c3) · · · · ·λbr(aK, bK, cK)

=λbr(a1, b2, c2)λbr(a3, b3, c3) · · · · ·λbr(aK, bK, cK)=1,

since the latter sequence is a cycle of length K − 1 for which
the product, by the induction assumption, is 1.

Case 3. Suppose that (bK, cK)= (b1, a1). Similarly to case 2,
we can show here that the product of C is 1.

By induction, the proof is complete. �

PROOF OF LEMMA 4.6 Let a, b, c ∈ X. We show that
λbr(a, b, c)λbr(b, c, a)λbr(c, a, b)=1. Define

β1 :=br([a]|{b, c}), β2 :=br([c]|{a, b}), β3 :=br([b]|{a, c}).
We distinguish two cases.

Case 1. Assume that β1 /∈ {[b], [c]}, β2 /∈ {[a], [b]} and β3 /∈
{[a], [c]}. Then,

λbr(a, b, c)=
√

β2(a)

β1(c)
, λbr(b, c, a)=

√
β1(b)

β3(a)
and λbr(c, a, b)

=
√

β3(c)

β2(b)
,
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and hence we must show that

β1(b)β2(a)β3(c)=β1(c)β2(b)β3(a). (21)

Define the belief

β := 1
1−β1(c)β2(a)

(β1(b)β2(a)[a]+β1(b)β2(b)[b]

+β1(c)β2(b)[c]).

It may be verified, using LIN, that br(β|{b, c}) = β1 and
br(β|{a, b})=β2. We shall prove that br(β|{a, c})=β3.

Define β∗ := 1
3 [a] + 1

3 [b] + 1
3 [c], and let β ′ := 3

2β
∗ − 1

2β. Since
β∗ = 1

3β + 2
3β

′, we know by LIN that

br(β∗|{a, b})= 1
3
br(β|{a, b})+ 2

3
br(β ′|{a, b}).

As, by LIN, br(β∗|{a, b})= 1
3 [a]+ 1

3 [b]+ 1
3β2, and since we know

that br(β|{a, b})=β2, it follows that

1
3
β2 + 2

3
br(β ′|{a, b})= 1

3
[a]+ 1

3
[b]+ 1

3
β2,

implying that br(β ′|{a, b}) = 1
2 [a] + 1

2 [b]. In a similar fashion,
one can show that br(β ′|{b, c}) = 1

2 [b] + 1
2 [c]. By TRA, it then

follows that br(β ′|{a, c})= 1
2 [a]+ 1

2 [c]. Since β∗ = 1
3β + 2

3β
′, LIN

implies that

br(β∗|{a, c})= 1
3
br(β|{a, c})+ 2

3
br(β ′|{a, c}).

As br(β∗|{a, c})= 1
3 [a]+ 1

3 [c]+ 1
3β3 and br(β ′|{a, c})= 1

2 [a]+ 1
2 [c],

it follows that

1
3

[a]+ 1
3

[c]+ 1
3
β3 = 1

3
br(β|{a, c})+ 1

3
[a]+ 1

3
[c],

and hence br(β|{a, c}) = β3. As such, br(β|{b, c}) = β1, br

(β|{a, b}) = β2 and br(β|{a, c}) = β3, which, by LIN, implies
that

β1(b)

β1(c)
= β(b)

β(c)
,
β2(a)

β2(b)
= β(a)

β(b)
,

β3(c)

β3(a)
= β(c)

β(a)
.
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But then,

β1(b)

β1(c)

β2(a)

β2(b)

β3(c)

β3(a)
=1,

implying (21).
Case 2. Assume that Case 1 does not hold. We may

assume, without loss of generality, that β1 = [b]. Then, by
Lemma 4.1, we have that β2 = [b], and β3 /∈{[a], [c]}, and hence

λbr(a, b, c)=
√

β3(a)

β3(c)
, λbr(b, c, a)=

√
1

β3(a)
and λbr(c, a, b)

=
√

β3(c).

It is clear that λbr(a, b, c)λbr(b, c, a)λbr(c, a, b) = 1, and hence
the proof is complete. �

PROOF OF LEMMA 4.7 Let a, b, c, d ∈ X. We show that
λbr(a, d, b)λbr(b, d, c)λbr(c, d, a)=1. Define the beliefs A,B, . . . ,

P as in Figure 14. We show that λbr(a, d, b) = √
Na/Ob. We

distinguish two cases.
Case 1. Suppose that A �= [d]. Then, λbr(a, d, b) = √

Ba/Ab,
and hence we must show that Na/Ob = Ba/Ab. In the intui-
tive argument we have seen that, by IOI, br(K|{a, b}) = C =
br([d]|{a, b}). Hence, by LIN, K = (1−λ)C +λ[d] for some λ∈
[0,1]. Moreover, we have seen in the intuitive argument that
N =br(K|{a, d}). Consequently, by LIN,

N = (1−λ)br(C|{a, d})+λ[d]= (1−λ)(Ca[a]+CbB)+λ[d],

which implies that Na = (1 − λ)(Ca + CbBa). In a similar fash-
ion, one can show that Ob = (1−λ)(Cb +CaAb), and hence

Na

Ob

= Ca +CbBa

Cb +CaAb

. (22)

From (21) in the proof of Lemma 4.6, we know that

AdBaCb =AbBdCa. (23)
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Combining (22) and (23) yields

Na

Ob

= Ca +CbBa

Cb +CaAb

= AbBd(Ca +CbBa)

AbBd(Cb +CaAb)

= AdBaCb +AbBdCbBa

AbBdCb +AdBaCbAb

= Ba(Ad +AbBd)

Ab(Bd +AdBa)
= Ba(Ad +AbBd)

Ab(Bd +Ad(1−Bd))

= Ba(Ad +AbBd)

Ab(Ad +AbBd)
= Ba

Ab

,

which was to show.
Case 2. Suppose that A= [d]. Then, by Lemma 4.1, B = [d],

and hence λbr(a, d, b) = √
Ca/Cb. Hence, we must show that

Na/Ob =Ca/Cb. We know from (22) that

Na

Ob

= Ca +CbBa

Cb +CaAb

which is equal to Ca/Cb, since Ba =Ab =0.
Hence, we may conclude that, in general, λbr(a, d, b) =√

Na/Ob. Similarly, we can show that λbr(b, d, c)=√
Ob/Pc and

λbr(c, d, a)=√
Pc/Na. Consequently,

λbr(a, d, b)λbr(b, d, c)λbr(c, d, a)=1,

which completes the proof. �

PROOF Of LEMMA 4.9 The proof for this lemma is basi-
cally a formal repetition of the intuitive argument presented
in Section 4.2.3, and is therefore omitted. �
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NOTES

1. See Lehmann et al. (2001) for an approach in which the similarity
among states is represented by a pseudo-distance, which is not nec-
essarily symmetric.

2. We borrow this term from Gärdenfors (1988).
3. The reader may wonder why it is not sufficient, in general, to

simply require that all angles between cornerpoints in the poly-
tope induced by ϕ are acute. Here is a counterexample: Take four
states {a, b, c, d} and choose ϕ([a])=(0,0,0), ϕ([b])= (2,0,0), ϕ([c])=
(1,

√
3,0) and ϕ([d]) = (1,− 1

5 ,2). Then, all angles between corner-
points in the induced polytope are acute, but the orthogonal projec-
tion of ϕ([d]) on the affine space spanned by ϕ([a]), ϕ([b]) and ϕ([c])
is not in the convex hull of these three points.

4. By symmetric, we mean that d(a, b)=d(b, a) for all a, b.
5. That is, the three lines intersect at a single point.
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