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Abstract

This paper is a critical response to Andreas Bartels’ (2006) sophisticated defense of

a structural account of scientific representation. We show that, contrary to Bartels’

claim, homomorphism fails to account for the phenomenon of misrepresentation. Bar-

tels claims that homomorphism is adequate in two respects. First, it is conceptually

adequate, in the sense that it shows how representation differs from misrepresentation

and non-representation. Second, if properly weakened, homomorphism is formally ad-

equate to accommodate misrepresentation. We question both claims. First, we show

that homomorphism is not the right condition to distinguish representation from mis-

representation and non-representation: a “representational mechanism” actually does

all the work, and it is independent of homomorphism – as of any structural condition.

Second, we test the claim of formal adequacy against three typical kinds of inaccurate

representation in science which, by reference to a discussion of the notorious billiard ball

model, we define as abstraction, pretence, and simulation. We first point out that Bar-

tels equivocates between homomorphism and the stronger condition of epimorphism,

and that the weakened form of homomorphism that Bartels puts forward is not a mor-

phism at all. After providing a formal setting for abstraction, pretence and simulation,

we show that for each morphism there is at least one form of inaccurate representa-

tion which is not accommodated. We conclude that Bartels’ theory – while logically

laying down the weakest structural requirements – is nonetheless formally inadequate

in its own terms. This should shed serious doubts on the plausibility of any structural

account of representation more generally.
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1 Structural Approaches

There is by now a long tradition of structural approaches to scientific representation, start-

ing in van Fraassen (1980) and Suppes (1967) to the most sophisticated recent accounts by

Pincock (2012) and Bartels (2006). The tradition’s critics (Giere 1999, Frigg 2006, Suárez

2003, van Fraassen 2008, Contessa 2011) have invoked putative counterexamples to struc-

tural notions, displaying instances of scientific modeling where a model B is accepted as

a representation of some object, system or process A, while failing to hold the required

structural morphism relation to A. As a response, defenders of structural accounts have

progressively weakened their constraints, from isomorphism to embedding, partial isomor-

phism and, most recently, to homomorphism. (Van Fraassen was both an early proponent,

and nowadays a critic, at least in the terms defended here).

It is unclear in these papers what precise claims are being made on behalf of structural

mapping or morphisms, and what exactly is the work that structures are supposed to

perform.1 More worryingly, perhaps, the notion of structure itself remains imprecise and

elusive. But whatever else is claimed on behalf of structural morphism, it is clear that the

point of providing a structural account of representation is to provide some elucidation,

however partial, of the central notion of scientific representation. Hence we shall take it

that any structural account of representation is minimally committed to the claim that

representation in science is a relation that is appropriately characterized or described as a

kind of structural mapping or morphism. And indeed most authors in the tradition have

invoked structural isomorphism and its variants as part of an analysis of representation.

Thus for instance, it is claimed that:

[T]o understand how an organism performs well using a certain representa-

tional system we have to consider the specific contents of the representation

and how they relate to its reference objects. Content is a necessary component

of representation, and homomorphisms are necessary to explain this necessary

component. (Bartels 2006, 17)

The evidence for these claims and their reach remains nonetheless surprisingly unclear. It

is in particular often unclear, as we shall point out in this article, whether isomorphism

and its cousins are intended to provide an analysis of the notion of representation itself, or

whether they are merely intended to describe some of the ways in which representation in

science achieves some of its characteristic ends, such as for instance, the aim of accuracy.

In other words, it is unclear whether structural mappings or morphisms are constitutive of

representation in science, or merely some efficient means for representation to achieve its

ends. Defenders of the structural accounts are often imprecise in shifting from evidence for

the weaker case to claims in favor of the stronger constitutive claim. But the inference from

1We are using the term morphism to refer to any structural mapping regardless of the kind of transfer

of structure from A to B that it implies. Therefore the term should not be understood as a synonym for

homomorphism, which is at best the basic, or most elementary, form a morphism can take.
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the former to the latter claim is invalid, since the problem of representation and the problem

of accurate representation are by now well-known to be distinct (Callender and Cohen 2006,

Contessa 2007, Frigg 2006). We believe that there is so far no good argument to the effect

that the evidence for the weaker claim (that structural morphisms are typically involved

in the assessment of the accuracy of many mathematical representations in science) is also

evidence for the stronger claim (that structural morphisms are constitutive of the nature of

scientific representation, i.e. that a structural account of representation is correct). There

are powerful independent arguments against the stronger claim (see Frigg 2006, Suárez 2003)

that recommend a skeptical attitude to structural accounts of scientific representation in

general.

In this paper we analyze the most sophisticated and plausible structuralist account of

representation to date, namely Andreas Bartels’ (2006) homomorphism account. The ac-

count’s main virtue is the alleged capacity of homomorphism to account for the phenomena

of misrepresentation, and indeed we believe this to be one of the greatest stumbling blocks

for structural accounts. Hence we begin in Section 2 by reviewing the problem of misrep-

resentation in scientific modelling, in both the mistargetting and inaccuracy varieties. As

an illustration of the latter, we briefly discuss the essential features of an elementary yet

influential historical case of scientific modeling: the billiard ball model of gases. We argue

that there are three ways in which scientific models typically misrepresent, and we refer

to them as abstraction, pretence and simulation. We provide bare structural character-

izations for all of them in terms of simple structural renditions of their representational

sources and targets. We argue on the basis of the billiard ball model that scientific models

abstract, many pretend, and some simulate; but that this does not take away any of their

descriptive, predictive and explanatory value. Then in Section 3 we summarize Bartels’

homomorphism theory of representation and review his claim that this theory accounts

for misrepresentation. We point out the essential role adjudicated by Bartels to what he

calls the “representational mechanism’. Representational mechanisms have a crucial role

for representation (and misrepresentation) to occur and, since these mechanisms are inde-

pendent of any structural mapping, we argue that misrepresentation is not accounted fully

in structural terms. This particularly holds for mistargetting as presented in (Suárez 2003)

In Section 4 we dispute the claim that misrepresentation as inaccuracy is accommodated

within Bartels’ structural account. We first point out that what Bartels calls homomorphism

is in fact a stronger notion, namely epimorphism. We then show that epimorphism can not

account for either abstraction, pretence or simulation. Turning to homomorphism proper,

which is an extremely weak structural constraint, amounting to the relation technically

known as completeness, we show that it can accommodate pretence kinds of misrepresen-

tation, but not abstraction. Since we argue that most if not all scientific models abstract,

it follows that even the weakest notion of structural morphism is too strong for scientific

representation. The formal result is summarized in a table in the final section. In the

concluding section, we admonish philosophers to take greater care with structural accounts

of representation – while structural morphisms may provide good and valuable resources to
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assess the accuracy of many mathematical models in science, they can not actually account

for the very relation of representation.

2 Misrepresentation: Mistargetting and Inaccuracy

“Scientific representations misrepresent”: This is one of the main points of agreement in

the recent literature on scientific representation. Any philosophical theory or account of

scientific representation must not only accommodate but also explain minimally how rep-

resentations fail to accurately characterize or describe their entire subject. Representations

always simplify to some degree: this is at the heart of why they are useful in practice.2

Thus it would be a major objection to any philosophical account of representation that it

does not account for misrepresentation. This has often been an issue for structural accounts

– since on such accounts the conditions for the accuracy of a representation (the ‘matching’

of relations and properties at the source and target end) are also the very conditions for

establishing the relationship of representation in the first place. This is most evident an

objection to isomorphism accounts, and the relevant question for us is the extent to which

the objection can be answered by means of suitable weakenings of the isomorphism relation.

Yet, there is a stronger form that the objection may take, which we would like to consider

in this section.

The stronger objection begins with the observation that there are distinct forms of mis-

representation and that these pose significantly different challenges for structural accounts.

Two main kinds were already identified in Suárez (2003) and referred to there as mistar-

getting and inaccuracy. A model may misrepresent by being applied to the wrong target,

perhaps as a result of having been mistakenly taken to be a different model in some par-

ticular context. The model’s target is selected as part of the normative practice of model

building that gives rise to it, but a particular agent may, perhaps out of lack of information

or competence, apply it to the wrong target. The model is in that very context misrepre-

senting in a rather strong sense: it is used as a representation of a system or object that it

is not intended for. We return to the issue later on in addressing whether Bartels’ account

actually provides necessary and sufficient conditions for representation, and whether these

conditions can in some sense be thought to be ‘structural’. For now, we focus only on

the varieties of inaccurate misrepresentation. More specifically we discuss three forms that

inaccuracy can take, and which we refer to as abstraction, pretence, and simulation.

The rough and ready definition of these terms is as follows: An abstraction essentially

neglects some of the features of the target system it is about; a pretence ascribes to the

target system features that this does not possess; a simulation both abstracts and pretends:

it both neglects some of the actual features of the system and ascribes features to the system

that it does not possess. We discuss these distinctions in relation to one of the best known

and most widely discussed examples of an analogical model in the history of philosophy of

2Jorge Luis Borges’ wonderful discussion of the one-to-one scale map is an exemplary parody of how a

perfectly accurate representation is also perfectly useless (Borges 1954).
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science, namely the so-called ‘billiard ball model’ (Hesse 1970). Hesse presents this model

as consisting of a negative, positive and neutral analogy between macroscopic billiard balls

and gas molecules in a container. Thus in her famous dialogue between the Duhemist and

the Campbellian, the Campbellian lists the properties of billiard balls and classifies them in

three groups in relation with the analogy with gas molecules. In the negative analogy (the

properties that pertain to billiard balls but not gas molecules) there are colour, hardness,

brightness; in the positive analogy (the properties that billiard balls and gas molecules

share) there are motion and impact. But there is a third group of properties that constitute

what Hesse calls the neutral analogy. These are in the words of Hesse’s Campbellian, “the

properties of the model about which we do not yet know whether they are positive or

negative analogies: These are the interesting properties, because [...] they allow us to make

new predictions.” (Hesse 1970, 8).

Now, Hesse does not describe them, but there is a further group of properties of interest

in the analogical relationship between billiard balls and gases; these are the properties of

the gas that are most definitely not properties of billiard balls. For instance, the billiard

ball model captures microscopic features of elastic collisions between gas molecules to some

extent, but it does not say anything informative regarding the macroscopic features of

the gas, such as volume, density and pressure. We find ways to draw inferences to those

macroscopic properties from the fully developed kinematical theory of gases, but there are

no correlates in a system of billiard balls for such properties. What’s more, the billiard

ball model is positively misleading as a guide for such properties, since there is no relation

in a system of billiard balls between average speed of the balls and the pressure exerted

outwards by the system. Obviously the missing ingredient is free expansion, which is

a thermodynamically irreversible property of any system of gas molecules, but has no

equivalent or corresponding property in any dynamical feature of elastic collisions between

classical particles or massive bodies, such as billiard balls. We could call this the ‘inverse

negative analogy’ (or negative analogy ‘by denial’): they are the properties that pertain to

gas molecules but not billiard balls. They may even be explicitly denied for billiard balls

(as indeed is the case with free expansion).

In fact, as some careful reading will reveal, the inverse negative analogy is of particular

relevance in Campbell’s original discussion of the example (see Campbell 1957). And there

is some sense to this. Hesse had her own reasons to suppress the discussion of the inverse

negative analogy which could only take away from the neutral analogy which she deemed

fundamental. It is well known that her chief aim was to defend the thesis that the neutral

analogy was key to the heuristics of research, and fully informed its logic. Campbell,

however, was mainly preocuppied with the relation between theory and measurement, and

more particularly with the theoretical presuppositions underlying measurement procedures.

In this context the inverse negative analogy is relevant, for the macroscopic thermodynamic

properties in question are measurable in the laboratory, while the internal microscopic

properties of the gas can only by hypothesized or inferred from observation via the model.

There are further interesting differences between Hesse’s discussion of Campbell’s ex-
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ample and Campbell’s original discussion. Perhaps the most striking is that Campbell

never actually employs the term “billiard ball model”. In fact, he does not refer to billiard

balls once! His analogy is more generally with a system of perfectly elastic macroscopic

balls – and, of course, billard balls are an approximate instance of these, even though

they are not in reality perfectly elastic. But the analogy is fit for most relevant purposes,

since it captures some essential aspects of the relationship between the laws that apply

to both gas molecules and macroscopic yet point-size elastic balls. As Campbell writes:

“The propositions of the hypothesis of the dynamical theory of gases display an analogy

[...] to the laws which would describe the motion of a large number of infinitely small and

highly elastic bodies contained in a cubical box.” (1957, 128). There are however some

important points of difference where the model most definitely goes astray, and they can

not be understood to be part of Hesse’s negative analogy, since they comprise properties of

the gas molecules that the model fails to describe correctly altogether. These properties,

which comprise what we refer to as the inverse negative analogy, include free expansion,

but also thermal conductivity, and viscosity. As Campbell puts it: “The relation predicted

[between pressure, density, and temperature of the gas and its viscosity] does not accord

with that determined experimentally; in particular it is found that the theory predicts that

the coefficient of viscosity will be be determined by the size and shape of the containing

vessel, whereas experiment shows that it depends, in a given gas, only on the density and

temperature.” (ibid., 134).

While there is no space here to discuss the details fully, the considerations above already

suggest the following distinctions with respect to the ways in which the elastic macroscopic

balls model misrepresents gases. First of all, there are all the properties of the model

elements which are missing in the gases: they constitute the negative analogy in Hesse’s

terms. Thus billiard balls are shiny and hard, but gas molecules are not (they are neither

hard nor soft; neither shiny nor opaque). We may then say that the model pretends with

respect to its target system. It may seem easy to discharge these properties by simply

redefining the model to include only the positive and neutral analogies. Thus, one may

insist, the analogy is not meant with billiard balls per se but with constructs that are

like billiard balls except in those respects in which billiard balls are positively unlike gas

molecules. But there are a number of problems with this strategy, some of which were

already discussed by Hesse. For a start, the move is of course circular as a definition of the

function of the analogy – since it requires us to already have a hang on what properties are

and are not actually analogous. And things get even worse when we notice that there are

also properties of gases that the system of elastic balls – whether or not billiard balls – can

not possibly be said to have, including thermal conductivity, viscosity and free expansion.

This is the inverse negative analogy we are emphasizing here and we may say that the

model abstracts in this case. The analogy as based upon the model denies that the gas has

these properties. In some cases the model even positively misleads regarding the character

of such properties in the gas. If we consider viscosity in the example above, we see that

the fact that the model fails to describe it correctly depends on the fact that it abstracts
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from density and temperature on which viscosity actually depends. Instead, according to

the model, viscosity rather depends on properties the billiard ball model pretends about,

such as the size and shape of the containing vessel. In these cases we concurrently abstract

and pretend about a property of the target system, thus simulating it. We then say that a

model lies about its target whenever it is deceptive in this sense about it. There is no sense

in which this can be put down to mere “heuristics”. Rather, as Campbell insists, the model

analogy is not to be considered a mere heuristics in the development of a new theory, but

must be understood to be part of the theory itself: “It is often suggested that the analogy

leads to the formulation of the theory, but that once the theory is formulated the analogy

has served its purpose and may be removed and forgotten. Such a suggestion is absolutely

false and perniciously misleading” (1957, 129).

Thus we must take seriously that models misrepresent by abstracting away, and thus ig-

noring, certain properties of the target system (escape velocity), by pretending that certain

properties of the target system do obtain which actually do not (hardness and shine) and

by simulating, that is, by misleadingly denying that some properties obtain which in fact

do (viscosity, thermal conductivity). What’s more for some and the very same elements, a

model will typically both abstract with respect to some property, and pretend with respect

to some other. In other words, the representation by models will typically involve both

ignoring certain properties that do obtain and postulating other properties that do not

obtain even for the very same sets of elements in the domain of the model.

Now, let us attempt to represent these distinctions somewhat more formally, in what we

regard as a hospitable framework for structuralism, which assumes that there are uncontro-

versial structural representations of both source and target. This is a strong assumption,

but without which the structuralist conception of representation does not even get off the

ground.3 Thus consider a model and its target as two relational structures, B = 〈B, (RB)〉
and A = 〈A, (RA)〉, with their own domains of individuals, A and B, and the sets of re-

lations defined over the domains: respectively (RA) and (RB). A and B are assumed to

be similar structures: while the elements of A and B may be different, the corresponding

relations in RA and in RB have the same number of arguments (Dunn and Hardegree 2001,

3One of the referees points out that this is in fact an incredibly strong assumption. As he or she puts it:

“A system of gas molecules is not a set of elements and a family of labelled relations, etc. It has no labelled

relations because it contains no labels [...] The real world thing being represented is not a structure, whereas

the author’s ‘target’ has to be a structure for the author’s discussion to make any sense at all”. We agree

wholeheartedly with this referee. It is indeed the case that a real physical object, a system, or a phenomenon,

can only be said to be a structure under a description. And it is clear (as one of us has often pointed out, in

e.g. Suárez (2010, p.96)) that any structural description is necessarily vastly underdetermined: Every real

object exemplifies multiple, perhaps an infinite number of, structures. This simple fact puts great pressure

upon structuralist claims regarding ontology (to the extent that claims to the effect that the “world consists

only of structure” or some such thing, are rendered vacuous or, worse, incoherent – as pointed out by e.g.

van Fraassen (2006).) We ignore this issue because almost all the literature that we do address ignores it

too, and also because it can only strengthen our critique of the homomorphism theory of representation.

But it is worth pointing out with the referee that general widespread acquiescence with a false assumption

does not make it any less false or unwarranted.
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10).

We use the bar symbol for tuples of elements of A and B: ā = (a1, ..., an) ∈ An and

b̄ = (b1, ..., bn) ∈ Bn.

We say that a model B abstracts some property RA
j ⊆ An, j ∈ {1, . . . ,m}, of a target

system A if and only if there exists ā ∈ An such that RA
j (ā) ∧ ¬RB

j (f(ā)), where RB
j ⊆ Bn

is the corresponding relation of RA
j in B and f is a mapping from A to B. The abstracted

properties are in the inverse negative analogy, or negative analogy by denial. We then say

that the model B pretends some property RB
k ∈ Bn, k ∈ {1, . . . ,m}, of the target system A

if and only if there exists b̄ ∈ Bn and ā ∈ An such that b̄ = f(ā) and ¬RA
k (ā) ∧ RB

k (f(ā)),

where RA
k ⊆ An is the corresponding relation of RB

k in A. The pretended properties are

typically in the negative analogy as originally discussed by Hesse. Finally, we say that

a model B simulates a target A when it both abstracts and pretends some properties of

the same elements of A and of their images in B; formally, for some tuple ā ∈ An with

b̄ = f(ā) ∈ Bn, some RA
j , R

A
k ⊆ An and RB

j , R
B
k ⊆ Bn, it is true that RA

j (ā) ∧ ¬RB
j (f(ā))

and ¬RA
k (ā) ∧RB

k (f(ā)).

We have argued in this section, by appeal to a well-known foundational example in the

literature, that models typically simulate their targets, by both abstracting some of their

properties away and misleadingly asserting some of the properties they do not actually

possess. We next turn to the best candidate we know for a structuralist conception of rep-

resentation, namely Bartels’ homomorphism theory, and argue that it can not accommodate

these features.

3 Bartels’ Homomorphism Theory and the ‘Representational

Mechanism’

The main tenets of a structural account of scientific representation can be summarized as

follows: (i) model sources and their targets exemplify, instantiate, possess or at any rate

may be described as relational structures in the sense of mathematical logic, or set-theory;

(ii) a model represents a target system only if the relations in the target are partially or

totally transferred to the model via some sort of morphism.

We have provided a definition for relational structure in the previous section. The

transfer required by condition (ii) is accomplished by some function f : A → B. In model

theory a twofold role is ascribed to f . As a mapping, f assures that each individual in

A has one, and only one, corresponding element (an image) in B. But in addition, as a

morphism, f is a structure preserving mapping and it assures that related objects possess

related properties. The existence of a morphism between the model and its target is what

the advocates of the structural approach take to be the condition for representation: a

model B represents a target system A (if and) only if B is to some extent morphic to A.

Isomorphism is sometimes advocated as the basic morphism between structures. For

f : A → B to be an isomorphism, several conditions need to be met. First, f : A → B
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must be a bijective function, that is, for every b ∈ B there exists an a ∈ A such that

f(a) = b (also known as surjectivity) and, for every a, a′ ∈ A, if a 6= a′ then f(a) 6=
f(a′) (injectivity). Second, for all j and all elements ai of A: RA

j (a1, ..., an) if and only

if RB
j (f(a1), ..., f(an)). In other words, all relations in A are transferred to B so that

the two structures are relationally identical, in the sense that the properties they define

have identical features. (The structures themselves are obviously not identical since their

domains contain different elements).

The idea that isomorphism may constitute representation has been criticized on sev-

eral grounds. There are first of all urgent questions regarding the fundamental assumption

that model sources and targets are or may be said to possess structures. For instance, van

Fraassen (2008) suggests that isomorphism alone cannot serve as a condition of representa-

tion because, he argues, the structure A is a “relevant mathematical representation” (ibid,

243) of the target system to be represented only by construction. That is, we must first of

all choose a domain of elements A and a set RA of relations for it as a description of the

target system or phenomenon. The claim that a model B is isomorphic to A, which allows

to use B as a representation of A, depends on the prior act of construction of A which is

essentially a conventional and pragmatic choice.

Another class of objections, raised by Suárez (2003) and reiterated by Frigg (2006),

undermine the attempt to reduce representation to the relation of isomorphism, irrespective

of whether the fundamental assumption that model sources and targets are structures

or may be described as such. Thus the logical argument shows that isomorphism and

representation do not share logical properties: while isomorphism is reflexive, symmetric

and transitive, representation is non-reflexive, non-symmetric and non-transitive. The non-

sufficiency and non-necessity arguments show that representation may fail to obtain when

isomorphism holds (non-sufficiency), and may obtain when isomorphism does not (non-

necessity). Finally the misrepresentation argument appeals to the already mentioned fact

that inaccuracy is intrinsic to all scientific representation, while isomorphism seems to leave

no room for either incomplete or incorrect representation.

In response to these objections the advocates of the structuralist account have proposed

weakenings of the isomorphism relation. For instance, Andreas Bartels (2006) suggests that

homomorphism will serve to overcome at least the misrepresentation objection. Roughly

speaking, what allegedly makes homomorphism immune to the criticisms undermining iso-

morphism is the fact that homomorphism allows some parts of the model not to have

any counterparts in the target, thus leaving the necessary room to account for inaccurate

representation.

Bartels explicitly endorses the structural account of representation when he claims that

homomorphism is a necessary condition for representation: “something, B, can represent

something, A, only if some structure of the represented domain A is transferred to its image

B” (ibid., 7) and that: “B represents A only if B is a homomorphic image of A” (ibid., 8).

The homomorphism account of representation advocated by Bartels in fact comprises two

parts. One part is purely formal, and treats homomorphism model-theoretically. The other
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part concerns the application of the concept ‘being homomorphic to’ and claims that this

concept is extensionally equivalent to ‘to potentially represent ’. Both the formal and the

extensional analyses of homomorphism provided by Bartels play a role in his attempt to

show that homomorphism accounts for misrepresentation, so let us look at them in turn.

According to Bartels’ definitions, the following three conditions must obtain for a struc-

ture B to be homomorphic to A: for all j, all (a1, ..., an) in An, and all (f(a1), ..., f(an)) in

Bn:

Completeness: if RA
j (a1, ..., an), then RB

j (f(a1), ..., f(an)) (1)

Faithfulness: if RB
j (f(a1), ..., f(an)) then RA

j (a1, ..., an) (2)

Surjectivity: for every b ∈ B, there exists a ∈ A such that f(a) = b (3)

The condition of surjectivity on f assures that all the elements in B are images of one

or more element in A. Completeness rules out the possibility that there is a relation in

A which has not a counterpart in B, so that the information that B provides about A is

complete. On the other hand, faithfulness rules out that there is a relation in B which has

not a counterpart in A, so that B provides a faithful snapshot of the relational framework

in A. We then say that B is homomorphic to A.

The relation of homomorphism thus defined identifies the set or class of structures

to which any structure B is homomorphic, what we may call its homomorphism class.

According to Bartels, these structures constitute the representational content of B, that

is, they are all potential representational targets of B. In order for any of these potential

targets to turn into the actual target of B, a representational mechanism must pick it

out from the homomorphism class as the target for B. A representational mechanism can

be of two kinds: it may arise from an agent’s intentions and purposes (an intentional

representational mechanism), or it may be the result of naturally occurring causal relations

(a causal representational mechanism). In the first case, the selection of the actual target

from the homomorphism class is arbitrary, depending entirely on an agent’s purposes,

while in the second case the selection is driven by some causal facts that are independent

of the agent. In either case, the representational mechanism has in effect the absolutely

ineliminable role of picking out the actual representational target of a particular model

B. In spite of this, Bartels claims that his theory retains its structural character, since

homomorphism is nonetheless “the necessary condition of correct actual representation”

(ibid., 12). Let us inspect this claim a little closer.

Two forms of misrepresentation are generally considered in the literature: inaccuracy

and mistargetting.4 The three kinds of misrepresentation presented in Section 1 all lead to

inaccuracy, which is misrepresentation in the broad sense. As for mistargetting, it is “the

phenomenon of mistaking the target of a representation” (Suárez 2003, 233).

Now, homomorphism theory is claimed by Bartels to be conceptually adequate, that is, it

sharply distinguishes cases where B represents, B does not represent, and B misrepresents.

4While misrepresentation as inaccuracy is taken into account in Cartwright (1983), Giere (1988), Teller

(2001, 2008), Suárez (2003, 2004), Frigg (2006), van Fraassen (2008), Pincock (2011), Contessa (2011),

misrepresentation as mistargetting is presented in Suárez (2003, 2004).
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This claim is relevant insofar conceptual inadequacy is the usual grounds against structural

accounts in the literature. Indeed, it is argued, the fact that structural accounts treat

morphisms as necessary conditions for representation leaves no room for the intermediate

condition ‘there is representation and it is incorrect ’: either there exists a morphism from A
to B, hence representation, or there exist not morphism and representation does not obtain.

According to Bartels, such a charge would be unfair to his homomorphism theory.

Indeed, the distinction between the representational content of B and its target allows the

theory to account for the following situation:

If a reference object for B [B] is chosen by a representational mechanism out

of the set of objects potentially represented by B [B], then B [B] will correctly

represent this object. If a reference object for B [B] is chosen which does not

belong to this set, then this reference object will be misrepresented by B [B].

Thus, the case in which something A [A] is misrepresented by B [B] and the

case in which A [A] is not represented by B [B] (i.e. A [A] is not a reference

object of B [B]) are clearly distinct. (2006, 14)

The distinction between target and content of B plays then a crucial role in accommodat-

ing those intermediate cases where representation occurs, and it is not correct. In order

to illustrate misrepresentation thus conceived, let’s consider a universe of discourse which

allows the following five structures {B,A1,A2,A3,A4}. Among the five structures, only A1

and A2 are homomorphic to B. We call H the set containing A1 and A2, which then con-

stitute the representational content of B. Now suppose that a representational mechanism

picks A3 as the target of B, thus misrepresenting A3. Consequently, structure A4 is neither

a potential target of B, nor misrepresented by B. Providing a sharp distinction between

representing (picking a target within H), non-representing (having a structure neither be-

longing to H nor picked by a representational mechanism), and misrepresenting (having

a structure not belonging to H and nonetheless picked as a target), the homomorphism

theory has the resources to satisfy conceptual adequacy, thus explaining misrepresentation.

In particular, this notion of misrepresentation may be seen to be addressing directly the

concerns raised by Suárez (2003) about mistargetting: the act of ascribing a target out-

side the representational content of B may be thought to make his notion of mistargetting

precise.

However, Bartels’ homomorphism is only allegedly conceptually adequate. Bartels

claims that we have misrepresentation if a representational mechanism picks a target for

B outside the set H of all the structures B is homomorphic to. Misrepresentation is then

the act performed by a representational mechanism to choose as a target for B a structure

which B is not homomorphic to. Of course, homomorphism is necessary to identify the

set H of structures over which neither non-representation nor misrepresentation can occur.

However, before a representational mechanism choses a target for B among the structures

outside H, any of these structures could be either misrepresented or non-represented at all.

Therefore, it is the choice made by a representational mechanism to actually determine
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which structure is misrepresented and, consequently, which one is not represented. In other

words, homomorphism alone can not help in sharply distinguishing representation, non-

representation and misrepresentation. This is because misrepresentation is after all a case

of representation – just an incorrect one. Homomorphism was never supposed for Bartels to

be a sufficient condition for representation (or mis-representation). But what his discussion

of the representational mechanism reveals at this point is that he does not actually take

it to be necessary either – since the representational mechanism on its own, on Bartels’

admission, is able to select a representational target, whether it be one outside or inside the

homomorphism class. (Otherwise we could not even express the thought that the structure

A3 outside the homomorphism class is mis-represented.) It follows that being picked out by

the representational mechanism is what is really necessary, regardless of homomorphism.5

Nonetheless, the non-sufficiency of homomorphism undermines the conceptual adequacy

invoked for the theory built on it. That “a representational intention has to occur” (p.

12) in order to finalize the distinction between the non-represented and the misrepresented

contravenes the claim that homomorphism “permits” misrepresentation. As Bartels claims,

the reason why homomorphism could be claimed to fail conceptual adequacy is that “a ho-

momorphism between relational structures [A] and [B] either exists or does not exist; in the

first case, [B] represents [A], whereas in the second case [B] does not represent [A]”, thus

leaving unexplained “What would it mean for [B] to represent [A], but incorrectly?”. We

have shown that Bartels’ theory does not break this deadlock: if there is homomorphism,

there is representation; if there is not, we are left with an indistinct whole where it is not

clear what is not represented and what is misrepresented.

Bartel’s homomorphism theory falls short also as an account of misrepresentation as

mistargetting. For the original objection raised by Suárez was not reliant on the possibility

of ascribing a target that lies outside of the homomorphism class. To pursue the example

above, the objection does not trade on the actual representational target A3 lying outside

the homomorphism class at all. The objection can be entirely run within the homomorphism

class, and in fact it properly belongs there. For Suárez’s point is that the mistaken target is

assumed wrongly to be the target precisely because it holds the required structural relation,

and merely on account of this fact. The point of misrepresentation by mistargetting is rather

that no structural characterization can distinguish structures within the homomorphism

class regardless of whether they are or not picked out as the actual target. In other words,

suppose that the representational mechanism above picked out A1 as the representational

target of B and that someone mistakenly identifies A2 as the target for B. Then there is

no available structural characterization of this mistake since both structures are on equal

terms in the homomorphism class of B. It should be clear that this point survives Bartels’

5In fact, Bartels’ attempt to accommodate the conceptual adequacy seems to resolve in a form of defla-

tionary, or functional, account. Deflationary (Suárez 2004) or functional (Chakravartty 2010) approaches

treat representation as a function of models which allows model users to gain information about the target

at stake via the model. The ascription, or recognition, of the representational function of a model by a user

is then essential to have representation. The crucial role played by the representational mechanism’s choice

in Bartels’ homomorphism theory puts his theory very much in line with those accounts.
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disquisition in the quote above entirely.

Homomorphism theory seems then to fall short of what would be required for an ade-

quate account of scientific representation even by Bartels’ own standards. What we need

to see now is whether the homomorphism theory fares any better in dealing with misrepre-

sentation as inaccuracy, which is after all where the promise of the account lies in the first

place.

4 Structural Morphisms and Representational Inaccuracy

We need to see now if the formal analysis fares any better than the extensional analysis

and enables the homomorphism account to accommodate the inaccuracy kinds of misrep-

resentation. We have seen that Bartels identifies three conditions for homomorphism (sect.

3): completeness, faithfulness and the condition that the f : A → B be surjective. These

conditions, if weakened, might “fit the cases in which representations do not work perfectly”

(Bartels 2006, 9). In such cases, Bartels argues, representation may either “lead to false

expectations concerning facts in the represented domain” or “blur some of the fine grained

differences existing in the represented domain” (ibid.). These are precisely cases of mis-

representation as inaccuracy. In particular, they do recall the formulation we put forward

for, respectively, pretending and abstracting. This is why in what follows we treat Bar-

tels’ formal analysis of homomorphism as an attempt to accommodate misrepresentation

as inaccuracy.

4.1 Homomorphism versus Epimorphism

Before proceeding, we need to point out a technical issue about the notion of homomorphism

advocated by Bartels. In the literature, the only condition required for homomorphism is

completeness, i.e., the condition which assures that every fact in A has a corresponding

(atomic or relational) fact in B.6 On the other hand, a surjective homomorphism is the con-

dition for B to be the homomorphic image of A.7 Therefore, the notion of homomorphism

that Bartels is appealing to does not coincide with the standard notion of homomorphism

nor with homomorphic image. Indeed, besides completeness and surjectivity of f , Bartels

requires an additional condition, namely faithfulness:

If (i) [faithfulness] and (ii) [completeness] are fulfilled, f is a homomorphism

from A onto B, and B, by virtue of the existence of f , can be said to be an

homomorphic image. (Bartels 2006, 8)

6See Chang and Keisler (1973), Dunn and Hardegree (2001), Hodges (1997), Hodges and Scanlon (2013)
7“A relational structure B is said to be a homomorphic image of A if there exists a homomorphism from

A to B that is onto B (in symbols, B = h∗(A)). (A function f maps A onto B [it should be A onto B] if

for every b ∈ B there is an a ∈ A such that h(a) = b).” (Dunn and Hardegree 2001, 15). Read the bold

character in the quote as our A and B.
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It should be noted, however, that a homomorphic image is not necessarily also a faithful

one. Indeed, the structure B can be a homomorphic image of A and yet bear a relation RB
j

which has no counterpart in A.8

Our claim is that the morphism on which Bartels grounds his structural account is not

really homomorphism. Indeed, Bartels claims for the kind of morphism employed in his

theory more properties than those exhibited by standard homomorphism, i.e., surjectivity

and faithfulness. A good candidate for the notion of homomorphism as employed by Bartels

is the notion of epimorphism as presented by Rothmaler (2005, sect.2, 474), who claims for

it the same properties as Bartels: surjectivity, faithfulness and completeness.9 Although

Rothmaler’s notion as well is not standard, we find it appealing for two reasons. First, it

helps us to provide a reliable taxonomy of morphisms, which has been long overdue in the

literature. Second, the taxonomy thus obtained is a useful device to evaluate the adequacy

of those theories of representation built on morphisms, as shown in section 4.2.

We can now consider the weakenings which, according to Bartels, allow epimorphism to

accommodate misrepresentation as inaccuracy. The first form of weakening is on faithful-

ness and it leads to the notion of minimal fidelity (Bartels 2006, 9). While faithfulness in

its original formulation (2) requires that the implication RB
j (f(ā)) → RA

j (ā) holds for all

the counterimages of f(ā) ∈ Bn, all j, RA
j ∈ An, and RB

j ∈ Bn, minimal fidelity allows the

implication to hold for some of the counterimages only. In other words, minimal fidelity

admits the following case:

there exists a tuple b̄ ∈ Bn and ā ∈ An, f(ā) = b̄: RB
j (f(ā)) ∧ ¬RA

j (ā) (4)

The fact that epimorphism is not necessarily injective is crucial here since a one–to–one

correspondence between the arguments in A and their images in B would make the condi-

tions of faithfulness and minimal fidelity equivalent: given that each bi ∈ B in the range

of f has only one counterimage ai ∈ An, it is just equivalent to claim that the conditional

RB
j (b̄ = f(ā))→ RA

j (ā) holds for all the tuples of counterimages of b̄ = f(ā) ∈ Bn, or that

it holds for at least one tuple.

8Consider two similar structures, A = 〈A, (RA
1 , R

A
2 )〉 and A = 〈B, (RB

1 , RB
2 )〉, with A ∈ A =

{a1, a2, a3, a4}, B ∈ B = {b1, b2, b3}. The mapping f : A → B is surjective, and the condition of complete-

ness holds. Therefore, B is a homomorphic image of A. To find a case where the conditions of completeness

and the surjectivity of f (and A and B are similar structures) are satisfied, but B is not faithful, we need

a relation RB
j ∈ B which has no counterpart RA

j ∈ A and, at the same time, we need to assure that all

the relations in A have their counterparts in B. The function f : A → B is surjective (and not injec-

tive) and ascribes to each argument the following images: f(a1) = b1, f(a2) = b2, f(a3) = b3, f(a4) = b3.

Consider now the case that A has the following family of relations: RA
1 ⊆ A2 = {(a1, a2), (a1, a3)} and

RA
2 ⊆ A2 = {(a1, a2), (a3, a4)}. As for B: RB

1 ⊆ B2 = {(b1, b2), (b1, b3)} and RB
2 ⊆ B2 = {(b2, b1), (b3, b2)}.

The relation RB
1 in B thus corresponds to both the relation RA

1 and RA
2 in A, while the relation RB

2 has no

counterpart in A. Therefore, B is a homomorphic image of A while faithfulness is violated.
9The standard definition of epimorphism is “surjective homomorphism”. Therefore Rothmaler adds

faithfulness as a further condition. As it will turn out in section 4.2, this notion of epimorphism works fine

also to distinguish the conditions for having epimorphism from those required for having a “homomorphic

image”.
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The second form of weakening is on completeness, and it admits the case where some,

or even all the relations in A are not preserved in B. Weakening on completeness can take

two forms: either some relations in A are not represented at all in B, or some n−tuples in A
are not represented at all in B (which is to say, some n−tuples of images in B do not stand

in any relation of 〈RB〉 although their counterimages stand in the corresponding relations

〈RA〉).
It is worth noticing at this point the major difference between these two types of weak-

enings. The weakened form of faithfulness is a proper condition, in the sense that it does

impose some restrictions on the transfer of structure: it cannot be the case that a relation

in A does not have a corresponding relation representing it in B. The weakened form of

completeness, on the other hand, is not a condition at all, it rather consists in allowing

any possible scenario, which is forecast by Bartels himself: “The fewer relations for which

the transfer of structure holds, and the fewer the number of elements of A to which the

transfer is restricted, the poorer the representation will be with respect to content. In an

extreme case, no content will be left” (ibid., 11). Another, more astonishing, fact about

weakened completeness is that it is a violation of the very minimal condition required for

the transfer of structure (i.e. completeness) and, therefore, for there being a morphism at

all. Indeed, to restrict the transfer of structure either to a certain range of arguments or

to certain subsets of relations implies that f is, respectively, neither a well-defined func-

tion nor a proper morphism. Thus no attempt to ground the representational relation on

weakened completeness may be interpreted as providing a meaningful structural account of

representation given that the very notion of morphism on which the account is claimed to

be built would be left out. The relevant weakenings must be of a different kind. Let us see

what Bartels proposes in order to accommodate inaccurate representations.

4.2 Morphisms and Misrepresentation (as Inaccuracy)

In the previous section we have introduced the weakenings which, according to Bartels, al-

low to accommodate misrepresentation as inaccuracy. In order to see whether they actually

accomplish the task, here we confront each morphism, both in its standard and weakened

version, with the formalized versions of abstraction, pretence and simulation that we intro-

duced in Section 2. For the sake of completeness, our analysis will include also isomorphism

which, as mentioned in the previous sections, is the morphism employed in other structural

accounts. Isomorphism demands the following conditions to be satisfied: completeness,

faithfulness, and that the mapping f : A→ B be both injective and surjective.10 Our goal

is then to verify that for every morphism there exists at least one form of misrepresentation

which is not accommodated, thus showing that none of the three morphisms account for

misrepresentation as inaccuracy. For the sake of clarity, we recapitulate in table (1) the

conditions for each morphism, marking with a star the weakened morphisms that we have

10Dunn and Hardegree (2001, 17) consider the injectivity and surjectivity of f only as a condition for

isomorphism. Chang and Keisler (1973, 21), Hodges (1997, 5) and Robinson (1963, 25) consider also

faithfulness as a condition for isomorphism.

14



Morphism Characteristic Conditions

Homomorphism completeness

Epimorphism surjectivity of f , completeness, faithfulness

Epimorphism∗c surjectivity of f , weak completeness, faithfulness

Epimorphism∗f surjectivity of f , completeness, weak faithfulness

Isomorphism surjectivity and injectivity of f , completeness, faithfulness

Isomorphism∗c surjectivity and injectivity of f , weak completeness, faithfulness

Isomorphism∗f surjectivity and injectivity of f , completeness, weak faithfulness

Epimorphism∗c,f surjectivity of f , weak completeness, weak faithfulness

Isomorphism∗c,f surjectivity and injectivity of f , weak completeness, weak faith-

fulness

Table 1: Morphisms

discussed.

Two things need to be noted before proceeding. First, cases where the morphisms are

weakened on completeness are not to be considered since, for the reasons presented in the

previous section, they are not morphisms at all. Second, in table (1) the following two

cases are not listed: the case of a surjective homomorphism, and the case of a faithful

homomorphism (without surjectivity). The first case satisfies the conditions for B to be a

homomorphic image of A. The surjectivity of f : A → B, however, is neither a sufficient

nor a necessary condition for homomorphism, so it can be omitted for the sake of argument

without any loss of generality. On the other hand, a faithful homomorphism f which is not

surjective is not an interesting case to consider, since faithfulness holds for the elements in

B which are in the range of f : A→ B only. And so in what follows, these quantifiers will

be omitted whenever redundant.

We consider abstraction first, which we have formalized as follows:

∃j, RA
j ⊆ An, RB

j ⊆ Bn,∃ā ∈ An : RA
j (ā) ∧ ¬RB

j (f(ā)) (5)

Let’s start with homomorphism. The formula (1) describing the completeness condition

is logically equivalent to the following formula: ¬RA
j (ā) ∨ RB

j (f(ā)) whose logical con-

tradiction ¬(¬RA
j (ā) ∨ RB

j (f(ā))) is, in turn, equivalent to the formula for abstracting

RA
j (ā) ∧ ¬RB

j (f(ā)). In other words, the condition of completeness is logically incompat-

ible with abstraction. Yet, epimorphism and isomorphism, both in their standard version

and in the version where only faithfulness is weakened, all satisfy completeness. There-

fore epimorphism, epimorphismf , isomorphism and isomorphismf are logically unsuited to

accommodate abstraction.

The second form of misrepresentation is pretence, which we have formalized as follows:

∃j, RA
j ⊆ An, RB

j ⊆ Bn, ∃b̄ ∈ Bn, ā ∈ An, b̄ = f(ā) : ¬RA
j (ā) ∧RB

j (f(ā)) (6)
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We have just seen that homomorphism and, more precisely, the condition of complete-

ness, is logically equivalent to the formula: ¬RA
j (ā) ∨ RB

j (f(ā)). Hence, homomorphism

allows for pretence as a logical possibility. On the other hand, pretence logically contradicts

faithfulness. Indeed, the formula (2) for faithfulness is equivalent to RA
j (ā) ∨ ¬RB

j (f(ā))

whose logical contradiction is exactly ¬RA
j (ā) ∧ RB

j (f(ā)). Therefore, any morphism that

satisfies faithfulness can not accommodate pretence. This evidently holds for epimorphism

and isomorphism. What about the weakened version of faithfulness ? We have seen that

weakening faithfulness admits of a tuple ā ∈ A which does not stand in relation RA
j ⊆ An

even though its image b̄ ∈ B stands in the the corresponding relation RB
j ⊆ Bn. Weak-

ened faithfulness, then, allows pretence in principle. However, for weakened faithfulness to

actually accommodate pretence, it is crucial that the function f is not injective, otherwise

weakened faithfulness can not accommodate pretence. Therefore, epimorphism∗f accom-

modates pretence, but epimorphism, isomorphism and isomorphism∗f do not accommodate

this form of misrepresentation.

The third form of misrepresentation is simulation, which we have formalized as follows:

∃j, k,RA
j , R

A
k ⊆ An, RB

j , R
B
k ⊆ Bn, ∃ā ∈ An, b̄ ∈ Bn, b̄ = f(ā) :

(RA
j (ā) ∧ ¬RB

j (f(ā)))︸ ︷︷ ︸
abstracting on ā,b̄

∧ (¬RA
k (ā) ∧RB

k (f(ā)))︸ ︷︷ ︸
pretending on ā,b̄

(7)

Simulation is what obtains from both abstracting and pretending on the same tuple, which

is a common phenomenon in modeling (as stressed by Cartwright 1989, Frigg and Hart-

mann 2006). In this case, it is much easier to verify which form of misrepresentation is

accommodated by which kind of morphism, given that we just need to jointly consider

what abstracting and pretending allow for. It is then the case that only homomorphism∗c

and epimorphism∗f,c accommodate simulation, and neither of them are proper morphisms

that can transfer structure.

In table (2) we summarize the results of our analysis, which leads us to conclude that

no morphism that can be said to transfer structure from a source to a target is actually

able to accommodate all forms of inaccurate misrepresentation. The structural mappings

that merely satisfy weakened versions of completeness can not be said to transfer structure,

and the rest are unable to accommodate at least one main form of misrepresentation as

inaccuracy. Therefore we conclude that isomorphism, epimorphism and homomorphism all

fail to account for the phenomenon of misrepresentation.

It is in particular startling that most of the structural accounts proposed so far fail to

accommodate the one form of misrepresentation as abstraction that philosophers of science

have entertained ever since the times of Cambpell’s influential discussion of the kinetic the-

ory of gases. While structural mappings can be very helpful in establishing the accuracy of

certain mathematical representations in physics, they are unable to characterize the very

relation of representation in general.
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Abstraction Pretence Simulation

Homomorphism NO YES NO

Epimorphism NO NO NO

Epimorphism∗f NO YES NO

Isomorphism NO NO NO

Isomorphism∗f YES NO NO

Table 2: Morphisms and Inaccuracy

5 Conclusions

We have examined Bartels’ homomorphism theory of scientific representation. We have

examined it in relation to two typical kinds of misrepresentation in scientific models, which

we may refer to as ‘mistargetting’ and ‘inaccuracy’. The former involves choosing the wrong

target for a modeling source on account of perceived similarities or structural matches,

and shows representation to be an essentially intentional notion (in a broad sense that

encompasses intended use). The latter involves at least three different kinds of distortion

of model targets by model sources, which we have distinguished as abstraction, pretence

and simulation. We have illustrated these distinctions by means of a careful study of the

historical case of the billiard ball model. This model was notoriously invoked by Mary

Hesse in her rightly influential work on analogy. Nevertheless Hesse’s treatment of the

model is itself highly idealized. We claim that there is more to the actual case study

than just positive and negative analogies in the sense discussed by Hesse. In particular

there are inverse negative analogies, or analogies ‘by denial’, as well as negative analogies

by ‘abstraction’: there are properties of gas molecules that billiard balls lack, as well as

properties of billiard balls that gas molecules lack. We then endeavored to provide formal

characterizations for all these distinctions in a form that is suitable to the homomorphism

account of representation. The taxonomy thus obtained proves useful to determine whether

homomorphism – or indeed any other kind of morphism – accommodates misrepresentation.

We share with Bartels the thought that the adequacy of any account of scientific rep-

resentation demands such accommodation. Any adequate account must at least accommo-

date, if not explain, mistargetting and the three kinds of inaccuracy we have discussed. Now,

as for mistargetting, we have examined whether Bartels’ account successfully cope with it.

A closer analysis has revealed some issues remain regarding how much work effectively ho-

momorphism is doing in the account. We have argued that the representational mechanism

that Bartels appeals to is crucial in determining representation,misrepresentation or non-

representation. Thus, there does not seem to be much work left for homomorphism to do.

Bartels does claim that homomorphism is necessary for representation or misrepresentation

alike, yet his actual discussion of the role played by the representational mechanism seems

prima facie to belie this claim. As for the three forms of inaccuracy that we have discussed,

we have provided arguments to the effect that while homomorphism may account for pre-
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tence – although not in the form of epimorphism actually defended by Bartels – it can not

provide for abstraction. We thus concluded that, contrary to Bartels’ claim, the homomor-

phism account can not provide for any of the two typical kinds of misrepresentation by

scientific models.

A structural account may well be needed to assess the accuracy or faithfulness of a

scientific model, particularly in those cases where the model source and target can both be

given appropriate structural descriptions. Nonetheless, even in such cases, it does not seem

to be the case that the representational relation, or activity, is constituted by any structural

morphism. It is rather what Bartels refers to as the “representational mechanism” that does

all the conceptually required work at this stage. Once this basic mechanism is in place,

it becomes appropriate to ask questions regarding the structural match of sources and

targets. Representation does not essentially consist in transfer of structure from target

system to source object. And while the homomorphism account may describe the means

whereby some mathematical representations operate in science, it can not fully describe

representation per se.
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