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Your red isn't my red! Connectionist Structuralism and the puzzle of 

abstract objects 

Chris Percy 

 

Long-form abstract  

This paper presents a nine step argument for “Connectionist Structuralism” (CS), an 

account of the ontology of abstract objects that is neither purely nominalist nor purely 

platonist. CS is a common, often implicit assumption in parts of the artificial intelligence 

literature, but such discussions have not presented formal accounts of the position or engaged 

with metaphysical issues that potentially undermine it. By making the position legible and 

presenting an initial case for it, we hope to support a constructive dialogue between AI 

researchers and philosophers of metaphysics that helps both sides to refine the position.  

CS proposes that each abstract object we can draw on in human analysis corresponds 

to a particular subset of an individual person’s brain structure whose functionality is 

isomorphic to a subset of the nodes and connections in a suitable connectionist network. In 

other words, abstract objects are physically realised, but in individual brains, rather than only 

in the referent objects (pure nominalism) or in metaphysical universals (pure platonism).  

This paper’s minimum claim is that CS can account for all abstract object predicables 

regarding sensible properties, such as “is red” or “is a square”. Using evidence from cognitive 

neuroscience, machine learning, and evolutionary biology, as well as a fully traceable toy 

example, we describe how CS can support our core cognitive uses of such sensible properties 

and can account for our core phenomenal experiences of them. In the former, CS provides 

sufficient albeit imperfect inferential safety, whose limitations are argued to strengthen rather 

than weaken the case for CS as describing human behaviour. In the latter, four target 

phenomenal features are accounted for – abstract objects as feeling intangible, non-located, 

transparent, and unchanging - along with accounts for further phenomena such as semantic 

refinement, the Stroop effect, synaesthesia, semantic clarity, sensory overload, and satiation. 

Our minimum claim concerns the day-to-day usage and felt experience of abstract 

objects, but we suggest also an extended claim in which CS can form the basis of a pragmatic 

sufficient logic. As such, the initial outline of a response is provided for five common 

objections to positions that seek to ground abstract objects without reference to 

metaphysically stand-alone universals: referential opacity; identity of indiscernibles; infinite 

regression; non-physical concepts; and necessary truths. These outlines lay the foundation for 

(but do not seek to formally demonstrate) an extended CS account that addresses other 

abstract objects, including issues relating to their use in mathematics and formal logic. 

The CS account leads to a four-layer hierarchy of similarity for whether your “red” is 

the same as mine. Considering both semantic and phenomenal similarity, we conclude that 

our “reds” are likely non-identical but can be made close enough for practical purposes. 

Finally, we describe how future work could elaborate CS as a metaphysical project and how 

confidence in it could be tested through empirical research. 

Key words: Connectionism; Nominalism; Abstract Objects; Universals; Artificial Intelligence 
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Introduction 

Many have enjoyed debating whether one person’s experience of red is the same as another’s, 

whether we could ever know for sure, and whether it would matter if it weren’t. Often 

discussed while pointing at a particular red-coloured object, the topic can also be 

productively phrased in the language of universals and abstract objects. When one person 

reflects on the concept of “redness”, without any particular object in mind, does that 

experience feel similar to another person’s (phenomenal angle) or, at least, are they invoking 

the same semantic concepts (utility angle)? 

This paper assembles “Connectionist Structuralism” (hereinafter “CS”) as a proposal for the 

ontological metaphysics of abstract objects - such as our mental concepts of redness or 

squareness -  drawing on findings from computational neuroscience, machine learning, and 

brain biology. In a sentence, the proposal is that each abstract object we can draw on in 

human analysis corresponds to a particular subset of an individual person’s brain structure 

whose functionality is isomorphic to a subset of the nodes and connections in a suitable 

connectionist network 

This proposal or something similar is often implied in the machine learning and artificial 

intelligence literature, but such accounts do not engage with standard metaphysical objections 

or human phenomenology, although critiques do run in the reverse direction (see, e.g., 

Froese, & Taguchi, 2019; Olah et al., 2020). By making the position legible and presenting an 

initial case for it, we hope to support a constructive dialogue between AI researchers and 

philosophers of metaphysics that helps both sides to refine the position. 

This paper’s minimum claim is that CS can account for all abstract object predicables that are 

accessible to external sensory experience (“sensible properties”), e.g. those instantiable in 

observed physical objects of the type exemplified by “is red” or “is a square”. Moreover, that 

CS can account for such sensible properties in a way that respects the phenomenology 

commonly reported for abstract objects.  

Many metaphysical arguments have been assembled against different accounts of abstract 

objects, with the debate remaining contested in recent literature (e.g. Himelright, 2022; 

Carmichael, forthcoming; Imaguire, 2022). The extended claim is that the same core CS 

principles can be combined with other structures to account for all other abstract objects - 

such as mathematical propositions, counterfactuals, physically-impossible concepts, 

intentions, and emotions – hence forming the foundation for a formal logic that can meet the 

pragmatic needs of day-to-day usage. This paper sketches an outline towards some of these 

other abstract objects, but full treatment is reserved for future work. 

Under CS, abstract objects do exist (helping to dissolve some critiques against traditional 

nominalism), but ante rem or in re universals do not. Abstract objects have locations outside 

of their referents or instantiations in the physical world; specifically, they have bounded 

physical presences inside each information processing mechanism that has both capability 

and cause to derive them. The proposal does not, however, require reductionist or radical 

connectionism, the notion that all human cognitive faculties, mental experiences, and 
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consciousness can be explained by connectionist-style networks. Instead, a much weaker and 

better evidenced claim is sufficient: that various connectionist networks can mechanically 

encode abstractions of various types and associate them with language, and that the necessary 

minimum capabilities exist in various brain systems. 

The paper proceeds as follows. Section one introduces the target problem, differentiating the 

phenomenology of abstract objects from their semantic utility, and situates CS within the 

literature.  

Section two sets out the structure of the argument in nine steps, defining terms and providing 

subsections on connectionist models that implement the definitions including a summary of a 

fully worked toy example (full details in the appendix), evidence that human brains have the 

necessary minimum connectionist capabilities, and details of how such networks can account 

for the utility and phenomenal explananda from section one. 

Section three provides a response to three key objections raised against nominalists that 

potentially bind on the paper’s minimum claim (referential opacity; identity of indiscernibles; 

infinite regression). It also sketches an outline response to a further two challenges beyond 

the paper's minimum claim (non-physical concepts; necessary truths).  

Section four interprets the age-old question of interpersonal subjectivity in the context of this 

account of abstract objects. Specific, measurable circumstances are described under which 

“your concept of redness” can be described as either the same as mine or different from mine. 

A four-layer hierarchy of sameness tentatively suggests that such concepts are likely to be 

non-identical, but nonetheless sufficiently isomorphic that we can work with them in a spirit 

of pragmatism, humility, and iterated interactions. 

The conclusion summarises the claims and suggests further work to elaborate CS, including 

how it might be falsified, or at least refined, through lab experiments.  

 

1. Context: The target explananda and academic context 

The puzzle of where abstract objects reside is long-standing, but a brief account can be 

provided here to define the terms and context for the rest of the paper. 

1.1. Defining the physical and non-physical realms 

It is helpful to start with defining two realms of existence where entities might reside, termed 

“physical” and “non-physical”.  

The “physical realm” consists of what we can perceive with our external senses (touch, eyes, 

ears, etc.) and interact with via our motor functions (fingers, voice, etc.). The physical realm 

includes physical human bodies and brains, including those external sense and motor organs. 

The objects in the physical realm appear to have locations in space-time, but the realm can be 

posited without assuming that the four dimensions we perceive are an accurate or complete 

reflection of all that exists and without assuming our perceptions are exact. In other words, 

the picture can be consistent with indirect realism.  
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Objects are defined broadly to include complex objects built up from fundamental entities 

(whatever those may be), as well as patterns and events consisting of those objects. Such 

objects are typically perceived as bounded in spacetime, i.e. there are specific spatiotemporal 

locations where they appear to be present and locations where they appear not to be, albeit 

the precise boundaries may be fuzzy for a range of reasons1. However, we do not need to rule 

out (or categorically confirm) phenomena that appear to be universally located and can be 

considered single entities, such as universal quantum fields or a fabric in which objects reside 

(spacetime in the theory of relativity). We do rule out anything which has “no location” or for 

which the concept of location, universal or bounded, is meaningless.  

The existence of this physical realm and particularly its intersubjective consistency is an 

assumption, since we only know of it through our senses which can be flawed or tricked. This 

paper makes this assumption but acknowledges it cannot be conclusively proved (see 

Comesaña & Klein, 2019, for an overview). However, in any case, the physical realm may 

not be the only realm of existence.  

The “non-physical” realm is largely defined as anything not in the physical realm. Entities 

exist in this realm, but whatever location or substance they might have there, they have no 

independent location or substance in the physical realm. From the perspective of our external 

sense and motor organs, these entities are intangible. If we are capable of interacting with 

entities in this realm, it must be via something else, perhaps certain mental faculties. Multiple 

such non-physical realms might exist. Such non-physical realms could be proposed as the 

“place” of existence of various human experiences, including sensations of spirits or deities, 

ideas or mental experiences, consciousness, mathematics, universals, and abstract objects. 

This paper focuses on abstract objects, particularly on sensible properties. 

1.2. Summarising the problem 

The target explananda derive from our day-to-day experience and usage of abstract objects. 

For instance, in the physical realm, we never sense “squareness” except in its instantiation as 

part of something else: various square objects or embedded communications of various 

definitions (e.g. written down on paper, encoded as words in sound waves etc). Nonetheless, 

within our minds, we can typically conceive of "squareness" divorced from any one 

instantiation and from all instantiations. However, in the physical realm as defined above, 

nothing can exist divorced from all instantiations.  

The ability to operate with abstract objects conveys considerable linguistic and cognitive 

benefits (“its utility”) and is accompanied by a particular felt experience (“its 

phenomenology”). An ideal position should maintain the former and account for the latter. 

The primary explanatory challenge for physicalists comes in doing so with reference only to 

the physical realm. This section will first describe the utility and phenomenal explananda and 

then situate CS with reference to several broad classes of solution proposed in the literature.  

 
1 E.g. because our measurement instruments, senses, or reasoning faculties are not precise enough to see their precise edges, 

because the edges change in infinitesimal units of time or at least more rapidly than we can complete a measurement cycle, 

because of uncertainty/unknowability principles in physics, or because they are ontologically fuzzy in some sense. 
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1.3. The utility explananda 

Abstract objects play a major role in our conventions of language and communicated 

reasoning, as well as being central to the generalisations and categorisations of the natural 

sciences. Several ways exist of formalising the subsequent linguistic challenge. This paper 

will follow Himelright’s (2022) problem of inferential safety as its central utility 

explanandum, noting other features of language, learning and cognition as part of the broader 

discussion.  

To paraphrase, the problem is how we can be confident (“safe”) in conclusions about 

concrete (i.e. physical realm) objects arrived at where any premises about concrete objects 

are true and any premises about abstract objects are such that platonists would regard them as 

true, i.e. if there truly were a non-physical realm with a perfectly true benchmark to measure 

them against. Those who believe in non-physical realms and our ability to access them have a 

straightforward answer to this, but nominalists have to explain how their account of abstract 

objects enables this.  

Himelright’s phrasing neatly encapsulates the core of what we want a theory of abstract 

objects to achieve. Semantic interactions between abstract and concrete objects are possible 

to motivate if the abstract objects are, in some sense in the proposed ontology, capable of 

instantiation (e.g. predicable) and of being separable from their instantiations. This enables us 

to derive abstract objects from their physical instantiations and to use abstract objects to talk 

and reason about shared features of concrete objects. 

Himelright constructs a formal language in which various classes of sentences about the 

properties of concrete objects are safe. He notes that his language does not (yet) help in all 

circumstances, such as mereological nihilism, but his footnote 1 references other safety 

proofs that can apply in other circumstances, albeit with their own caveats. Many other 

solution approaches exist, including the reductive A+ approach from White (2022) in which 

interpreting universals as discussions about patterns in particulars is argued to be 

metaphysically sufficient. CS is not inconsistent with such formal language approaches to 

nominalism, but additionally proposes an ontological lens they can adopt which helps 

account for certain phenomenal explananda and metaphysical objections.  

1.4. The phenomenal explananda 

Philosophers have traditionally devoted more of their metaphysical writing to the issues of 

language and logic in §1.3, but several recent papers take an explicitly phenomenological 

approach: asserting both that there is something it feels like to think and commenting on what 

that something is.  

Phenomenology is, by definition, drawn from reports of first person felt experiences, so the 

strength of the account depends either on a reader’s ability to empathise with such 

experiences through introspection (even if felt only sometimes or to differing degrees) or on a 

willingness to accept the reports as a genuine report of experience (even if they may disagree 

with particular conclusions that might be inferred from those feelings). As set out in §2, the 
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core CS argument is not reliant on phenomenology alone, which is instead construed as 

supporting evidence.  

Pitt (2004) argued that there is something that it is like to have thoughts about propositions, 

i.e. there is an accompanying phenomenal experience even for intentional thoughts as well as 

explicitly phenomenal states, such as seeing red or feeling pain. Propositions can contain 

abstract objects and are themselves an abstract object when held in the mind. Hence Pitt’s 

experience and claim support the case in this subsection.  

Pitt’s (2004) account is primarily analytic in nature, supported by appeals to readers’ 

introspection on reading his psycholinguistic sentences. He asserts that it would be 

impossible introspectively to distinguish conscious thoughts with respect to their content if 

there weren’t something it is like to think them (in the sense of entertaining them rather than 

necessarily believing them). He concludes that each type of conscious thought must have a 

proprietary, distinctive and individuative phenomenology, although this has been challenged 

(e.g. Levine, 2011). A weaker conclusion is sufficient here: that thoughts about abstract 

objects have a phenomenology, whether fully or partially shared across objects, or even with 

nothing shared at all beyond all being thoughts.  

Some of Pitt’s language begins to convey the shape of his experienced phenomenology as 

well as his logical argument, such as “when we introspect, we turn our attention inward, 

toward the contents of our minds – which are mental if anything is.” (p22). This emphasis on 

mental hints at a feeling of non-physicality, which we will see below is one of the most 

common descriptions of abstract objects and one which rules out a set of well-known felt 

experiences, being those involving physical, tangible objects. 

Smith (2011) also explores the phenomenology of consciously thinking, reflecting on his 

experience of thinking through three specific propositions, notwithstanding the difficulty of 

putting such experiences into words (p359). He describes conceiving abstract objects in those 

propositions as a “distinctly non-sensory and non-perceptual form of experience” (p351) and 

as “ethereal” (p368). In some modes of consciousness, he reports that some more abstract 

propositions can feel “transparent” (p362) or at least “translucent” (p362), noting that the 

concept of redness can be thought of without experiencing red colour or the concept actually 

being itself red-coloured. He motivates translucency by arguing that our cognition is 

embodied: we are world-directed and our awareness or thinking is shaped unavoidably by the 

external world.  

In addition to these explicit commentaries on phenomenology, the features of abstract objects 

that have been referred to in metaphysical discussions of their nature provide further 

supporting evidence. Reference sources explain Plato’s Forms as abstract, perfect, 

unchanging ideals that transcended time and space (e.g. Meinwald, nd.; Silverman, 2022). 

Rettler and Bailey (2017) discuss a range of candidate features of abstract objects: predicates, 

not in space time, not sense-perceptible, obeying the Identity of Indiscernibles, instantiated 

(or at least instantiable), and capable of being in multiple locations. Carmichael 

(forthcoming) takes the central feature of abstract properties as predicables (i.e. they can be 

true or false of a given object) that “(perhaps contingently) lack locations”, where platonic 
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realism would further claim they are mind-independent. Several of these features relate more 

to requirements for linguistic and cognitive utility (§1.3), but others have a more direct 

phenomenological interpretation. 

Collectively, this subsection suggests two primary phenomenal explananda as a dominant 

theme across many accounts: intangible and non-located, which incorporates notions of being 

non-physical, ethereal, and non-sense-perceptible. Two further potential explananda include 

transparency/translucency and being unchanging.  

The purpose of this subsection is not to draw ontological conclusions directly from 

phenomenology. Indeed, taken at face value, felt experiences of ethereal, intangible objects 

not located in space lead directly to the ontology of some non-physical realm and may be one 

strong initial intuition that leads to platonism and related theories. However, whatever 

ontology is proposed should also account for these felt experiences, since we know those 

exist in some sense. The account can explain why the experiences are illusory or misleading, 

but should have an explanation for such, rather than being dismissive with no further 

reasoning.  

1.5. Classes of solution and CS 

The two broad classes of solution are platonism (very similar to realism in this context), in 

which abstract objects have some mind-independent existence, and nominalism, in which 

they do not. Realism might invoke concepts similar to ante rem universals in a non-physical 

realm2. Such accounts have straightforward explanations of the utility and phenomenal 

explananda. For the former, there is a single entity corresponding to each abstract object 

which we all reference and which exists regardless of physical realm objects. For the latter, 

those entities actually are non-physical and non-located, so it unsurprising we experience 

them as such. The primary explanatory challenges are, instead, what this non-physical realm 

is, what it means to exist in it, and how we can interact both with it and what appears to be 

the physical realm (see for instance Montero’s 2022 discussion of how platonic abstracta 

might come to have causal relevance).  

Nominalism, by contrast, has no explanatory challenge about interactions across realms, since 

there is only the physical realm, but it has no automatic account for the explananda. Many 

subtypes of nominalism have been proposed to provide such accounts, particularly for the 

utility explananda, including the summaries and counter-arguments in Cowling et al. (2023). 

CS positions abstract objects as derived from concrete objects. They are not ante rem, and no 

non-physical realm is proposed. The theory is nominalist in the sense that it is anti-universals 

and anti-platonism. Abstract objects are derived from concrete objects rather than immanent 

within them, so in re positions are also rejected. But it differs from nominalism in identifying 

a physical space for abstract objects that is separate from their referents’ original physicality. 

 
2 In differentiation from some platonist accounts, realism might invoke an in re argument in which the abstract objects exist 

only in the physical realm objects to which they apply, either as multiply-located universals or as separate type/token 

instantiations. 
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Under CS, abstract objects have a physical existence in cerebro, i.e. in each physical brain 

corresponding to a person invoking them.  

 

2. Argument for Connectionist Structuralism (CS) 

The argument proceeds in nine steps: 

P1. An abstract feature shared by a set of sensed external objects, such as a common property 

or category, can be considered encoded in an information processing mechanism when a 

subset of the system has a state or states that uniquely correspond to that feature. In other 

words, the relevant state occurs if and only if presented with any one or more of the objects 

instantiating the relevant feature. Objects are understood in the general sense of physical 

realm entities described in §1.1 and information processing systems are understood in the 

connectionist sense, with an example in the appendix.  

[Definition] 

P2. A wide variety of simulated connectionist networks, from simple to complex and using 

different connection and updating logics, are able to encode features in the sense of P1 and 

can arbitrarily associate specific features with other simultaneous or approximately co-

occurring phenomena, such as symbols or words.  

[Simulation capability claim, backed by a fully worked toy example and evidence from the 

machine learning and computational neuroscience fields] 

P3. The specific subset of nodes and edges in a connectionist network that corresponds 

uniquely to an abstract feature in the P1 sense can be considered the particular physical 

location and pattern that corresponds to the abstract object referencing that feature.  

[Definition] 

P4. Across a variety of contexts, there is evolutionary value in the capabilities that are 

achieved by the information processing mechanisms in P1.  

[Backed mainly by evidence from evolutionary biology] 

P5. The human brain has evolved to contain structures whose mechanisms can, inter alia, 

implement the functionality described in P2.  

[Backed mainly by evidence from biological neural networks] 

C1. Given P5, it is plausible that structures sufficiently similar to P2 are used in the brain to 

account for at least some of the occasions when P4 capabilities are present.  

• “Sufficiently similar” in the sense that it could be pragmatically modelled by some 

form of connectionist architecture, acknowledging that there is considerable 

uncertainty over exactly how the brain processes inputs and that it is highly likely to 

be more complex and nuanced than the various examples presented in support of P2.  

• If deliberately simple connectionist architectures can achieve the result, then it is 

plausible a fortiori that more complex connectionist architectures also achieve it in a 

way that still corresponds to the general definitions in P1 and P3. 
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P6. The P1 and P3 definitions suffice for human usage of abstract objects in way that resolves 

the problem of inferential safety, subject to caveats which correspond with practical 

experience. Connectionist network features also resonate with particular features of our 

cognitive abilities, such as semantic refinement, the Stroop effect, and synaesthesia. 

[Narrative based account with examples] 

P7. When combined with a mechanism generating or corresponding to conscious awareness 

(being neutral about what this mechanism might be), the definition in P3 and examples in P2 

can account for four phenomenal features – most importantly, intangibility and non-location, 

followed by transparency/translucency and unchangingness – and resonate with several 

others, such as degrees of semantic clarity, sensory overload, and semantic satiation. 

[Narrative based account with examples] 

C2. Given P5, the supporting evidence in P6 and P7 makes CS a strong candidate for an 

ontology that can account for the utility and phenomenology of a particular set of abstract 

objects (“sensible properties”) as used by humans. This evidence remains in development, but 

the insights so far give some confidence that further aspects of utility and phenomenology 

could be explained by a CS-underpinned account, emphasising again the point in C1 that the 

brain may have other systems, both connectionist and non-connectionist, that combine with 

CS to provide a full account.  

Subsections now provide more detail on the substantive claims in P2 (2.1), P4 and P5 (2.2), 

P6 (2.3), and P7 (2.4). The worked examples in 2.1 also illustrate the definitions in P1 and 

P3. The plausibility assertions in C1 and C2 stand on the strength of surrounding arguments.  

2.1. The capabilities of simulated connectionist networks (P2) 

Connectionism refers to a broad class of networks, defined abstractly as units (or nodes) 

joined together by various inward, outward, or bidirectional connections (or edges). Nodes 

can have multiple connections. There can be different types of node and connection which 

have different activation/deactivation rules, given both inward activity and elapsed time. 

In a physical realm sense, such networks are only capable of receiving inputs, being 

activated, or interacting physically if they are also embedded in a physical substrate that can 

implement the rules of the network. Such networks are described here as substrate-neutral but 

not substrate-independent: they need a substrate to exist but any substrate that meets the 

requirements will do (e.g. discussion in Gómez-Emilsson & Percy, 2022). One such substrate 

is being implemented on a digital computer, termed here as simulated networks. As an aside, 

a description of a network can exist without that network being substrate-implemented (i.e. 

having its own existence) or even being implementable. Such descriptions of course also need 

to be embodied to exist, whether embodied in the paper you are reading or embodied in my 

brain while I write the paper.  

The purpose of this subsection is to demonstrate that a mechanical information processing 

network can extract sensible properties and categories from sensed physical realm objects and 

cross-associate them with words sensed alongside those objects. Two forms of evidence are 

provided. First, a fully worked toy universe example is provided in the appendix and 
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summarised here. Second, a brief account is provided of more sophisticated connectionist 

network simulations that have been able to process input information in diverse ways.  

The appendix describes the full mechanics and stable output of a 68-node network that is 

trained through solely local, unsupervised example-based Hebbian principles. The network 

abstracts two colours and two shapes from a toy universe consisting only of 12 possible 

active inputs that combine blue squares, red squares, blue rectangles, and red rectangles (see 

A5 for details). The word-associated colour properties and shape categories of images are 

encoded reliably in the network in a way that implements two basic information processing 

capabilities: feature extraction and cross-association. The objective is not to design a system 

capable of more sophisticated information processing tasks, like generalisation or error-

correction, but rather to provide a simple enough example that it can be implemented in full 

by hand or followed through in the text. The concrete approach allows us to trace exactly 

why the described patterns occurred as they did and how they interact with the rest of the 

network. Despite its simplicity, the network can encode colour and shape based the image 

inputs alone (A6, A7) and cross-associate sound and image such that sound-related nodes are 

activated based on image-only inputs and vice versa (A8).  

These encodings meet the definition in P1 such that specific trained edges within the network 

can be pointed to that capture the different abstract objects. For instance in A8, redness is 

cleanly differentiated from blueness within the mechanism by any one of three edges (q2q4, 

r2d2, and s2e2). The abstract object of redness exists multiply as a physical object in each 

edge. All three are activated if redness is seen and heard. The first activates if any redness is 

seen (irrespective of auditory input). The second activates on either red images or sounds but 

would activate sound-related nodes even if only the image is seen. The third also activates on 

either but would activate image-related notes even if only the sound is heard.  

A wide variety of more sophisticated connectionist networks have been developed to 

implement information processing in a much broader sense than this toy example. Simple 

Hebbian networks have been shown capable of conducting principle components analysis i.e. 

generalised feature extraction from quantitative inputs (Oja, 1982), learning to extract letter 

cases and operate basic procedural memory (Wong, 2019), and implementing mirror neuron 

functionality (Keysers & Gazzola, 2014). Many extensions are being explored to reflect 

biological neural network features that are more complex than simple Hebbian learning (e.g. 

Burns, 2021), such as inhibitory neurons (O’Reilly, 2001), network plasticity (Chen et al., 

2019), derivative-driven temporal relations (Zappacosta et al., 2018), as well as the potential 

for specific informational mechanisms or concepts to be hard-coded in the network upon 

initialisation (Ngiam et al., 2010).  

In a trivial sense, any network whose outputs classify a particular abstract feature is also 

successfully encoding the accompanying abstract object in a P1 and P3 sense (output nodes 

are also part of the network). Nonetheless, recent work has been increasingly examining 

internal or middle layers of neural networks to identify the latent encoding of particular 

abstract objects (e.g. Olah et al., 2020; Lees et al., 2021), similar to the appendix example but 

for more sophisticated models.  
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The most powerful modern connectionist networks are trained using gradient descent and 

backpropagation, using supervised or semi-supervised learning. Such networks sometimes 

also incorporate Hebbian style unsupervised learning into their structures (e.g. Lagani et al., 

2021; Stanley et al., 2016). These networks can display a broader range of information 

processing functions, from general capabilities like single neuron polysemanticity (Elhage et 

al., 2022) and transformer-like attention (Ellwood, 2023), to human-comparable (or better) 

domain-specific abilities in such areas as language translation (De Vries et al., 2018) and 

playing Go (Wang et al., 2016).  

Considerable debate exists about the reasoning abilities of recent large language models 

(LLMs) such as Bard, GPT-4, and several others, e.g. Bubeck et al. (2023) in support and 

Berglund et al. (2023) against. Such debates notwithstanding, the evidence of progress in 

connectionist models is undeniable. Nonetheless, CS does not require the claim that today’s 

connectionist models or their descendants are capable of general reasoning abilities. The cited 

evidence of a range of more humble abilities is adequate to support P2.  

2.2. Connectionist structures in the human brain (P4, P5) 

Behavioural ecologists often assume that natural selection will produce organisms that 

process information about their environment, action space, and likely outcomes to make 

optimal decisions, although emphasising that such rationality would be environment specific 

(Trimmer & Houston, 2014) and likely bounded by satisficing principles (Ben-Haim, 2012).  

Where diversity generation mechanisms, heritability, and evolutionary selection pressures are 

present, there is reduced pressure to motivate why any one specific connectionist structure 

should exist that happens to work well in a particular setting. Indeed, considerable structural 

connectionist diversity is found in biological brains. This part of the paper assumes the 

human brain, as a biological system, is the product of evolutionary processes, but does not 

make or require any equivalent assumptions about phenomenal consciousness.  

Simple Hebbian learning and its direct extensions are of high interest to cognitive 

neuroscientists as biological neural networks in the human brain have long been confirmed to 

have sophisticated implementations of the same core functionality (e.g. Sumner et al., 2020). 

Evidence also exists on inhibitory neurons in the brain (Swanson & Maffei, 2019), diverse 

time-dependent learning processes (Zappacosta et al., 2018), and sophisticated spike-timing 

dependent plasticity (Song et al., 2000; Caporale & Dan, 2008). While most attention has 

focused on neural networks, the CS argument is not weakened if other brain cells or 

structures have the necessary capabilities and instead implement the necessary networks. 

Historically, backpropagation has been considered unlikely to apply in a biological context, 

since it relies on biologically-challenging global information transfer across the network 

(O’Reilly, 2001). This limits the relevance of the most powerful connectionist models in 

accounting for aspects of human cognition, but recent research is uncovering ever more 

biologically-plausible approximations of backpropagation (Whittington & Bogacz, 2017) and 

gradient descent (Berlemont & Nadal, 2022).  
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These remain active areas of research and it is plausible to conclude that greater biological 

understanding of biological neural networks will continue to uncover new and useful 

connectionist functionality in the human brain. In any case, the worked example in the 

appendix relies only on unsupervised Hebbian learning, of the type that has been widely 

demonstrated in biological brains. 

2.3. Resemblance to human linguistic and cognitive features (P6) 

The CS approach provides a workable path to resolving the problem of inferential safety, 

admittedly with a dose of pragmatism and humility.  

As discussed in 1.3, the CS ontology of abstract objects allows them to exist separately from 

their instantiations, i.e. as sub-parts of a connectionist network that is capable of encoding 

them and to be associated by that information processing mechanism with the physical realm 

objects that instantiate them. This works for mereological components and abstract 

predicables, e.g. a table’s “having legs” and “legs” as a separately observable object, as well 

as a table’s “being red”, where redness can never be observed independently of an 

instantiation. From within an information processing mechanism, the activation of the 

subsystem that encodes a specific abstract object can be independently and safely connected 

to various other information processing tasks, including internal cogitation (such as recall or 

planning) and motor functions (such as triggering a flight response or language). 

The limitation of the CS approach, from the perspective of inferential safety, is it does not 

provide perfect safety in two distinct respects. First, within the mechanism, the inferences are 

only safe based on the abstractions derived within the system. These abstractions may not 

reflect all relevant external structure, perhaps due to faulty senses or system training, or 

because insufficient differentiated samples have been sensed to encode the right abstract 

objects. Second, in linguistic communication between two such mechanisms, it is challenging 

to be 100% certain that that the abstract object one has encoded as redness is the same as 

another’s (see §4 for details). We cannot aspire to claim perfect access to a perfect realm of 

forms to guarantee our own accuracy or trust someone else’s claimed access to the same 

realm to guarantee agreement. 

These caveats are, however, features to be welcomed as support for the theory rather than 

bugs to be fixed via a different metaphysics. Seeking out and learning from new experiences 

and refining concepts is something we can continually and hopefully eternally, both as 

individuals and as communities, and is something we should be proud of. Moreover, the need 

to take care over defining terms and being mindful of linguistic miscommunications is likely 

of little surprise to most readers. Many scholars have convincing accounts of imperfect 

language alignment both with reality and among its users (e.g. Wittgenstein, 1953; Derrida, 

1967). The familiar, pragmatic solution is to invest an amount of effort in refining one’s own 

abstract objects and ensuring alignment to others that is proportionate to a particular task. We 

may not be able to guarantee certainty for eternity, but we can take steps to be confident 

enough for now. 



Pre-Print v1 - Draft for feedback and ideas (Sep 2023) 

There are further parallels to be found between the toy model and cognition. The uncertainty 

in the toy model regarding what “squareness” really means is a simple example of what a 

word really encodes in a system and how new samples might be needed to refine it to match 

its common English referent (A10). A child’s learning journey between terms like square, 

rectangle, and quadrilateral might take many iterations and corrections before settling on the 

technical and precise English usage.  

As a second example, the toy model’s internal confusion in response to contradictory inputs 

(A11) perhaps foreshadows the results of experiments that show slower response time in 

association tests when faced with incongruent inputs (Stroop effect, e.g. MacLeod 1991). 

Doubtless, far more is going on in the human case, but a delay triggered by efforts to resolve 

an initial internal contradiction can be imagined in both cases (see 3.4). Likewise, the 

phenomenon of synaesthesia may be partly accounted for by the potential for arbitrary many-

to-many associations in a connectionist network.  

2.4. Resemblance to human phenomenology (P7) 

Our experience of a first person perspective remains something hard to explain within a third 

person empirical framework, with some arguing that such subjectivities are fundamentally 

unfalsifiable or outside the domain of science (e.g. Cohen & Dennett, 2011). Nonetheless, no 

shortage of mechanisms have been proposed (e.g. the incomplete list of 22 theories in Table 1 

from Seth & Bayne 2022), even if epistemologies other than falsificationism should prove 

necessary to form a view on which is likely to be true. Since our phenomenology is 

experienced from a first person perspective, some set of mechanisms needs to be assumed 

before a third person theory, like the account so far, can be translated into a felt experience.  

A broad class of physicalist and embodied theories of (phenomenal) consciousness have a 

common feature in that they are capable of incorporating a wide range of experiences within 

the same general mechanism, corresponding to the wide phenomenal experiences humans 

typically report. In other words, the mechanisms are neutral or independent of any specific 

“content” of experience. Provided perhaps there is at least some content to activate the 

mechanism, any one of the possible contents would suffice to form an experience.  

For instance, in global workspace theory, we might become consciously aware of any 

particular content once it has been broadcast to a workspace, being a specific but as yet not 

fully confirmed set of systems in the brain (Dehaene, 2014). In certain electromagnetic field 

theories, axiomatically-conscious fields integrate all information encoded in the 

electromagnetic activity corresponding to the field, such as the firing of neurons in a neural 

network (Jones, 2016). In integrated information theory (IIT), the specific pattern of 

embodied causal connections that contribute to the system’s phi value encode certain 

informational content, of which the system is then said to be conscious (Oizumi et al., 2014). 

For theories that specify a general mechanism, it is plausible that when the mechanism 

integrates CS-defined abstract objects into their contents, it would translate into phenomenal 

consciousness of that object. In principle, dualist, panpsychist, or non-physical theories of 
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consciousness could also invoke similar arguments, but may prefer to invoke other ontologies 

they assume as part of their core theory. 

We can interrogate CS against this idea further using the discussion in 1.4. The primary 

phenomenal explananda were intangibility and non-location. As seen in the worked example 

(A8), abstract objects (“redness”) can be invoked without firing the corresponding external 

senses (“seeing a red hat”), i.e. without being sense-perceived. In other words, the 

phenomenology of the abstract object firing on its own can be expected to feel intangible, 

particularly as we do not have touch receptors in the brain tissue. The brain does not directly 

sense the physical act of its neurons firing. We sense the result of neurons firing in some 

different manner, i.e. via some consciousness-generating mechanism as described above.  

Non-location is equally natural to explain. The brain has an information encoding structure 

that encodes spatial locations in the physical realm as properties (CS abstract objects) 

connected to internal representations (CS abstract objects) of those physical realm objects. It 

appears not to do this for CS abstract objects, perhaps because there has not yet been 

sufficient evolutionary utility to do so. Abstract objects are typically felt as locationless 

simply because our brains do not typically encode locations against them. In principle, we 

could probably trick the brain into forming such associations and this might be one indirect 

phenomenological test of the theory. 

There are also plausible accounts for the two speculative explananda. Abstract objects appear 

transparent/translucent for the same reason as they feel intangible – they can be activated 

absent from triggering colour perception at or near the input layer. They may feel 

“unchanging” because in any time instance when those nodes activate they are only and 

exactly what they are. In a stable network, each time they are activated again, they would be 

unchanged. While they do not exist “outside of time”, it is understandable if felt 

“unchangingness” might convey such a phenomenology. 

All of this phenomenology is real and can be accounted for as above, but it is misleading. I 

could, in principle, cut out the network substructure (brain cells) that corresponds to my 

redness and put it on the table. You could touch it and see its location. It would have colour 

(albeit typically not the same redness it encodes). It would be easily changed into something 

else, probably unavoidably so when you touch it.  

Various structural features of the appendix model predict other phenomenal aspects that 

resonate with personal experience. Future work could derive such predictions in a structured 

manner and test them across several individuals’ introspection as part of formal 

phenomenological research.  

For example, the multiplicity of redness encoding described in 2.1 is a feature rather than a 

bug. Although the features possess a common core of informational associations within the 

network, they each pick up complementary facets of what it is to experience redness, in a way 

that reflects the different phenomenology, e.g. conceiving redness while seeing it is different 

from conceiving redness while hearing it and from invoking redness through an internal 

cogitation without a live connection to an externally-sensed redness. Variations in felt 
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semantic clarity in these cases may correspond to levels of “contamination” in the network 

encoding (A10).  

Other brief examples include increased phenomenal intensity in response to increased inputs 

as measured in network activity (A9), leading eventually perhaps to experiences of sensory 

overload, and how sensory data of an object can in principle be separated from its reifications 

and associations. For the latter, experienced meditators talk of seeing the visual inputs of, say, 

a glass without their brain categorising them as a “glass”. A related experience can be evoked 

by reading the same word a hundred times until it feels wrong somehow (semantic satiation), 

no longer like the original word with its original meaning. Objects encoded in deeper network 

layers (in the sense of A2) may also feel “more” abstract or intangible in some sense. Indirect 

biological evidence for the latter might be seen in brain imaging data that show overlapping 

but distinct parts of the brain responding to concrete and abstract words (Binder et al., 2005). 

Whether any of this amounts to “true” meaning, representation, or understanding is a topic 

for a future paper, noting diverse controversies and challenges (e.g. Millikan, 2017; Froese & 

Taguchi, 2019). Future work could explore in what ways phenomenal awareness of 

associations among in cerebro abstract objects and sensations of external physical objects 

might be sufficient to underpin an account for our felt experience of a particular word having 

a particular meaning. From there, it might be possible to build to the meanings of 

propositions and to at least one sense of the felt experience of “understanding”. 

 

3. Response to key philosophical objections 

Section 2 explains how CS responds to the primary explanatory challenge in 1.2. The abstract 

objects that we use exist physically as subsets of the connectionist structures in my brain, 

typically derived based on interactions with multiple physical instantiations of that abstract 

object and counter-examples. This provides the metaphysical grounding for our claims. We 

thus generate knowledge of and operate with abstract objects without invoking any non-

physical entities (and any felt non-physicality in the phenomenology is also accounted for). 

The sufficient consistency of a shared external environment and repeated interactions both 

with the environment and with each other generates sufficient, approximate consistency in 

our concepts to meet the needs of communication, being precise in some cases (requiring lots 

of consistency) and fuzzy in others.  

This physicalist approach shares in common the rejection of universals that is typical of many 

flavours of nominalism proposed over the years. Examining the various counter-arguments 

and possible responses to those nominalist theories (see e.g. overview in Cowling et al., 

2023) can help refine what is meant by CS and how an extended position on CS might form 

the basis of a formal grammar. As such, this section provides brief accounts of how CS would 

respond to five key applicable arguments, recognising that full accounts would require 

separate papers: (i) the referential opacity paradox, (ii) the identity of indiscernibles paradox 

given co-extensive properties, (iii) the problem of infinite regression, (iv) existence of non-

physical concepts, and (v) the non-subjectivity of necessary truths. The last two in particular 
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apply to other types of abstract objects far beyond the minimum claim of this paper, but a 

sketch of a response is provided nonetheless as an aid to its possible extensions. 

3.1. Referential opacity paradox 

One version of this paradox occurs when substituting one expression with another equivalent 

expression does not preserve the truth value of the statement (Bell, 1973). For example, "Lois 

Lane believes that Superman can fly" may be true, but "Lois Lane believes that Clark Kent 

can fly" may not be true, even though Clark Kent and Superman have the same referent 

(unknown to Lois).  

This paradox is a problem only if words are assumed to have a singular universal meaning 

rather than a subjective meaning or if logics are intended in an infallible sense, unlike the 

pragmatic sense described in §2.3. In CS, words as internal objects only have subjective 

meanings, it just happens that a subset of us can work hard in particular environments to 

ensure we all adopt the same one. Lois has two abstract concepts in her head “Clark Kent” 

and “Superman”, which can be arbitrarily associated with different facts. She may in the 

future learn they in fact refer to the same person and the connections in her information 

processing system would be under pressure to update accordingly.  

Another archetypal example: “I saw the Morning Star in the morning” is reasonable, but not 

“I saw the Morning Star in the evening”, even though the Morning Star refers to Venus which 

can indeed be seen in the evening. CS addresses this by recognising that the full state of an 

external object to be assigned to a word can be more than just its component physical parts, it 

can also be the time of day it is seen or any other part of its context. The core concept of 

Venus as a set of connected nodes would thus also link to at least two other concepts, Evening 

Star and Morning Star, where those other concepts have other nodes that must fire before 

they are activated, notably the time of day. Until someone knows all three of these are the 

same object, they may exist as three separate, only weakly connected objects in the network 

(e.g. connected by all being “small shining lights in the sky”).  

3.2. Identity of indiscernibles 

Some variants of nominalism, such as Class Nominalism, are argued to reach the 

unreasonable conclusion that two objects with exactly the same properties must be the same 

object or, symmetrically, that two identical sets of objects can never be said to have more than 

one property in common (Katz 1983; noting rejections such as in French 1989). A related 

issue comes up frequently in statistics or machine-learning in the context of under-

determination and a similar treatment can resolve it without the metaphysical dilemma. 

In the first case, this issue can only arise if we only know a subset of the objects’ full set of 

properties, where that subset happens to be co-extensive across both objects. In other words, 

it is an issue of imperfect knowledge to be solved by learning about the objects, e.g. through 

our sense organs and the measuring devices we construct to augment them. Indeed, if two 

objects have exactly the same properties for every imaginable set of properties, including 

their spatiotemporal boundaries and all their constituents and contexts, a fully knowledgeable 

account would conclude correctly that they are the same and should be collapsed into a single 
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concept. That concept might now be known by two names, but without any harm done by 

such linguistic redundancy.  

In the second case, it is true that if all instances of properties F and G appear in the exact 

same set of objects, the encoding mechanisms described in CS would not be able to tell them 

apart. They would typically encode a different property FG, being the combination of F and 

G. If F and G truly only ever come together, then encoding them in combination conveys no 

harm in the actions and experiences a cogitating agent might take based on FG. However, 

with the addition of more examples where F and G do not exactly overlap, it becomes 

possible to encode the differences and replace FG with the separate F and G properties. 

Importantly, the encoding mechanism never claimed that FG was not itself composite, as with 

any other encoded association, e.g. when words are linked to abstract objects those words are 

often composed of multiple sounds.  

In a human sense, the initial FG state represents a midpoint of learning about the objects that 

exist, their properties, and their relationships. Since we can never conclude we have learned 

everything possible, a state of humility about midpoint learning and the possibility of future 

distinctions should not be a concern. Critiques against such intensionalism are more 

contingent concerns about constrained epistemology, rather than evidence against CS as an 

ontological position.3 

3.3. Problem of infinite regression 

The regression problem can be stated in several ways and is levied particularly against 

resemblance nominalism (Bradley 1893; better defended in modern variants like ostrich 

tropes, Giberman, 2022). CS has a different set of responses available to it than resemblance 

nominalism. To summarise one way of presenting the problem: if two objects are similar to 

each other in sharing properties F and G, we must also invoke the property of “sharing F & 

G”, as well as “F”, and “G”. But then those objects now share three properties, and so we 

must invoke a fourth property: “sharing “F”, “G”, and ‘sharing F & G’ ”4. Some nominalists 

might argue this infinite regress can be tolerated, observing that we tolerate infinities in other 

settings as well. However, regardless of that argument’s merits or demerits, CS cannot apply 

it, since there is clearly not infinite space in the available connections in our brain.  

There are three possible, non-mutually exclusive responses that could work for CS, where 

any would be individually sufficient. First, to reject the need for a dedicated “sharing” 

property; F and G simply are shared by virtue of both being associated with the relevant 

external object, with these connections grounded in the physical world primitives that define 

CS. An alternative would be to encode one abstraction for similarity/resemblance/sharedness 

 
3 If two properties appear only in the same set of objects, an intensionalist position would argue there is in 
truth only one property, whereas CS holds we can only know them as one property (i.e. an 
epistemological position, not an ontological one). There are more issues here than addressed in this brief 
account (see e.g. Yli-Vakkuri & Hawthorne, 2022), reserving full treatment to future work. 
4 Critiques of trope-only ontologies might focus on resemblance relationships as primitive and derivative 
at the same time. This critique is less relevant for CS, as the primitive ontological basis of abstract objects 
and their connections to external objects or in internal reasoning are defined in the physical world. 
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(or at least a manageable set of such abstractions), encoded in the usual way of being inferred 

from examples where similarities do exist. It could then be sufficient to keep referencing one 

or more of those encoded abstractions each time. The brain might also have various (perhaps 

imperfect) fail-safes for arbitrarily breaking a loop to the same abstract object that might 

otherwise repeat for infinite time. A third option is that some notions of similarity might be 

hard-coded into how a substrate implements a connectionist structure, such as a mechanical 

reaction to the minimum number of nodes between two other nodes, number of shared edges, 

shared depth in a network, number of consecutive activations, intensity of activations, or even 

fixed structures that extract notions of distance or number and work with them mechanically. 

3.4. Existence of non-physical concepts 

We are capable of conceiving, at least in some senses, of various non-physical concepts. This 

includes concepts that cannot be instantiated in any finite physical realm, such as infinity, or 

at the least could not be observed even in an infinite physical realm. It also includes concepts 

corresponding to objects that do not exist physically, such as unicorns, concepts that cannot 

exist physically in our 3D space, such as a 5D object, and perhaps even definitionally 

impossible concepts such as square circles in Euclidian space. If all abstract objects are 

extracted from real world sensory data, how can CS arrive at such non-physical objects?  

A sufficiently sophisticated connectionist network could apply the principles in section 2 in a 

complex, differentiated, and well-sensed environment to produce many rich concepts based 

on repeated abstractions and associations from real world objects, but not necessarily the non-

physical ones listed here. For instance, we could arrive at concepts and linguistic labels for 

people, groups of people, common behaviours, events, outcomes, and so on, creating space 

for notions like leadership, justice, peace, and so on. However, it might be possible to encode 

such non-physical concepts if the section 2 information processing capabilities are combined 

with others, such as generalisation, directed creativity, and consistency-checking.  

An abstract object in a network is, like matrices in mathematics, both an entity (e.g. a 

particular typed structure of nodes & connections) and a rule-set for transforming inputs into 

outputs. In other words, they can encode transformations like “add one” as well as states like 

“being one”. In one sense they necessarily encode both simultaneously, but need not be 

operationalised in both senses simultaneously by the rest of the network.  

Generalisation, in the sense of extrapolation and interpolation, is a series of transformation 

rule-sets. For instance, seeing and interacting with many groups of 1,2,3,4, and more objects 

in the physical realm could drive the encoding of numbers and simple arithmetic in a 

sufficiently sophisticated network, leading to notions of quantity, continuous scales, and 

extensive properties. Later, we might observe a new set of physical realm objects that only 

occur in groups of 2 and 4. The abstract object corresponding to the “adding one” 

transformation can operate on the abstract object corresponding to the observation of these 

new physical objects to generalise them, i.e. creating new internal abstract objects that 

correspond to those objects appearing in groups of 3 and 5, even if this is unrealisable in the 

physical realm. The concept of countable infinity can likewise be encoded in combining the 

same transformation with a “never-stopping” abstract object, such as might trivially be 
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abstracted from physical realm observations like how a plan to exit at the first corner would 

never succeed when walking around a circular path. This is one of many ways the abstract 

object of infinity could be encoded in a finite network. 

Networks most easily derive abstract properties from multiple objects, some of which 

instantiate the property and some of which do not. As a result, it is reasonable to ask how a 

network could come to encode a property that only exists in one object. Direct identity 

relationships are straightforward, e.g. the property of "being the Eiffel Tower" as achieved via 

one-to-one encoding (A7 has an example relating abstract objects to unique sound inputs). 

Singular properties might also be encoded by applying transformations (encoded in the usual 

direct manner from diverse physical examples) onto other objects similarly derived to arrive 

at something that could not be directly derived. For instance, the mathematical property 

"having no elements" applies only to the empty set - "zero" of anything is hard to see directly. 

However, if positive integer counting and arithmetic transformations are derivable as above, 

then counting down from a positive integer can lead to the "set with no elements" concept. 

Connectionist networks are trivially capable of arbitrary free association. The toy model in 

the appendix can associate any input with any other input, just as different human languages 

can (in principle) arbitrarily assign the meaning of new words. As a result, felicitous mistakes 

in words and associations might lead to some concepts like unicorns which prove entertaining 

and hence persistent cultural products once they emerge. However, accidental mistakes alone 

feel an unsatisfying explanation for our full ability to generate new concepts. A fuller form of 

creativity might be possible with the brain drawing on internally manufactured or 

coincidental forms of “randomness” (in the sense of being sufficiently uncorrelated to the 

topic in question) to fuel a free associative process, directed by perceptions or generalisations 

of what might be entertaining or otherwise suitable for the goal at hand. 

Consistency-checking could be delivered once certain trained structures can be functionally 

locked in at a certain point. The appendix (A11) illustrates contradictory inputs encoded a 

specific pattern in a network, differentiable from inputs that are consistent with the locked 

structure. Experiencing multiple examples of contradictions and consistencies across different 

settings could lead to the encoding of an abstract rule-set object for checking the consistency 

of one object against another rule-set, i.e. in activating a particular output node structure. 

This paper does not need to claim that today's connectionist simulation models already have 

such capabilities. The extended claim is that CS principles might be sufficiently applied in the 

human brain to achieve such outcomes, as part of a more complex mechanism along with 

other brain features that might aid information processing, such as field effects (Jones, 2016) 

and wave harmonics (Atasoy et al., 2018), as well as implications for the connectionist rule-

set due to mechanics encoded in subneuronal structures, neurotransmitters, or others. The 

minimum claim requires none of the capabilities discussed in this subsection. 

3.5. Non-subjectivity of necessary truths 

Some researchers have a notion that certain truths, particularly mathematical facts, remain 

true even if we have not yet discovered them or even if there were no conscious agents 
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around to conceive of them. For instance, the infinitude of the primes or the number of times 

2 goes into 10. The fact that we can confidently assert some mathematical statements as 

wrong suggests some objective benchmark to measure against. However, the abstract objects 

in CS are (in a sense) subjective: they exist internal to – and are drawn on internally by - each 

cogitating agent that had both capability and cause to derive them. This objection is 

particularly relevant for the case against mathematical psychologism (e.g. Frege, 1884; 

Balaguer, 2023), rather than the physical-realm grounded properties that are the focus of this 

paper. As such, a full account goes beyond the scope of this paper, but an outline can be 

presented.  

First, we can observe that any statement in modern mathematics is never absolutely true in a 

standalone sense. A statement’s truth is typically evaluated relative to a set of accepted 

axioms or at least relative to certain intuitions5. Second, while many axioms are sufficiently 

intuitive that they do not generally face challenge or alternatives, not all of them are. Instead, 

mathematicians sometimes design different sets of axioms with attractive features that they 

choose to deploy in different circumstances (e.g. Feferman et al., 2000).  

A mathematical statement can be true in one set of axioms, false in another, and undecidable 

in a third (e.g. the Continuum Hypothesis under variants of ZFC set theory; see e.g. Cohen, 

2008). Rather than there being a single objective mathematical benchmark, it is more 

accurate to say there are several in use already and likely many more useful ones that might 

exist. Gödel’s two incompleteness theorems ensure the exploration of mathematics can never 

be a finished task, in that there will always be statements about natural numbers that are true 

but unprovable within the system and in that a system of axioms cannot demonstrate its own 

consistency (Smullyan, 1992). Even the fact that some mathematical statements may be true 

in all the current commonly-used sets of axioms does not guarantee they are true in all 

possible sets in the future. Mathematical objectivity is contingent and we do not invoke an 

ontologically fixed benchmark to assess it.  

In fact, in a Yoneda lemma’s sense (e.g. Riehl, 2017), mathematical objects are absolutely 

defined by their relationships with other mathematical objects. They are patterns, not 

substrates, just like the information encoded in CS-sense connectomes. When CS-sense 

abstract objects are described as subjective, it is with a specific meaning that can preserve 

much of the functionality objectivity that modern mathematics desires.  

Whether or not an abstract object is accessible to a particular person depends on whether they 

have encoded it in their connectome. In this sense, some abstract objects are accessible to 

some people and not to others (until they have been taught it) – they are subjectively 

accessible. But the whole point of CS is that all of these abstract object encodings have a 

physical existence. With the right measuring devices, we can observe the physical structure of 

any other person’s abstract encoding of redness, tracing its origin through the whole system, 

 
5  For instance, where non-axiomatic approaches are preferred, e.g. as reflecting certain mental activities 
within the practice of doing mathematics as potentially distinct from the discipline of formalising proofs. 
An extended form of CS would seek to account for how the human brain engages with abstract objects in 
doing mathematics, which may not always be exact parallel with axiom-first formalisation. 
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including from retinal cells whose physical structures confirm they would send a particular 

signal in response to light of a particular wavelength in a particular context. This is an 

objective exercise. Indeed, provided redness has been encoded in some information 

processing mechanism somewhere in the universe, there is an objective sense in which we 

can say it does exist.  

All abstract mathematical propositions that have been encoded in someone’s brain exist 

objectively. Some also happen to be “false” according to common axiom sets – which is no 

news to a maths teacher. Being false in this sense is no contradiction with existence. Maths 

can be made objective among a given set of humans in a very precise CS manner. First, have 

each target human’s connectome encode a set of axioms with sufficient effort that we are 

confident the axioms are isomorphically identical between humans for our given purposes. 

Second, have each target human agree on these axioms as the objectivity-measuring device 

for mathematical propositions. 

Under CS, different sets of mathematical axioms and propositions should be thought of as 

tools, like hammers or spanners. Just because a hammer is not accessible (within reach) of a 

particular person does not mean hammers do not exist. Did redness exist prior to it being 

encoded in the first information processing mechanism capable of doing so? No. But the 

potential for it did, encoded in independent, objective, external structures. Red physical realm 

objects existed, from which redness could in principle be consistently abstracted by senses 

attached to processing networks that share a general set of features. Likewise, there was a 

time on earth when hammers did not exist but the potential to assemble them did. “Hammer”-

ness as a predicate is itself a CS object: a mereologically complex pattern (with embedded 

human-specific instrumentality) that can be implemented in common physical substrates. 

What about the “unreasonable effectiveness” of maths in the natural sciences (Wigner, 1960)? 

Some positive propositions may be argued necessarily true of both the physical realm and a 

particular set of maths axioms. In the former, we can never be 100% certain of them (even if 

can be certain enough for practical purposes), as argued by various well-known sceptical 

arguments such as Popper’s anti-verificationism (Popper, 1935) or doubt-fuelling thought 

experiments that are hard to rule out entirely (Sinnott-Armstrong, 2004). In the latter, we can 

be 100% certain of them in principle within those axioms, since we have full visibility of 

them. However, as a trivial result of the first claim, we can never be 100% certain that any 

apparent isomorphism between mathematical structures and the physical realm captures the 

full structure of the physical realm. We can, nonetheless, choose to keep refining maths 

variants that better match what we see in the physical realm and choose to have sufficient 

faith in the isomorphism to make predictions or take actions accordingly.  

 

4. Is my red the same as your red? 

In a CS framework, there are specific observable spatiotemporal objects that correspond to 

abstract objects like redness. In each human who knows this concept, the object is a series of 

derived connections in the brain, most likely in a neural network of some sort. Since there is 
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one in your brain and one in mine, we can arrive at disciplined objective ways to consider 

whether yours and mine are the same.  

A hierarchy of sameness can be organised in approximately four layers of alignment: (1) core 

concept; (2) associations; (3) network structure; and (4) all possible properties. Right up until 

the top of layer (4), it is technically possible for your red to be exactly the same as my red, 

but it becomes unlikely and challenging to confirm early in layer 1. None of this prevents us 

having, or working to reach, a level of semantic similarity along those layers that is sufficient 

for a particular purpose, such as agreeing on a colour for a new carpet.  

For phenomenal sameness, we would additionally need to assume we have the same 

consciousness-generating mechanism that experiences given semantic contents in the same 

way, an assumption that physicalist consciousness theorists may consider plausible (see 2.4). 

Having made that assumption, it may be that there is a midway level of semantic similarity 

within the layers that is sufficient for indistinguishable phenomenal experiences between 

people - perhaps (1) and (2) alone suffice, perhaps a subset of (3) is also necessary – but 

exploring this lies beyond the current scope. 

In layer one, our core concept of redness can be considered aligned if we both consistently 

communicate that redness is present in response to a sequence of candidate red-coloured 

physical realm objects. However, this quickly becomes unlikely as colours exist along very 

finely graded spectra and we may not exactly agree when orangey-red becomes orange. One 

resolution to this is to agree on only specific wavelengths to mean red. However, the 

perception of redness is not entirely reducible to wavelengths, as shown inter alia by colour 

contrast, inferred lighting, and texture optical illusions (e.g. Gomez-Villa et al., 2020; Shapiro 

& Todorović, 2017). Since it is at least impractical to test every possible combination of 

wavelength and context that might matter for perception, we are unlikely to prove our core 

concepts are exactly aligned. However, within this layer, it remains plausible that steps could 

be taken such that they happen to be exactly aligned for at least some narrow core concepts 

like redness, even if we could never know it for certain. 

The second layer considers the arbitrary associations networks can make. Our concepts of 

redness can be considered more similar if they have the same associations. For instance, a 

monolingual French speaker associates a different sound to redness than a monolingual 

Chinese speaker. It would not take much to align such linguistic differences. Unfortunately, 

the brain can encode so many different associations from its historical experiences, that any 

abstract object would typically become heavily-laden with associations, even if we are 

capable of semantically separating many of these for discussions about the core concept. For 

you and me to have the same emotional response to redness, we also need the exact balance 

of evoked notions of forbidding, slowing, fire, love, and anger, for instance, which would 

likely require us to have had identical histories – implausible in most cases. Nonetheless, the 

encodings all exist in cerebro and are, in principle, examinable with enough technology. 

Thirdly, we might want our CS objects to have the same pattern of nodes and edges within 

their network structure. While it may not take much for the objects individually to have the 

same structure, we also want them to have the same interconnections and relative positions 
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with respect to the full connectome. As such, layer 2 could be fully met without layer 3 being 

met. Given genetic and environmental variation, and the sheer size of our connectomes, 

meeting the full extent of layer 3 may be possible in principle but deeply improbable. 

Finally, in layer 4, we ask for all possible properties to be shared. In a trivial sense and 

definitionally, our redness objects are different in that they necessarily occupy different parts 

of space-time (their properties of location and specific constituents are not shared). Under 

CS, the absolute sameness of your concept of redness and mine is nomologically out of reach, 

even though we might discuss them happily and productively.  

 

Conclusion 

This paper has proposed “Connectionist Structuralism” (CS) as an account of the ontology of 

abstract objects. CS proposes that each abstract object a human being can draw on 

corresponds to a particular subset of their brain structure whose functionality is isomorphic to 

the relevant nodes and connections in a suitable connectionist network. The paper’s minimum 

claim is that this proposal can account for all abstract object predicables of the type “is red” 

or “is a square”, i.e. sensible properties. The extended claim is that the same core principles 

can also account for other abstract objects, where only the outline of a supporting account is 

sketched in the current paper. The paper has described how CS can support our core cognitive 

uses of abstract objects and account for our core phenomenal experiences of them. The 

outline of a response is provided to five common philosophical objections, to form the basis 

of future research establishing the position more comprehensively.  

Future work could formalise the CS response in the context of challenges directed 

specifically to the use of abstract objects in a formal language or grammar, including issues 

around intensionalism (e.g. Yli-Vakkuri & Hawthorne, 2022). For instance, CS does not have 

to make the assumption of some other nominalist accounts that only first order logics can be 

allowed. By permitting certain second order logics CS can tolerate a broader range of 

potentially semantic statements, at the cost of some of the completeness desired by some 

logic theorists. Future work could also extend the CS account to a broader range of abstract 

objects to situate it within the mathematical fictionalism literature (Field, 2016), including 

issues around non-constructive proofs and Kripke’s plus vs quus (e.g. Warren, 2020), within 

indispensability argument schemas (Panza & Sereni, 2016), and within relevant theories of 

consciousness and representation.  

Future work could also test the account in a human setting in several ways. Most easily and 

ethically, phenomenological predictions could be derived in a structured manner from 

networks that approximate aspects of the human brain for testing across actual 

phenomenological accounts (examples in §2.4). It may also be possible to create learning 

environments in which abstract objects come to have an unusual phenomenology as predicted 

possible within CS, such as feeling tangible or located. Finally, the kind of brain mapping and 

manipulation already begun in many studies and discussed in Gómez-Emillson and Percy 

(2023) could unlock lab experiments where abstract objects can be found and altered, testing 

subsequent objectively-measured capabilities and phenomenal reports from patients. 
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Appendix 

This appendix sets up and describes the results of a simple, fully local, self-supervised 

Hebbian network system, called CS1 for this example. The system encodes, in a CS sense, 

the abstract objects corresponding to two colours and two types, associating words and 

images with unique subsets of connections such that words alone evoke their images and vice 

versa.  

A1. System set-up and notation 

There are input and internal nodes for this example, with each being activated (valued 1) or 

deactivated (valued 0) at a particular point in time. Each individual connection joins exactly 

two nodes, but each node can have multiple connections. Connections can also be deactivated 

(valued 0) or activated (valued 1) at a point in time. The network system, in terms of the 

edges and nodes that exists, is fixed throughout. There are 68 nodes and 118 edges in the full 

structure (mapped in Figure 1), introduced in stages below to aid following the process. The 

state of the system at any point in time is a list of which nodes and connections are activated.  

Unique nodes (circles in the fig. 1) are denoted with a single capital letter followed by a 

subscript number and, for the direct sensory input columns, additionally with a preceding 

superscript number (denoting depth of exact copies of input data – see below), e.g. 1Z1 or X1. 

If no subscript is used, all nodes of that letter (and superscript if included) are indicated. 

Connections (single- or double-ended arrow lines in fig. 1),  are denoted by the two nodes 

they join, using lower case letters, e.g. z1x1.  

A2. Node and edge activation 

Three types of connection exist within the network:  

• “Fixed edges” are always one way and always convey a strength of 1 to their end 

node when their start node activates. These activations and conveyances are 

functionally instantaneous from the perspective of the model.  

• “Oneway trainable edges” are all initialised as “untrained”, but can become “trained” 

instantly if their start and end nodes fire independently. Once trained, they stay 

trained. In their untrained state, they cannot activate. In their trained state, they can 

activate only if their start node is active, in which case they convey a strength of 1 to 

the end node (in the direction of the arrow in fig. 1). Edge and any subsequent node 

activation requires one time-step. 

• “Twoway trainable edges” are the same but can convey their strength (either 1 or) 2 in 

either direction, i.e. either node can then convey the stimulus strength to the other 

node once the edge is trained.  

Input nodes become active based on some external stimulus, such as an inward connection 

from a sense organ. Input nodes are the first layer of a network (layer 0). To aid notation, all 

input nodes and their exact successor nodes have a preceding superscript denoting their 

depth, defined as the minimum number of connections required to reach the input node. 

Similarly to aid notation, input nodes are grouped by the sensory mechanism activating them.  
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• This example has two sets of sensory mechanisms: visual (entering pixel inputs to the 

network via 4 0V nodes) and auditory (entering sound inputs  via 4 0A nodes).  

• In this set-up, the raw input data are processed in a range of different ways, each 

starting from the raw data. As a result, the sensory mechanisms transmit identical 

signals down to four layers in the network along fixed edges in two columns: 1V-4V 

and 1A-4A, e.g. 0V1 has a fixed edge out to  1V1, which in turn has a fixed edge to 2V1.  

Internal nodes become activated if the intensity of their inward connections, aggregated 

according to a defined function, exceeds a pre-specified and fixed activation threshold. In this 

case, all nodes have an activation threshold of 1 except P and B which have a threshold of 2. 

As an aside, output nodes operate the same as internal nodes but their outward connections 

activate some external mechanism, such as a motor action or decision output. This model 

contains no output nodes, as none are needed for the phenomena to be demonstrated, but they 

could be added trivially to operate off any subset of the nodes and edges in the model in an 

extended setup. For instance, a single output node with inbound connections from all the 

desired set of xy edges and/or X Y nodes is set up to fire only when all of xy, X and/or Y are 

activated. All possible single output node variants could be present in the initial structure, 

with frequency and utility based rules driving selection and pruning, where utility levels 

could be defined by some set of internal network states. Other options are possible and more 

natural, but a full treatment lies outside the scope of this paper.  

A3. Deactivation rules 

Nodes remain in an activated state until explicitly deactivated. Any initial input node 

activation triggers an internal timing mechanism, implemented in the substrate of the overall 

mechanism, that allows network activity for one timestep and then deactivates all nodes and 

edges in the second timestep. In other words, nodes may both fire instantly via fixed edges 

and after one timestep via trained edges, before the network is reset. 

A4. Stability 

The network system, in terms of edges and nodes, is fixed throughout, but as inputs are 

received and transmit through the network, the set of edges that are trained can change, which 

can alter the response of the network to future inputs. The system state at any given time is a 

list of which nodes and edges are activated. The “trained structure” at a point in time can be 

fully captured by the list of trained edges. The system is stable if there is no possible 

combination of input node activations that would trigger a cascade of states that further 

changes the trained structure.  

This particular example has been designed to stabilised rapidly without path dependence, i.e. 

all possible sequences of input stimuli lead to the same stable trained structure. Since the 

network iterates only for 1 timestep per input state and trainable edges always take 1 timestep 

to fire, an edge can only ever be trained when both nodes are activated via fixed edges, which 

only occurs for direct input node information transmission. Because all combinations of input 

states occur eventually (A5), we also know that all possible such edges end up trained in the 

stable state, the only difference is the order they are trained in. 
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Fig. 1 CS1 model structure 
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differentiate node groups in direct sensory columns)

• xjyk = edge for two upper-case equivalent nodes  

(fixed/trained edges convey strength of 1 by default; 

or 2 if marked with a 2; untrained edges convey 0)

Input node
0V1-4

1V1-4

2V1-4

3V1-4

4V1-4

2

2

2

P1-2

Q1-4

R1-4

S1-4

0A1-4

1A1-4

2A1-4

3A1-4

4A1-4

2

2

2

B1-2

C1-4

D1-4

E1-4

Each of E

connected to 

each of S

(16 edges)

Each of R 

connected to 

each of D

(16 edges)
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A5. Toy universe set-up 

The external environment to the CS1 system contains four active world state variants with 

both image and sound (1. blue square, 2. red square, 3. blue rectangle, 4. red rectangle), as 

well as eight variants for sound without image and image without sound. There is a default 

blank world state where none of the CS1 input nodes would fire, labelled 0. Only one variant 

may be displayed at any one time and for only one timestep. There is then a pause of one or 

more timesteps before the next state can occur, ensuring CS1 is fully deactivated at the start 

of each variant-sensing session. The 12 active variants and the blank state may nonetheless 

appear in any order and any number of times, including repetitions, provided each of 1-4 is 

displayed at least once, ensuring CS1 becomes stable from that point onwards. 

CS1’s eight input nodes always respond consistently to the relevant world state, according to 

the rules in Table 1. Relative to the speed of operations in the model, the image display, 

sound sequence, and their perceptions via the input systems are all functionally instantaneous. 

The squares are one pixel large and always appear in the location corresponding to the first 

pixel in the visual system. The rectangles are all two pixels large and always appear in the 

location corresponding to the first and second pixels combined. 

Table 1. Environment states and input node responses 

 Environment state Visual system – 2 pixel input; 2 input 

nodes per pixel, which fire if they 

sense red or blue respectively in that 

pixel 

Auditory system – 4 input nodes 

which fire if they hear blue, red, 

square, or rectangle respectively 

# Image Sound 0V1 
0V2 

0V3 
0V4 

0A1 
0A2 

0A3 
0A4 

0   0 0 0 0 0 0 0 0 

1  Blue square 1 0 0 0 1 0 1 0 

2  Red square 0 1 0 0 0 1 1 0 

3  Blue rectangle 1 0 1 0 1 0 0 1 

4  Red rectangle 0 1 0 1 0 1 0 1 

* States 5-8 are images without sounds (V activates as above; A is all 0s); 9-12 are sounds without images (A activates as 

above; V is all 0s). 

A6. Layer 1: Encoding shape from visual input  

Four fixed edges convey activations of strength 1 each outward from 1V into a single node P1, 

with a further identical four fixed edges connected to an identical single node P2. P nodes 

have an activation threshold of 2 and a twoway trainable edge between them that conveys a 

strength of 2 once trained.  

As can be seen in Table 1, P1 and P2 activate and train their connecting edge only when 

images of rectangleness are present, i.e. only in states 3, 4, 7, & 8, as in all other states only 

one input node is activated and P do not exceed their activation threshold. The trained edge 

p1p2 encodes rectangleness in line with the P1 definition, with squareness delivered by the 

inverse.  

A symmetrical structure exists for the auditory column, which encodes “any active sound 

state”, i.e. it activates when any of 1-4 or 9-12 occurs. This particular example has no further 

need of this pattern, but such nodes can be useful for other types of information processing.  
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A7. Layer 2: Encoding colour based on visual input alone 

Four fixed edges connect 2V into four nodes Q1-4. Q is fully interconnected with six twoway 

trainable edges that convey a strength of 1 once trained. Following the logic of A4, reading 

off table 1 for the equivalent V nodes shows only two of the Q edges will become trained: 

q1q3 from state 3 or 7; q2q4 from state 4 or 8. Table 2 shows how the stable end-state of Q 

responds to each of the four unique active input states in the visual column. As can be seen, 

the full subsystem displayed is cleanly separated between blue and red input states, using pale 

colour shading as a visual aid. Blueness is encoded in the trained edge q1q3; redness in q2q4.  

Table 2. Environment states and Q subsystem responses in stable state [iv] 

 Environment state Q nodes 

(fully interconnected) 

Trained twoway edges Untrained twoway edges 

(will never fire, shown as visual aid)  

# Image Sound Q1 Q2 Q3 Q4 q1q3 q2q4 q1q2 q1q4 q2q3
 q3q4

 

1  Blue square 1  1  1      

2  Red square  1  1  1     

3  Blue rectangle 1  1  1      

4  Red rectangle  1  1  1     
* 0s left blank for ease of reading.  

The auditory column has a symmetrical structure, C. C has a stable set of four trained edges, 

of which a unique combination of three is activated in response to each one of the state inputs 

1-4. C is not needed further in this example but may be useful in other settings.  

A8. Layers 3 & 4: Associating colour and sound  

Layer 3 is made up of R and D, as four-node duplications via four fixed edges of 3V and 3A 

respectively, such that 3Vi drives Ri etc. R and D are fully connected via 16 oneway trainable 

edges, pointing from R towards D. There are no R-to-R or D-to-D edges. The stable state of 

trained edges can be read off from the equivalent Table 1 pairs: r1d1, r1d3, r2d2, r2d3, r3d1, r3d4, 

r1d4, r2d4, r4d2, and r4d4. Layer 4 of S and E is the same as layer 3, except the 16 oneway 

trainable edges now point from E (off the auditory column) towards S (off the visual 

column). The trained edges are the same as layer 3, except replacing r with s and d with e.  

The edge activation map for all possible world states and several hypothetical states is shown 

in Table 3 and node activations in Table 4. As marked with the pale blue/red shading and 

black-outline rectangles, we can see unique sets of edges which uniquely identify the 

necessary properties and categories, when both sound and images are input (states 1-4). 

Blueness is r1d1 s1e1 (r3d1 s3e1 nearly qualifies but for the absent activation in state 5) . Redness 

is r2d2 s2e2 (r4d2  s4e2 would qualify but for state 6). Rectangleness is r3d4 s3e4 r4d4 s4e4, and 

squareness by its inverse. These edges also activate when just the sound is heard or just the 

image is seen in real world states. The feature activations carry across with only mixed 

success to the hypothetical states. For instance, r1d1 & s1e1 fail to activate in state 17. Visual 

colour is encoded via the first pixel only, which works in all actual world states but not all 

imaginable states. As originally, the network is not designed to deliver perfect generalisation.  

The edges connect to and activate nodes with an intimate relationship to the relevant original 

sound and image inputs, such that the sound “evokes” the image and vice versa, as illustrated 
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in the example of D2. D2 can only activate (see Table 4) if at least one of the following three 

things happen: if the word red is heard, if a red square is seen, or if a red rectangle is seen. 

Only the first of these is linked solely via fixed edges from a sense input (0A2), the others 

occur due to the set of trained edges above. However, D2 does not activate 0A2, which 

responds only to actual sounds in the world state. Hence, the right sound processing node is 

evoked by images alone but not as vividly in a total network information sense as if it is 

actually heard. Moreover, when it is actually heard, the sound activates the relevant nodes 

down the full A column, whereas it only appears in one layer of A when evoked (layer 3). 

Table 3. Trained edge activation by input states in layers 3 & 4  

# Image Sound r1d1 

s1e1 

 r1d3  

s1e3 

 r2d2  

s2e2 

 r2d3  

s2e3 

 r3d1  

s3e1 

 r3d4  

s3e4 

 r1d4  

s1e4 

 r2d4  

s2e4 

 r4d2  

s4e2
 

r4d4 

s4e4
 

# 

live 

1  Blue square 
1 1  1 1  1    5 

2  Red square 
 1 1 1    1 1  5 

3  Blue rectangle 
1 1   1 1 1 1  1 7 

4  Red rectangle 
  1 1  1 1 1 1 1 7 

5   
1 1     1    3 

6   
  1 1    1   3 

7   
1 1   1 1 1    5 

8   
  1 1    1 1 1 5 

9  Blue square 
1 1  1 1      4 

10  Red square 
 1 1 1     1  4 

11  Blue rectangle 
1    1 1 1 1  1 6 

12  Red rectangle 
  1   1 1 1 1 1 6 

Hypothetical states (do not exist in the world states) 

13  Blue 
1    1      2 

14  Red 
  1      1  2 

15  Square 
 1  1       2 

16  Rectangle 
     1 1 1  1 4 

17   
    1 1     2 

18   
        1 1 2 

19  Blue square 
1 1 1 1 1   1   6 

20  Blue rectangle 
1  1 1 1 1 1 1  1 8 

* 0s left blank for ease of reading; stable state untrained edges will never fire so can be excluded. 

The discussion so far is sufficient to motivate a worked example that delivers on the 

capabilities claimed in P2. However, there are further interesting structures in the trained 

network, which build intuition and provide further examples for P6 and P7.  

A9. Additional structure: Number of activations  

From the last column of tables 3 and 4 and a definition of intensity from the perspective of 

the network as increased nodes or edges activated, we see that any increase in input node 

activation, holding other inputs fixed, leads to increased intensity, not just trivially in the A 

and V columns, but also in the internal trained edges.  

Rectangles evoke more activations than other inputs. For states involving images, this is 

expected, since it corresponds to two activated pixels as differentiated from one activation for 
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squares. However, this increased intensity carries over even when just the sound is heard, 

even though sounds have the same input intensity (2 per layer, as in Table 1). This occurs 

because the network structure encodes cross-associations, so some of the sound-related edges 

encode the image-related size of rectangles.  

In extreme cases or for overly-connected, poorly parameterised networks, the mutual 

activation of many nodes (runaway excitation) or too many weights having extreme values 

(network saturation) can mean a network loses the ability to produce differential states on 

differential inputs, either in its activations or in its plasticity, e.g. when the whole network 

fires at once. In the above intensity sense, this might resonate with human notions of certain 

sensory overload or epileptic seizure experiences. In simulation networks, techniques like 

normalisation, inhibitory edges, and anti-Hebbian learning rules are used to prevent this 

dysfunctional outcome.  

Table 4. Node activation by input states in layers 3 & 4  

   

  

Visual column: 
X = fired due to auditory column alone, i.e. 

cross-fired via a oneway trained edge 

Auditory column: 
X = fired due to visual column alone, i.e. 

cross-fired via a oneway trained edge
 

# 

live 

in 

S&D # Image Sound 

Vany Aany 

S1 

=p1 bl. 

S2 

=p1 rd. 

S3 

=p2 bl. 

S4 

=p2 rd. 

D1 

=blue 

D2 

=red 

D3 

=sq.
 

D4 

=rect.
 

1  Blue square 
1 1 1 X X  1  1 X 6 

2  Red square 
1 1 X 1  X  1 1 X 6 

3  Blue rectangle 
1 1 1 X 1 X 1  X 1 7 

4  Red rectangle 
1 1 X 1 X 1  1 X 1 7 

5   
1  1    X  X X 4 

6   
1   1    X X X 4 

7   
1  1  1  X  X X 5 

8   
1   1  1  X X X 5 

9  Blue square 
 1 X X X  1  1  5 

10  Red square 
 1 X X  X  1 1  5 

11  Blue rectangle 
 1 X X X X 1   1 6 

12  Red rectangle 
 1 X X X X  1  1 6 

Hypothetical states 

13  Blue 
 1 X  X  1    3 

14  Red 
 1  X  X  1   3 

15  Square 
 1 X X     1  3 

16  Rectangle 
 1 X X X X    1 5 

17   
1    1  X   X 3 

18   
1     1  X  X 3 

19  Blue square 
1 1 X 1 X  1 X 1 X 7 

20  Blue rectangle 
1 1 X 1 X X 1 X X 1 8 

* Excl. fixed edge activated only nodes, since responses unchanged between initialisation and stable system states. 0s left 

blank for ease of reading 

A10. Additional structure: Negative squareness 

As seen earlier, squareness is only uniquely identified by the absence of activated edges, 

unlike the other three abstract objects encoded in this layer. This negative encoding reflects 

the reality of this toy universe: there are no active images in the world states without the 
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square component. This is not a concern for utility. If a larger network wanted to 

operationalise squareness explicitly, inhibitory neurons could be included in its architecture to 

construct positive activations from absent inputs. However, there is more to explore. 

In English, squareness and rectangleness denote a more specific set of properties than they do 

in the toy universe. Rectangleness most directly “adds a second pixel”, which could have 

several interpretations in a more sophisticated universe. It can turn certain squares into 

rectangles, i.e. its original motivation here, but it also “adds one to one to make two” (but 

encodes no other insights about arithmetic). In this case, it also implies “the shape of (all) 

rectangles fully contains the shape of (all) squares” - this is a fact about the toy universe that 

is true only in some cases in our universe. The words, however, do not encode this 

hierarchical relationship. The sound inputs cleanly separate rectangles from squares. As a 

result, when sounds alone are heard (states 9-12), the trained edge response more cleanly 

separates rectangleness from squareness and vice versa (see grey-outline shapes added to 

table 3), with such additional separations only valid when comparing sounds-alone against 

sounds-alone, i.e. in isolation from other possible state-responses.  

When images alone are heard, the association between image and rectangle results in some 

edges activating for rectangle inputs that do not meet this clean separation criteria, notably  

r3d1 & s3e1 in state 7 (blue rectangle image alone) and r4d2 & s4e2 in state 8 (red rectangle 

image alone). However, it is reasonable to ask which is nearer to the truth of the toy universe. 

The separation may be “cleaner” in the auditory inputs, but at the cost of discarding some 

information encoded in the messier structure of the external world states.  

When both images and sounds are perceived at the same time, this effect multiplies. We can 

define a contaminated edge as an activated edge in a particular world state that, if it were 

deactivated, would result in a clean separation of either shape or colour. Each of the world 

states 1-4 has exactly one contaminated RD & SE edge-pair for shape and one for colour, 

which can be seen by examining table 3. For instance, for blue square, r1d4 & s1e4 

contaminate otherwise clean shape separation. However, the network is robust to this 

contamination: other trained edges were already sufficient to encode the abstract objects of 

interest (A8). In a more sophisticated set-up, more diverse world states and a larger network 

with more sensitive sense organs could differentiate these structural elements. 

A11. Additional structure: Contradictory inputs 

Hypothetical states 19 and 20, not available for system training since they do not exist in the 

world states, show the stable system response if a red image accompanies a blue word: cross-

activation of contradictory colours. Such cross-activation is not in itself a problem or a 

failure; the network is simply mechanically triggering nodes in response to inputs. As with 

elsewhere, output nodes could be run off such system states to trigger action to do something, 

such as investigate the contradiction. However, if the model were still open to training, the 

cross-activation would learn new nodes and break the separation of property encoding shown 

so far. Such issues are often mitigated in more sophisticated simulations by using gradual, 

frequency-based training and allowing for edge weakening, assuming that correct 

associations will be more frequently encountered. 


