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How should my degrees of credence in propositions about objective
chances interact with my degrees of credence in other propositions?
David Lewis (1980) formulated a precise answer. He called it the “Princi-
pal Principle.” And he took it to specify the role that a feature of the world
must play if it is to count as chance. However, he also argued that the
chances delivered by his best-system analysis of laws and chances could
not possibly play the roles required of them by the Principal Principle: the
Principal Principle is inconsistent with the best-system analysis. Later,
Lewis (1994) came to accept a slightly different precise answer to the
question. This is Michael Thau’s and Ned Hall’s amendment to the Prin-
cipal Principle, which is known as the New Principle (Hall 1994; Thau
1994; Joyce 2007). The best-system analysis is consistent with the New
Principle. Later still, Jenann Ismael (2008) proposed an alternative
amendment to the Principal Principle, which she called the “Generalized
Principal Principle.” Ismael’s principle is also consistent with the best-
system analysis.

The large literature that has grown up around these proposals
includes a number of different and illuminating arguments in their
favor, as well as subtle improvements in their formulation. However, no
attempt has been made to give them a formal justification. That is, there
has been no attempt to deduce any chance-credence norm from more
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fundamental epistemic principles that have been formulated with math-
ematical precision. This is notable since such justifications abound in the
case of probabilism, the fundamental norm of degrees of credence: in
that case, we have the Dutch Book Theorem, the Representation Theo-
rems, the Calibration Theorems, and Cox’s Theorem, to name the most
prominent. In this article, I aim to fill this gap and give a formal jus-
tification of the chance-credence norms by adapting an argument for
probabilism developed by Jim Joyce (1998). In Joyce’s argument, the
fundamental epistemic principles from which probabilism is deduced
concern how we should measure the inaccuracy of a set of credences at
a world, that is, how far those credences lie from the correct or vindicated

credences. Probabilism is then deduced from the characterization of
these inaccuracy measures together with the claim (roughly) that it is
irrational to have a set of credences if there is another set that is more
accurate however the world turns out. As we will see, using the adaptation
of Joyce’s argument that I will describe here, if we begin from different
accounts of what chances are, the argument can be used to justify the
Principal Principle, the New Principle, or the Generalized Principal Prin-
ciple. I do not take a stand on which account of chance is more plausible
in this article. My concern is with the norms that follow from different
accounts. Thus, what is offered here is not a full justification of any single
chance-credence norm. Rather, a strategy is offered that allows us to jus-
tify a particular chance-credence norm once the metaphysics of chance
has been settled.

It is notable that the strategy offered here for justifying chance-
credence norms is available equally to the nonreductionist and the reduc-
tionist about chance.1 After all, Lewis maintained that only the reduc-
tionist could possibly establish chance-credence norms. He maintained
that if a feature of the world could not be reduced to some nonmodal
feature, then knowledge of that feature could not constrain our creden-
ces in the way demanded by the chance-credence norms (Lewis 1994,
484).2 One of the consequences of the strategy for justifying chance-
credence norms described here is that this is mistaken.

1. As I will use the terminology here, a reductionist holds that objective chances are
reducible to a nonmodal feature of the world; a nonreductionist holds that they are not.

2. Lewis’s argument is reminiscent of Mackie’s famous argument that if values were
to exist as an objective feature of the world, they could not be such that knowledge of them
would motivate action in the way that knowledge of values does (Mackie 1977, 29ff.).
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Another attraction of the present approach is that it reveals exactly
which account of chance is required to justify which chance-credence
norm. This is one of the strengths of any formal justification of an epi-
stemic norm: it reveals the precise underlying assumptions required by
different but closely related versions of a given norm, and thus it allows us
to adjudicate between them.

In section 1, I describe the Principal Principle and its variants. I
then describe Joyce’s justification of the norm of probabilism (sections 3
and 4) and show how it may be adapted to justify the chance-credence
norms discussed in the first section (section 5). In section 6, I consider
objections to this argument, and in section 7, I conclude by considering
one way in which the argument might be extended to justify other closely
related norms. The appendix gives the proofs of the key theorems.

1. Chance-Credence Norms

Suppose I am at the beginning of my epistemic life. That is, I have accu-
mulated no evidence. In this situation, how strongly should I believe that
a given future coin toss will come up heads conditional on the prop-
osition that the objective chance that it will come up heads is 0.7? Intu-
itively: I should believe it to degree 0.7. More generally, suppose Cch is the
proposition that the objective chances are given by the particular func-
tion ch —where ‘ch ’ rigidly designates a particular function. Then it
seems plausible that my initial degree of credence in a given proposition
A conditional on Cch should be chðAÞ. This gives us

Miller’s Principle (MP): An agent ought to have an initial credence func-

tion b such that, for all possible initial chance functions ch and all prop-

ositions A ,

bðA jCchÞ ¼ chðAÞ

providing bðCchÞ . 0.

Following Lewis (1980, 267), and heeding the recent salutary reminder
from Chris Meacham (2010), I will talk throughout of norms that govern
an agent’s initial or ur -credence function: that is, the agent’s credence
function at the beginning of his or her epistemic life, prior to accumu-
lating any evidence; the function upon which he or she conditionalizes as
he or she collects evidence. Moreover, I will state those norms in terms of
so-called initial or ur - chance functions (see, for example, Hall 2004, 95):
that is, the chance function at the beginning of a world’s history; the
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function upon which we conditionalize with entire histories up to time t

in order to give the chance function at time t . As Meacham has decisively
shown, only by doing this do we avoid inconsistency. I will drop the ‘ini-
tial’ and ‘ur-’ qualifications henceforth, except in the official statement of
the norms, where it is worth reminding ourselves of precisely what they
say. Interestingly, returning to Lewis’s original focus on initial credence
functions also saves my strategy for justifying the chance-credence norms
from a recent objection raised against Joyce’s justification of probabilism
by Branden Fitelson and Kenny Easwaran. But more of this below
(section 6).

(MP) captures an important intuition about the connection be-
tween initial chances and initial credences: we ought to defer to those
chances in setting those credences. But it is not clear that it covers all
situations in which we think such deference is appropriate. For instance,
my degree of credence that the coin will land heads conditional on the
proposition that its chance of landing heads is 0.7 and conditional on the
proposition that it rained yesterday in Edinburgh should also be 0.7. That
is, the evidence concerning the chance of heads “screens off” or “trumps”
the evidence concerning yesterday’s rain in Edinburgh—that is, it ren-
ders it irrelevant. But it is clear that not all evidence has this feature. For
instance, if E entails A , then the chances cannot “screen off” E : in this
case, my degree of credence in A conditional on Cch and conditional on E

ought to be 1, not chðAÞ. Lewis intended his Principal Principle to gen-
eralize (MP) by identifying all cases in which an agent ought to defer to
the objective chances. To do this, he needed to identify which pieces of
evidence are “screened off” or “trumped” by chance and which are not.
Lewis’s answer is that it is the admissible evidence that is “screened off” by
chance, where evidence E is admissible for a proposition A if it gives no
information about the truth of A that does not go through the chance of
A . Thus, A is clearly inadmissible for A , as is any E that entails A ; and a
tautologous proposition is clearly admissible for any proposition. But
there are other, stronger sorts of admissible evidence as well. For instance,
Lewis (1980, 275) held that all propositions concerning the past are ad-
missible for propositions concerning the present or future, as are so-
called history-to-chance conditionals. Using this notion, he formulated
his chance-credence norm:
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Principal Principle (PP): An agent ought to have an initial credence func-

tion b such that, for all possible initial chance functions ch and all prop-

ositions A and E , if E is admissible for A ,

bðA jCch ^ EÞ ¼ chðAÞ

providing bðCch ^ EÞ . 0.

Lewis never gave a mathematically precise account of the admissibility
condition. But in this article, I seek a mathematically precise justification
of chance-credence norms, so I require equally precise formulations of
those norms. Fortunately, it turns out that Miller’s Principle already
entails the requisite formulation (see, for example, Bogdan 1984):3

Levi’s Principal Principle (LPP): An agent ought to have a credence func-

tion b such that, for all possible chance functions ch and all propositions A

and E , if E and A are stochastically independent according to ch (that is,

chðA jEÞ ¼ chðAÞ),

bðA jCch ^ EÞ ¼ chðAÞ

providing bðCch ^ EÞ . 0.4

(MP) and (LPP) both run into problems in the presence of two further
assumptions. The first assumption is probabilism (Prob), the norm that
says that an agent’s credence function ought to be a probability function.
The second assumption involves an objective chance function ch that is
self-undermining in the following sense: ch is not certain that it gives the

3. Proof . Suppose b satisfies (MP). Then

bðA jCch ^EÞ¼
bðA ^Cch ^EÞ

bðCch ^EÞ
¼

bðA ^E jCchÞbðCchÞ

bðE jCchÞbðCchÞ
¼

bðA ^E jCchÞ

bðE jCchÞ
¼

chðA ^EÞ

chðEÞ
¼ chðA jEÞ:

4. Those familiar with Lewis 1980 may wonder how (MP), (PP), and (LPP) relate
to Lewis’s second formulation of the Principal Principle in that paper: bðA j
Tw ^ HtwÞ ¼ chtw ðAÞ, for any world w and time t , where Tw is the conjunction of history-
to-chance conditionals that hold at w, Htw is the history of w up to t , and chtw is the
objective chance function of w at t . The answer is that, on one natural way of translating
this formulation into the framework we adopt here, (MP) entails this chance-credence
norm. In our framework, the conjunction of history-to-chance conditionals that hold
at a world w —or what Lewis calls the “complete theory of chance” for w —is expressed
by the proposition Cchw , where chw is the ur-chance function at w. Cchw says that the ur-
chances are given by chw. Thus, it entails that the chances at time t are given by
chtwð�Þ U chwð� jHtw Þ, if Htw is the history up to t . Thus, Lewis’s reformulation of the
Principal Principle becomes: bðA jCchw

^ HtwÞ ¼ chtwðAÞ ¼ chwðA jHtw Þ, which follows from
(MP) by the proof in note 3.
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objective chances; in symbols, chðCchÞ , 1. Now, suppose that b is the
credence function of a rational agent and suppose that this agent has a
nonzero credence in the proposition Cch that the objective chances are
given by ch , where ch is self-undermining: that is, bðCchÞ . 0 and
chðCchÞ , 1. Then, on the one hand, (MP) demands that bðCch jCchÞ ¼

chðCchÞ , 1, since ch is self-undermining. And on the other hand, (Prob)
demands that bðCch jCchÞ ¼ 1, since (Prob) demands bðA jAÞ ¼ 1 for
every A such that bðAÞ . 0. That is, (Prob) and (MP) make incompatible
demands on any agent who does not completely rule out the possibility of
self-undermining chance functions.

Of course, one might be tempted to respond to this problem by
claiming that self-undermining chance functions are impossible in some
sense, and thus that it is a rational constraint on an agent that he or she
assign zero degree of credence to Cch whenever ch is self-undermining. If
we do this, then the conflict between (Prob) and (MP) is removed, since
an agent on whom they make incompatible demands is already ruled out
as irrational by this further rational constraint. Unfortunately, this re-
sponse is available only on certain philosophical accounts of objective
chance.

Take, for instance, an actual frequentist account of chance. On
this account, roughly, the chance of a given event is the actual relative
frequency with which events like that event occur. Now consider a world
that contains nothing but a coin that is flipped exactly four times and
that lands heads twice and tails twice. Then the actual frequentist must
say that the chance of heads on any given toss is 0.5 since the relative
frequency of heads among all tosses is 0.5. Then, if the chance function
considers the four different coin tosses to be independent, then it will
assign a chance of 0:54 ¼ 0:0625 to the proposition that the coin will land
heads on every toss. But, for the actual frequentist, the proposition that
the coin will land heads on every toss is equivalent to the proposition that
the chance of heads on any given toss is 1, since the relative frequency of
heads among all tosses is 1 just in case each toss lands heads. Thus,
although the chance function gives 0.5 as the chance of heads, it gives
a nonzero chance—namely, 0.0625—to the proposition that the chance
of heads is 1. Thus, if ch is the actual frequentist’s chance function, we
have chðCchÞ , 1, since ch must assign a nonzero probability to the chan-
ces being different from what ch says they are. Thus, actual frequentism is
committed to the existence of self-undermining chances.

Similar considerations show that the chances given by Lewis’s best-
system analysis will also typically be self-undermining. On Lewis’s ac-
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count, as on the frequentist account, many worlds will have chance func-
tions that assign nonzero chances to different ways the world might turn
out such that the chances given by the best-system analysis would be
different from the way they actually are if the world were to turn out
that way. Indeed, for most worlds that contain chancy events, frequentism
and the best-system analysis will give a nonzero chance to the proposition
that the world is deterministic; that is, that all chances are 0 or 1.

This is not to say that all reductionist accounts of chance give rise
to self-undermining chances. Jonathan Schaffer (2003) gives a recipe for
transforming chances that undermine themselves into chances that do
not: if ch is a self-undermining chance function, then chð� jCchÞ is not.
And, if we have an account of chance on which chances supervene on
nonmodal features of the world, as in Lewis’s best-system analysis, then
the chance functions obtained by applying Schaffer’s recipe will also
supervene on those features. Thus, there are reductionist accounts that
avoid self-undermining chances.

A certain sort of nonreductionist account of chance also avoids
self-undermining chances. Some nonreductionists hold that, at the be-
ginning of the history of the world, the chances are fixed or determined;
in other words, their chance is 1. Thus, if those fixed chances are given by
ch , then the chance of Cch is 1: determined events get chance 1. That is,
chðCchÞ ¼ 1 and ch is not self-undermining.

Finally, just as there are reductionist accounts of chance with no
self-undermining chances, so there are nonreductionist accounts that do
have them. Some reductionists hold that at the beginning of the history
of the world, the chances are not fixed or determined; in other words, the
chance that they are given by some particular possible chance function is
less than 1. This gives rise to self-undermining chances.

In response to the problem of self-undermining chances, a variety
of philosophers have proposed chance-credence norms that are closely
related to (MP) and (LPP) but that are consistent with (Prob) even in the
presence of such chances. Each arises from a diagnosis of what gives rise
to the inconsistency described above. The idea is that (MP) and (LPP)
derive their plausibility from the more basic intuition that we ought
always to defer to chances when it comes to assigning degrees of credence
to propositions. The problems with these norms do not undermine this
intuition. Rather, they undermine the way in which we have formalized
the notion of epistemic deference that is used in stating the intuition. It
cannot be that deferring to the objective chances amounts to setting our
degree of credence in A conditional on Cch to the objective chance of A
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according to ch . For, as we have seen, in the presence of self-undermining
chances, this will leave us less confident in Cch conditional on Cch than we
can coherently be. Instead, some alternative must be sought.

Two alternative accounts of epistemic deference have been pro-
posed: the first is due to Hall (1994) and Thau (1994), the second to
Ismael (2008). According to Hall (1994) and Thau (1994), deferring to
chance does not amount to setting our degree of credence in A con-
ditional on Cch to the objective chance of A according to ch . Rather, it
amounts to setting our degree of credence in A conditional on Cch to the
objective chance of A conditional on Cch according to ch . Roughly speak-
ing, their point is this: We defer to chance not solely because chance has
more information about the world than we have. (It does have more
information, but unlike truth, it is not perfectly well informed.) We
defer to chance also, they argue, because chance has a better ability to
process whatever information we have about the world and give a prob-
ability on the basis of this. Thus, when we defer to chance, we must ensure
that it has as much information as we have. We must defer to whatever the
chances are, conditional on all the information we have. And of course,
this information includes the fact that the chances are given by ch , when it
is ch to which we defer. More precisely, Hall (1994) and Thau (1994) give
the following amendment to the Principal Principle:

New Principle (NP): An agent ought to have an initial credence function

b such that, for all possible initial chance functions ch and all propositions

A and E ,

bðA jCch ^ EÞ ¼ chðA jCch ^ EÞ

providing bðCch ^ EÞ; chðCch ^ EÞ . 0.

Under the assumption that ch is not self-undermining, (NP) and (LPP)
are equivalent. If ch is self-undermining, they are not. And, moreover,
(NP) is consistent with (Prob) even for an agent for whom bðCchÞ . 0 for
some such self-undermining ch .5

5. To see this, note that, for each assignment of probabilities l1; . . . ; ln to the par-
tition Cch1 ; . . . ;Cchn , there is a unique credence function b such that (i) b satisfies (NP)
and (Prob) and (ii) bðCchi

Þ ¼ li . Given A in the algebra on which b and chi are defined, we
calculate bðAÞ as follows:

bðAÞ U
X

i

li chiðA jCchi Þ:
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Ismael offers an alternative account of deference to chance. To
defer to chance, she thinks, is not to set our degree of credence in A

conditional on Cch to chðAÞ, as (LPP) claims; nor is it to set our degree of
credence in A conditional on Cch to chðA jCchÞ, as (NP) claims. Rather, it is
to set our unconditional degree of credence in A to chðAÞ if ch gives the actual

objective chances . But if that is what it means to defer to chance, then the
norm that says that we ought to defer to chance becomes an externalist
norm: that is, it makes reference to a quantity to which we are not guar-
anteed internal access, namely, the actual objective chances. Thus, in
order to produce from this account an internalist norm akin to the Prin-
cipal Principle, Ismael instead demands that we set our degree of cre-
dence in A to what we expect the objective chances to be. Indeed,
strangely, her proposal is perhaps best expressed by Hall’s informal
(and inaccurate) statement of (NP): “Rationality requires conforming
one’s subjective credence in a proposition to one’s estimate of the objec-
tive chance that the proposition will come true” (Hall 1994, 505). This
gives us:

Generalized Principal Principle (GPP): An agent ought to have an initial

credence function b such that, for all propositions A ,

bðAÞ ¼
X

ch

bðCchÞchðAÞ

where the sum ranges over all possible initial chance functions ch .

Notice that (GPP) follows from (LPP), but fortunately (LPP) does
not follow from (GPP) unless ch thinks that A and Cch are independent,
and this is something that will not typically hold if ch is self-undermining.
Thus, we have another alternative chance-credence norm that seeks to
capture what is right about (PP), while avoiding inconsistency.6

6. It is less straightforward to show that (GPP) is consistent with (Prob) than that
(NP) is. We do so as follows: Given possible chance functions ch1; . . . ; chn , we define the
following function F, which takes probabilistic credence functions to probabilistic cre-
dence functions:

F : bð�Þ 7!
X

i

bðCchi Þchi ð�Þ

Then it is straightforward to show that when we represent credence functions as points in
Euclidean space whose dimension is the number of propositions in the algebra on which
credence functions are defined, F is a continuous function. Moreover, on this represen-
tation, the set of probabilistic credence functions forms a closed, convex, and bounded
region of the Euclidean space. Thus, F satisfies the hypotheses of Brouwer’s Fixed Point
Theorem, which says that any continuous function from a closed, convex, bounded
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Note that (NP) and (GPP) are inconsistent with one another.
After all,

ðNPÞ ) bðAÞ ¼
P
ch

bðCchÞchðA jCchÞ

ðGPPÞ ) bðAÞ ¼
P
ch

bðCchÞchðAÞ

and these will typically be different if ch is self-undermining. If ch is not
undermining, (LPP), (NP), and (GPP) are all equivalent.

2. A Sketch of Joyce’s Strategy

How are we to justify the various chance-credence norms described
above? In the remainder of the article, I will present a justification that is
adapted from Jim Joyce’s argument for probabilism (Joyce 1998). In this
section, I sketch the strategy of Joyce’s argument; in the next section, I
give more details. I will present the argument as having two parts: the first
involves a general strategy by which we might hope to establish various
norms governing degrees of credence; the second part deploys this strat-
egy in a particular way to justify probabilism. I will then show how we
might use the general strategy that forms the first part of Joyce’s argu-
ment but deploy it in different ways in order to justify (Prob)þ (PP) or
(Prob)þ (NP) or (Prob)þ (GPP), depending on the account of chance
with which we begin.

2.1. Joyce’s General Strategy

As I will present it, Joyce’s argument turns on the notion of vindication for
credence functions. The idea is borrowed from the theory of full beliefs.
Suppose we are given a set of propositions. Then, intuitively, for each
possible world, there is a set of full beliefs concerning those propositions
that is vindicated or perfect or exactly correct at that world: it is the set of full
beliefs in each proposition in the set that is true at that world and full
disbeliefs in each proposition in the set that is false. Similarly, as I am
presenting it, Joyce’s argument for probabilism assumes that there is, for
each world, a credence function that is vindicated or perfect or exactly

region of a Euclidean space to itself has a fixed point. Thus, F has a fixed point b*: that is,
F ðb *Þ ¼ b *. But the fixed points of F are exactly the probabilistic credence functions that
satisfy (GPP). Therefore, for any possible initial chance functions ch1; . . . ; chn , there is at
least one credence function b * such that b * satisfies (Prob) and (GPP).
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correct at that world. As Alan Hájek (n.d.) puts it, we assume that there is
something that stands to credence functions as truth stands to sets of full
beliefs:

Truth: Set of full beliefs:: ???: Credence function

I will say nothing now about the identity of the vindicated credence func-
tions. It will turn out that this is the point at which my argument diverges
from Joyce’s: he takes one sort of credence function to be vindicated; I
take another. And the result is two arguments with different conclusions:
Joyce’s conclusion is (Prob); mine is (Prob)þ (NP) or (Prob)þ (PP) or
(Prob) þ (GPP), depending on the account of objective chance with
which we begin.

So let us assume for the moment that we have a notion of vindi-
cation for credence functions. The first part of the argument—what I
called above the general strategy—is indifferent as to the identity of the
vindicated credence functions. Rather, it proceeds by laying down con-
ditions on what would count as a measure of the distance of a particular
credence function from being vindicated at a given world—following
Joyce, we call this an inaccuracy measure ; and we talk of the inaccuracy of
a credence function as another term for its distance from vindication.

To make things precise, let’s introduce some notation. Let F be
the algebra of propositions over which our credence functions are de-
fined. In this article, we assume thatF is finite, though I will ask in section
7 whether this can be relaxed. Let B be the set of possible credence
functions over F—that is, B ¼ {b : F ! R}. Finally, letW be the set of
possible worlds that correspond to the atoms of the finite algebra F—
that is, each world corresponds to an atom that is true only at that world.
Then an inaccuracy measure is a function I : B £W ! R that is intend-
ed to measure the distance of the credence function b from being vindi-
cated at world w. Given a world w, we denote as vw the credence function
that is vindicated at w. Thus, I ðb;wÞmight be thought of as measuring the
distance of b from vw . We letV U {vw : w [W }. SoV # B.

In the next section, we will consider Joyce’s conditions on I in
some detail. But let us first see how the argument continues after these
conditions are in place. The next step is the central result of Joyce’s
article. It involves the following set of credence functions:

V
þ
:¼

X

w[W

lwvw : 0 # lw # 1 and
X

w[W

lw ¼ 1

( )
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This is the so-called convex hull of V . It is the set of all convex combi-
nations of the vindicated credence functions vw inV . Or, equivalently, it
is the smallest set of credence functions that (i) contains all vindicated
credence functions and (ii) contains, for any two credence functions that
it contains, every mixture of those two credence functions. That is,V #

V
þ

and if b; b 0 [V
þ

, then lb þ ð1 2 lÞb 0 [V
þ

for any 0 # l # 1, and
V
þ

is the smallest set with those two properties. Joyce’s theorem has
two parts:

. The first part: If b is a credence function and b is not in V
þ

,
then there is another credence function c that is inV

þ
and that

is closer to being vindicated than b at all worlds w. That is,
I ðc;wÞ , I ðb;wÞ for all w [W .

That is, any agent whose credence function falls outside the convex hull
of V would do better no matter how the world turns out by moving to a
particular credence in that convex hull. Adopting the language of de-
cision theory, any credence function outsideV

þ
is accuracy dominated by

some credence function insideV
þ

. Now, at first, this might seem to give
a compelling reason to have a credence function inV

þ
. However, for all

that has been said so far, it might be that each credence function inV
þ

is
also accuracy dominated by some other credence function. We require
the second half of Joyce’s theorem to rule out this possibility:

. The second part: If c is inV
þ

, then there is no credence func-
tion b in B such that, for all w [W , I ðb;wÞ # I ðc;wÞ.

That is, if an agent has a credence function inV
þ

, then, by moving to any
other credence function, he or she will be sure to move further from
vindication in at least one world. Together, these two parts of Joyce’s
theorem provide the basis for the following norm:

Joyce’s norm: An agent ought to have a credence function inV
þ

, where

V is the set of vindicated credence functions.

2.2. Applying the General Strategy

Notice that, in my description of Joyce’s general strategy, no mention has
been made of the identity of the vindicated credence functions vw inV .
This first part of Joyce’s argument is schematic. We complete it by iden-
tifying the vindicated credence functions and characterizingV

þ
, the set

of convex combinations of those functions.
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Joyce identifies the vindicated credence functions as follows: for
each world w, a credence function is vindicated at w if it gives maximal
credence to propositions that are true at w and minimal credence to
propositions that are false at w. That is, vwðAÞ ¼ 1 if A is true at w ; and
vwðAÞ ¼ 0 if A is false at w. Thus, for Joyce:

Truth: Set of full beliefs:: Truth: Credence function

He then appeals to a theorem of de Finetti’s to show that, defined thus,
V
þ

is the set of probability functions on F .
On the other hand, I will argue that it is not truth but objective

chance, or something closely related, that stands to degrees of credence
as truth stands to full beliefs. More precisely, I argue that if chances are
not self-undermining, then vwð�Þ ¼ chwð�Þ, where chw is the objective
chance function at w ; and if they are self-undermining, we must choose
whether vwð�Þ ¼ chwð�Þ or vwð�Þ ¼ chwð� jCchw

Þ. I then establish the fol-
lowing three analogues of de Finetti’s theorem—see section 5 for precise
statements of these results with all assumptions made explicit:

. If vwð�Þ ¼ chwð�Þ and no ch is self-undermining, thenV
þ

is the
set of probability functions that satisfy (LPP).

. If vwð�Þ ¼ chwð�Þ and some ch are self-undermining, thenV
þ

is the set of probability functions that satisfy (GPP).
. If vwð�Þ ¼ chwð� jCchw

Þ and some ch are self-undermining, then
V
þ

is the set of probability functions that satisfy (NP).

This is the strategy by which I seek to justify the chance-credence
norms. In the remainder of the article, I spell out the details and justify
the assumptions.

3. Inaccuracy Measures

I begin by listing the conditions we impose on inaccuracy measures
I : B £W ! R, which are intended to measure the distance of a cre-
dence function from vindication at a world. In each case I offer a
justification.

Our first postulate says simply that, according to any inaccuracy
measure, a credence function that is vindicated at a possible world should
be closer to vindication at that world than a credence function that is not
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vindicated at that world. That is, every inaccuracy measure is nontrivial in
the following sense.7

Definition 3.1 (Nontrivial): I is nontrivial if, for all worlds w [W and

b [ B, if b – vw, then I ðvw ;wÞ , I ðb;wÞ.

Our second postulate says that if I is an inaccuracy measure then,
for each w [W , the function I ð�;wÞ on B should be “continuous” in a
certain sense. This is intended to rule out “jumps” in inaccuracy as we
move from one credence function b 0 to another b that are not reflected in
“jumps” in the differences j bðAÞ2 b 0ðAÞ j between the degrees of belief
assigned by b and b 0 to the propositions in the algebra A [ F . In particu-
lar, we demand that every inaccuracy measure is proposition-wise continuous

in the following sense.8

Definition 3.2 (Proposition-wise Continuity): I is proposition-wise con-
tinuous if, for all w [W and b [ B, we have

ð;1 . 0Þð’d . 0Þð;b 0 [ BÞ

½ð;A [ F Þð j bðAÞ2 b 0ðAÞ j , dÞ ) j I ðb;wÞ2 I ðb 0;wÞ j , 1�:

One might think that such a “jump” should occur if we cross some sort of
threshold as we move from b 0 to b . For instance, perhaps the degree of
belief assigned to proposition A by b 0 is insufficient for it to count as a full
belief, while the degree of belief assigned by b is sufficient for this. In this
case, we cross a threshold as we move from b 0 to b , and we might hope that
this will be reflected in our inaccuracy measure I —perhaps having a full
belief in a truth reduces the inaccuracy of a credence function by a fixed
amount, resulting in a “jump” as we cross the threshold from nonbelief to
belief. Our second postulate rules this out. So is it too strong? I think not.
While such a threshold might exist—if we can circumvent lottery para-
dox concerns—it seems that it is not relevant to the inaccuracy of a
credence function. Suppose I am estimating the height of a group of
people. As my estimate for a particular individual gets higher and higher,

7. In Joyce 1998, this postulate follows from Dominance. In fact, Dominance is
stronger than is needed for the final proof. It is sufficient to demand that I is nontrivial.

8. In Joyce 1998, the continuity of I ð�;wÞ is stated in terms of the Euclidean metric
on Rn . This leaves Joyce vulnerable to the charge that he has arbitrarily adopted this
metric without argument. The following formulation avoids this concern.
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it will eventually cross a threshold beyond which I will be estimating that
he or she is tall. But this does not mean that our measure of inaccuracy for
my estimate should be discontinuous at that threshold. The point is that
there is nothing significant for the inaccuracy of my height estimates
about the move from nontall to tall that is not already captured by the
increase in estimated height. Similarly, there is nothing epistemically
significant for the inaccuracy of an agent’s epistemic state about the
move from nonbelief to belief that is not already captured by the increase
in the degree of belief.

Our third postulate says that the order of two credence functions
b; b 0 [ B with respect to their inaccuracy as measured from w;w 0 [W

can be determined, in certain extreme situations, by the order of the
differences between bðAÞ and vwðAÞ, on the one hand, and b 0ðAÞ and
vw 0 ðAÞ, on the other hand, for A [ F. More precisely, every inaccuracy
measure is weakly difference dominating in the following sense.9

Definition 3.3 (Weak difference dominance): I is weakly difference domi-
nating if, for all b; b 0 [ B and w;w 0 [W , if j bðAÞ2 vwðAÞ j # j b 0ðAÞ2

vw 0 ðAÞ j for all A [ F , then I ðb;wÞ # I ðb 0;w 0Þ.

This seems to be just what we mean when we say that I ðb;wÞ

measures the distance of b from being vindicated. For note that b and
vw consist of nothing more than the values they assign to each of the
propositions A inF . And we know when a particular pair of assignments
bðAÞ and vwðAÞ are at most as far apart as another pair b 0ðAÞ and vw 0 ðAÞ.
It is when j bðAÞ2 vwðAÞ j # j b 0ðAÞ2 vw 0 ðAÞ j . Thus, it seems right that b

is at most as inaccurate at w as b 0 is at w 0 if bðAÞ is at most as far from vwðAÞ

as b 0ðAÞ is from vw 0 ðAÞ, for every proposition A in F . This gives us our
third postulate.

Our fourth postulate says simply that as bðAÞ tends toward 1 or
21, the inaccuracy of the whole credence function b must tend toward 1.
That is, every inaccuracy measure is unbounded in the following sense.10

Definition 3.4 (Unbounded): I is unbounded if, for all w [W and
A [ F , I ðb;wÞ! 1 as bðAÞ! 1 or bðAÞ! 21.

9. In Joyce 1998, this follows from Normality and Dominance. As noted above,
Dominance is unnecessarily strong. This weaker version entails Normality but not Domi-

nance.
10. In Joyce 1998, this is part of Structure.

Accuracy, Chance, and the Principal Principle

255



This says that there is no upper bound on the inaccuracy of a
credence function. For any putative upper bound, there is a credence
function whose inaccuracy at some world exceeds it. This seems reason-
able. After all, the difference j bðAÞ2 vwðAÞ j between bðAÞ and vwðAÞ is
unbounded. And, as we have seen, I is a function of these differences.
Thus, it seems fitting that I should be similarly unbounded.

Our final three postulates concern the behavior of I when a group
of agents effect a compromise between their respective credence func-
tions. The fifth and sixth postulates concerns the situation in which two
agents with distinct credence functions are equally inaccurate at a par-
ticular world. The seventh concerns a more complicated situation involv-
ing four agents.

The fifth postulate says that, when two credence functions are
equally inaccurate at a world, there is a compromise between them that
is more accurate than either credence function at that world. A credence
function counts as a compromise between two credence functions b and
b 0 if it lies on the line segment bb 0 ¼ {lb þ ð1 2 lÞb 0 : 0 # l # 1} that runs
between them. As noted above, such a credence function is called a mix-

ture of b and b 0. If l , 1
2, then lb þ (1 2 l)b 0 is said to be biased toward

b 0; if l . 1
2, then lb þ ð1 2 lÞb 0 is said to be biased toward b ; 1

2b þ
1
2b
0 is

not biased toward either. Thus, our fifth postulate demands that I is
disagreement resolving in the following sense.11

Definition 3.5 (Disagreement resolution): I is disagreement resolving if,

for all b; b 0 [ B and w [W , if b – b 0 and I ðb;wÞ ¼ I ðb 0;wÞ, then there is

0 # l # 1 such that

I ðlb þ ð1 2 lÞb 0;wÞ , I ðb;wÞ; I ðb 0;wÞ:

There are many ways to argue that such a constraint or some close relative
of it should be imposed upon our inaccuracy measures. Joyce (1998) gave
an invalid argument for his slightly stronger version called Convexity; and
this was subsequently criticized by Maher (2002). More recently, Joyce
(2009) has given an argument that appeals to W. K. Clifford’s position in
his debate with William James over the correct norms for full beliefs.
However, this assumes an extra postulate, known as Separability or Addi-

11. This is weaker than Joyce’s Convexity postulate, though that postulate follows
from this along with the other postulates.
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tivity, to which I do not wish to appeal here. Instead, I offer a new
argument for this postulate that appeals to the notion of epistemic dis-

agreement .
The epistemology of disagreement has received much-deserved

attention in the recent literature on epistemology. The central question is
this: What should be the effect on an agent’s epistemic state of learning
that an epistemic peer disagrees with him or her? Should this piece of
evidence lead him or her to change his or her epistemic state, perhaps by
compromising between his or her epistemic state and that of his or her
peer? In Christensen’s terminology, those who take the conciliatory ap-

proach argue that it should, while those who take the steadfast approach

argue that it shouldn’t (Christensen 2009).
I favor the conciliatory approach, at least in certain circumstances,

and this leads to my fifth postulate. Suppose there are two agents with
distinct credence functions b and b 0 respectively. In the standard cases
considered in the literature on disagreement, these agents would obtain
two pieces of evidence: they would learn that b and b 0 are distinct, and
they would each learn that the other agent is an “epistemic peer.” Sup-
pose that our two agents—with credence functions b and b 0 respec-
tively—learn that their credence functions are distinct. Now to learn
that another agent is an epistemic peer is to learn that his or her epistemic
state demands respect. In our example, suppose our two agents learn that
the credence functions b and b 0 are equally inaccurate at the actual world.
So, each learns that the other’s epistemic state demands respect. After all,
relative to the chief epistemic goal—closeness to vindication—they are
equals. Then, according to the conciliatory approach to epistemic dis-
agreement, it is rationally required of our agents to compromise. How-
ever, if an inaccuracy measure is not disagreement resolving in the sense
just defined, our agents will not be obliged to compromise between their
credence functions since there is no such compromise that is strictly
better than either of their original credence functions at the actual
world. Thus, in order to make it the case that compromise is a rational
requirement in cases of epistemic disagreement such as this, we must at
least have it that our inaccuracy measure is disagreement resolving. This
gives us our fifth postulate.

The sixth postulate says that when two agents—with distinct cre-
dence functions b and b 0—are equally inaccurate at a possible world,
then whatever compromise is made in this situation, if it is biased toward
b by a certain amount, then the compromise that is biased by the same
amount toward b 0 is equally inaccurate. That is, lb þ ð1 2 lÞb 0 is exactly as
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inaccurate as ð1 2 lÞb þ lb 0. So I should be symmetric in the following
sense.12

Definition 3.6 (Symmetry): I is symmetric if, for all b; b 0 [ B and w [W ,

if b – b 0 and I ðb;wÞ ¼ I ðb 0;wÞ, then for all 0 # l # 1,

I ðlb þ ð1 2 lÞb 0;wÞ ¼ I ðð1 2 lÞb þ lb 0;wÞ:

This says simply that, in a case of epistemic disagreement, if the agent with
credence function b accords to the agent with b 0 the same weight as the
agent with b 0 accords to the agent with b , and if they then compromise in
accordance with these weightings, they will end up with equally inaccu-
rate credence functions. That is, neither b nor b 0 has any advantage. This
is what we want if we think that any advantage would have to be discernible
already in the inaccuracies of b and b 0 themselves, which, by hypothesis,
are equal.

Our seventh and final postulate does not appear in Joyce 1998, but
it is required to prove the theorem that Joyce requires for the general or
schematic part of his argument. It is best illustrated by an example. Sup-
pose there are four agents, Barb, Bob, Carl, and Col. And suppose that
Barb’s credence function is at least as accurate as Carl’s, while Bob’s is at
least as accurate as Col’s. Moreover, we know that there is a natural sense
in which Barb’s credence function is exactly as far from Bob’s as Carl’s is
from Col’s. For we know that for each proposition A inF , the difference
between Barb’s and Bob’s degrees of credence in A is exactly the same as
the difference between Carl’s and Col’s. Then our seventh postulate says
that any compromise between Barb and Bob should be at least as accurate
as the corresponding compromise between Carl and Col. That is, I should
be dominated-compromise respecting in the following sense.

Definition 3.7 (Dominated-compromise respect): I is dominated-
compromise respecting if, for all w [W and b; b 0; c; c 0 [ B, if

(i) I ðb;wÞ # I ðc;wÞ and I ðb 0;wÞ # I ðc 0;wÞ and

(ii) j bðAÞ2 b 0ðAÞ j ¼ j cðAÞ2 c 0ðAÞ j for all A [ F ,

then

I ðlb þ ð1 2 lÞb 0;wÞ # I ðlc þ ð1 2 lÞc 0;wÞ:

12. This is exactly Joyce’s Symmetry postulate.
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After all, in this situation, any compromise between Barb and Bob
involves Barb moving her credence function by a certain amount toward
Bob’s; and the corresponding compromise between Carl and Col involves
Carl moving his credence function by exactly the same amount toward
Col’s. Thus, since Carl is at least as far from vindication as Barb, and Col
at least as far as Bob, it seems plausible that when Carl moves a certain
amount toward Col and Barb moves exactly the same amount toward Bob,
the result of Carl’s move should be no more accurate than the result of
Barb’s move.

This completes our list of postulates concerning inaccuracy
measures. Can we be sure that they are consistent with one another?
Yes, since each member of the following family of inaccuracy measures
can be shown to satisfy all of the seven postulates:

Definition 3.8: Suppose I : B £W ! R. We say that I is a quadratic scor-
ing rule if there is a family {lA . 0 : A [ F } and a strictly increasing function

F : R ! R such that

I ðb;wÞ ¼ F
X

A[F

lA j bðAÞ2 vwðAÞ j
2

 !
:

We say that an inaccuracy measure that satisfies our seven postulates is
Joycean .

Definition 3.9 ( Joycean): Suppose I : B £W ! R. Then I is a Joycean
inaccuracy measure if I is nontrivial, proposition-wise continuous, weakly differ-

ence dominating, unbounded, disagreement resolving, symmetric, and dominated-

compromise respecting .

Lemma 3.10: All quadratic scoring rules are Joycean.

We are now ready to state and prove the Fundamental Theorem
of Joycean Inaccuracy Measures. As above,V ¼ {vw : w [W }, andV

þ

is the convex hull ofV .

Theorem 3.11: Suppose I : B £W ! R is Joycean. Then

(I) If b �V
þ

, then there is c [V
þ

such that, for all w [W ,
I ðc;wÞ , I ðb;wÞ.
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(II) If c [V
þ

, then there is no b [ B such that, for all w [W ,
I ðb;wÞ # I ðc;wÞ

We consign the proof of this theorem to our appendix (section 8).

4. Joyce’s Theorem and Probabilism

To mobilize the schematic result that I have called the “Fundamental
Theorem of Joycean Inaccuracy Measures,” we must specify which cre-
dence functions are to count as vindicated at various worlds. We know
what counts as vindication for sets of full beliefs. What counts as vindi-
cation for credence functions? As I have already noted, for Joyce, vwðAÞ ¼

1 if A is true at w, and vwðAÞ ¼ 0 if A is false at w. Given this, he mobilizes
his theorem by appealing to the following result:

Theorem 4.1 (de Finetti): IfV is the set of classically consistent assignments of

truth values to the propositions in F , then V
þ

is the set of all (finitely additive)
probability functions on F .

Combining this theorem with Theorem 3.11, we have

(I 0) If b [ B is not a probability function, then there is a prob-
ability function p that is closer to vindication than b at all
possible worlds.

(II 0) If p [ B is a probability function, then there is no distinct
credence function b [ B that is at least as close to vindi-
cation as p at all possible worlds.

The conjunction of these two conclusions constitutes Joyce’s argument
for probabilism.13

In fact, if Joyce’s argument works, it seems to establish something
more than merely probabilism. Where probabilism says only that con-
forming to the axioms of the probability calculus is a necessary condition
on rationality, Joyce’s argument seems to establish that it is also a sufficient

condition. That is, Joyce’s argument seems to establish an extreme ver-
sion of subjectivism that rules out all norms that are stronger than prob-
abilism. After all, (II 0) says that whatever probability function is your

13. In fact, in Joyce 1998, Joyce proved only Theorem 3.11 (I). Thus, he established
only (I 0). As noted above, this is not enough to establish (Prob). After all, without (II 0), we
have no guarantee that probabilists are not in the same epistemically bad situation that
nonprobabilists are shown to be in by (I 0). Thus, Joyce requires (II 0) as well. This follows
from Theorem 3.11 (II).
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credence function, you will do worse in at least one world by changing to
another. In light of this, it is hard to see how any probabilistic agent
could be accused of irrationality. But of course there are many stronger
conditions than probabilism that have been proposed as necessary for
rationality—indeed, the chance-credence norms we have been discuss-
ing are prominent among them. It is a central motivation of this article to
adapt Joyce’s strategy to avoid this criticism.

5. Joyce’s Theorem and the Chance-Credence Norms

5.1. A Different Account of Vindication

I propose to adapt Joyce’s argument by applying his general strategy to a
different notion of vindication. I wish to argue that a credence function is
vindicated not when it assigns maximal credence (that is, 1) to truths and
minimal credence (that is, 0) to falsehoods but when it assigns to each
proposition the objective chance that the proposition is true. Of course,
in the case of many propositions, this will come to the same thing: if a
proposition is determined to be true, then degree of credence 1 in that
proposition will be required for vindication on either account, and simi-
larly for a proposition that is determined to be false. The difference arises
when the proposition is neither determinately true nor determinately
false. In this situation, we ask: What degree of credence must a credence
function assign to such a proposition if it is to be vindicated? Must it assign
the truth value of the proposition (represented as 0 or 1) or its chance
of being true (represented, as usual, on a scale from 0 to 1)? Joyce gives
the former answer; I give the latter. That is, for me:

Truth: Set of full beliefs:: Objective chance: Credence functions

In unpublished work, Alan Hájek (n.d.) has argued for a similar
claim. He imagines a situation in which two agents—whom we might call
Jane and Edward—are considering a particular piece of radioactive ma-
terial. Jane has degree of credence 0.6 in the proposition that it will decay
within the next ten days; Edward has degree of credence 1. The radio-
active material does decay in that period of time; and its objective chance
of doing so was 0.6. Who is vindicated? As Hájek notes, there seem to be
reasons for saying that Jane is vindicated and reasons for saying that
Edward is: after all, both got something right; both were correct in a
certain way. But surely it can’t be that both are vindicated. I think that’s
right. What’s going on here is this: When we say that an agent, such as
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Edward, has degree of credence 1 or 0, we think of him as having a full
belief or full disbelief, and we evaluate him according to the standards for
those sorts of epistemic state. That is why we think of him as being vindi-
cated in this case; it is because the correct notion of vindication for full
beliefs is truth. But really it is only Jane’s credence function that is vindi-
cated here; Edward’s set of full beliefs might be vindicated, but not his
credence function. I think the same thing is going on in the following
case: Suppose Jane has credence 0.7, and Edward has credence 0.9. Then
we might be tempted to say that each is closer to being right about some-
thing; each is closer to the correct credence according to some salient
standard of correctness. But again I think we are wrong to say that Ed-
ward’s credence is closer to any salient standard of correctness for a cre-

dence . Rather, Edward’s credence is closer than Jane’s to the value—
namely, 1—at which we can say with confidence that Edward has a full
belief: anything short of this is potentially vulnerable to lottery paradoxes.
And, once he obtains the full belief, that full belief is vindicated (though
the credence is not).

Let us then seek the consequences of this account of vindication.
We require separate treatments for the case in which the chances are self-
undermining and the case in which they are not.

5.2. Non-Self-Undermining Chances and the Principal Principle

I begin with the case in which none of the possible initial chance func-
tions is self-undermining. As we saw above, this is a consequence of cer-
tain nonreductionist accounts as well as certain reductionist accounts. In
this case, each ch is certain of the proposition Cch that says that the objec-
tive chances are given by ch ; in symbols, chðCchÞ ¼ 1. It follows that
chðAÞ ¼ chðA jCchÞ, for all propositions A . So, if vindication is agreement
with the objective chances, we mean this: vwðAÞ ¼ chwðAÞ ¼ chwðA jCchw Þ

for all A .
With this definition of V , we are ready to call upon the Funda-

mental Theorem of Joycean Inaccuracy Measures to establish (Prob) and
(LPP). However, we must make one assumption before we proceed: we
must assume that all initial chance functions are probability functions. So
before we begin, we must ask if this is reasonable. Again, I appeal to an
argument of Hájek’s (Hájek n.d.). Philosophers of a positivist persuasion
were once wont to identify objective chances with actual relative frequen-
cies, or hypothetical limiting relative frequencies. Thus, they would say
that the objective chance of an event is the relative frequency with which
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events like that occur in the actual world, or the limiting relative frequen-
cy with which events like that would occur in a world in which there are
infinitely many such events. Hájek (1997) has provided fifteen arguments
against the actual relative frequency account of objective chance and
fifteen more against the hypothetical limiting relative frequency account
(Hájek 2009). However, while he denies the identification of (limiting)
relative frequencies and chances, he nonetheless admits that there is
some connection. The connection is this: it must be at least possible for
the objective chances to match the (limiting) relative frequencies; that is,
for any possible chance function ch , there must either be a possible world
that is finite and such that the relative frequencies at that world match the
chances given by ch , or a possible world that is infinite and such that the
limiting relative frequencies at that world match the chances given by ch .
And from this he infers that the objective chance function must be a
(finitely additive) probability function. After all, under certain structural
assumptions, we can show: (i) the (limiting) relative frequency function
of a world is always a (finitely additive) probability function; (ii) any
(finitely additive) probability function is the (limiting) relative frequency
function of some world (van Fraassen 1983; Shimony 1988).

We are now ready to state our analogue of de Finetti’s theorem:

Theorem 5.1: Suppose C is the set of possible initial chance functions. And

suppose each is a probability function and none is self-undermining. Then Cþ

is the set of all (finitely additive) probability functions on F that satisfy (LPP).
Combining this theorem with Theorem 3.11, we have

(I00) If b [ B does not satisfy both (Prob)þ (LPP), then there is
p [ B that satisfies (Prob) þ (LPP) that is closer to vindi-
cation than b at all possible worlds (where vw ¼ chw , for all w).

(II00) If p [ B does satisfy both (Prob)þ (LPP), then there is no
different b [ B that is at least as close to vindication as p at
all possible worlds (where vw ¼ chw , for all w).

This completes our argument for (Prob)þ (LPP).

5.3. Self-Undermining Chances, the New Principle, and the Generalized Princi-

pal Principle

The case in which at least some possible initial chance functions are self-
undermining is more complicated. The problem is that our conclusion
that vindication is agreement with objective chances fails to distinguish
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two possible definitions of vw . We might say: vwðAÞ ¼ chwðAÞ, for A in F .
That is, it is the chance function itself that is vindicated. Or we might say:
vwðAÞ ¼ chwðA jCchw Þ, for A in F . That is, it is the chance function after it

has been informed that it is the chance function that is vindicated. If ch w is self-
undermining, these give two substantially different accounts of vindi-
cation between which we must choose.14 I do not have strong arguments
in favor of one over the other, though it seems clear that the former is the
most intuitively plausible. However, here, I will simply spell out the con-
sequences of each. They are as follows: adopting the former notion of
vindication gives us (Prob)þ (GPP); adopting the latter gives (Prob)þ
(NP). We establish this by proving two further analogues of de Finetti’s
theorem.

5.3.1. The Generalized Principal Principle

Theorem 5.2: Suppose C is the set of possible initial chance functions. And

suppose each is a probability function and that each chance function expects the

chance of a proposition to be the chance that it assigns to that proposition (that is ,
chw 0 ðAÞ ¼

P

w[W

chw 0 ðCchw ÞchwðAÞ, for all w 0 in W and A in F ). Then Cþ is

the set of all (finitely additive) probability functions on F that satisfy (GPP).

Note the extra assumption we require to establish our theorem:
We require that the expected chance of A calculated relative to the
chance function ch must be chðAÞ. Combining this theorem with Theo-
rem 3.11, we have

(I000) If b [ B does not satisfy (Prob)þ (GPP), then there is p [

B that satisfies (Prob)þ (LPP) that is closer to vindication
than b at all possible worlds (where vw ¼ chw , for all w).

(II000) If p [ B does satisfy (Prob) þ (GPP), then there is no
different b [ B that is at least as close to vindication as p

at all possible worlds (where vw ¼ chw , for all w).

This completes our argument for (Prob)þ (GPP).

14. See Lewis 1994, 488, for an illuminating discussion of exactly how different these
quantities are on a reductionist account of chance. Essentially, if A is a proposition about
m outcomes of a chance process that is repeated n times throughout history, and the
reductionist has extracted ch from (something close to) the relative frequencies with
which the various possible outcomes of this chance process occur throughout the n trials,
chðAÞ and chðA jCchÞ will differ more when the ratio m=n is greater.
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5.3.2. The New Principle
To state our other analogue of de Finetti’s theorem, I introduce some new
notation. Suppose ch is a possible initial chance function. Then let
ch *ð�Þ ¼ chð� jCchÞ. Thus, our second account of vindication in the pres-
ence of self-undermining chances says: vwðAÞ ¼ ch*

wðAÞ, for all A in F .

Theorem 5.3: Suppose C* is the set of all credence functions ch *, where ch is a

possible initial chance function. And suppose each ch (and thus each ch *) is a

probability function. Then ðC*Þþ is the set of all ( finitely additive) probability

functions on F that satisfy (NP).
Combining this theorem with Theorem 3.11, we have

(I000 0) If b [ B does not satisfy (Prob)þ (NP), then there is p [ B

that satisfies (Prob) þ (NP) that is closer to vindication
than b at all possible worlds (where vw ¼ ch*

w , for all w).
(II000 0) If p [ B does satisfy (Prob)þ (NP), then there is no differ-

ent b [ B that is at least as close to vindication as p at all
possible worlds (where vw ¼ ch*

w , for all w).

This completes our argument for (Prob)þ (NP).

6. Objections

Before turning to ways in which this argument might be extended, I wish
to consider two possible objections to it. Both stem from objections that
have been raised against Joyce’s original argument.

6.1. Bronfman’s Objection to Joyce

Aaron Bronfman (n.d.) has raised the following objection against Joyce’s
argument for probabilism. Joyce’s argument establishes that, for any non-
probabilistic credence function b and any legitimate inaccuracy measure
I , there is at least one probabilistic credence function p that is more
accurate than b at all possible worlds according to I . In symbols, this is:

ð;bÞð;I Þð’p Þð;wÞ½I ðp;wÞ , I ðb;wÞ� ð JA1Þ

The problem is that, because of the order of the quantifiers, p depends
not only on b but also on I . That is, Joyce does not establish that for any
nonprobabilistic b , there is a probabilistic p that is more accurate than b at
all possible worlds and according to any legitimate inaccuracy measure.
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In symbols, this would be:

ð;bÞð’p Þð;I Þð;wÞ½I ðp;wÞ , I ðb;wÞ� ð JA2Þ

Thus, given nonprobabilistic b and two different legitimate inaccuracy
measures I and I 0, Joyce’s result does not rule out the following situation:
all p that are more accurate than b at all worlds according to I are not more
accurate than b at all worlds according to I 0, and vice versa. In this situation,
it is not clear that the agent is rationally required—or even rationally
permitted—to give up his or her nonprobabilistic credence function b .
For whichever probabilistic credence function p he or she moves to, there
is a legitimate inaccuracy measure—either I or I 0—according to which p

is not always more accurate than b at all worlds. Indeed, it might be that
the credence functions that are always more accurate according to I 0 are
very inaccurate indeed at some worlds according to I , and vice versa. If
the agent wishes to avoid any possibility of such great inaccuracy, he or she
would do well to stick with b . This is Bronfman’s objection. And clearly it is
just as powerful as an objection against my arguments for the various
chance-credence norms.

But is it powerful against either argument? This depends on what
we are doing when we lay down conditions on legitimate inaccuracy
measures. One possibility is that we are providing a characterization of
the class of all legitimate inaccuracy measures. That is, we are giving not
only necessary but also sufficient conditions on being a legitimate inac-
curacy measure. If this is the case, then Bronfman’s objection is decisive.
If any Joycean function is a legitimate inaccuracy measure, then we can-
not infer from Joyce’s result that an agent ought to obey probabilism.
After all, moving from a nonprobabilistic credence function to a prob-
abilistic one might always risk great inaccuracy by the lights of some legit-
imate inaccuracy measure.

But there are two alternative views of our conditions on inaccuracy
measures. On the first, there is a unique correct measure of inaccuracy.
We do not know enough about it to characterize it uniquely, but we can
know some features of it, namely, the postulates we laid down in section 3.
If that is the case, then Bronfman’s objection fails. If there is just one
legitimate inaccuracy measure, then the variable I in ( JA1) and ( JA2)
ranges over only that measure. Thus, ( JA1) and ( JA2) are equivalent.
And Bronfman accepts that if Joyce has ( JA2), then his argument goes
through.

On the second alternative view, there is no single measure of inac-
curacy that is correct for all agents. However, for any given agent, there is a
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single measure of inaccuracy that reflects that agent’s epistemic values.
On this view, when we lay down conditions on legitimate inaccuracy
measures, we lay down basic objective constraints on the sort of epistemic
values that an agent should have. But they are not sufficient to constrain
those epistemic values completely. They leave room for significant vari-
ation between agents, as is witnessed by Lemma 3.10, which says that an
agent may take any quadratic scoring rule to be his or her inaccuracy
measure. But nonetheless, Bronfman’s objection is blocked. Focus atten-
tion on any agent. Then he or she considers only one inaccuracy measure
correct. Then again the variable I in ( JA1) and ( JA2) ranges over only
that measure. Thus, ( JA1) and ( JA2) are equivalent.

I favor the latter response to the version of Bronfman’s objection
that is directed against my argument. After all, it would require a great
deal of further argument to make it plausible that there is a single inac-
curacy measure that is correct for any agent, even though we are unable to
characterize it fully. So my view is this: The correct notion of vindication is
agreement with objective chance. And, for any agent, there is a unique
function that measures the distance of a credence function from that goal
of vindication for that agent. That unique function must satisfy certain
basic rational constraints, which are listed as our postulates in section 3.
This is enough to establish that any agent ought to obey probabilism and
one of the chance-credence norms—which chance-credence norm will
depend on one’s account of chance. After all, these norms will follow
whichever inaccuracy measure an agent has, providing it satisfies the
postulates laid down. That is the lesson of Theorem 3.11.

6.2. Fitelson and Easwaran’s Objection to Joyce

In recent joint work, Branden Fitelson and Kenny Easwaran (forthcom-
ing) have raised the following objection against Joyce’s argument for
probabilism. Recall that, for Joyce, an agent with a nonprobabilistic cre-
dence function b is irrational because there is at least one credence func-
tion p that is better than b no matter how the world turns out; that is, there
is p that accuracy-dominates b . But this will fail to render our agent ir-
rational if she has good reason not to adopt the credence function p , or
any other credence function that also accuracy-dominates b . And, as
Fitelson and Easwaran point out, most agents will have good reasons to
avoid many different credence functions. The reason is that most agents
accumulate evidence during their epistemic life. And, having accumula-
ted this evidence, they have good reason to avoid any credence function
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that does not respect it. For instance, an agent who has learned prop-
osition E with certainty has good reason to avoid credence functions that
assign E a degree of credence less than 1. Or consider an agent who has
learned evidence in a more realistic way. For instance, he or she might
have had an experience that led her to assign degree of credence 0.4 to
the proposition E . Then he or she has good reason to avoid credence
functions that assign E a degree of credence other than 0.4 (at least in
the absence of new evidence). If this is granted, then Joyce’s argument
fails for many such agents. To state just one example: Suppose we are
given the four-element algebra based on atoms A and :A. Then there is a
nonprobabilistic credence function b on this algebra and a Joycean inac-
curacy measure I such that (i) bðAÞ ¼ 0:4 and (ii) there is no probabilistic
credence function p on this algebra for which pðAÞ ¼ 0:4 and p accuracy-
dominates b relative to I . Thus, if an agent has credence function b and if
he or she has good reason to retain the degree of credence 0.4 for the
proposition A , Joyce’s argument has no force against him or her.

How is my argument to avoid this same objection? I avoid it
because my argument concerns only an agent’s initial or ur- credence
function, the credence function with which he or she begins his or her
epistemic life. At that stage, the agent can have no good reason for plac-
ing any constraints on the degrees of credence that he or she assigns, for
he or she has accumulated no evidence. Thus, there is no credence func-
tion that he or she has good reason to avoid. Thus, my version of Joyce’s
argument goes through.

7. Extensions

So far, I have argued that Joyce’s nonpragmatic vindication of (Prob) can
be adapted to give a nonpragmatic vindication of (Prob) and either
(LPP) or (NP) or (GPP) for agents whose credence functions are defined
on a finite algebraF . As we have seen, the trick is to change the notion of
vindication for credence functions. I conclude by considering one way in
which the results of this article might be extended.

The obvious extension is to the case in whichF is infinite. Here, I
focus only on countably infinite s-algebras. As is clear from the proof
of Theorem 3.11, it holds for credence functions defined on any algebra
F , finite or infinite; though when F is infinite, we must make sure to
defineV

þ
to be the closed convex hull ofV .15 And it is easy to see that

15. Given a subset X # B and b [ B, we say that b is a limit point of X if, for any 1 . 0,
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our proofs of Theorems 5.1 and 5.2 can be adapted to the countably
infinite case, providing each objective chance function obeys Countable
Additivity:

Countable Additivity (CA): An agent’s credence function b ought to be

countably additive . That is, for any countably infinite set of mutually incon-

sistent propositions {Ai : i ¼ 1; 2; . . . }, the right-hand side of the following

identity exists, and the identity holds:

b
[1

i¼1

Ai

 !
¼
X1

i¼1

bðAiÞ

In this case, the theorem says that the closed convex hull of the set of
objective chance functions is the set of all countably additive probability
functions on countably infinite s-algebraF that obey (LPP) or (GPP) or
(NP). Thus, in the countably infinite case, we can justify (Prob), (CA),
and our favored chance-credence norm, providing the objective chance
functions obey (CA).16

The problem, of course, is that it is not clear that the objective
chance functions are countably additive. What is certain is that we cannot
appeal to Hájek’s argument from possible agreement with relative fre-
quencies to justify the claim that they do. In the infinite case, we have to
move from relative frequencies to limiting relative frequencies, and it is
well known that limiting relative frequencies do not necessarily obey
(CA). Furthermore, it seems at least possible that there should be a fair
infinite lottery, and it is well known that no countably additive probability
function can deliver this.17 I leave the following as an open question: is it
the case that every credence function on a countably infinite s-algebraF

there is b 0 [ X such that, for every A [ F, j bðAÞ2 b 0ðAÞ j , 1. That is, any neighborhood
around b —however small—contains an element of X . We say that X is closed if it contains
all its limit points. Thus, the closed convex hull ofV is the smallest closed convex subset of
B that containsV . When F is finite, the convex hull ofV is closed; that is, the closed
convex hull is the convex hull.

16. We also require the following lemma: If all credence functions in a given set obey
(Prob), (CA), and our favored chance-credence norm, then so do the credence functions
that are the limit points of that set.

17. If an infinite lottery is fair, the chance of each of the infinitely many, exhaustive,
and mutually exclusive outcomes is given by the same real number 1. If 1 . 0, then the
infinite sum of the chances of the outcomes does not exist. If 1 ¼ 0, then the infinite sum
of the chances of the outcomes does exist, but it is 0, while the probability of the disjunc-
tion of all the outcomes is 1. In either case, the objective chance function is not countably
additive.
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that lies in the closed convex hull of the set of objective chance functions
obeys one of the chance-credence norms, even if the objective chance
functions do not all obey (CA)?

8. Appendix

8.1. Proof of Theorem 3.11

Theorem 3.11: Suppose I : B £W ! R is Joycean. Then

(I) If b �V
þ

, then there is p [V
þ

such that, for all w [W ,
I ðp;wÞ , I ðb;wÞ.

(II) If p [V
þ

, then there is no b [ B such that, for all w [W ,
I ðb;wÞ # I ðp;wÞ:

The proof of (I) follows Joyce’s original proof very closely; the proof of
(II) is new.

Proof . Suppose I : B £W ! R is Joycean. Then our first task is to use I to
define a measure of distance between any two credence functions
b; c [ B. Define D : B £B! R as follows:

Dðb; cÞ ¼ I ðvw þ ðb 2 cÞ;wÞ

for w [W. Since I is weakly difference dominating, we have:

. The definition of D does not depend on the element w [W

used in its definition.
. For b [ B and w [W , I ðb;wÞ ¼ Dðb; vwÞ.
. For all b; c [ B, Dðb; cÞ ¼ Dðc; bÞ.

Now we embark on our proofs of (I) and (II).
(I) Suppose b �V

þ
. Now consider the function Dðb;�Þ :V

þ
! R.

Since I is proposition-wise continuous, Dðb;�Þ is continuous with respect
to the Euclidean metric. Thus, Dðb;�Þ is a real-valued, continuous func-
tion on a closed, bounded subset of Rn . Thus, by the Extreme Value
Theorem, the function Dðb;�Þ obtains a minimum on V

þ
. Moreover,

since I is disagreement resolving andVþ is convex, this minimum must
be unique. Let us denote the unique minimum of Dðb;�Þ onV

þ
as p .

Our job now is to show that, for all w [W , Dðp; vwÞ , Dðb; vwÞ,
and thus I ðp;wÞ , I ðb;wÞ. Suppose w [W . If p ¼ vw, then since I is
nontrivial, Dðp; vwÞ , Dðb; vwÞ, and we’re done. Thus, we suppose that
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p – vw . Let

R ¼ {lp þ ð1 2 lÞvw : 21 , l , 1}

We now prove that there is m [ R such that

(a) Dðm; vwÞ $ Dðp; vwÞ

(b) Dðb; vwÞ . Dðm; vwÞ

Consider the function Dðb;�Þ on R . Again, this is a continuous, real-
valued function on R . And, since I is unbounded, D tends to infinity as
we move away from vw toward p and beyond. But since Dðb; p Þ , Dðb; vwÞ,
the Intermediate Value Theorem gives us that there is k [ R that lies
beyond p on the line from vw through p to infinity and is such that
Dðb; kÞ ¼ Dðb; vwÞ. Then, since I is symmetric and disagreement resolving,
1
2k þ

1
2vw is the unique minimum of Dðb;�Þ on the segment kvw of this line.

Let m U 1
2k þ

1
2vw . We now prove that m satisfies (a) and (b):

. If m ¼ p , then certainly Dðm; vwÞ $ Dðp; vwÞ. Thus, suppose
m – p. First, we show that p lies on the line segment mvw . Sup-
pose not. Then m must lie on the line segment pvw . But then
m [V

þ
and Dðb;mÞ # Dðb; p Þ, which contradicts the minim-

ality of Dðb;�Þ on V
þ

at p . Thus, p lies on the line segment
mvw . Thus, since I is weakly difference dominating, Dðm; vwÞ

$ Dðp; vwÞ. Thus, (a).
. By the definition of k , we have Dðb; kÞ ¼ Dðb; vwÞ. Since I is

weakly difference dominating, we have Dðb; kÞ ¼ Dðb; 2b 2 kÞ.
Thus, we have

Dðb; vwÞ ¼ Dðb; 2b 2 kÞ

And thus Dðb;�Þ obtains a unique minimum on the line seg-
ment vwð2b 2 kÞ at 1

2ðvw 2 kÞ þ b. Thus, in particular,

Dðb; vwÞ . D b;
1

2
ðvw 2 kÞ þ b

� �

But, again since I is weakly difference dominating, from the
definition of m we have

D b;
1

2
ðvw 2 kÞ þ b

� �
¼ Dðm; vwÞ

Thus, (b).

Putting (a) and (b) together gives us (I).
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(II) We define D as before. Suppose, for a reductio, that p [V
þ

and b [ B and, for all w [W , I ðb;wÞ # I ðp;wÞ. Thus, Dðb; vwÞ

# Dðp; vwÞ. Then define the following subsetA #V
þ

:

A :¼ {c [V
þ

: Dðb; cÞ # Dðp; cÞ}

Then:

(i) p �A, since I is nontrivial, and thus Dðb; p Þ . Dðp; p Þ.
(ii) V #A, by assumption.
(iii) A is convex, since I is dominated compromise-respecting,

and thus we have: for all c; c 0 [ B, if Dðb; cÞ # Dðp; cÞ and
Dðb; c 0Þ # Dðp; c 0Þ, then for all 0 # l # 1,

Dðb; lc þ ð1 2 lÞc 0Þ # Dðp; lc þ ð1 2 lÞc 0Þ

Thus,V ,A AVþ
andA is convex. This is a contradiction, sinceV

þ

is the convex hull ofV . Thus, (II).

8.2. Proof of Theorems 5.1, 5.2, and 5.3

Theorem 5.1 follows from Theorem 5.3 when we note that if ch is not self-
undermining, then (i) ch*

w ¼ chw , for all w, and (ii) (NP) and (LPP) are
equivalent.

Theorem 5.3: Suppose C* is the set of all credence functions ch *, where ch is a

possible initial chance function. And suppose each ch (and thus each ch *) is a

probability function. Then ðC*Þþ is the set of all (finitely additive) probability

functions on F that satisfy (NP).

Proof . The proof has two parts: first, we show that, if b [ ðC*Þþ, then b

satisfies (Prob) and (NP); second, we show the converse.
First, we show that if b [ ðC*Þþ, then b satisfies (Prob) and (NP).

We show this in two stages:

. We begin by showing that, for all w [W , ch*
w satisfies (Prob)

and (NP). For each w [W , chw satisfies (Prob) by assumption,
and thus so does ch*

w . Suppose w;w 0 [W . Then, if ch*
w 0 ðCchw

Þ

. 0, then w ¼ w 0, and thus

ch*
w 0 ðA jCchw

Þ ¼ chwðA jCchw
Þ

as required.
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† Then we show that if b and b 0 satisfy (Prob) and (NP), then so
does any mixture of b and b 0. Suppose b and b 0 satisfy (Prob)
and (NP). Then

ðlb þ ð1 2lÞb 0ÞðA jCchÞ ¼
lbðA ^ CchÞ þ ð1 2lÞb 0ðA ^ CchÞ

lbðCchÞ þ ð1 2lÞb 0ðCchÞ

¼
lbðA jCchÞbðCchÞ þ ð1 2lÞb 0ðA jCchÞb

0ðCchÞ

lbðCchÞ þ ð1 2lÞb 0ðCchÞ

¼
lchðA jCchÞbðCchÞ þ ð1 2lÞchðA jCchÞb

0ðCchÞ

lbðCchÞ þ ð1 2lÞb 0ðCchÞ

¼ chðA jCchÞ

as required.
This suffices to establish that if b [ ðC*Þþ, then b satisfies (Prob) and
(NP). After all, it shows that the set of credence functions that satisfies
both norms is convex and contains C*. Since ðC*Þþ is the smallest such
set, ðC*Þþ is a subset of it, as required.

Second, we show that if b satisfies (Prob) and (NP), then
b [ ðC*Þþ. Suppose b satisfies (Prob) and (NP). Then let A [ F . Then

bðAÞ ¼
P
w

bðA jCchw ÞbðCchw Þ ðby ðProbÞÞ

¼
P
w

chðA jCchw
ÞbðCchw

Þ ðby ðNPÞÞ

¼
P
w

ch*
wðAÞbðCchw

Þ

Thus, b [ ðC*Þþ, as required.

Theorem 5.2: Suppose C is the set of possible initial chance functions. And

suppose each is a probability function and that each chance function expects the

chance of a proposition to be the chance that it assigns to that proposition (that is ,
chw 0 ðAÞ ¼

P
w[W chw 0 ðCchw

ÞchwðAÞ, for all w 0 inF and A in F ). Then Cþ is

the set of all (finitely additive) probability functions on F that satisfy (GPP).

Proof . As above, the proof has two parts: first, we show that, if b [ Cþ,
then b satisfies (Prob) and (GPP); second, we show the converse.

First, we show that if b [ Cþ, then b satisfies (Prob) and (GPP). We
show this in two stages:

. We begin by noting that for all w [W , chw satisfies (Prob)
and (GPP) by assumption.
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. We then observe that, if b and b 0 satisfy (Prob) and (GPP), then
so does any mixture of b and b 0. This is straightforward.

Second, we show that, if b satisfies (Prob) and (GPP), then b [ Cþ.
But this follows immediately from the fact that b satisfies (GPP). For then
b is a convex combination of the elements of C : that is, there are lw such
that

P
w[Wlw ¼ 1 and

b ¼
X

w[W

lwchw

For lw ¼ bðCchw
Þ. This completes our proof.
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