
Synthese (2019) 196:2737–2776
https://doi.org/10.1007/s11229-017-1613-7

Aggregating incoherent agents who disagree

Richard Pettigrew1

Received: 18 April 2017 / Accepted: 11 September 2017 / Published online: 16 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we explore how we should aggregate the degrees of belief of
a group of agents to give a single coherent set of degrees of belief, when at least some
of those agents might be probabilistically incoherent. There are a number of ways of
aggregating degrees of belief, and there are a number of ways of fixing incoherent
degrees of belief. When we have picked one of each, should we aggregate first and
then fix, or fix first and then aggregate? Or should we try to do both at once? And
when do these different procedures agree with one another? In this paper, we focus
particularly on the final question.

Keywords Judgment aggregation · Probabilistic Opinion Pooling · Bayesian
Epistemology · Accuracy

Amira and Benito are experts in the epidemiology of influenza. Their expertise, there-
fore, covers a claim that interests us, namely, that the next ‘flu pandemic will occur

1 An agent’s credence in a proposition is her degree of belief in it. That is, it measures how confident
she is in the proposition. Sometimes these are called her subjective probabilities or forecasts of prob-
abilities. I avoid the latter terminology since it might suggest to the reader that these credences are
probabilistically coherent, and we are interested in this paper in cases in which they are not. As I write
them, credences are real numbers in the unit interval [0, 1]. Others write them as percentages. Thus,
where I write that Amira has credence 0.5 in X , others might write that she has credence 50% in X or
that she is 50% confident in X . Translating between the two is obviously straightforward.
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in 2019. Call that proposition X and its negation X . Here are Amira’s and Benito’s
credences or degrees of belief in that pair of propositions:1

X X
Amira 0.5 0.1
Benito 0.2 0.6

We would like to arrive at a single coherent pair of credences in X and X . Perhaps we
wish to use these to set our own credences; or perhaps we wish to publish them in a
report of theWHOas the collective view of expert epidemiologists; or perhapswewish
to use them in a decision-making process to determine how medical research funding
should be allocated in 2018. Given their expertise, we would like to use Amira’s and
Benito’s credences when we are assigning ours. However, there are two problems.
First, Amira and Benito disagree—they assign different credences to X and different
credences to X . Second, Amira andBenito are incoherent—they each assign credences
to X and X that do not sum to 1. How, then, are we to proceed? There are natural ways
to aggregate different credence functions; and there are natural ways to fix incoherent
credence functions. Thus, we might fix Amira and Benito first and then aggregate
the fixes; or we might aggregate their credences first and then fix up the aggregate,
if it is incoherent. But what if these two disagree, as we will see they are sometimes
wont to do?Which should we choose? To complicate matters further, there is a natural
way to do both at once—it makes credences coherent and aggregates them all at the
same time. What if this one-step procedure disagrees with one or other or both of
the two-step procedures, fix-then-aggregate and aggregate-then-fix? In what follows,
I explore when such disagreements arise and what the conditions are that guarantee
that they will not. Then I will explain how these results may be used in philosophical
arguments. I begin, however, with an overview of the paper.

To begin, we consider only the case in which the propositions to which our dis-
agreeing agents assign credences form a partition. Indeed, in Sects. 1–7, we consider
only two-cell partitions—that is, our agents have credences only in a proposition and
its negation. Having illustrated the central ideas of the paper in this simple setting,
we then consider what happens when we move to n-cell partitions in Sect. 8. Finally,
in Sect. 9, we consider agents who have credences in propositions that don’t form a
partition at all. Throughout, we assume that all agents have credences in exactly the
same propositions. We leave the fully general case, in which the disagreeing agents
may have credences in different sets of propositions, for another time.2

In Sect. 1, we present the two most popular methods for aggregating credences:
linear pooling (LP) takes the aggregate of a set of credence functions to be their
weighted arithmetic average, while geometric pooling (GP) takes their weighted geo-
metric average and then normalises that. Then, in Sect. 2 we describe a natural method
for fixing incoherent credences: specify a measure of how far one credence function
lies from the other, and fix an incoherent credence function by taking the coherent
function that is closest to it according to that measure. We focus particularly on two of
the most popular such measures: squared Euclidean distance (SED) and generalized

2 But see Predd et al. (2008) for some initial work on this question in the spirit of the present paper.
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Kullback-Leibler divergence (GKL). In Sect. 3, we begin to see how the methods for
fixing interact with the methods for aggregating: if we pair our measures of distance
with our pooling methods carefully, they commute; otherwise, they do not. And we
begin to see the central theme of the paper emerging: LP pairs naturally with SED
(if anything does), while GP pairs with GKL (if anything does). In Sect. 4, we note
that, just as we can fix incoherent credence functions by minimizing distance from
or to coherence, so we can aggregate credence functions by taking the aggregate to
be the credence function that minimizes the weighted average distance from or to
those credence functions. The aggregation methods that result don’t necessarily result
in coherent credence functions, however. To rectify this, in Sect. 5 we introduce the
Weighted Coherent Aggregation Principle, which takes the aggregate to be the coher-
ent credence function that minimizes the weighted average distance from or to the
credence functions to be aggregated. Up to this point, we have been talking generally
about measures of the distance from one credence function to another, or only about
our two favoured examples. In Sect. 6, we introduce the class of additive Bregman
divergences, which is the focus for the remainder of the paper. Our two favoured mea-
sures, SED and GKL, belong to this class, as do many more besides. In Sect. 7 we
come to the central results of the paper. They vindicate the earlier impression that linear
pooling matches with squared Euclidean distance (if anything does), while geomet-
ric pooling matches with generalized Kullback-Leibler divergence (if anything does).
Theorems 10 and 12 show that the only methods of fixing or fixing-and-aggregating-
together that commute with LP are those based on SED, while the only methods that
commute with GP are those based on GKL. And Theorems 11 and 13 describe the
aggregation rules that result from minimising the weighted average distance from or
to the credence functions to be aggregated. In Sect. 8, we move from two-cell parti-
tions to many-cell partitions. Some of our results generalise fully—in particular, those
concerning GP and GKL—while some generalise only to restricted versions—in par-
ticular, those concerning LP and SED. As mentioned above, in Sect. 9, we ask what
happens when we consider disagreeing agents who assign credences to propositions
that do not form a partition. Here, wemeet a dilemma that GP andGKL face, but which
LP and SED do not. Finally, by Sect. 10, we have all of our results in place and we can
turn to their philosophical significance. I argue that these results can be used as philo-
sophical booster rockets: on their own, they support no philosophical conclusion; but
paired with an existing argument, either in favour of a way of aggregating or in favour
of a particular measure of distance between credence functions, they can extend the
conclusion of those arguments significantly. They say what measure of distance you
should use if you wish to aggregate by LP or by GP, for instance; and they say what
aggregation method you should use if you favour SED or GKL over other measures of
distance. In Sect. 11, we conclude. The Appendix provides proofs for all of the results.

1 Aggregating credences

As advertised, we will restrict attention in these early sections to groups of agents
like Amira and Benito, who assign credences only to the propositions in a partition
F = {X1, X2}. Let CF be the set of credence functions over F—that is, CF =
{c : F → [0, 1]}. And let PF ⊆ CF be the set of coherent credence functions over
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F—that is, PF = {c ∈ CF | c(X1) + c(X2) = 1}. Throughout, we take an agent’s
credence function to record her true credences. It doesn’t record her reports of her
credences, and it doesn’t record the outcome of some particular method of measuring
those credences. It records the credences themselves. Thus, we focus on cases in which
our agent is genuinely incoherent, and not on cases in which she appears incoherent
because of some flaw in our methods of measurement.

An aggregation method is a function T : (CF )n → CF that takes n credence
functions—the agents—and returns a single credence function—the aggregate. Both
aggregation methods we consider in this section appeal to a set of weights α1, . . . , αn

for the agents, which we denote {α}. We assume α1, . . . , αn ≥ 0 and
∑n

k=1 αk = 1.
First, linear pooling. This says that we obtain the aggregate credence for a particular

proposition X j in F by taking a weighted arithmetic average of the agents’ credences
in X j ; and we use the same weights for each proposition. The weighted arithmetic
average of a sequence of numbers r1, . . . , rn givenweightsα1, . . . , αn is

∑n
k=1 αkrk =

α1r1 + · · · + αnrn . Thus:

Linear Pooling (LP) Let {α} be a set of weights. Then

LP{α}(c1, · · · , cn)(X j ) = α1c1(X j ) + · · · + αncn(X j ) =
n∑

k=1

αkck(X j )

for each X j in F .

Thus, to aggregate Amira’s and Benito’s credences in this way, we first pick a weight
0 ≤ α ≤ 1. Then the aggregate credence in X is 0.5α+0.2(1−α), while the aggregate
credence in X is 0.1α + 0.6(1 − α). Thus, if α = 0.4, the aggregate credence in X
is 0.32, while the aggregate credence in X is 0.4. (See Fig. 1 for an illustration of the
effect of linear pooling on Amira’s and Benito’s credences.) Notice that, just as the
two agents are incoherent, so is the aggregate. This is typically the case, though not
universally, when we use linear pooling.

Second, we consider geometric pooling. This uses weighted geometric averages
where linear pooling uses weighted arithmetic averages. The weighted geometric
average of a sequence of numbers r1, . . . , rn given weights α1, . . . , αn is

∏n
i=1 r

αi
i =

rα1
1 × · · · × rαn

n . Now, when all of the agents’ credence functions are coherent, so
is the credence function that results from taking weighted arithmetic averages of the
credences they assign. That is, if ck(X1) + ck(X2) = 1 for all 1 ≤ k ≤ n, then

n∑

k=1

αkck(X1) +
n∑

k=1

αkck(X2) =
n∑

k=1

αk (ck(X1) + ck(X2)) =
n∑

k=1

αk = 1

However, the same is not true of weighted geometric averaging. Even if ck(X1) +
ck(X2) = 1 for all 1 ≤ k ≤ n, there is no guarantee that

n∏

k=1

ck(X1)
αk +

n∏

k=1

ck(X2)
αk = 1

Thus, in geometric pooling, after taking the weighed geometric average, we need to
normalize. So, for each cell X j of our partition, we first take the weighted geometric
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vXX

X

vX

cA

cB

FixSED(cA)

FixSED(cB)

LP{0.4,0.6}(FixSED(cA), FixSED(cB))
= FixSED(LP{0.4,0.6}(cA, cB))

LP{0.4,0.6}(cA, cB)

Fig. 1 Linear pooling and SED-fixing applied to Amira’s and Benito’s credences. If F = {X, X}, we can
represent the set of all credence functions defined on X and X as the points in the unit square: we represent
c : {X, X} → [0, 1] as the point (c(X), c(X)), so that the x-coordinate gives the credence in X , while
the y-coordinate gives the credence in X . In this way, we represent Amira’s credence function as cA and
Benito’s as cB in the diagram above. AndPF , the set of coherent credence functions, is represented by the
thick diagonal line joining the omniscient credence functions vX and vX . As we can see, FixSED(cA) is
the orthogonal projection of cA onto this set of coherent credence functions; and similarly for FixSED(cB )

and FixSED(LP{0.4,0.6}(cA, cB )). The straight line from cA to cB represents the set of linear pools of
cA and cB generated by different weightings. The arrows indicated that you can reach the same point—

LP{0.4,0.6}(FixSED(cA), FixSED(cB )) = FixSED(LP{0.4,0.6}(cA, cB ))—from either direction. That is, LP
and FixSED commute

average of the agents’ credences ck(X j ), and then we normalize the results. So the
aggregated credence for X j is

∏n
k=1 ck(X j )

αk

∏n
k=1 ck(X1)αk + ∏n

k=1 ck(X2)αk

That is,
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vXX

X

vX

cA

cB

GP{0.4,0.6}(FixGKL(cA), FixGKL(cB))
= FixGKL(GP{0.4,0.6}

− (cA, cB))

FixGKL(cA)

FixGKL(cB)

GP{0.4,0.6}
− (cA, cB)

Fig. 2 Here, we see that FixGKL(cA) is the projection from the origin through cA onto the set of coherent

credence functions; and similarly for FixGKL(cB ) and FixGKL(GP{0.4,0.6}
− (cA, cB )). The curved line from

cA to cB represents the set of geometric pools of cA and cB generated by different weightings. Again, the
arrows indicate that GP = FixGKL ◦ GP− = GP ◦ FixGKL

Geometric Pooling (GP) Let {α} be a set of weights. Then

GP{α}(c1, . . . , cn)(X j ) =
∏n

k=1 ck(X j )
αk

∑
X∈F

∏n
k=1 ck(X)αk

for each X j in F .

Thus, to aggregateAmira’s andBenito’s credences in this way, we first pick aweightα.
Then the aggregate credence in X is 0.5α0.21−α

0.5α0.21−α+0.1α0.61−α , while the aggregate credence

in X is 0.1α+0.61−α

0.5α0.21−α+0.1α0.61−α . Thus, if α = 0.4, the aggregate credence in X is 0.496,

while the aggregate credence in X is 0.504. (Again, see Fig. 2 for an illustration.) Note
that, this time, the aggregate is guaranteed to be coherent, even though the agents are
incoherent.
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2 Fixing incoherent credences

Amira has incoherent credences. How are we to fix her up so that she is coherent?
And Benito? In general, how do we fix up an incoherent credence function so that
it is coherent? A natural thought is that we should pick the credence function that is
as similar as possible to the incoherent credence function whilst being coherent—we
might think of this as a method of minimal mutilation.3

For this purpose, we need ameasure of distance between credence functions. In fact,
since the measures we will use do not have the properties that mathematicians usually
require of distances—they aren’t typicallymetrics—we will follow the statisticians in
calling them divergences instead. A divergence is a functionD : CF ×CF → [0,∞]
such that (i) D(c, c) = 0 for all c, and (ii) D(c, c′) > 0 for all c 
= c′. We do not
require thatD is symmetric: that is, we do not assumeD(c, c′) = D(c′, c) for all c, c′.
Nor do we require that D satisfies the triangle inequality: that is, we do not assume
D(c, c′′) ≤ D(c, c′) + D(c′, c′′) for all c, c′, c′′.

Now, supposeD is a divergence. Then the suggestion is this: given a credence func-
tion c, we fix it by taking the coherent credence function c∗ such thatD(c∗, c) is mini-
mal; or perhaps the coherent credence function c∗ such thatD(c, c∗) is minimal. Since
Dmay not be symmetric, these twoways of fixing cmight give different results. Thus:4

Fixing Given a credence function c, let

FixD1(c) = argmin
c′∈PF

D(c′, c)

and

FixD2(c) = argmin
c′∈PF

D(c, c′)

Throughout this paper, we will be concerned particularly with fixing incoherent cre-
dence functions using the so-called additive Bregman divergences (Bregman 1967).
I’ll introduce these properly in Sect. 6, but let’s meet two of the most famous Bregman
divergences now:

Squared Euclidean Distance (SED)

SED(c, c′) =
∑

X∈F
(c(X) − c′(X))2

This is the divergence used in the least squares method in data fitting, where we wish
to measure how far a putative fit to the data, c, lies from the data itself c′. For argu-
ments in its favour, see Selten (1998), Leitgeb and Pettigrew (2010a), D’Agostino and
Sinigaglia (2010) and Pettigrew (2016a).

3 Such a fixing procedure is at least suggested by the second central result of De Bona and Staffel (2017,
204). We will meet the principle of minimal mutilation again in Sect. 10.
4 Recall: PF is the set of coherent credence functions over F .
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Generalized Kullback-Leibler (GKL)

GKL(c, c′) =
∑

X∈F

(

c(X) log
c(X)

c′(X)
− c(X) + c′(X)

)

This is most famously used in information theory to measure the information gained
by moving from a prior distribution, c′, to a posterior, c. For arguments in its favour,
see Paris and Vencovská (1990), Paris and Vencovská (1997) and Levinstein (2012).

Let’s see the effect of these onAmira’s andBenito’s credences. SED is symmetric—
that is, SED(c, c′) = SED(c′, c), for all c, c′.5 Therefore, both fixing methods
agree—that is, FixSED1 = FixSED2 . GKL isn’t symmetric. However, its fixingmethods
nonetheless always agree for credences defined on a two-cell partition—that is, as we
will see below, we also have FixGKL1 = FixGKL2 .

X X
Amira (original) 0.5 0.1
Benito (original) 0.2 0.6

Amira (SED-fixed) 0.7 0.3
Benito (SED-fixed) 0.3 0.7
Amira (GKL-fixed) 0.83 0.17
Benito (GKL-fixed) 0.25 0.75

In general:

Proposition 1 Suppose F = {X1, X2} is a partition. Then, for all c in CF and X j in
F ,

(i) FixSED1(c)(X j ) = FixSED2(c)(X j ) = c(X j ) + 1−(c(X1)+c(X2))
2

(ii) FixGKL1(c)(X j ) = FixGKL2(c)(X j ) = c(X j )

c(X1)+c(X2)

In other words, when we use SED to fix an incoherent credence function c over a
partition X1, X2, we add the same quantity to each credence. That is, there is K such
that FixSED(c)(X j ) = c(X j ) + K , for j = 1, 2. Thus, the difference between a fixed
credence and the original credence is always the same—it is K . In order to ensure that
the result is coherent, this quantity must be K = 1−(c(X1)+c(X2))

2 . On the other hand,
when we use GKL to fix c, we multiply each credence by the same quantity. That is,
there is K such that FixGKL(c)(X j ) = K ·c(X j ), for j = 1, 2. Thus, the ratio between
a fixed credence and the original credence is always the same—it is K . In order to
ensure that the result is coherent in this case, this quantity must be K = 1

c(X1)+c(X2)
.

There is also a geometric way to understand the relationship between fixing using
SED and fixing using GKL. Roughly: FixSED(c) is the orthogonal projection of c onto
the set of coherent credence functions, while FixGKL(c) is the result of projecting from
the origin through c onto the set of coherent credence functions. This is illustrated in
Figs. 1 and 2. One consequence is this: if c(X) + c(X) < 1, then fixing using SED is
more conservative than fixing byGKL, in the sense that the resulting credence function

5 Indeed, SED is the only symmetric Bregman divergence.
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is less opinionated—it has a lower maximum credence. But if c(X) + c(X) > 1, then
fixing using GKL is more conservative.

3 Aggregate-then-fix versus fix-then-aggregate

Using the formulae in Proposition 1, we can explore what differences, if any, there
are between fixing incoherent agents and then aggregating them, on the one hand, and
aggregating incoherent agents and then fixing the aggregate, on the other. Suppose
c1, …, cn are the credence functions of a group of agents, all defined on the same
two-cell partition {X1, X2}. Some may be incoherent, and we wish to aggregate them.
Thus, we might first fix each credence function, and then aggregate the resulting
coherent credence functions; or we might aggregate the original credence functions,
and then fix the resulting aggregate. When we aggregate, we have two methods at our
disposal—linear pooling (LP) and geometric pooling (GP); and when we fix, we have
two methods at our disposal—one based on squared Euclidean distance (SED) and
the other based on generalized Kullback-Leibler divergence (GKL). Our next result
tells us how these different options interact. To state it, we borrow a little notation
from the theory of function composition. For instance, we write LP{α} ◦ FixSED to
denote the function that takes a collection of agents’ credence functions c1, …, cn and
returns LP{α}(FixSED(c1), . . . ,FixSED(cn)). So LP{α} ◦ FixSED might be read: LP{α}
following FixSED, or LP{α} acting on the results of FixSED. Similarly, FixSED ◦ LP{α}
denotes the function that takes c1, …, cn and returns FixSED(LP{α}(c1, . . . , cn)). And
we say that two functions are equal if they agree on all arguments, and unequal if they
disagree on some.

Proposition 2 Suppose F = {X1, X2} is a partition. Then

(i) LP{α} ◦ FixSED = FixSED ◦ LP{α}.

That is, linear pooling commutes with SED-fixing.

That is, for all c1, …cn in CF ,

LP{α}(FixSED(c1), . . . ,FixSED(cn)) = FixSED(LP{α}(c1, . . . , cn))

(ii) LP{α} ◦ FixGKL 
= FixGKL ◦ LP{α}.

That is, linear pooling does not commute with GKL-fixing.

That is, for some c1, …, cn in CF ,

LP{α}(FixGKL(c1), . . . ,FixGKL(cn)) 
= FixGKL(LP{α}(c1, . . . , cn))

(iii) GP{α} ◦ FixGKL = FixGKL ◦ GP{α}.

That is, geometric pooling commutes with GKL-fixing.
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That is, for all c1, …, cn,

GP{α}(FixGKL(c1), . . . ,FixGKL(cn)) = FixGKL(GP{α}(c1, . . . , cn))

(iv) GP{α} ◦ FixSED 
= FixSED ◦ GP{α}.

That is, geometric pooling does not commute with SED-fixing.

That is, for some c1, …, cn,

GP{α}(FixSED(c1), . . . ,FixSED(cn)) 
= FixSED(GP{α}(c1, . . . , cn))

With this result, we start to see the main theme of this paper emerging: SED naturally
accompanies linear pooling, while GKL naturally accompanies geometric pooling. In
Sect. 7, we’ll present further results that support that conclusion, as well as some that
complicate it a little. In Sects. 8 and 9, these are complicated further. But the lesson
still roughly holds.

4 Aggregating by minimizing distance

In the previous section, we introduced the notion of a divergence and we put it to use
fixing incoherent credence functions: given an incoherent credence function c, we fix
it by taking the coherent credence function that minimizes divergence to or from c.
But divergences can also be used to aggregate credence functions.6 The idea is this:
given a divergence and a collection of credence functions, take the aggregate to be the
credence function that minimizes the weighted arithmetic average of the divergences
to or from those credence functions. Thus:

D-aggregation Let {α} be a set of weights. Then

Agg{α}
D1

(c1, . . . , cn) = argmin
c′∈CF

n∑

k=1

αkD(c′, ck)

and

Agg{α}
D2

(c1, . . . , cn) = argmin
c′∈CF

n∑

k=1

αkD(ck, c
′)

Let’s see what these give when applied to the two divergences we introduced above,
namely, SED and GKL.

6 When the agents are represented as having categorical doxastic states, such as full beliefs or commitments,
this methodwas studied first in the computer science literature on belief merging (Konieczny and Pino-Pérez
1999; Konieczny and Grégoire 2006). It was studied first in the judgment aggregation literature by Pigozzi
(2006).
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Proposition 3 Let {α} be a set of weights. Then, for each X j in F ,

(i) Agg{α}
SED(c1, . . . , cn)(X j ) =

n∑

k=1

αkck(X j ) = LP{α}(c1, . . . , cn)

(ii) Agg{α}
GKL1

(c1, . . . , cn)(X j ) =
n∏

k=1

ck(X j )
αk = GP{α}

− (c1, . . . , cn)

(iii) Agg{α}
GKL2

(c1, . . . , cn)(X j ) =
n∑

k=1

αkck(X j ) = LP{α}(c1, . . . , cn)

Thus,AggSED andAggGKL2
are just linear pooling—they assign to each X j the (unnor-

malized) weighted arithmetic average of the credences assigned to X j by the agents.
On the other hand, AggGKL1

is just geometric pooling without the normalization
procedure—it assigns to each X j the (unnormalized) weighted geometic average of
the credences assigned to X j by the agents. I call this aggregation procedure GP−.
Given a set of coherent credence functions, GP returns a coherent credence function,
but GP− typically won’t. However, if we aggregate using GP− and then fix using
GKL, then we obtain GP:

Proposition 4 Let {α} be a set of weights. Then

GP{α} = FixGKL ◦ GP{α}
−

5 Aggregate and fix together

In this section, we meet our final procedure for producing a single coherent credence
function from a collection of possibly incoherent ones. This procedure fixes and aggre-
gates together: that is, it is a one-step process, unlike the two-step processes we have
considered so far. It generalises a technique suggested by Osherson and Vardi (2006)
and explored further by Predd et al. (2008).7 Again, it appeals to a divergence D;
and thus again, there are two versions, depending on whether we measure distance
from coherence or distance to coherence. If we measure distance from coherence, the
weighted coherent approximation principle tells us to pick the coherent credence func-
tion such that the weighted arithmetic average of the divergences from that coherent
credence function to the agents is minimized. And if we measure distance to coher-
ence, it picks the coherent credence function that minimizes the weighted arithmetic
average of the divergences from the agents to the credence function. Thus, it poses
a minimization problem similar to that posed by D-aggregation, but in this case, we

7 Osherson and Vardi (2006) and Predd et al. (2008) consider only what we call WCAP
{ 1n }
SED1

below. They
do not consider the different Bregman divergences D; they do not consider the two directions; and they
do not consider the possibility of weighting the distances differently. This is quite understandable—their
interest lies mainly in the feasibility of the procedure from a computational point of view. We will not
address this issue here.
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wish to find the credence function amongst the coherent ones that does the minimiz-
ing; in the case of D-aggregation, we wish to find the credence function amongst all
the credence ones that does the minimizing.

Weighted Coherent Approximation Principle Let {α} be a set of weights.
Then

WCAP{α}
D1

(c1, . . . , cn) = argmin
c′∈PF

n∑

k=1

αkD(c′, ck)

and

WCAP{α}
D2

(c1, . . . , cn) = argmin
c′∈PF

n∑

k=1

αkD(ck, c
′)

How does this procedure compare to the fix-then-aggregate and aggregate-then-fix
procedures that we considered above? Our next result gives the answer:

Proposition 5 SupposeF = {X1, X2} is a partition. Let {α} be a set of weights. Then

(i) WCAP{α}
SED = LP{α} ◦ FixSED = FixSED ◦ LP{α}

= Agg{α}
SED ◦ FixSED = FixSED ◦ Agg{α}

SED

(ii) WCAP{α}
GKL1

= GP{α} ◦ FixGKL = FixGKL ◦ GP{α}

= Agg{α}
GKL1

◦ FixGKL = FixGKL ◦ Agg{α}
GKL1= GP{α}

(iii) WCAP{α}
GKL2


= GP{α} ◦ FixGKL = FixGKL ◦ GP{α}
= GP{α}

(iv) WCAP{α}
GKL2

= FixGKL ◦ LP = FixGKL ◦ Agg{α}
GKL2


= Agg{α}
GKL2

◦ FixGKL

(i) and (ii) confirm our picture that linear pooling naturally pairs with SED, while
geometric pooling pairs naturally with GKL. However, (iii) and (iv) complicate
this. This is a pattern we will continue to encounter as we progress: when we
miminize distance from coherence, the aggregation methods and divergence mea-
sures pair up reasonably neatly; when we minimize distance to coherence, they do
not.

These, then, are the various ways we will consider by which you might produce
a single coherent credence function when given a collection of possibly incoherent
ones: fix-then-aggregate, aggregate-then-fix, and theweighted coherent approximation
principle. Each involves minimizing a divergence at some point, and so each comes
in two varieties, one based on minimizing distance from coherence, the other based
on minimizing distance to coherence.

Are these the only possible ways? There is one other that might seem a natural
cousin of WCAP, and one that might seem a natural cousin of D-aggregation, which

123



Synthese (2019) 196:2737–2776 2749

we might combine with fixing in either of the ways considered above. In WCAP, we
pick the coherent credence function that minimizes the weighted arithmetic average of
the distances from (or to) the agents. The use of the weighted arithmetic average here
might lead you to expect thatWCAPwill pairmost naturallywith linear pooling,which
aggregates by taking the weighted arithmetic average of the agents’ credences. You
might expect it to interact poorly with geometric pooling, which aggregates by taking
the weighted geometric average of the agents’ credences (and then normalizing).
But, in fact, as we saw in Theorem 5(ii), when coupled with the divergence GKL,
and when we minimize distance from coherence, rather than distance to coherence,
WCAP entails geometric pooling. Nonetheless, we might think that if it is natural to
minimize the weighted arithmetic average of distances from coherence, and if both
linear and geometric pooling are on the table, revealing that we have no prejudice
against using geometric averages to aggregate numerical values, then it is equally
natural to minimize the weighted geometric average of distances from coherence.
This gives:

Weighted Geometric Coherent Approximation Principle Let {α} be a set of
weights. Then

WGCAP{α}
D1

(c1, . . . , cn) = argmin
c′∈PF

n∏

k=1

D(c′, ck)αk

and

WGCAP{α}
D2

(c1, . . . , cn) = argmin
c′∈PF

n∏

k=1

D(ck, c
′)αk

However, it is easy to see that:

Proposition 6 For any divergence D, any set of weights {α}, any i ∈ {1, 2}, and any
coherent credence functions c1, …, cn,

c∗ = WGCAP{α}
Di

(c1, . . . , cn) iff c∗ = c1 or . . . or cn

That is, WGCAP gives a dictatorship rule when applied to coherent agents: it
aggregates a group of agents by picking one of those agents and making her
stand for the whole group. This rules it out immediately as a method of aggrega-
tion.

Similarly, we might define a geometric cousin toD-aggregation:

Geometric D-aggregation Let {α} be a set of weights. Then

GAgg{α}
D1

(c1, . . . , cn) = argmin
c′∈CF

n∏

k=1

D(c′, ck)αk
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and

GAgg{α}
D2

(c1, . . . , cn) = argmin
c′∈CF

n∏

k=1

D(ck, c
′)αk

However, we obtain a similar result to before, though this time the dictatorship arises
for any set of agents, not just coherent ones.

Proposition 7 For any divergence D, any set of weights {α}, any i ∈ {1, 2}, and any
credence functions c1, …, cn,

c∗ = GAgg{α}
Di

(c1, . . . , cn) iff c∗ = c1 or . . . or cn

Thus, in what follows, we will consider only fix-then-aggregate, aggregate-then-fix,
and WCAP.

6 Bregman divergences

In the previous section, we stated our definition of fixing and our definition of the
weighted coherent approximation principle in terms of a divergenceD. We then iden-
tified two such divergences, SED and GKL, and we explored how those ways of
making incoherent credences coherent related to ways of combining different cre-
dence functions to give a single one. This leaves us with two further questions: Which
other divergences might we use when we are fixing incoherent credences? And how
do the resulting ways of fixing relate to our aggregation principles? In this section,
we introduce a large family of divergences known as the additive Bregman diver-
gences (Bregman 1967). SED and GKL are both additive Bregman divergences, and
indeed Bregman introduced the notion as a generalisation of SED. They are widely
used in statistics to measure how far one probability distribution lies from another
(Csiszár 1991; Banerjee et al. 2005; Gneiting and Raftery 2007; Csiszár 2008; Predd
et al. 2009); they are used in social choice theory to measure how far one distribution
of wealth lies from another (D’Agostino and Dardanoni 2009; Magdalou and Nock
2011); and they are used in the epistemology of credences to define measures of the
inaccuracy of credence functions (Pettigrew 2016a). Below, I will offer some reasons
why we should use them in our procedures for fixing incoherent credences. But first
let’s define them.

Each additive Bregman divergence D : CF × CF → [0,∞] is generated by a
function ϕ : [0, 1] → R, which is required to be (i) strictly convex on [0, 1] and
(ii) twice differentiable on (0, 1) with a continuous second derivative. We begin by
using ϕ to define the divergence from x to y, where 0 ≤ x, y ≤ 1. We first draw
the tangent to ϕ at y. Then we take the divergence from x to y to be the difference
between the value of ϕ at x—that is, ϕ(x)—and the value of that tangent at x—that is,
ϕ(y)+ϕ′(y)(x − y). Thus, the divergence from x to y is ϕ(x)−ϕ(y)−ϕ′(y)(x − y).
We then take the divergence from one credence function c to another c′ to be the sum
of the divergences from each credence assigned by c to the corresponding credence
assigned by c′. Thus:
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Definition 1 Suppose ϕ : [0, 1] → R is a strictly convex function that is twice
differentiable on (0, 1) with a continuous second derivative. And suppose D : CF ×
CF → [0,∞]. ThenD is the additive Bregman divergence generated by ϕ if, for any
c, c′ in CF ,

D(c, c′) =
∑

X∈F
ϕ(c(X)) − ϕ(c′(X)) − ϕ′(c′(X))(c(X) − c′(X))

And we can show:

Proposition 8 (i) SED is the additive Bregman divergence generated by ϕ(x) = x2.
(ii) GKL is the additive Bregman divergence generated by ϕ(x) = x log x − x.

Why do we restrict our attention to additive Bregman divergences when we are
considering which divergences to use to fix incoherent credences? Here’s one answer.8

Just as beliefs can be true or false, credences can be more or less accurate. A credence
in a true proposition is more accurate the higher it is, while a credence in a false
proposition is more accurate the lower it is. Now, just as some philosophers think that
beliefs are more valuable if they are true than if they are false (Goldman 2002), so
some philosophers think that credences are more valuable the more accurate they are
(Joyce 1998) and (Pettigrew 2016a). This approach is sometimes called accuracy-
first epistemology. These philosophers then provide mathematically precise ways to
measure the inaccuracy of credence functions. They say that a credence function c is
more inaccurate at a possible world w the further c lies from the omniscient credence
function vw at w, where vw assigns maximal credence (i.e. 1) to all truths at w and
minimal credence (i.e. 0) to all falsehoods atw. So, in order to measure the inaccuracy
of c at w we need a measure of how far one credence function lies from another, just
as we do when we want to fix incoherent credence functions. But which divergences
are legitimate measures for this purpose? Elsewhere, I have argued that it is only the
additive Bregman divergences (Pettigrew 2016a, Chapter 4).9 I won’t rehearse the
argument here, but I will accept the conclusion.

Now, on its own, my argument that only the additive Bregman divergences are
legitimate for the purpose ofmeasuring inaccuracy does not entail that only the additive
Bregmandivergences are legitimate for the purpose of correcting incoherent credences.
But the following argument gives us reason to take that further step as well. One of
the appealing features of the so-called accuracy-first approach to the epistemology
of credences is that it gives a neat and compelling argument for the credal norm
of probabilism, which says that an agent should have a coherent credence function
(Joyce 1998; Pettigrew 2016a). Having justified the restriction to the additive Bregman
divergences on other grounds, the accuracy-first argument for probabilism is based on
the following mathematical fact:

8 See Bona and Staffel (2017) for a similar line of argument.
9 If we use Bregman divergences to measure the distance from the omniscient credence function to another
credence function, the resulting measure of inaccuracy is a strictly proper scoring rule. These measures of
inaccuracy have been justified independently in the accuracy-first literature (Oddie 1997; Gibbard 2008;
Joyce 2009). And conversely, given a strictly proper scoring rule, we can easily recover an additive Bregman
divergence.
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Theorem 9 (Predd et al. 2009) Suppose F = {X1, . . . , Xm} is a partition, and D :
CF×CF → [0,∞] is an additiveBregmandivergence. And suppose c is an incoherent
credence function. Then, if c∗ = argmin

c′∈PF
D(c′, c), then D(vi , c∗) < D(vi , c) for all

1 ≤ i ≤ m, where vi (X j ) = 1 if i = j and vi (X j ) = 0 if i 
= j .

That is, if c is incoherent, then the closest coherent credence function to c is closer
to all the possible omniscient credence functions than c is, and thus is more accurate
than c is at all possible worlds. Thus, if we fix up incoherent credence functions
by using an additive Bregman divergence and taking the nearest coherent credence
function, then we have an explanation for why we proceed in this way, namely, that
doing so is guaranteed to increase the accuracy of the credence function. To see this
in action, consider FixSED(cA) and FixSED(cB) in Fig. 1. It is clear from this picture
that FixSED(cA) is closer to vX than cA is, and closer to vX than cA is.

7 When do divergences cooperate with aggregation methods?

7.1 Minimizing distance from coherence

From Proposition 5(i) and (ii), we learned of an additive Bregman divergence that
fixes up incoherent credences in a way that cooperates with linear pooling—it is SED.
And we learned of an additive Bregman divergence that fixes up incoherent credences
in a way that cooperates with geometric pooling, at least when you fix by minimizing
distance from coherence rather than distance to coherence—it is GKL. But this leaves
open whether there are other additive Bregman divergences that cooperate with either
of these rules. The following theorem shows that there are not.

Theorem 10 Suppose F = {X1, X2} is a partition. And suppose D is an additive
Bregman divergence. Then:

(i) WCAPD1 = FixD1 ◦ LP = LP ◦ FixD1 iff D is a positive linear transformation
of SED.

(ii) WCAPD1 = FixD1 ◦GP = GP ◦ FixD1 iffD is a positive linear transformation
of GKL.

Thus, suppose you fix incoherent credences by minimizing distance from coherence.
And suppose you wish to fix and aggregate in ways that cooperate with one another—
we will consider an argument for doing this in Sect. 10. Then, if you measure the
divergence between credence functions using SED, then Proposition 5 says you should
aggregate by linear pooling. If, on the other hand, you wish to use GKL, then you
should aggregate by geometric pooling. And, conversely, if you aggregate credences
by linear pooling, then Theorem 10 says you should fix incoherent credences using
SED. If, on the other hand, you aggregate by geometric pooling, then you should fix
incoherent credences using GKL. In Sect. 10, we will ask whether we have reason to
fix and aggregate in ways that cooperate with one another.

We round off this section with a result that is unsurprising in the light of previous
results:

Theorem 11 Suppose D is an additive Bregman divergence. Then,

123



Synthese (2019) 196:2737–2776 2753

(i) AggD1
= LP iffD is a positive linear transformation of SED.

(ii) AggD1
= GP− iffD is a positive linear transformation of GKL.

7.2 Minimizing distance to coherence

Next, let us consider what happens when we fix incoherent credences by minimizing
distance to coherence rather than distance from coherence.

Theorem 12 Suppose D is an additive Bregman divergence generated by ϕ. Then,

(i) WCAPD2 = FixD2 ◦ LP.
(ii) WCAPD2 = FixD2 ◦LP = LP◦FixD2 ,when themethods are applied to coherent

credences.
(iii) WCAPD2 = FixD2 ◦ LP = LP ◦ FixD2 , if ϕ

′′(x) = ϕ′′(1 − x), for 0 ≤ x ≤ 1.

Theorem12(iii) corresponds toTheorem 10(i), but in this casewe see that amuchwider
range of Bregman divergences give rise to fixing methods that cooperate with linear
pooling when we measure distance to coherence. Theorem 12(i) and (ii) entail that
there is no analogue to Theorem 10(ii). There is no additive Bregman divergence that
cooperates with geometric pooling when we fix by minimizing distance to coherence.
That is, there is no additive Bregman divergence D such that WCAPD2 = FixD2 ◦
GP = GP ◦ FixD2 . This result complicates our thesis from above that SED pairs
naturally with linear pooling while GKL pairs naturally with geometric pooling.

We round off this section with the analogue of Theorem 11:

Theorem 13 Suppose D is an additive Bregman divergence. Then, AggD2
= LP.

8 Partitions of any size

As we have seen, there are three natural ways in which we might aggregate the cre-
dences of disagreeing agents when some are incoherent: we can fix-then-aggregate,
aggregate-then-fix, or fix-and-aggregate-together. In the preceding sections, we have
seen, in a restricted case, when these three methods agree for two standard methods
of pooling and two natural methods of fixing. In this restricted case, where the agents
to fixed or aggregated have credences only over a two-cell partition, both methods of
pooling seem viable, as do both methods of fixing—the key is to pair them carefully.
In this section, we look beyond our restricted case. Instead of considering only agents
with credences in two propositions that partition the space of possibilities, we con-
sider agents with credences over partitions of any (finite) size. As we will see, in this
context, geometric pooling and GKL continue to cooperate fully, but linear pooling
and SED do not. This looks like a strike against linear pooling and SED, but we should
not write them off so quickly, for in Sect. 9, we will consider agents with credences in
propositions that do not form a partition, and there we will see that geometric pooling
and GKL face a dilemma that linear pooling and SED avoid. So the scorecard evens
out.
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Suppose, then, that F = {X1, . . . , Xm} is a partition, and c1, . . . , cn are credence
functions over F . We’ll look at geometric pooling and GKL first, since there are no
surprises there.

First, Proposition 1(ii) generalizes in the natural way: to fix a credence function over
any partition usingGKL, you simply normalise it in the usualway—see Proposition 15
below. Propositions 2(ii–iv) also generalise, as do Propositions 3(ii-iii), 5(ii-iv), 6, and
7, as well as Theorems 10(ii) and 11(ii). Thus, as for agents with credences over two-
cell partitions, GKL fully cooperates with geometric pooling for agents with credences
over many-cell partitions.

Things are rather different, however, for linear pooling andSED.The initial problem
is that Proposition 1(i) does not generalise in the naturalway. Suppose c is an incoherent
credence function over the partition F = {X1, . . . , Xm}. We wish to fix c by taking
the credence function that minimizes distance from it when wemeasure distance using
SED. We might expect that, as before, there is some constant K such that we fix c
by adding K to each of the credences that c assigns—that is, we might expect that
the fixed credence in X j will be c(X j ) + K , for all 1 ≤ j ≤ m. The problem with
this is that, sometimes, there is no K such that the resulting function is a coherent
credence function—there is sometimes no K such that (i)

∑m
i=1 c(X j ) + K = 1,

and (ii) c(X j ) + K ≥ 0, for all 1 ≤ j ≤ m. Indeed,
∑m

i=1 c(X j ) + K = 1 holds

iff K = 1−∑m
i=1 c(Xi )

m , and often there is X j such that c(X j ) + 1−∑m
i=1 c(Xi )

m < 0.

Consider, for instance, the following credence function over {X1, X2, X3}: c(X1) =
0.9, c(X2) = 0.9, and c(X3) = 0.1. Then c(X3) + 1−(c(X1)+c(X2)+c(X3))

3 = −0.3.
So, if this is not what happens when we fix an incoherent credence function over a

many-cell partition using SED, what does happen? In fact, there is some constant that
we add to the original credences to obtain the fixed credences. But we don’t necessarily
add that constant to each of the original credences. Sometimes, we fix some of the
original credences by setting them to 0, while we fix the others by adding the constant.
The following fact is crucial:

Proposition 14 Suppose 0 ≤ r1, . . . , rm ≤ 1. Then there is a unique K such that

∑

ri :ri+K≥0

ri + K = 1

With this in hand, we are now ready to state the true generalization of Proposition 1:

Proposition 15 Suppose c is a credence function over a partitionF = {X1, . . . , Xm}.
Then

(i) For all 1 ≤ j ≤ m,

FixSED1(c)(X j ) = FixSED2(c)(X j ) =
{
c(X j ) + K if c(X j ) + K ≥ 0
0 otherwise

where K is the unique number such that

∑

i :c(Xi )+K≥0

c(Xi ) + K = 1
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(ii) For all 1 ≤ j ≤ m,

FixGKL1(c)(X j ) = FixGKL2(c)(X j ) = c(X j )
∑m

i=1 c(Xi )

Having seen the effects of FixSED, we can now see why Proposition 2(i) does not
generalise to the many-cell partition case. The following table provides the credences
of two agents over a partition {X1, X2, X3}. Both are incoherent. As we can see, fixing
using SED and then linear pooling gives quite different results from linear pooling
and then fixing using SED.

X1 X2 X3

c1 0.9 0.9 0.1
c2 0.9 0.1 0.9

FixSED(c1) 0.5 0.5 0
FixSED(c2) 0.5 0 0.5

LP
1
2 (FixSED(c1),FixSED(c2)) 0.5 0.25 0.25

FixSED(LP
1
2 (c1, c2)) 0.6 0.2 0.2

WCAP
1
2
SED(c1, c2) 0.6 0.2 0.2

We can now state the true generalization of Proposition 5:

Proposition 16 SupposeF = {X1, . . . , Xm} is a partition. Let {α} be a set of weights.
Then

(i) WCAP{α}
SED = FixSED ◦ LP{α} 
= LP{α} ◦ FixSED

(ii) WCAP{α}
GKL1

= GP{α} ◦ FixGKL = FixGKL ◦ GP{α}

(iii) WCAP{α}
GKL2


= GP{α} ◦ FixGKL = FixGKL ◦ GP{α} = GP{α}

(iv) WCAP{α}
GKL2

= FixGKL ◦ LP = FixGKL ◦ Agg{α}
GKL2


= Agg{α}
GKL2

◦ FixGKL

Thus, when we move from two-cell partitions to many-cell partitions, the coop-
eration between geometric pooling and GKL remains, but the cooperation between
linear pooling and SED breaks down. Along with Propositions 2(i) and 5(i), The-
orems 10(i) and 12 also fail in full generality. Proposition 3(i) and Theorem 11(i),
however, remain—they are true for many-cell partitions just as they are for two-cell
partitions.

However, the situation is not quite as bleak as it might seem. There is a large set of
credence functions such that, if all of our agents have credence functions in that set,
then Propositions 2(i) and 5(i) and Theorem 10(i) holds. Let

SF =
{

c ∈ CF : ∀1 ≤ j ≤ m, c(X j ) + 1 − ∑m
i=1 c(Xi )

m
≥ 0

}

Then, if c is in SF ,

FixSED1(c)(X j ) = FixSED2(c)(X j ) = c(X j ) + 1 − ∑m
i=1 c(Xi )

m

123



2756 Synthese (2019) 196:2737–2776

and, if c1, . . . , cn are in SF , then

WCAP{α}
SED = LP{α} ◦ FixSED = FixSED ◦ LP{α}

as Propositions 2(i) and 5(i) say. What’s more, WCAPD1 , FixD1 ◦LP, and LP◦FixD1

agree for all credence functions in SF iffD is a positive linear transformation of SED,
as Theorem 10(i) says. Note the following corollary: there is no Bregman divergence
D such that WCAPD1 , LP ◦ FixD1 , and FixD1 ◦ LP agree for all credence functions
over a many-cell partition.

Thus, while linear pooling and SED don’t always cooperate when our agents have
credences over a many-cell partition, there is a well-defined set of situations in which
they do. What’s more, these situations are in the majority—they occupy more than
half the volume of the space of possible credence functions. Thus, while it is a strike
against linear pooling and SED that they do not cooperate—and indeed that there is
no aggregation method that cooperates with SED and no Bregman divergence that
cooperates with linear pooling—it is not a devastating blow.

9 Beyond partitions

So far, we have restricted attention to credence functions defined on partitions. In this
section, we lift that restriction. Suppose Carmen and Donal are two further expert
epidemiologists. They have credences in a rather broader range of propositions than
Amira and Benito do. They consider the proposition, X1, that the next ‘flu pandemic
will occur in 2019, but also the proposition, X2, that it will occur in 2020, the proposi-
tion X3 that it will occur in neither 2019 nor 2020, and the proposition, X1 ∨ X2, that
it will occur in 2019 or 2020. Thus, they have credences in X1, X2, X3, and X1 ∨ X2,
where the first three propositions form a partition but the whole set of four does not.
Unlike Amira and Benito, Carmen and Donal are coherent. Here are their credences:

X1 X2 X3 X1 ∨ X2

Carmen (c1) 0.2 0.3 0.5 0.5
Donal (c2) 0.6 0.3 0.1 0.9

Since they are coherent, the question of how to fix them does not arise. So we are
interested here only in how to aggregate them. If we opt to combine SED and linear
pooling, there are three methods:

(LP1) Apply the method of linear pooling to the most fine-grained partition, namely,
X1, X2, X3, to give the aggregate credences for those three propositions. Then
take the aggregate credence for X1 ∨ X2 to be the sum of the aggregate cre-
dences for X1 and X2, as demanded by the axioms of the probability calculus.

For instance, suppose α = 1
2 . Then

• c∗(X1) = 1
20.2 + 1

20.6 = 0.4
• c∗(X2) = 1

20.3 + 1
20.3 = 0.3

• c∗(X3) = 1
20.5 + 1

20.1 = 0.3
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• c∗(X1 ∨ X2) = c∗(X1) + c∗(X2) = 0.4 + 0.3 = 0.7.
(LP2) Extend the method of linear pooling from partitions to more general sets of

propositions in the natural way: the aggregate credence for a proposition is just
the weighted arithmetic average of the credences for that proposition.

Again, suppose α = 1
2 . Then

• c∗(X1) = 1
20.2 + 1

20.6 = 0.4
• c∗(X2) = 1

20.3 + 1
20.3 = 0.3

• c∗(X3) = 1
20.5 + 1

20.1 = 0.3
• c∗(X1 ∨ X2) = 1

20.5 + 1
20.9 = 0.7.

(LP3) Apply WCAPSED, so that the aggregate credence function is the coherent cre-
dence function that minimizes the arithmetic average of the squared Euclidean
distances to the credence functions.

Again, suppose α = 1
2 . Then

argmin
c′∈PF

1

2
SED(c′, c1) + 1

2
SED(c′, c2) = 1

2
c1 + 1

2
c2.

It is easy to see that these three methods agree. And they continue to agree for any
number of agents, any weightings, and any set of propositions. Does the same happen
if we opt to combine GKL and geometric pooling? Unfortunately not. Here are the
analogous three methods:

(GP1) Apply the method of geometric pooling to the most fine-grained partition,
namely, X1, X2, X3, to give the aggregate credences for those three propo-
sitions. Then take the aggregate credence for X1 ∨ X2 to be the sum of the
aggregate credences for X1 and X2, as demanded by the axioms of the proba-
bility calculus.

Suppose α = 1
2 . Then

• c∗(X1) =
√
0.2

√
0.6√

0.2
√
0.6+√

0.3
√
0.3+√

0.5
√
0.1

≈ 0.398

• c∗(X2) =
√
0.3

√
0.3√

0.2
√
0.6+√

0.3
√
0.3+√

0.5
√
0.1

≈ 0.345

• c∗(X3) =
√
0.5

√
0.1√

0.2
√
0.6+√

0.3
√
0.3+√

0.5
√
0.1

≈ 0.257

• c∗(X1 ∨ X2) = c∗(X1) + c∗(X2) ≈ 0.743
(GP2) Extend the method of geometric pooling from partitions to more general sets

of credence functions.

The problem with this method is that it isn’t clear how to effect this extension.
After all, when we geometrically pool credences over a partition, we start by
taking weighted geometric averages and then we normalize.We can, of course,
still take weighted geometric averages when we extend beyond partitions. But
it isn’t clear how we would normalize. In the partition case, we take a cell
of the partition, take the weighted geometric average of the credences in that
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cell, then divide through by the sum of the weighted geometric averages of the
credences in the various cells of the partition. But suppose that we try this once
we add X1∨X2 to our partition X1, X2, X3. The problem is that the normalized
version of the weighted geometric average of the agents’ credences in X1∨ X2
is not the sum of the normalized versions of the weighted geometric averages
of the credences in X1 and in X2. But how else are we to normalize?

(GP3) Apply WCAPSED, so that the aggregate credence function is the coherent
credence function that minimizes the arithmetic average of the generalized
Kullback-Leibler divergence from that credence function to the credence func-
tions.

Again, supposeα = 1
2 .Now,wecan show that, if c∗ = argmin

c′∈PF

1
2GKL(c′, c1)+

1
2GKL(c′, c2), then
• c∗(X1) = 0.390
• c∗(X2) = 0.338
• c∗(X3) = 0.272
• c∗(X1 ∨ X2) = 0.728

Thus, (GP2) does not work—we cannot formulate it. And (GP1) and (GP3) disagree.
This creates a dilemma for those who opt for the package containing GKL and geo-
metric pooling. How should they aggregate credences when the agents have credences
in propositions that don’t form a partition? Do they choose (GP1) or (GP3)? The exis-
tence of the dilemma is a strike against GKL and geometric pooling, and a point in
favour of SED and linear pooling, which avoid the dilemma.

10 The philosophical significance of the results

What is the philosophical upshot of the results that we have presented so far? I think
they are best viewed as supplements that can be added to existing arguments. On their
own, they do not support any particular philosophical conclusion. But, combined with
an existing philosophical argument, they extend its conclusion significantly. They are,
if you like, philosophical booster rockets.

There are two ways in which the results above might provide such argumentative
boosts. First, if you think that the aggregate of a collection of credence functions
should be the credence function that minimizes the weighted average divergence from
or to those functions, then you might appeal to Proposition 3 or Theorems 11 and 13
either to move from a way of measuring divergence to a method of aggregation, or
to move from an aggregation method to a favoured divergence—recall: each of these
results holds for any size of partition. Thus, given an argument for linear pooling, and
an argument that you should aggregate by minimizing weighted average distance from
the aggregate to the agent, you might cite Theorem 11(i) and argue for measuring how
far one credence function lies from another using SED. Or, given an argument that you
should aggregate by minimizing weighted average divergence to the agents, and an
argument in favour of GKL, you might cite Theorem 11(ii) and conclude further that
you should aggregate by GP−. Throw in an argument that you should fix incoherent
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credence functions byminimizing distance from coherence and this gives an argument
for GP.

Second, if you think that the three possible ways of producing a single coherent cre-
dence function from a collection of possibly incoherent ones should cooperate—that
is, if you think that aggregate-then-fix, fix-then-aggregate, and the weighted coherent
approximation principle should all give the same outputs when supplied with the same
input—then you might appeal to Theorems 10 and 12, or to the restricted versions
that hold for any size of partition, to move from aggregation method to divergence,
or vice versa. For instance, if you think we should fix by minimizing distance from
coherence, you might use Theorem 10(ii) to boost an argument for geometric pooling
to give an argument for GKL. And, if the agents you wish to aggregate have credence
functions in SF , you might use Theorem 10(i) to boost an argument for linear pooling
so that it becomes also an argument for SED. And so on.

We begin, in this section, by looking at the bases for these two sorts of argument.
Then we consider the sorts of philosophical argument to which our boosts might be
applied. That is, we ask what sorts of arguments we might give in favour of one
divergence over another, or one aggregation method over another, or whether we
should fix by minimizing distance to or from coherence.

10.1 Aggregating as minimizing weighted average distance

Why think that we should aggregate the credence functions of a group of agents by
finding the single credence function from or to which the weighted average distance is
minimal? There is a natural argument that appeals to a principle that is used elsewhere
in Bayesian epistemology. Indeed, we have used it already in this paper in our brief
justification for fixing incoherent crecences by minimizing distance from or to coher-
ence. It is the principle of minimal mutilation. The idea is this: when you are given a
collection of credences that you know are flawed in some way, and from which you
wish to extract a collection that is not flawed, you should pick the unflawed collection
that involves the least possible change to the original flawed credences.

The principle of minimal mutilation is often used in arguments for credal updating
rules. Suppose you have a prior credence function, and then you acquire new evidence.
Since it is new evidence, your prior likely does not satisfy the constraints that your
new evidence places on your credences. How are you to respond? Your prior is now
seen to be flawed—it violates a constraint imposed by your evidence—so you wish
to find credences that are not flawed in this way. A natural thought is this: you should
move to the credence function that does satisfy those constraints and that involves the
least possible change in your prior credences; in our terminology, you should move to
the credence function whose distance from or to your prior amongst those that satisfies
the constraints is minimal. This is the principle of minimal mutilation in action. And
its application has lead to a number of arguments for various updating rules, such as
Conditionalization, Jeffrey Conditionalization, and others (Williams 1980; Diaconis
and Zabell 1982; Leitgeb and Pettigrew 2010b).

Aswe have seen in Sect. 2, the principle ofminimalmutilation is also ourmotivation
for fixing an incoherent credence function c by taking FixD1(c) or FixD2(c), for some
divergence D. And the same holds when you have a group of agents, each possibly
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incoherent, and some of whom disagree with each other. Here, again, the credences
you receive are flawed in some way: within an individual agent’s credence functions,
the credences may not cohere with each other; and between agents, there will be
conflicting credence assignments to the same proposition. We thus wish to find a set
of credences that are not flawed in either of these ways. We want one credence per
proposition, and we want all of the credences to cohere with one another. We do this
by finding the set of such credences that involves as little change as possible from
the original set. The weightings in the weighted average of the divergences allow us
to choose which agent’s credences we’d least like to change (they receive highest
weighting) and whose we are happiest to change (they receive lowest weighting).

10.2 The No Dilemmas argument

As we noted above, in order to use Theorem 10(ii), say, to extract a reason for using
GKL from a reason for aggregating by geometric pooling, wemust argue that the three
possible ways of producing a single coherent credence function from a collection of
possibly incoherent credence functions should cooperate. That is, we must claim
that aggregate-then-fix, fix-then-aggregate, and the weighted coherent approximation
principle should all give the same outputs when supplied with the same input. The
natural justification for this is a no dilemmas argument. The point is that, if the three
methods don’t agree on their outputs when given the same set of inputs, we are forced
to pick one of those different outputs to use. And if there is no principled reason to pick
one or another, whichever we pick, we cannot justify using it rather than one of the
others. Thus, for instance, given any decision where the different outputs recommend
different courses of action, we cannot justify picking the action recommended by one
of the outputs over the action recommended by one of the others. Similarly, given any
piece of statistical reasoning in which using the different outputs as prior probabilities
results in different conclusions at the end, we cannot justify adopting the conclusion
mandated by one of the outputs over the conclusion mandated by one of the others.

Does this no dilemmas argument work? Of course, you might object if you think
that there are principled reasons for preferring one method to another. That is, you
might answer the no dilemmas argument by claiming that there is no dilemma in the
first place, because one of the options is superior to the others. For instance, you might
claim that it ismore natural to fixfirst and then aggregate than to aggregate first and then
fix. You might say that we can only expect an aggregate to be epistemically valuable
when the credences to be aggregated are epistemically valuable; and you might go
on to say that credences aren’t epistemically valuable if they’re incoherent.10 But this
claim is compatible with aggregating first and then fixing. I can still say that aggregates
are only as epistemically valuable as the credence functions they aggregate, and I can
still say that the more coherent a credence function the more epistemically valuable it
is, and yet also say that I should aggregate and then fix. After all, while the aggregate
won’t be very epistemically valuable when the agents are incoherent, once I’ve fixed it
and made it coherent it will be. And there’s no reason to think it will be epistemically

10 Thanks to Ben Levinstein for urging me to address this line of objection.
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worse than if I first fixed the agents and then aggregated them. So I think this particular
line of argument fails.

Here’s another. There are many different reasons why an agent might fail to live
up to the ideal of full coherence: the computations required to maintain coherence
might be beyond their cognitive powers; or coherence might not serve a sufficiently
useful practical goal to justify devoting the agent’s limited cognitive resources to its
pursuit; or an agent with credences over a partition might only ever have consid-
ered each cell of that partition on its own, separately, and never have considered the
logical relations between them, and this might have lead her inadvertently to assign
incoherent credences to them. So it might be that, while there is no reason to favour
aggregating-then-fixingoverfixing-then-aggregatingor theweighted coherent approx-
imation principle in general, there is reason to favour one or other of these methods
once we identify the root cause of the agent’s incoherence.

For instance, you might think that, when her incoherence results from a lack of
attention to the logical relations between the propositions, it would be better to treat
the individual credences in the individual members of the partition separately for as
long as possible, since they were set separately by the agent. And this tells in favour
of aggregating via LP or GP− first, since the aggregate credence each assigns to a
given proposition is a function only of the credences that the agents assign to that
proposition. I don’t find this argument compelling. After all, it is precisely the fact
that the agent has considered these propositions separately that has given rise to their
flaw. Had they considered them together as members of one partition, they might have
come closer to the ideal of coherence. So it seems strange to wish to maintain that
separation for as long as possible. It seems just as good to fix the flaw that has resulted
from keeping them separate so far, and then aggregate the results. However, while I
find the argument weak, it does show how we might look to the reasons behind the
incoherence in a group of agents, or perhaps the reasons behind their disagreements, in
order to break the dilemma and argue that the three methods for fixing and aggregating
need not agree.

10.3 Minimizing divergence from or to coherence

Aswe have seen in Propositions 3 and 5 andTheorems 10 and 12, it makes a substantial
differencewhether you fix incoherent credence functions byminimizing distance from
or to coherence, and whether you aggregate credences by minimizing distance from
or to the agents’ credence functions when you aggregate them. Do we have reason to
favour one of these directions or the other?

Here is one argument, at least in the case of fixing incoherent credences. Recall
Theorem 9 from above. Suppose c is an incoherent credence function. Then let c∗ be
the coherent credence function for which the divergence from c∗ to c is minimal, and
let c† be the coherent credence function for which the distance to c† from c is minimal.
Then c∗ is guaranteed to be more accurate than c, while c† is not. Now, this gives us
a reason for fixing an incoherent credence function by minimizing the distance from
coherence rather than the distance to coherence. It explains why we should use FixD1

rather than FixD2 to fix incoherent credence functions. After all, whenD is a Bregman
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divergence, FixD1(c) is guaranteed to bemore accurate than c, by Theorem 9, whereas
FixD2(c) is not.

10.4 Linear pooling versus geometric pooling

In this section, we briefly survey some of the arguments for and against linear or geo-
metric pooling. For useful surveys of the virtues and vices of different aggregation
methods, see Genest and Zidek (1986), Russell et al. (2015) and Dietrich and List
(2015).

In favour of aggregating by linear pooling (LP): First, McConway (1981) andWag-
ner (1982) show that, amongst the aggregation methods that always take coherent
credence functions to coherent aggregates, linear pooling is the only one that satisfies
what Dietrich and List (2015) call eventwise independence and unanimity preser-
vation. Eventwise Independence demands that aggregation is done proposition-wise
using the same method for each proposition. That is, an aggregation methods T sat-
isfies Eventwise Independence if there is a function f : [0, 1]n → [0, 1] such that
T (c1, . . . , cn)(X j ) = f (c1(X j ), . . . , cn(X j )) for each cell X j in our partition F .
Unanimity Preservation demands that, when all agents have the same credence func-
tion, their aggregate should be that credence function. That is, T (c, . . . , c) = c, for
any coherent credence function c. It is worth noting, however, that GP− also satisfies
both of these constraints; but of course it doesn’t always take coherent credences to
coherent aggregates.

Second, in a previous paper, I showed that linear pooling is recommended by the
accuracy-first approach in epistemology, which we met in Sect. 6 (Pettigrew 2016b).
Suppose, like nearly all parties to the accuracy-first debate, you measure the accuracy
of credences using what is known as a strictly proper scoring rule; this is equivalent
to measuring the accuracy of a credence function at a world as the divergence from
the omniscient credence function at that world to the credence function, where the
divergence in question is an additive Bregman divergence. Suppose further that each
of the credence functions you wish to aggregate is coherent. Then, if you aggregate
by anything other than linear pooling, there will be an alternative aggregate credence
function that each of the agents expects to be more accurate than your aggregate.
I argue that a credence function cannot count as the aggregate of a set of credence
functions if there is some alternative that each of those credence functions expects to
do better epistemically speaking.

Third, as we saw in Sect. 9, linear pooling remains a sensible aggregation method
when we wish to aggregate agents with credences over propositions that don’t form a
partition.

Against linear pooling: First, Dalkey (1975) notes that it does not commute with
conditionalization.11 Thus, if youfirst conditionalize your agents on apiece of evidence
and then linear pool, this usually gives a different result from linear pooling first and
then conditionalizing (at least if you use the sameweights before and after the evidence
is accommodated). That is, typically,

11 For responses to this objection to linear pooling, seeMadansky (1964),McConway (1981) and Pettigrew
(2016b).
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LP{α}(c1, . . . , cn)(−|E) 
= LP{α}(c1(−|E), . . . , cn(−|E))

Second, Laddaga (1977) and Lehrer and Wagner (1983) note that linear pooling
does not preserve relationships of probabilistic independence.12 Thus, usually, if A and
B are probabilistically independent relative to each ci , theywill not be probabilistically
independent relative to the linear pool. That is, if ci (A|B) = ci (A) for each ci , then
usually

LP{α}(c1, . . . , cn)(A|B) 
= LP{α}(c1, . . . , cn)(A).

Third, as we saw in Sect. 8, there is no Bregman divergence that always cooperates
with linear pooling. While SED cooperates when the agents to be aggregated have
credence functions in SF , it does not necessarily do so otherwise.

Geometric pooling (GP) succeeds where linear pooling fails, and fails where linear
pooling succeeds. The accuracy-first argument tells against it; and it violates Even-
twise Independence. But it commutes with conditionalization. What’s more, while
linear pooling typically returns an incoherent aggregate when given incoherent agents,
geometric pooling always returns a coherent aggregate, whether the agents are coher-
ent or incoherent. Of course, this is because we build in that coherence by hand when
we normalize the geometric averages of the agents’ credences. Geometric pooling
faces a dilemma when we move beyond partitions, but there is a Bregman divergence
that always cooperates with it when we restrict attention to partitions.

10.5 Squared Euclidean distance versus generalized Kullback-Leibler
divergence

There are a number of different ways in which we might argue in favour of SED or
GKL.

In favour of squared Euclidean distance (SED): First, there is an argument that I
have offered elsewhere that proceeds in two steps (Pettigrew 2016a, Chapter 4): (i)
we should measure how far one credence function lies from another using additive
Bregman divergences, because only by doing so can we capture two competing senses
of accuracy—the alethic and the calibrationist—in one measure; (ii) the distance from
one credence function to another should be the same as the distance to the first credence
from the second, so that our divergence should be symmetric. Since SED is the only
symmetric Bregman divergence, this gives an argument in its favour.

Second, D’Agostino and Sinigaglia (2010) argue for SED axiomatically. SED is
the only way of measuring how far one credence function lies from another that
satisfies certain plausible formal constraints. Csiszár (1991, 2008) offers axiomatic
characterizations of SED and GKL that allow us to tell between them on the basis of
their formal features.

12 For responses to this objection to linear pooling, see Pettigrew (2016b); Genest and Wagner (1987) and
Wagner (2010).
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Third, some argue in favour of SED indirectly. They argue primarily in favour of
the so-called Brier score.13 This is a particular inaccuracy measure that is widely used
in the accuracy-first epistemology literature. It is a strictly proper scoring rule. And
it is the inaccuracy measure that you obtain by using SED and taking inaccuracy to
be divergence from omniscient credences. Thus, arguments for the Brier score can
be extended to give arguments for SED. How might we argue for the Brier score?
First, Schervish (1989) showed that agents with different practical ends and different
opinions about what decisions they are likely to face will value their credences for
pragmatic purposes using different strictly proper scoring rules. Thus, we might argue
for the Brier score if we have particular practical ends and if we hold a certain view
about the sorts of decisions we’ll be asked to make (Levinstein 2017). Second, you
might argue for the Brier score because of the way that it scores particular credences.
It is more forgiving of extreme inaccuracy than is, for instance, the logarithmic scoring
rule associated with GKL (Joyce 2009).

Against SED: if we use it to say how we should update in response to a certain
sort of evidence, it gives updating rules that seem defective (Levinstein 2012; Leitgeb
and Pettigrew 2010b). It does not justify either Bayesian Conditionalization or Jeffrey
Conditionalization; and the alternative rules that it offers have undesirable features.

This argument against SED is also the primary argument in favour of GKL. As
I show elsewhere, it is difficult to find a Bregman divergence other than GKL that
warrants updating by Conditionalization and Jeffrey Conditionalization (Pettigrew
2016a, Theorem 15.1.4).

11 Conclusion

This completes our investigation into the methods by which we might produce a
single coherent credence function from a group of possibly incoherent expert credence
functions. At the heart of our investigation is a set of results that suggest that squared
Euclidean distance pairs naturally with linear pooling (if anything does), while the
generalized Kullback-Leibler divergence pairs naturally with geometric pooling. I
suggested that these results might be used by philosophers to argue for an aggregation
method if they have reason to favour a particular divergence, or to argue for a particular
divergence if they have reason to favour one aggregation method over another.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

13 According to the Brier score, the inaccuracy of a credence function c at a world w is

B(c, w) =
m∑

i=1

(vw(Xi ) − c(Xi ))
2

where vw is the omniscient credence function at world w.
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Appendix: Proofs

Some useful lemmas

We begin by stating and proving some useful lemmas to which we will appeal in our
proofs. Throughout, we suppose:

• D is the additive Bregman divergence generated by ϕ;
• α1, . . . , αn ≥ 0 and

∑n
k=1 αk = 1;

• c, c′ are credence functions defined on the partition F = {X1, . . . , Xm};
• CF = {c : {X1, . . . , Xm} → [0, 1]}
• PF = {c : {X1, . . . , Xm} → [0, 1] | ∑m

i=1 c(Xi ) = 1}.

Lemma 17 (i) If c∗ = Agg{α}
SED(c1, . . . , cn) = argmin

c′∈CF

∑n
k=1 αkSED(c′, ck), then,

for all 1 ≤ j ≤ m,

c∗(X j ) =
n∑

k=1

αkck(X j )

(ii) If c∗ = WCAP{α}
SED(c1, . . . , cn) = argmin

c′∈PF

∑n
k=1 αkSED(c′, ck), then, for all

1 ≤ j ≤ m,

c∗(X j ) =
{∑n

k=1 αkck(X j ) + K if
∑n

k=1 αkck(X j ) + K ≥ 0
0 otherwise

where K is the unique number such that

∑

i :αkck(Xi )+K≥0

αkck(Xi ) + K = 1.

Lemma 18 (i) If c∗ = Agg{α}
GKL1

(c1, . . . , cn) = argmin
c′∈CF

∑n
k=1 αkGKL(c′, ck), then,

for all 1 ≤ j ≤ m,

c∗(X j ) =
n∏

k=1

ck(X j )
αk

(ii) If c∗ = WCAP{α}
GKL1

(c1, . . . , cn) = argmin
c′∈PF

∑n
k=1 αkGKL(c′, ck), then, for all

1 ≤ j ≤ m,

c∗(X j ) =
∏n

k=1 ck(X j )
αk

∑m
i=1

∏n
k=1 ck(Xi )αk
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Lemma 19 (i) If c∗ = Agg{α}
GKL2

(c1, . . . , cn) = argmin
c′∈CF

∑n
k=1 αkGKL(ck, c′), then,

for all 1 ≤ j ≤ m,

c∗(X j ) =
n∑

k=1

αkck(X j )

(ii) If c∗ = WCAP{α}
GKL2

(c1, . . . , cn) = argmin
c′∈PF

∑n
k=1 αkGKL(ck, c′), then, for all

1 ≤ j ≤ m,

c∗(X j ) =
∑n

k=1 αkck(X j )
∑m

i=1
∑n

k=1 αkck(Xi )

To prove these, we appeal to the Karush-Kuhn-Tucker conditions, which are sum-
marised in the following theorem (Karush 1939):

Theorem 20 (KKT conditions) Suppose f , g1, . . . , gk, h1, . . . , hn : R
m → R

are smooth functions. Consider the following minimization problem. Minimize
f (x1, . . . , xm) relative to the following constraints:

gi (x1, . . . , xm) ≤ 0 for i = 1, . . . , k

h j (x1, . . . , xm) = 0 for j = 1, . . . , n

If x∗ = (x∗
1 , . . . , x

∗
m) is a (nonsingular) solution to this minimization problem, then

there exist μ1, . . . , μk , λ1, . . . , λn in R such that

(i) ∇ f (x∗) + ∑k
i=1 μi∇gi (x∗) + ∑n

j=1 λ j∇h j (x∗) = 0
(ii) μi gi (x∗) = 0, for i = 1, . . . , k,
(iii) μi ≥ 0, for i = 1, . . . , k,
(iv) gi (x∗) ≤ 0, for i = 1, . . . , k,
(v) h j (x∗) = 0, for j = 1, . . . , n.

Proof of Lemma 17

(i) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

(xi − ck(Xi ))
2

gi (x1, . . . , xm) = −xi

Then let
• μi = 0, for 1 ≤ i ≤ m.

Then the KKT conditions are satisfied for

x∗
j =

n∑

k=1

αkck(X j )
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as required.
(ii) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

(xi − ck(Xi ))
2

gi (x1, . . . , xm) = −xi

h(x1, . . . , xm) = 1 −
m∑

i=1

xi

Then let
•

μi =
{
0 if

∑n
k=1 αkck(Xi ) + K > 0

−2(
∑n

k=1 αkck(Xi ) + K ) otherwise

for 1 ≤ i ≤ m.
• λ = 2K

Then the KKT conditions are satisfied for

x∗
j =

{∑n
k=1 αkck(X j ) + K if

∑n
k=1 αkck(X j ) > 0

0 otherwise

as required.

Proof of Lemma 18

(i) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

xi log
xi

ck(Xi )
− xi + ck(Xi )

gi (x1, . . . , xm) = −xi

Then let
• μi = 0, for 1 ≤ i ≤ m.

Then the KKT conditions are satisfied for

x∗
j =

n∏

k=1

ck(X j )
αk

as required.
(ii) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

xi log
xi

ck(Xi )
− xi + ck(Xi )
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gi (x1, . . . , xm) = −xi

h(x1, . . . , xm) = 1 −
m∑

i=1

xi

Then let
• μi = 0, for 1 ≤ i ≤ m.
• λ = − log

∑m
i=1

∏n
k=1 ck(Xi )

αk

Then the KKT conditions are satisfied for

x∗
j =

∏n
k=1 ck(X j )

αk

∑m
i=1

∏n
k=1 ck(Xi )αk

as required.

Proof of Lemma 19

(i) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

ck(Xi ) log
ck(Xi )

xi
− ck(Xi ) + xi

gi (x1, . . . , xm) = −xi

Then let
• μi = 0, for 1 ≤ i ≤ m.

Then the KKT conditions are satisfied for

x∗
j =

n∑

k=1

αkck(X j )

as required.
(ii) We appeal to Theorem 20 with:

f (x1, . . . , xm) =
n∑

k=1

αk

m∑

i=1

ck(Xi ) log
ck(Xi )

xi
− ck(Xi ) + xi

gi (x1, . . . , xm) = −xi

h(x1, . . . , xm) = 1 −
m∑

i=1

xi

Then let
• μi = 0, for 1 ≤ i ≤ m.
• λ = 1 − ∑n

k=1
∑m

i=1 αkck(Xi )

Then the KKT conditions are satisfied for

x∗
j =

∑n
k=1 αkck(X j )

∑m
i=1

∑n
k=1 αkck(Xi )
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as required.

Lemma 21 Suppose F = {X1, X2} is a partition, and D is an additive Bregman
divergence generated by ϕ. Then

(i) (x, 1 − x) = WCAP{α}
D1

(c1, . . . , cn) = argmin
c′∈PF

∑n
k=1 αkD(c′, ck) iff

ϕ′(x) − ϕ′(1 − x) =
n∑

k=1

αkϕ
′(ck(X1)) −

n∑

k=1

αkϕ
′(ck(X2))

(ii) c∗ = WCAP{α}
D2

(c1, . . . , cn) = argmin
c′∈PF

∑n
k=1 αkD(ck, c′) iff

ϕ′′(x)(x −
n∑

k=1

αkck(X1)) = ϕ′′(1 − x)(1 − x −
n∑

k=1

αkck(X2))

Proof of Lemma 21. Straightforward calculus.

Proof of Propositions 2–5, 15, 16

• Since FixDi (c) = WCAP{1}(c), Propositions 1(i) and 15(i) follow from
Lemma 17(ii).

• Since FixDi (c) = WCAP{1}(c), Proposition 1(ii) and 15(ii) follow from Lem-
mas 18(ii) and 19(ii).

• Proposition 2 is straightforward, given the definitions of LP and GP, together with
Proposition 1.

• Proposition 3 follows from Lemmas 17(i), 18(i), and 19(i).
• Proposition 4 is straightforward, given the definitionGP, together with Lemmas 18
and 19.

• Propositions 5 and 16 follow from Lemmas 17, 18, 19.

Proof of Propositions 6 and 7

Recall:

WGCAP{α}
D1

(c1, . . . , cn) = argmin
c′∈PF

n∏

k=1

D(c′, ck)αk

First, suppose c′ 
= ck , for all 1 ≤ k ≤ n. Then, by the definition of a divergence, for
all 1 ≤ k ≤ n, D(c′, ck) > 0. Thus,

∏n
k=1D(c′, ck)αk > 0. Next, suppose c′ = ck

for some 1 ≤ k ≤ n. Then, again by the definition of a divergence, D(c′, ck) = 0.
Thus,

∏n
k=1D(c′, ck)αk = 0. Thus,

∏n
k=1D(c′, ck)αk is minimized iff c′ = ck for

some 1 ≤ k ≤ n. And similarly for WGCAP{α}
D2

, GAggD1
, and GAggD2

.
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Proof of Theorem 10

Proof of Theorem 10(i) Suppose FixD1 ◦ LP = WCAPD1 . Given 0 ≤ a, b ≤ 1 and
0 ≤ α ≤ 1, let (x, 1− x) be the coherent credence function that results from applying
both procedures to the credence functions (a, 0) (which assigns a to X and 0 to X )
and (b, 0) (which assigns b to X and 0 to X )—it assigns x to X and 1− x to X . That
is,

(x, 1 − x) = FixD1(LP
α((a, 0), (b, 0)) = WCAPα

D1
((a, 0), (b, 0))

By Lemma 21,

ϕ′(x) − ϕ′(1 − x) = ϕ′(αa + (1 − α)b) − ϕ′(α · 0 + (1 − α) · 0)

And, again by Lemma 21,

ϕ′(x) − ϕ′(1 − x) = (αϕ′(a) + (1 − α)ϕ′(b)) − (αϕ′(0) + (1 − α)ϕ′(0))

So

ϕ′(αa + (1 − α)b) − ϕ′(α · 0 + (1 − α) · 0) =
(αϕ′(a) + (1 − α)ϕ′(b)) − (αϕ′(0) + (1 − α)ϕ′(0))

So

ϕ′(αa + (1 − α)b) = αϕ′(a) + (1 − α)ϕ′(b)

Thus, ϕ′(x) = kx +c for some constants k, c. And so ϕ(x) = mx2 +kx +c, for some
constants m, k, c. Since ϕ is strictly convex, m > 0. Now, it turns out that, if ψ is a
strictly convex function and θ(x) = ψ(x) + kx + c, then ϕ and ψ generate the same
Bregman divergence. After all,

θ(x)−θ(y)−θ ′(y)(x−y) = (ψ(x)+kx+c)−(ψ(y)+ky+c)−(ψ ′(x)+k)(x − y)

= ψ(x) − ψ(y) − ψ ′(y)(x − y)

So D is a positive linear transformation of SED, as required.
Proof of Theorem 10(ii) SupposeFixD1◦GP = GP◦FixD1 = WCAPD1 .And let (a, b)
be a credence function on {X, X}. Then note that FixD1(GP((a, b))) = GP((a, b)),
since geometric pooling also fixes; and, GP(FixD1((a, b))) = FixD1((a, b)), since
pooling a single coherent credence function leaves it as it is. Thus, GP((a, b)) =
FixD1((a, b)). But GP((a, b)) =

(
a

a+b , b
a+b

)
. And, by Lemma 21, (x, 1 − x) =

FixD1((a, b)) iff

ϕ′(x) − ϕ′(1 − x) = ϕ′(a) − ϕ′(b)
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Thus,

ϕ′
(

a

a + b

)

− ϕ′
(

b

a + b

)

= ϕ′(a) − ϕ′(b) (1)

for all 0 ≤ a, b ≤ 1. We will use this identity below.
Next, since FixD1 ◦GP = WCAPD1 , and since FixD1 ◦GP is just geometric pooling,
and since geometric pooling takes two credence functions (a, b) and (a′, b′) and
returns

(
aαa′1−α

aαa′1−α + bαb′1−α
,

bαb′1−α

aαa′1−α + bαb′1−α

)

thenWCAPD1 must return that toowhen given (a, b) and (a′, b′). Thus, byLemma21,

ϕ′
(

aαa′1−α

aαa′1−α + bαb′1−α

)

− ϕ′
(

bαb′1−α

aαa′1−α + bαb′1−α

)

= (αϕ′(a) + (1 − α)ϕ′(a′)) − (αϕ′(b) + (1 − α)ϕ′(b′))

Now, by the identity (1) proved above, we have

ϕ′
(

aαa′1−α

aαa′1−α + bαb′1−α

)

− ϕ′
(

bαb′1−α

aαa′1−α+bαb′1−α

)

= ϕ′(aαa′1−α)−ϕ′(bαb′1−α)

So

ϕ′(aαa′1−α)−ϕ′(bαb′1−α) = (αϕ′(a)+(1−α)ϕ′(a′))−(αϕ′(b)+(1−α)ϕ′(b′)) (2)

for all 0 ≤ a, b, a′, b′ ≤ 1 and 0 ≤ α ≤ 1. So let b = a′ = b′ = 1. Then

ϕ′(aα) − ϕ′(1) = (αϕ′(a) + (1 − α)ϕ′(1)) − (αϕ′(1) + (1 − α)ϕ′(1))

So
ϕ′(aα) = αϕ′(a) + (1 − α)ϕ′(1) (3)

for all 0 ≤ a ≤ 1 and 0 ≤ α ≤ 1. Now, take any 0 ≤ a, b ≤ 1. Then there are
0 ≤ c, d ≤ 1 and 0 ≤ α ≤ 1 such that a = cα and b = d1−α (in fact, you can always
take α = 1

2 ). Then, by identity (2) from above,

ϕ′(ab) − ϕ′(1) = ϕ′(cαd1−α) − ϕ′(1) = αϕ′(c) + (1 − α)ϕ′(d) − ϕ(1)

But by identity (3) from above,

• αϕ′(c) = ϕ′(cα) − (1 − α)ϕ′(1) = ϕ′(a) − (1 − α)ϕ′(1)
• (1 − α)ϕ′(d) = ϕ′(d1−α) − αϕ′(1) = ϕ′(b) − αϕ′(1)

So

ϕ′(ab) = ϕ′(a) − (1 − α)ϕ′(1) + ϕ′(b) − αϕ′(1)
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iff

ϕ′(ab) = ϕ′(a) + ϕ′(b) − ϕ′(1)

for all 0 ≤ a, b ≤ 1. And this is the Cauchy functional equation for the logarithmic
function. Soϕ′(x) = m log x + k, for someconstantsm, k.Hence,ϕ(x) = m(x log x−
x)+ kx + c, for some constant c. As we noted above, if ψ is a strictly convex function
and θ(x) = ψ(x)+ kx + c, then θ generates the same Bregman divergence as ψ . And
thus, D is a positive linear transformation of GKL, as required.

Proof of Theorem 12

Proof of Theorem 12(i) The crucial fact is this: Let

f1(x1, . . . , xm) = D((

n∑

k=1

αkck(X1), . . . ,

n∑

k=1

αkck(Xm)), (x1, . . . , xm))

and

f2((x1, . . . , xn) =
n∑

k=1

αkD((ck(X1), . . . , ck(Xm)), (x1, . . . , xm))

Then,

∂

∂xi
f1(x1, . . . , xm) = ϕ′′(xi )

(

xi −
n∑

k=1

αkck(xi )

)

= ∂

∂xi
f2(x1, . . . , xm)

Thus, whatever minimizes f1 relative to side constraints also minimizes f2 relative to
those same side constraints, and vice versa.

Proof of Theorem 12(ii) If c1, . . . , cn are coherent, then

FixD2(LP
{α}(c1, . . . , cn)) = LP{α}(c1, . . . , cn) = LP{α}(FixD2(c1), . . . ,FixD2(cn))

as required.
Proof of Theorem 12(iii) Supposeϕ′′(x) = ϕ′′(1−x). Now, byLemma 21, (x, 1−x) =
WCAP{α}

D2
(c1, . . . , cn) = argmin

c′∈PF

∑n
k=1 αkD(ck, c′) iff

ϕ′′(x)(x −
n∑

k=1

αkck(X1)) = ϕ′′(1 − x)(1 − x −
n∑

k=1

αkck(X2))
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iff

x −
n∑

k=1

αkck(X1) = 1 − x −
n∑

k=1

αkck(X2)

iff

x =
n∑

k=1

αkck(X1) + 1 − ∑n
k=1 αkck(X1) − ∑n

k=1 αkck(X2)

2

Thus, (x, 1 − x) = FixD2(c) iff

x = c(X1) + 1 − c(X1) − c(X2)

2

Using these, it is easy to verify that WCAP{α}
D2

= LP ◦ FixD2 = FixD2 ◦ LP.

Proof of Theorems 11 and 13

Proof of Theorem 11(i) By Theorem 20, c∗ = Agg{α}
D1

(c1, . . . , cn) = argmin
c′∈CF∑n

k=1 αkD(c′, ck) iff, for all 1 ≤ j ≤ m,

ϕ′(c∗(X j )) =
n∑

k=1

αkϕ
′(ck(X j ))

And of course c∗ = LP{α}(c1, . . . , cn) iff, for all 1 ≤ j ≤ m,

c∗(X j ) =
n∑

k=1

αkck(X j )

Thus, AggD1
= LP iff, for any α1, . . . , αn , and c1, . . . , cn ,

ϕ′
(

n∑

k=1

αkck(X j )

)

=
n∑

k=1

αkϕ
′(ck(X j ))

iff, for any 0 ≤ x, y,≤ 1, and 0 ≤ α ≤ 1,

ϕ′(αx + (1 − α)y) = αϕ′(x) + (1 − α)ϕ′(y)

And thus, ϕ′(x) = kx+c, for some constants k, c. From this point, the proof proceeds
in the same fashion as the proof of Theorem 10(i).
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Proof of Theorem 11(ii) Again, by Theorem 20, c∗ = Agg{α}
D1

(c1, . . . , cn) =
argmin
c′∈CF

∑n
k=1 αkD(c′, ck) iff, for all 1 ≤ j ≤ m,

ϕ′(c∗(X j )) =
n∑

k=1

αkϕ
′(ck(X j ))

And of course c∗ = GP{α}
− (c1, . . . , cn) iff, for all 1 ≤ j ≤ m,

c∗(X j ) =
n∏

k=1

ck(X j )
αk

Thus, AggD1
= GP− iff, for any α1, . . . , αn , and c1, . . . , cn ,

ϕ′
(

n∏

k=1

ck(X j )
αk

)

=
n∑

k=1

αkϕ
′(ck(X j ))

iff, for any 0 ≤ x, y ≤ 1, and 0 ≤ α ≤ 1,

ϕ′(xα y1−α) = αϕ′(x) + (1 − α)ϕ′(y)

And thus, ϕ′(x) = m log x + k, for some constants m, k. From this point on, the proof
proceeds in the same fashion as the proof of Theorem 10(ii).

Proof of Theorem 13 Again by Theorem 20, c∗ = Agg{α}
D2

(c1, . . . , cn) =
argmin
c′∈CF

∑n
k=1 αkD(ck, c′) iff, for all 1 ≤ j ≤ m,

(

c∗(X j ) −
n∑

k=1

αkck(X j )

)

ϕ′′(c∗(X j )) = 0

And of course c∗ = LP{α}(c1, . . . , cn) iff, for all 1 ≤ j ≤ m,

c∗(X j ) =
n∑

k=1

αkck(X j )

Thus, AggD2
= LP iff

(
n∑

k=1

αkck(X j ) −
n∑

k=1

αkck(X j )

)

ϕ′′(c∗(X j )) = 0

And that is true for any D.
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