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Abstract

Many scientists routinely generalize from study samples to larger populations. It is commonly
assumed that this cognitive process of scientific induction is a voluntary inference in which researchers
assess the generalizability of their data and then draw conclusions accordingly. We challenge this view
and argue for a novel account. The account describes scientific induction as involving by default a
generalization bias that operates automatically and frequently leads researchers to unintentionally gen-
eralize their findings without sufficient evidence. The result is unwarranted, overgeneralized conclu-
sions. We support this account of scientific induction by integrating a range of disparate findings from
across the cognitive sciences that have until now not been connected to research on the nature of sci-
entific induction. The view that scientific induction involves by default a generalization bias calls for
a revision of the current thinking about scientific induction and highlights an overlooked cause of the
replication crisis in the sciences. Commonly proposed interventions to tackle scientific overgeneraliza-
tions that may feed into this crisis need to be supplemented with cognitive debiasing strategies against
generalization bias to most effectively improve science.

Keywords: Scientific induction; Overgeneralization; Bounded cognition; Generalization bias; Replica-
tion crisis

Correspondence should be sent to the main author Uwe Peters, Leverhulme Centre for the Future of Intelli-
gence, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, UK. E-mail: up228@cam.ac.uk

This is an open access article under the terms of the Creative Commons Attribution License, which permits
use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


2 of 26 U. Peters, A. Krauss, O. Braganza / Cognitive Science 46 (2022)

1. Introduction

We humans frequently encounter new situations in which we need to generalize from
previous experiences to be able to respond adaptively (Wu, Schulz, Speekenbrink, Nelson,
& Meder, 2018). In doing so, we commonly use “induction,” the cognitive process of infer-
ring that “what is true of certain individuals of a class is true of the whole class, or that what
is true at certain times will be true in similar circumstances at all [or most] times” (Mill,
1872/1974, p. 188). Induction is ubiquitous in human cognition1 already early in life (Fisher,
Godwin, & Matlen, 2015). It can take many different forms (Hayes & Heit, 2018) and is
often used instinctively (e.g., when children avoid a hot stove after a single burn; Leslie,
2017).

Induction is also fundamental in much of scientific reasoning (Achinstein, 2010; Bunge,
1960; Norton, 2005). We will focus here on reasoning in the cognitive, behavioral, and social
sciences.2 Specifically, the focus will be on generalizations that occur when scientists collect
data from their study samples and extrapolate from them to broader populations of individuals
or across contexts. These particular generalizations are pervasive in many empirical sciences
and are one key part of scientific induction (Little, 1993; Slaney & Tafreshi, 2021). They will
be the sole referent of the term “scientific induction” here.

Scientific induction is usually held to higher epistemic standards than laypeople’s everyday
induction (Charon, 2012; Resnik & Elliot, 2016). Scientists, unlike laypeople, are typically
expected and trained to assess the generalizability of their findings before extrapolating from
them (Engel & Schutt, 2013; Kukull & Ganguli, 2012). Indeed, scientific induction is often
judged by its “external validity,” that is, the extent to which inferences from a particular study
context can be generalized to broader populations and across contexts (Shadish, Cook, &
Campbell, 2002).

While much has been written on scientific induction (e.g., Achinstein, 2010; Claveau &
Girard, 2019; Cohen, 1970; Feeney & Heit, 2007; Little, 1993; Slaney & Tafreshi, 2021; Slo-
man & Lagnado, 2005), one fundamental assumption has gone largely unquestioned. It is
that scientific induction is an “act of reasoning” (Polit & Beck, 2010, p. 1451), a voluntary
process that scientists fully control rather than an automatic tendency that may often oper-
ate by default and affect scientists’ research and conclusions against their epistemic goals
(e.g., the formation of true beliefs).

Some accounts of human reasoning (such as dual-process views) do take induction to typ-
ically be a quick, unconscious heuristic process, whereas deduction is construed as a delib-
erative, analytic process (Evans & Stanovich, 2013; Heit & Rotello, 2010; Stephens, Dunn,
& Hayes, 2018). Moreover, some studies found evidence that people’s reasoning about indi-
viduals may involve an implicit (“system 1”) generalization tendency (Sutherland, Cimpian,
Leslie, & Gelman, 2015). However, these notions have not yet been related to scientific induc-
tion and the “cognitive science of science,” the interdisciplinary study of scientific thinking
(Giere & Feigl, 1992; Rich, de Haan, Wareham, & van Rooij, 2021; Thagard, 2012). Experi-
mental work on inferential biases in general is “seldom considered when studying the behav-
ior of research scientists” (Bishop, 2020, p. 3).3
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Moreover, drawing unreflective “default inferences” from particular samples to broader
populations of individuals is commonly thought to be at odds with how scientists general-
ize (Claveau & Girard, 2019, p. 855). Relatedly, recent papers and textbooks on scientific
methodology covering generalizability (e.g., Engel & Schutt, 2013; Yarkoni, 2020) do not
consider that scientific induction may involve an automatic generalization tendency. That sci-
entific induction is from the start an entirely voluntary process seems thus at least tacitly
widely assumed among scientists.

Here, we challenge this common view. In doing so, we aim to provide a new perspective in
the cognitive science of science. By integrating research from across the cognitive sciences,
we argue that scientific induction involves by default a generalization bias, that is, a cogni-
tive tendency that operates automatically and frequently leads researchers to unintentionally
generalize their results from particular samples to broader populations including when their
evidence does not warrant it and when the generalization is avoidable. The outcome, in scien-
tific studies, is overgeneralizations, which are construed here (inter alia) as study conclusions
that are formulated too broadly in light of the given data. We call this new view of scientific
induction the generalization bias account.

The account does not imply that scientists’ inductive generalizations are always beyond
their control. Scientists make significant efforts to assess the generalizability of their results
and commonly tailor their conclusions accordingly (Engel & Schutt, 2013; Kukull & Ganguli,
2012; Slaney & Tafreshi, 2021). The generalization bias account rather holds that scientific
induction involves a default but modifiable extrapolation tendency that can and often does
drive scientists to unintentionally overgeneralize. We will argue for this account by combining
(a) insights on bounded rationality, (b) psychological data on generalization and explanation,
(c) evidence of scientists’ overgeneralizations from small and unrepresentative study samples,
and (d) the benefits of the generalization bias account in explaining such overgeneralizations.

Our account has important implications. It suggests that many researchers’ current thinking
about the nature of scientific induction needs to be revised. The account also helps advance
the debate on the “replication crisis” across the sciences, that is, the challenge that many sci-
entific results cannot be replicated (Nosek et al., 2021). To date, the literature on the causes
of the replication crisis has predominantly focused on external factors tied to the method-
ological, social, economic, or institutional structure of science. This includes small samples,
publication bias, p-hacking, and so forth (Munafò et al., 2017). Some internal factors such as
cognitive biases have been discussed as well (Bishop, 2020; Munafò, Chambers, Collins, For-
tunato, & Macleod, 2020). But while generalizability concerns have appeared in the replica-
tion crisis literature (Tiokhin, Hackman, Munira, Jesmin, & Hruschka, 2019; Yarkoni, 2020),
the potential role of a generalization bias has not been considered. We argue that this bias too
can contribute to replication failures. Explanations of this crisis that focus only on structural
causes thus risk missing an important factor. Current difficulties in replicability and generaliz-
ability observed across science are best explained by combining structural and psychological
accounts as we do here. Moreover, commonly proposed interventions to tackle scientific over-
generalizations and the replication crisis should be supplemented with debiasing strategies
targeting generalization bias.
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2. Terms and outline of the argument

When using the term “bias,” we do not mean to imply that the cognitive process referred to
is necessarily problematic. Many cognitive biases can be adaptive (Gigerenzer, 2018; Peters,
2022). We use the term here only to indicate that the process can operate automatically
(i.e., under cognitive load; Shea & Firth, 2016), unintentionally, and in ways that lead to
a systematic but in principle at least temporarily avoidable deviation from a canonical nor-
mative benchmark. Within the sciences, this benchmark may be an accurate description and
interpretation of data (Shadish et al., 2002). This notion of “cognitive bias” is consistent with
the way the term is typically used in the cognitive sciences (Haselton et al., 2009; Kahneman,
2011; Stanovich, 2009).

Moreover, while we will mostly use the singular term “generalization bias,” there can be
different generalization biases in human cognition. An automatic tendency to generalize (and
so a generalization bias) about people might differ from an automatic tendency to generalize
about objects with respect to its strength, context sensitivity, malleability, negative effects, or
realizers within an agent’s cognitive architecture. Thus, while generalization bias may reflect
aspects of a domain-general tendency, the term here refers to a diverse phenomenon.4

Our case for the generalization bias account of scientific induction involves three steps. We
first introduce theoretical arguments and review empirical findings that suggest that human
beings have a predisposition to generalize that can constrain the accuracy of their cognition,
sometimes in avoidable ways, producing a generalization bias (Section 3). Building on these
points, we then argue that even scientists may often exhibit such a generalization bias in sci-
entific induction (Section 4). After that, we outline the likely role of this bias in the replication
crisis (Section 5) and propose interventions to reduce the bias (Section 6).

3. Bounded rationality and empirical evidence on generalization

Before focusing specifically on scientific induction, it is instructive to consider the ten-
dency to generalize in human cognition more broadly. While there is extensive psychologi-
cal research on human inductive reasoning (for an overview, see Hayes & Heit, 2018), the
focus here will be on how inductive reasoning can lead to overgeneralizations, which is less
explored. We first argue that a basic, frequently adaptive predisposition to overgeneralize is
driven by cognitive resource limitations, that is, by the need to keep cognition tractable. We
then link this predisposition to psychological data that support the existence of a generaliza-
tion bias in everyday cognition.

3.1. Cognitive constraints and overgeneralizations

Suppose people routinely adjusted their inductive generalizations about the world to the
evidence that they have so that their generalizations accurately capture reality. Take the claim
C: “Healthy nutrition increases people’s life expectancy.” To capture all relevant factors per-
taining to the truth of C would require the following rephrasing: “Healthy nutrition increases
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people’s life expectancy if they do not have an intolerance with certain foods important to
a healthy diet, if they do not face other biological or mental constraints (e.g., orthorexia), if
they do not eat too much healthy food,” and so on. To avoid any overgeneralization, we would
need to keep adding qualifiers. But it is well known from research on bounded or computa-
tional rationality (Gershman, Horvitz, & Tenenbaum, 2015) that this is not feasible in prac-
tice, as we only have limited cognitive resources (time, attention, memory capacity) available
(Gigerenzer & Selten, 2001). As a result, the human cognitive system needs to short-circuit
its computations whenever possible, and displays a “strong bias to default to the simplest
cognitive mechanism” (Stanovich, 2009, p. 64).

This matters for the notion of adding all relevant qualifiers to claim C to ensure accuracy. If
humans are cognitive resource savers (Fiske & Taylor, 2013) then for human cognition to not
get bogged down in computational intractability, the kind of envisaged restriction on the scope
of C must at some point involve a trade-off between complexity (i.e., description length) and
accuracy (Zaslavsky, Kemp, Regier, & Tishby, 2018). To avoid computations whose adaptive
costs will eventually outweigh the benefits, the human cognitive system will need to habitually
opt for potential overgeneralizations. That is, we should expect that system to have a default
disposition to curb its constraints in generalizing processes, producing overgeneralizations
that are on average resource rational for the system in its environment of original adaptation
(Lieder & Griffiths, 2019).

A more principled argument for this view can be derived from the “tractable cognition
thesis,” which states that any plausible theory of cognition must be computationally tractable
such that information-theoretic considerations can be used to inform the study of feasible cog-
nition (van Rooij, 2008). Given this thesis, how may, for instance, a scientist accomplish the
cognitive task of accurately assessing the generalizability (i.e., the scope) of a claim or theory
about people? Consider a case in which every individual in a population is assumed to differ
by at least one qualifier (trait or condition). Individuals, in reality, have many distinct quali-
fiers including their genetics and environmental conditions. Any individual qualifier could be
relevant to the truth of a given claim and thus would need to be assessed. Determining the
precise scope of the claim would require assessing all possible allocations of these distinct
individuals into two categories (within or without the scope of the claim/theory). For a popula-
tion P, we would thus have to assess 2P cases. Given standard assumptions from the tractable
cognition thesis (specifically, polynomial-time computability; Garey & Johnson, 1979), this
means that the task quickly becomes computationally intractable (P = 100 individuals means
considering >1030 possibilities).

One way to make this problem tractable is to restrict our consideration to a small num-
ber k of relevant qualifiers (this has been called “fixed-parameter tractable” cognition; van
Rooij, 2008). The claim/theory may now apply to any subpopulation identified by a quali-
fier or a combination of qualifiers from k. Assume we know the allocation of the k quali-
fiers in the population (age, sex, cultural specifics) but not which qualifiers are relevant. We
then have to consider 2k = f subpopulations instead of P individuals. To assess generaliz-
ability between subpopulations, we now have to consider only 2f cases. While for a small
k, the problem becomes tractable, for a growing k-value, a combinatorial explosion again
quickly ensues, meaning that even for a highly skilled scientist it may only ever be possible
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to consider a smaller number of relevant qualifiers.5 Formulating inductive claims with a fully
accurate, contextually unconstrained scope is thus cognitively intractable in general. Con-
versely, a plausible tractable solution to this problem implies that the number of potential
qualifiers that can be assessed is clearly limited, meaning that many potentially relevant qual-
ifiers must be disregarded by default and it cannot be considered whether they are relevant.
Yet, since any omission of a relevant qualifier constitutes an overgeneralization, the very need
to keep cognition (and scientific models) tractable implies a fundamental and inevitable over-
generalization tendency.

We have focused on overgeneralizations resulting from cognitive limitations in individual
cognizers. However, cognitive limitations of individuals can become compensated in groups
(Peters, 2020) or be corrected in social exchanges with others (Dutilh-Novae, 2020, pp. 151–
167). Later, we will explore to what extent this also applies to overgeneralizations in individ-
uals’ cognition (Section 4.5). But first, we turn to generalization bias itself.

3.2. Empirical data on generalization bias

The fundamental disposition to overgeneralize that we just outlined is inevitable for com-
putational reasons. We will thus not treat it as a bias. But it may also underlie and lead to an
automatic, modifiable generalization tendency in domains in which, relative to specific social
norms, various kinds of overgeneralizations are not inevitable but avoidable (provided one
pays attention, has the relevant interest, etc.). This tendency in these domains would then be a
generalization bias. The existence of such a bias and overgeneralizations can be illustrated by
reference to people’s thinking in terms of kinds, that is, whole categories of beings or objects
(“women,” “trees,” etc.), rather than only in terms of unique individuals or objects (e.g., “this
woman,” “this tree”) or explicitly quantified sets of them (“some women,” “5 trees”; Pel-
letier, 2009). Research suggests that, in many cases, humans privilege and prefer information
processing at the level of kinds.

Consider studies on people’s understanding of generics, that is, explicitly unquan-
tified claims expressing generalizations about kinds of individual beings or objects
(e.g., “mosquitos carry malaria,” “smartphones are popular”; for discussion, see Leslie &
Lerner, 2016). Some researchers found that when they asked their study participants to con-
sider and then recall both generics about animal kinds and quantified statements about them,
most people were more likely to remember quantified statements as generics than do the
reverse (Leslie & Gelman, 2012).

In a related experiment, Sutherland et al. (2015) asked participants to correctly memo-
rize statements about novel fictional6 animals. The statements were either quantified “many”
claims about individual animals, or generics about groups of them. On average, 63.5% of the
“many” claims (that ascribed generalizable properties to individuals) were misremembered as
generics, and there were significantly more (M = 57.4%) “many”-to-generic than generic-to-
“many” conversions. The rates at which participants misremembered quantified claims also
did not significantly differ in a cognitive-load condition versus a no-load condition, suggesting
that participants had a “generalization bias,”7 an “implicit bias to spontaneously generalize to
kinds” (Sutherland et al., 2015, p. 1038). The participants’ responses indicate a bias because
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these overgeneralizations happened systematically and despite individuals’ attempts and abil-
ity to correctly encode information (it does not follow that if many Xs are F, then Xs in general
are F): Participants could in principle avoid incorrect answers (i.e., doing so was not cogni-
tively intractable) but nonetheless unintentionally and reliably deviated from this normative
standard.

Indeed, many people may need only very little evidence about some individuals to readily
generalize to entire kinds of them: Cimpian, Brandone, and Gelman (2010) introduced their
study participants to fictional animals (“lorches”), before telling them that a certain percent-
age of category members have a particular feature (e.g., “30% of the lorches have feature
F”). Afterwards they asked the participants if the corresponding generic (e.g., “Lorches have
feature F”) was true. Cimpian et al. found that people tended to treat the generic as true even
when they knew that only a minority of the kind members had the feature. Yet, when they
were first told that this generic statement (i.e., “Lorches have feature F”) was true and were
then asked what percentage have feature F, participants expected over 90% of the individuals
at issue to have F. These data reveal an unreflective tendency to generalize vastly beyond the
evidential basis. Different findings thus suggest that the human cognitive system likely has
a generalization bias that operates by default and may often result in unwitting, avoidable
overgeneralizations.

That said, Cimpian et al.’s and Sutherland et al.’s studies used only Western samples and
statements about fictional kinds. Also, consider the fact that people’s social stereotypes, which
themselves indicate a tendency to overgeneralize from some to all members of a kind, cannot
easily be overcome by presenting those holding them with numerous counterexamples to the
stereotypes (Hinton, 2017). If people had an automatic tendency to generalize that is context-
independent, then they should also readily generalize from some counter-stereotypical indi-
viduals to the corresponding kind of them. Since this does not commonly happen, the impact
of generalization bias is likely influenced by psychological, contextual, and social factors
(e.g., motivated reasoning; Kunda, 1990). These qualifications aside, the reviewed findings
and the preceding bounded rationality argument do provide reasons to believe that many peo-
ple have a generalization bias, an automatically operating extrapolation tendency that can lead
them to unintentionally and avoidably generalize their views about particular cases to broader
sets (e.g., kinds of individuals) even when their evidence does not support it. Does this bias
also affect scientific induction?

4. Scientific induction

Scientific methodology has partly been developed to combat unwarranted generalizations
and ensure generalizability. For instance, inferential statistics is designed to systematically
assess the generalizability of data from a sample to a larger population (Kukull & Ganguli,
2012). Moreover, science involves researchers routinely criticizing each other’s inferences
(e.g., in peer review) to ensure reliable scientific belief formation (Longino, 2002). Addi-
tionally, comparative research on induction found that domain experts often make inductive
inferences based on their deeper domain knowledge rather than on general heuristics (Hayes
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& Heit, 2018, p. 3). It might thus seem that scientists are unlikely to display generalization
biases in scientific induction. However, we now argue otherwise and make the case for the
generalization bias account of scientific induction. To do so, we will integrate a range of dif-
ferent empirical findings and theoretical insights that have so far not been connected. Taken
together, and combined with the arguments from the previous section, they yield a convincing
overall case for the generalization bias account.

4.1. Scientific explanation can promote an overgeneralization tendency

There is reason to believe that scientific induction can in fact be particularly likely to
involve a generalization bias. Specifically, this bias may be promoted by the motivation
and practice of providing explanations, which is pervasive in science. Consider first work
on laypeople’s explanations of why events unfold in particular ways, why people behave as
they do, and so forth. Studies found that when learners were asked to explain events, they
learned more effectively and generalized more readily to novel situations: “explaining guides
learners to interpret what they are learning in terms of unifying patterns or regularities,”
which facilitates “broad generalizations” (Williams & Lombrozo, 2010, p. 776). Clearly, the
mindset activated by being prompted to explain a phenomenon has thus benefits (it boosts
learning).

However, it can also produce systematic errors. Williams, Lombrozo, and Rehder (2013)
asked participants to categorize new objects (e.g., cars) after an exemplar-based training
phase. During the training, some individuals had to explain the categorizations. The others
were asked to simply “think aloud” about the task. Williams et al. found that the explanation
group more accurately categorized features and objects that had similar patterns to the train-
ing examples but less accurately categorized exceptional cases and ones with unique features.
That is, “explainers focused on features that supported patterns at the expense of idiosyncratic
information about individual items, and […] perseverated in seeking or applying broad pat-
terns despite evidence against their generality,” producing “overgeneralization in the face of
exceptions” (Williams et al., 2013, p. 1006). Relatedly, research on stereotyping found that
asking participants to explain a single (unrepresentative) observation produced the same type
of overgeneralizing beliefs that underlie social stereotypes, which ascribe properties to whole
classes of individuals based on a few observations (Risen, Gilovich, & Dunning, 2007).

These studies did not sample scientists. But it is a key part of science to explain, predict, and
confirm hypotheses about phenomena (Kitcher, 1989). Since scientists (unlike laypeople) are
as part of their job routinely aiming to explain phenomena (Cummins, 2000), they may be par-
ticularly prone to the kind of overgeneralizations in the face of exceptions that Williams et al.
(2013) discovered. After all, many scientists also view “explanatory unification” (Kitcher,
1989), the project of explaining much by little and reducing the number of apparently inde-
pendent phenomena, as a “virtue to be pursued in scientific theorizing” (Mäki, 2001, p. 488).
This increases the plausibility of the view that scientists may be especially likely to also dis-
play the kind of tendency to overgeneralize found in laypeople. Chomsky (1959) mentions
a classic example of such an overgeneralization in the face of exceptions in early cognitive
science: behaviourists took the idea that some behavior is conditioned to apply to all behavior.
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Additionally, research suggests that in explaining events, people often generalize
information in proportion to how salient or noteworthy it is (for a review, see Leslie, 2017).
Cimpian et al. (2010) found that even if people learned that only a few members of a kind had
a certain feature (e.g., 10%), if that feature was distinctive or unusual, people more readily
unreflectively overgeneralized the possession of the feature to the entire kind of individu-
als than if it was not distinctive. This study too did not sample scientists. However, scien-
tists routinely try to extend the domain of what is already known. They should therefore
often encounter still unknown, thus unusual, features of (e.g.) people and indeed actively
seek striking, impactful findings (West & Bergstrom, 2021). Taken together, these points sug-
gest that scientists may be at a particularly high risk of being affected by a generalization
bias.

4.2. The belief in the law of small numbers

There is more direct empirical evidence of generalization bias in scientific induction. In a
seminal study, Tversky and Kahneman (1971) found that many psychologists viewed a sample
randomly drawn from a population as highly representative, that is, generalizable, even when
this was not warranted. Most of the surveyed psychologists underestimated the systematic
increase in uncertainty for smaller samples such that they placed about the same confidence
in a mean derived from a small sample as in a mean derived from a larger, more representative
sample.

In statistics, the “law of large numbers” is a foundational theorem stating that the mean
of a sample provides an increasingly reliable estimate of the mean of the population as the
sample size increases (Dekking, 2005). Inversely, estimates from smaller samples tend to be
less reliable. Tongue-in-cheek, Tversky and Kahneman (1971) thus dubbed the systematic
overconfidence in estimates obtained from small samples the “belief in the law of small num-
bers.” With respect to this “belief” among psychologists, it is fair to assume that the psychol-
ogists that Tversky and Kahneman surveyed did not deliberately overgeneralize. Moreover,
given their professional expertise, they should not have lacked8 the competence required for
accurate responding. More plausibly, Tversky and Kahneman’s findings indicate that their
participants were affected by an automatically operating generalization tendency.

We have no reason to believe that scientists today are immune to the belief in the law of
small numbers. In fact, recent studies found that, across the cognitive and behavioral sciences,
published sample sizes are persistently too small to support the purported conclusions (Button
et al., 2013; Smaldino & McElreath, 2016; Szucs & Ioannidis, 2017). There are likely multiple
convergent causes of this phenomenon including institutional and structural causes that we
will consider below (Section 4.5). But Bishop (2020) argues convincingly that the belief in
the law of small numbers plays a role as well. Since this belief indicates an unreflective, in
principle avoidable tendency to overgeneralize from the mean of a given study sample to
the mean of the total population, it indicates a generalization bias. Indeed, the persistence of
insufficient sample sizes across the cognitive and behavioral sciences suggests that this bias
is present in many cases of scientific reasoning.
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4.3. Extrapolating from unrepresentative samples

We just illustrated one important way in which generalization bias can affect scientific
induction, namely, by leading scientists to assume that their current finding for a small sam-
ple is representative of the population from which the sample is drawn. This can influence
statistical inferences resulting in overgeneralizations. We argue next that the bias is likely to
also affect scientific induction in another kind of inference, namely, when scientists extrap-
olate to other populations9 than those from which their sample is drawn. This may result in
overly broad claims about humans in general.

Such overgeneralizations can in fact frequently be encountered in academic publications.
For instance, in an influential study, Henrich, Heine, and Norenzayan (2010) found that:

“Behavioral scientists routinely publish broad claims about human psychology and behav-
ior in the world’s top journals based on samples drawn entirely from Western, Educated,
Industrialized, Rich, and Democratic (WEIRD) populations. Researchers—often implicitly—
assume that either there is little variation across human populations, or that these ‘standard
subjects’ are as representative of the species as any other population” (p. 61).

Accordingly, researchers “often implicitly” overgeneralize. This is because upon review-
ing a comparative database from across the behavioral sciences, Henrich et al. found that
“WEIRD subjects are particularly unusual compared with the rest of the species—frequent
outliers” (2010, pp. 64–78). An explicit consideration of generalizability should thus have
prevented broad claims about human psychology based on purely WEIRD samples.

While Henrich et al. did not quantify these kinds of overgeneralizations, Rad, Martingano,
and Ginges (2018) did. They reviewed 223 articles published in Psychological Science (from
2014 to 2017) to evaluate the extent to which studies in the field rely on sampling WEIRD
populations and make inferences from them about humans in general. They found that ∼94%
of the studies (total N = 447) sampled only people in Western countries, yet 76% contained
generalized conclusions. That is, at best only 24% contained conclusions limited to WEIRD
populations (see Rad et al.’s tab. S2, Supplementary Information).

Similarly, DeJesus, Callanan, Solis, and Gelman (2019) analyzed 1149 psychology articles
(published 2015–2016 in 11 journals) to investigate the use of generics in titles, research
highlights, and abstracts. As noted, generics make broad claims about a category as a whole
(e.g., “people,” “introverts,” “women,” etc.) versus particular individuals (e.g., “the people in
the study”) and do not mention frequencies, probabilities, or statistical distributions. DeJesus
et al. found that “generics were ubiquitously used to convey results (89% of articles included
at least 1 generic)” (2019, p. 18370). Yet, most articles did not mention sample demographics,
and there was “no evidence that [the use of generics] was warranted by stronger evidence, as
it was uncorrelated with sample size”: “authors showed an overwhelming tendency to treat
limited samples as supporting general conclusions, by means of universalizing statements”
(ibid). In their papers, researchers thus very frequently overgeneralized.

Evidence of overgeneralizations does not only come from expressions of scientists’ infer-
ences from human (small or WEIRD) samples. Leavens, Bard, and Hopkins (2010) found
that the “over-reliance in psychology on one group of humans, WEIRD, to represent ‘the
human’ in cognitive terms has a strong parallel in the over-reliance in comparative psychology
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on chimpanzees raised in Barren, Institutional, Zoo, And other Rare Rearing Environments
(BIZARRE) to represent ‘the chimpanzee’” (p. 100).

It might be objected that when scientists generalize from small, WEIRD, or BIZARRE
samples to kinds and use generics in communicating scientific results, their generalizations
are not in fact over-generalizations. This is because generic scientific generalizations are
ceteris paribus, carrying an implicit “all other things equal” caveat. That is, they are not meant
to hold universally but allow for potentially many exceptions (Claveau & Girard, 2019).

However, if scientists did indeed typically understand generic scientific generalizations
as only referring to a subset of people, for instance, WEIRD populations, there would be
little ground for DeJesus et al. (2019), Henrich et al. (2010), and many others to criticize
researchers for these generalizations. They would simply not be taken to be false or problem-
atic to begin with. Yet, they are commonly viewed as problematic (e.g., by the vast majority of
the respondents to Henrich et al.’s paper; see Henrich et al., 2010, p. 51). These points suggest
that many scientists do not usually implicitly relativize the generic generalizations at issue to
WEIRD populations.10 Relatedly, Haigh, Birch, and Pollet (2020) found that people high in
“cognitive reflection” (the tendency to reflect on and revise one’s intuitions), which perhaps
includes trained scientists, did not display more restricted interpretations of science-related
generics than other people.

What might explain the apparent pervasiveness and persistence (DeJesus et al., 2019;
Nielsen, Haun, Kärtner, & Legare, 2017) of overgeneralizations in the sciences? It seems
clear that many of the researchers that produce them do not wish to deliberately misrepre-
sent their findings. It might be that scientists sometimes overgeneralize because they do not
yet fully understand the parameter space of discovery or have mistaken preconceptions about
the phenomenon studied. This can result in inevitable overgeneralizations typical of normal
science (Guttinger & Love, 2019).

However, mere lack of knowledge seems an insufficient explanation in the present cases.
The point that WEIRD samples tend to be outliers has been emphasized and widely acknowl-
edged for some time (Henrich et al., 2010). And assessing the degree to which data can be
generalized is a basic skill taught in statistics courses and social science textbooks (Engel
& Schutt, 2013; Shadish et al., 2002). The findings of consistent scientific overgeneraliza-
tions (e.g., from WEIRD or small samples) are thus more plausibly explained by holding that
many scientists are affected by an unintentionally operating tendency to generalize. Some
researchers’ self-reports further support this. For instance, DeJesus et al. (2019) note that
when they were conducting their research: “we were chastened to discover unintended gener-
ics in our own published writing [emphasis added]” (p. 18375). Similarly, consider organi-
zations such as the American Psychological Association, which often release policy state-
ments regarding science and behavior and are explicitly committed to providing accurate
scientific information. When Elson et al. (2019) examined these organizations’ policy state-
ments (produced by scientists), they found problematic overgeneralizations (i.e., claims that
extended research findings to behaviors beyond what was appropriate, e.g., when lab mea-
sures of aggression were readily extrapolated to real-world violence) in 62.5% of them. Since
these overgeneralizations are highly unlikely to be intentional, there are reasons to believe
that they are partly based on, and indicative of, a generalization bias.
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4.4. Overgeneralizations in study designs

Having highlighted overgeneralizations from small or WEIRD participant samples,
generalizability issues can in fact also arise for any other dimension of a study over which the
researchers wish to generalize, for example, stimuli, situations, experimenters, research sites,
and so forth (Brunswik, 1947). Focusing on stimuli, across experimental psychology studies,
participants are regularly asked to respond to items assumed to capture categories of theo-
retical interest. For instance, in implicit cognition tasks, participants might be primed with
pictures of specific elderly versus adolescent faces sampled in some way from other avail-
able stimuli. There could be significant stimulus variability, as items to prime people might
be photos, videos, face-to-face exposure, and so forth. For their conclusions to generalize to
other stimuli and not just to the specific ones used in their study, researchers would thus need
to routinely account for the representativeness and variability in stimuli in both theorizing
and statistical modeling. In reality, however, many studies found that stimulus sampling is
rarely factored in during experimental design and data analysis (Clark, 1973; Judd, Westfall,
& Kenny, 2012; Yarkoni, 2020).

If scientists were immune to generalization bias in their scientific induction, one would
expect that they are aware of the related generalizability problems and either (a) ensure that
their stimuli are representative or (b) explicitly report limited generalizability. However, very
often neither happens. For instance, while many experimental linguists rarely offer support
for the view that their findings generalize beyond the specific sample of language materi-
als they selected, they frequently conclude that their findings hold for language in general
(see Clark, 1973; Judd et al., 2012). Yarkoni (2020) shows that many psychologists draw sim-
ilar overgeneralized inferences by not controlling stimuli as random factors and thus tacitly
assuming that stimulus effects remain invariant across settings.

Different explanations for researchers’ failure to attend to stimulus variability have been
proposed. For instance, traditional analysis of variance procedures may create high demands
when both participants and stimuli are treated as random factors (Judd et al., 2012). Others
view this failure as an accident of history or of technological limitations since the computing
resources needed to fit the required models were difficult to attain until recently (Yarkoni,
2020).

However, these proposals leave it unclear why many scientists still persistently omit
stimulus-related qualifiers in their reporting. Lack of knowledge of the related generalizabil-
ity problems is an insufficient explanation: It is typically part of psychologists’ first course in
experimental design to learn that stimuli (situations, etc.) can influence participants’ responses
and that precautions thus need to be taken (Sani & Todman, 2006). That researchers intention-
ally misrepresent their results is also unlikely. It is more plausible (and perhaps charitable) to
assume that the overgeneralizations in study designs (including the “stimulus-as-fixed-effect
fallacy,” Clark, 1973) and subsequent reporting are instead based on an automatic general-
ization tendency that inclines scientists to unwittingly disregard variability and qualifications
in their research design and conclusions (e.g., to keep scientific cognition more tractable).
That is, despite thorough scientific training, researchers are likely to have a generalization
bias.
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By integrating psychological work on explanation (e.g., Williams et al., 2013) with a range
of disparate findings from research about scientists themselves (Clark, 1973; DeJesus et al.,
2019; Henrich et al., 2010; Tversky & Kahneman, 1971; Yarkoni, 2020), we thus arrive at a
new perspective in the cognitive science of science: the view that scientific induction involves
a generalization bias. This view helps unify the findings and cast new light on the nature of
scientific induction.

4.5. Psychological and structural factors interact

There is a natural response to the preceding argument: External factors belonging to the
economic, social, or institutional structure of science can also help explain the phenomena we
just appealed to in order to support the generalization bias account. For instance, the economic
costs of studies with larger samples, publication bias, methodological training, or academic
competition also contribute to the use of small, WEIRD samples, and overgeneralizations
from them (Braganza, 2022; DeJesus et al., 2019; Higginson & Munafò, 2016; Smaldino &
McElreath, 2016).

We will now argue that such structural causes of the problems related to sampling and gen-
eralizability should not be misconstrued as explanatory factors competing with generalization
bias in accounting for these problems. Instead, the psychological and structural drivers of
small, WEIRD study samples and scientific overgeneralizations (e.g., in study designs) mutu-
ally reinforce each other. Both explanatory approaches are thus best combined.

Consider a structural explanation of why scientists might frequently select small and unrep-
resentative samples and overgeneralize from them in publications, namely, that this practice
is in part driven by publication pressure (Braganza, 2020). We have three principal ways
to explain the scientists’ mindset in these cases. We might hold that (a) the researchers are
completely unaware of the issues related to overgeneralizations from such samples. (b) They
may be familiar with some of them but nonetheless consciously select too small samples to
advance their career. Or (c) they may remain largely unaware of overstating their findings, as
they are affected by a generalization bias.

Since the problems concerning small samples and overgeneralizations from them have been
highlighted in the cognitive and behavioral sciences for decades and are widely acknowledged
(e.g., Henrich et al., 2010; Smaldino & McElreath, 2016), (a) seems an insufficient explana-
tion. As for (b), while scientific misconduct exists (John, Loewenstein, & Prelec, 2012), most
scientists are perhaps unlikely to be consciously complicit in what they perceive as scientific
malpractice. In our view, option (c) is most convincing. The assumption that scientists are
affected by a generalization bias makes it easier to see how structural factors (e.g., publica-
tion pressure) can cause and promote the selection of small, unrepresentative samples and
overgeneralizations from them. Indeed, since scientists are unlikely to be either oblivious to
these problems or uninterested in their epistemic consequences, the assumption that a bias is
at play makes structural accounts (e.g., Smaldino and McElreath, 2016) significantly more
tenable. The generalization bias account thus helps explain how scientists may be affected by
structural causes of the problems at hand. It hence supports structural accounts of them.
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The reverse holds too, because structural factors, in turn, can promote generalization bias.
It is rarely feasible in science to collect data on an entire target population or have a fully rep-
resentative sample (Banerjee & Chaudhury, 2010). While many scientists aim to select a sam-
ple that is representative of their target population, they often face external constraints beyond
their control. For instance, stratified random sampling can require significant resources, peo-
ple contacted for a study may not want to participate, or the relevant target population may
not be fully known (Martínez-Mesa, González-Chica, Duquia, Bonamigo, & Bastos, 2016;
Tyrer & Heyman, 2016). Even though having a fully representative sample is thus rare
in science, in communicating their findings to policy makers, scientists nonetheless often
need to make broad generalizations when they provide explanations and recommendations
(Lombrozo, 2013; Peters, 2021): Policy makers and the public want to know whether they,
not just the participants in a particular study, should eat food rich in antioxidants, and so
forth. Social and structural factors, therefore, promote overgeneralizations by encouraging
researchers to use bolder framing when they need to persuade journal editors, funding agen-
cies, and the public of the importance of their research (DeJesus et al., 2019; Guttinger &
Love, 2019). Relatedly, given standard statistical practices, small sample sizes can allow for
more publishable, that is, positive results, providing scientists with an advantage in competi-
tion for funding and academic positions while simultaneously undermining external validity
(Braganza, 2020). This can structurally reinforce the “belief in the law of small numbers”
(Tversky & Kahneman, 1971) by selecting the scientists displaying it for tenure (Smaldino &
McElreath, 2016).

Social and structural factors can thus incline scientists to make, and think in terms of, over-
generalizing claims, instilling, and strengthening habits (Verplanken, 2018) that may subse-
quently operate by default and result in generalization bias. Consequently, both generalization
bias and these structural factors will need to be considered together to account for scientific
overgeneralizations. This approach fits nicely into, and adds a novel aspect to, the increas-
ing number of contributions across disciplines that highlight the importance of connecting
psychological and socio-structural factors in explaining and addressing complex social chal-
lenges (e.g., the replication crisis: Munafò et al., 2020; social injustice: Davidson & Kelly,
2020; climate change: Brownstein, Kelly, & Madva, 2022).

But given our emphasis on the interplay between psychological and social factors, an
important question remains. We noted above that science involves researchers routinely crit-
icizing each other to reduce the influence of an individual scientist’s biases (Longino, 2002).
Might peer review, social criticism, and so forth, not also help keep generalization bias in
the sciences in check? Perhaps they do to some extent. However, the fact that overgener-
alizations from, for example, small or WEIRD samples are pervasive in many top science
journals (DeJesus et al., 2019) strongly suggests that the corrective power of these social
feedback mechanisms is rather limited: Scientists do not only routinely produce overgener-
alizations but also routinely let them through peer review. That is, in many cases, even peer
reviewing scientists seem to have an unreflective overgeneralization tendency when consid-
ering their colleagues’ work. This indicates that the current social criticism mechanisms are
frequently ineffective against overgeneralizations and, by extension, generalization bias in
science. Indeed, since peer reviewers have the social function and usually explicit goal to
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Fig. 1. The relationship between sample composition (size and representativeness) and the likelihood of overgen-
eralized study conclusions.

rigorously examine manuscripts to detect errors (including unwarranted claims), the common
oversight of problematic overgeneralizations during peer review is likely unintentional, sug-
gesting that generalization bias can have powerful effects even among highly epistemically
vigilant scientists.

This completes our case for the generalization bias account of scientific induction. To
reduce the chances of falling prey to a generalization bias ourselves (see also work on “bias
bias”; Gigerenzer, 2018), we provided a wide range of different kinds of evidence and insights
that support the account. They include arguments from bounded rationality, psychological
data on generalizations (Section 3), findings on explanation and scientific overgeneralizations
(Sections 4–4.4), and the explanatory benefits that the account yields.

We did not argue that scientists are always negatively affected by a generalization bias
in their scientific induction. We grant that many often do not automatically generalize in
unwarranted ways but carefully scale their claims to the evidence. Our point is that scientific
induction involves an implicit, unreflective generalization tendency that is operative by
default but can be and often is mitigated when researchers have cognitive resources available.
This is in line with the dual-process view of reasoning (Evans & Stanovich, 2013), which has
not been systematically brought to bear on scientific cognition yet,11 and the thought that the
bias at issue is influenced by psychological, social, and contextual factors (e.g., motivated
cognition; Kunda, 1990).

Finally, our account allows that generalization bias may sometimes result in appropri-
ate generalizations. While we shall not delve into a normative analysis of inductive support
in science (e.g., Cohen, 1970, 1988), whether an instance of scientific induction is nega-
tively affected by an automatic generalization tendency depends partly on the extent to which
researchers’ study samples (including participants, stimuli, situations, etc.) are representative
of the larger populations they are drawn from. As illustrated in Fig. 1, the smaller and less
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representative the sample, the higher the risk of generalization bias producing generalizations
that lack sufficient evidence, that is, overgeneralizations.12 Since scientists’ study samples are
always on a scale from smaller and less representative to larger and more representative,13 the
likelihood of generalization bias resulting in overgeneralizations is always on a spectrum as
well.

5. Generalization bias can contribute to the replication crisis

Many sciences are thought to be facing a replication crisis (Baker, 2016). A systematic
replication project in psychology found that while 97% of the original studies assessed
had statistically significant effects, only 36% of the replications yielded significant findings
(Open Science Collaboration, 2015). Much has been written on possible causes of replication
failures (Lewandowsky & Oberauer, 2020). Munafò et al. (2017) argue that replicable science
is threatened by poor study design, hypothesizing after the results are known, low statistical
power, p-hacking (i.e., manipulating statistical analyses until statistically significant results
emerge), lack of data sharing, publication bias, and many other factors.

Several researchers have argued that the replication crisis is closely connected to a “gen-
eralizability crisis” in the sciences (Redish, Kummerfeld, Morris, & Love, 2018; Tiokhin
et al., 2019; Yarkoni, 2020). However, generalization bias has not been considered in this
context yet. The account of scientific induction we developed above provides a new insight
into some underlying causes of the replication crisis. For example, Yarkoni (2020) argues
that overgeneralizations in study designs due to oversight of stimuli or situation variability
contribute to replication failures: Since a minor change in the uncontrolled stimuli or situ-
ational factors that researchers generalize over can often “take researchers from p = .5 to
p = .0005 or vice versa,” replicating the particular effects of previous studies becomes prob-
lematic, and so researchers’ potential overgeneralizations in their experimental design facili-
tate replication difficulties (Yarkoni, 2020, p. 17). While Yarkoni does not consider psycho-
logical contributors, generalization bias can significantly exacerbate the problem by feeding
into these overgeneralizations.

Furthermore, it has been argued that some overgeneralizations that are inevitable in sci-
ence can contribute to replication failures too (Guttinger & Love, 2019). When researchers
(a) do not consider or fully understand all variables affecting the phenomenon they study,
or when they (b) have mistaken preconceptions about the phenomenon they study then par-
tial models that overlook relevant factors and connections may result. Overgeneralizations
based on (a) or (b) are to be expected because when scientists approach the limits of knowl-
edge (as they often do), they inevitably do not fully understand all of the parameter space
for, and qualifiers of, a phenomenon, and so cannot control for them in their study designs
(see Section 3.1). This can affect not only aspects of external validity but also some aspects
of internal validity (e.g., the control of potential confounders in study design to ensure cer-
tainty that the independent variable influenced the dependent variable). The argument we
developed above offers additional insight on this point. It introduces a causal factor that
may impair scientists’ exploration of the parameter space of discovery or support mistaken
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preconceptions that may then result in overgeneralizations: Generalization bias can incline
researchers to avoid making a lack of understanding explicit or to not revise their misconcep-
tions. This exacerbates the impact of (a) and (b) on scientific induction.

6. Interventions

A generalization bias in scientific induction has important consequences for the question of
how to reduce problematic overgeneralizations in study designs and conclusions. Researchers
aware of the problems associated with small and WEIRD samples and overgeneralizations
from them have developed different measures for tackling them (Munafò et al., 2017). The
generalization bias account helps inform and extend these measures.

One central recommendation to reduce scientific overgeneralizations is to improve
journals’ author guidelines: Journals should include, among their existing reporting require-
ments, a requirement for authors to provide “constraints on generality” statements in each
paper, which should be outlined in the methods and conclusion sections (Simons et al., 2017,
p. 1123). These statements should justify the authors’ claims about a study’s design and tar-
get populations, the particular characteristics of participants, stimuli, procedures, and other
contextual features that allow others to assess the results’ generalizability. While authors do
already sometimes discuss the generalizability of their results in their papers’ “limitations”
sections, the use of specific reporting requirements to ensure that this happens routinely is
still not established practice across scientific journals (Moher et al., 2012; Yarkoni, 2020).

The generalization bias account adds weight to calls for adopting reporting requirement
to be explicit about generalizability. This is not only because constraints on generality state-
ments benefit prospective readers, but also because they encourage authors to routinely and
more explicitly reflect on the appropriate degree of generalizability of their findings. Such
conscious deliberation is the first line of defense against cognitive biases, including general-
ization bias.

However, structural interventions such as improved reporting guidelines explicitly con-
cern only publication practices while overgeneralizations can also occur in other contexts
(e.g., teaching) where reviewer oversight is absent or peer criticism is limited. Moreover, if
scientific overgeneralizations often arise due to a generalization bias then what is needed in
addition to improved author guidelines is cognitive “debiasing,” that is, interventions that
directly target scientists’ cognition (Croskerry, Singhal, & Mamede, 2013; Larrick, 2004).
This is especially important given that even peer reviewers are frequently affected by a strong
generalization tendency as evidenced by the high number of overgeneralizations in published
(i.e., peer-reviewed) scientific papers (DeJesus et al., 2019). Cognitive debiasing is already
being used in the clinical and forensic sciences to minimize scientists’ cognitive biases
(e.g., confirmation bias; Lockhart & Satay-Murti, 2017) and improve diagnostic accuracy
(Daniel et al., 2017; Ludolph & Schulz, 2018; Sibbald et al., 2019). But the idea of using it
in the cognitive and behavioral sciences is largely unexplored (Bishop, 2020). We think that
it should be viewed as equally important in these sciences, and relevant interventions should
be developed (Morewedge et al., 2015; Sellier, Scopelliti, & Morewedge, 2019).
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To take a step in this direction, two straightforward and concrete debiasing measures
come to mind that can also make structural interventions against overgeneralizations more
effective:

1. Raising awareness. Cognitive debiasing begins with individuals’ awareness of their
own biases. This can already help mitigate them (Croskerry et al., 2013). To illus-
trate this in the context of generalization bias, suppose that to minimize the risk of
overgeneralizations, a group of scientists follows the journal reporting guidelines out-
lined above. If they did not only follow these guidelines but also thought that they
might unintentionally and automatically overgeneralize from their samples, this should
increase their attention to scaling their claims to the data, which in turn minimizes the
influence of generalization bias, reduces overgeneralizations, and boosts the impact
of reporting guidelines. Introductory methodology courses at universities and author
guidelines should thus raise people’s awareness of generalization bias.

2. Checklists. The efficacy of raising awareness may be limited, as biases are known to
be recalcitrant to conscious control (Kurdi & Banaji, 2021). That is why researchers
working on debiasing often recommend the use of personal checklists (Lockhart &
Satay-Murti, 2017), an analog to journal checklists and guidelines. A relevant check-
list that individual scientists can use to control and over time minimize their own gen-
eralization biases includes three sets of items. One would cover common sources of
variability specific to the chosen study type (participants, stimuli, etc., see also the
guidelines in Moher et al., 2012). Another set would capture the stages of the research
process in which an overgeneralization overlooking these factors can occur under the
influence of an automatic generalization tendency (e.g., study design). A third set
would concern science reporting (e.g., in articles), require clearly outlining specific
relevant qualifiers (e.g., on sample size and composition), and recommend using the
past tense when reporting results (DeJesus et al., 2019). This communicates that the
findings pertain to the sample or analysis at hand and may thus help undercut potential
overgeneralizations by the reader. If scientists adopt such checklists consistently and
not only during the publication process when reviewers prompt them, they will more
widely expose themselves to an overgeneralization “habit-breaking” regime (Forscher,
Mitamura, Dix, Cox, & Devine, 2017). This can promote adherence to the structural
interventions outlined above. Structural and psychological interventions should thus
be combined to more effectively minimize scientific overgeneralizations.

The robustness and replicability of science can also be increased by conducting a sin-
gle study in multiple contexts and applying multiple methods and evidence from differ-
ent fields to better assess the scope of a given finding (Nosek et al., 2021). Other struc-
tural mitigation strategies from the rapidly expanding literature on irreproducibility that
target different scientific stakeholders include preregistration, results-occluded peer review,
improved randomization, blinding procedures, and data availability requirements (Munafò
et al., 2017). However, such measures do not directly address generalization bias but rather
replicability and generalizability more broadly. We will thus not further discuss them here
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but note only that a number of them are likely to interact with generalization bias in complex
ways.

Finally, it is worth emphasizing that the perspective that we are defending here is valuable
not just in suggesting new ways to effectively intervene in the problems of overgeneraliza-
tions, WEIRD sampling, replication failures, and so forth. It also changes our understanding
of these problems themselves. Properly understood, we need to reconceive the nature and
source of overgeneralizations, WEIRD sampling, and replication failures. The generalization
bias account of scientific induction gives a richer diagnosis of the underlying causes, and
how they are located in a set of structural features, psychological features, and interactions
between them.14

7. Conclusion

Scientific induction is commonly treated as a fully voluntary act of reasoning. Accordingly,
unreflective default inferences from a given sample to a broader population are taken to be at
odds with how scientists generalize. Here, we challenged this view and developed an alterna-
tive. We argued that scientific induction involves by default a generalization bias that operates
automatically and frequently leads researchers to overgeneralize their results unintentionally.
Research on bounded rationality and psychological evidence on generalization (incl. generics
use) suggest that generalization bias is a property of everyday induction. Moreover, findings
on explanation and scientific overgeneralizations indicate that this bias also affects scientific
induction. The explanatory benefits of the generalization bias account in making structural
explanations of overgeneralizations more plausible lend further support to this account. Com-
bined with the points made earlier in the paper (on bounded rationality and the psychological
evidence on generalization), these arguments yield a compelling overall case for the general-
ization bias account.

This account provides grounds to hold that generalization bias contributes to the replication
crisis and that explanations of this crisis that focus only on its structural causes thus remain
incomplete. Problems in replicability and generalizability in the sciences are best explained by
combining structural and psychological accounts. Correspondingly, since existing interven-
tions to tackle scientific overgeneralizations focus primarily on structural causes, they should
be supplemented with updated journal reporting guidelines and cognitive debiasing efforts
against generalization bias (e.g., raising awareness of the bias and using checklists). With
targeted strategies combining structural and psychological interventions, we may be able to
significantly reduce scientific overgeneralizations and generalization bias. More experimental
research is needed that recruits scientists as participants in order to evaluate the extent of this
intriguing bias across the sciences.

Notes

1 Induction is one of three major kinds of reasoning. The others are deduction, that
is, inferences from broad generalizations to conclusions about specific cases, and
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abduction, that is, inferences to the best explanation (Walton, 2001). Here, we focus
specifically on induction because our argument is empirically best supported with
respect to it.

2 Many of our arguments also apply to science more generally. But since most of the
evidence we will draw on comes from or pertains to the cognitive, behavioral, and
social sciences, they will be our main focus.

3 Exceptions include, for instance, Mahoney (1976) or Tversky and Kahneman (1971);
we will return to their work below.

4 If there is not “a” generalization bias but a host of generalization biases, to what extent
do they share or differ in their functional roles across domains? Due to space constraints,
we shall remain agnostic on this question. Our focus will be on the more fundamental
question of whether this kind of bias is real in the domain of scientific induction.

5 However, this does not preclude cumulative knowledge about qualifiers, which may, for
instance, result from social criticism processes. Once a qualifier is known, it does not
always need to be considered in each case and it does not necessarily reduce tractability.

6 Fictional animals were used to prevent individuals’ prior knowledge about the world
from influencing their responses.

7 To the best of our knowledge, Sutherland et al. (2015) were the first to use the term
“generalization bias” but they employed it primarily only to refer to a memory bias.

8 The sample was drawn from meetings of the Mathematical Psychology Group and of the
American Psychological Association—with generally all psychologists having training
in statistics.

9 The term “other” here can be defined as a difference in at least one potentially relevant
qualifier (e.g., cultural background); see Section 3.1.

10 Scientists who generally agree with the ceteris paribus view may nevertheless take the
overgeneralization from WEIRD sampling to be impermissible. Closer scrutiny as to
why this might be reveals that it hinges on the question as to what exactly is meant
by ceteris. The ceteris paribus language derives from model-based science in which
“all else” can be held constant. In empirical contexts, however, there are always many
differences between two studies (context, stimuli, etc.). To make sense in empirical
contexts, “ceteris paribus” needs to refer only to the assumed substantively relevant
qualifiers (see Section 3.1). For instance, the date, exact identities of participants, and
so forth, must explicitly not fall under “ceteris.” But identifying the relevant qualifiers
is precisely the problem. Claiming that an implicit ceteris paribus marker justifies the
omission of mentioning, for instance, that the sample is WEIRD is thus a universal
cop-out: It can be invoked whenever any claim is not reproducible or generalizable for
any reason. The crucial question is if readers understand the potential relevance of the
sample being WEIRD in cases where sample identity is not explicitly mentioned. To
the extent that they do not, the omission induces an overgeneralized interpretation.

11 But for relevant developmental psychological work, see Amsel et al. (2008).
12 Whether a generalization is an over-generalization depends on the social norms speci-

fying adequate generalizations as well as the background knowledge (context, etc.) of
the audience of the generalization claim. Domain expertise may lead some individuals
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to add relevant scope restrictors to a given generalizing statement that novices would
not add.

13 The question of whether generalizations derive more support from the variety of
instances that are cited as evidence for them or from the multiplicity of those instances
is a matter of philosophical debate (see, e.g., Cohen, 1988).

14 For this point we are grateful to an anonymous reviewer.
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