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Abstract
Much of our information comes to us indirectly, in the form of

conclusions others have drawn from evidence they gathered. When
we hear these conclusions, how can we modify our own opinions so
as to gain the benefit of their evidence? In this paper we study the
method known as geometric pooling. We consider two arguments in
its favour, raising several objections to one, and proposing an amend-
ment to the other.

Some of your evidence about the world you gather yourself, but much
is gathered by others. Sometimes you obtain the second sort of evidence
directly, when one of your fellows describes it explicitly. But often you
learn only the effect it has had on their opinions. For instance, you might
learn your doctor’s view about what is causing your symptoms without
learning all the background knowledge and detailed test data that under-
pins it. Or you might learn your fellow researcher’s new probabilities for
the hypotheses you’re both investigating, rather than the data they’ve just
collected, and on which they’ve just updated their probabilities.

When you encounter someone who has gathered their own evidence,
and you learn not the evidence itself but only the opinions they now have,
how should you update your own opinions? The Bayesian says you should
treat such second-order evidence just like you treat any other evidence,
and update using Bayes’ rule; and they have many arguments in favour
of this prescription.1 But sometimes you can’t do that. After all, in this
situation, Bayes’ rule requires you to have prior probabilities in different
hypotheses concerning the opinions of the other person, and likelihoods
given those hypotheses; and you might simply not have set these. So we
seek an alternative method.

In this paper, we consider a particular proposal: you should combine
your probabilities with your fellow’s using a method known as geometric
pooling. We begin in Section 2 by raising several objections to a recent ar-
gument in favour of geometric pooling due to Baccelli and Stewart (2023).

1See for example Brown (1976), Oddie (1997), Lewis (1999), Greaves and Wallace (2006),
Briggs and Pettigrew (2018), and Gallow (2019).
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Then we turn, in Sections 3 and 4, to what we take to be better arguments
in its favour. Finally, in Section 5, we consider a further argument in favour
of geometric pooling that appeals to its utility in social settings, and we use
our results from earlier in the paper to suggest an amendment.

1 The framework

Throughout, we’ll assume that the opinions of you and your fellow con-
cern different ways the world might be, and different hypotheses about the
objective chance of its turning out each of these ways. This is an extremely
common situation, both in the context of scientific research and in our ev-
eryday lives. For instance, the hypotheses might concern the value of a
particular parameter in a scientific theory, such as the basic reproduction
number (R value) for an infectious disease, while the states of the world
might be distinguished by some observable feature, such as the pattern of
illness in a given population. Each hypothesis about the R value tells you
the chance of observing a given pattern of illness.

For ease of exposition, we will assume these hypotheses concern the ob-
jective chance of a particular coin landing heads, which we’ll call its bias.
And the states of the world are distinguished by different sequences of
heads and tails that might result when the coin is tossed repeatedly. We’ll
assume the hypotheses form a partition, call it H; and the states of the
world form another, call it S . You and your fellow each assign probabilities
overH and over S , and the Principal Principle (Lewis, 1980) says how they
should relate: your probability for a sequence, conditional on a hypothesis
about the chances, should be whatever probability that hypothesis assigns
to that sequence.2

Now suppose you observe some tosses of the coin, your fellow observes
some different tosses, and you each update your opinions in the light of this
new evidence. You meet and your fellow tells you their new probabilities.
How should you incorporate that information? It turns out it depends on
which of their probabilities they share. Here are three sets of probabili-
ties you might learn from your fellow: (1) their probabilities in each of the
possible sequences of tosses; (2) their probabilities in each of the chance hy-
potheses; (3) their probability that the next toss will land heads. We’ll take
these in turn.

But first, let’s survey two ways you might incorporate the information
about your fellow’s probabilities. The linear or arithmetic pool of probability
functions P and Q splits the difference between the credences that each

2If Ci is the chance function posited by Hi, then the Principal Principle requires of your
prior P that P(S | Hi) = Ci(S). And so, if you obtain evidence E, it requires of your
posterior P(− | E) that P(S | HiE) = Ci(S | E) (Hall, 2004, 101–2).

2



assigns. So the pooled probability in A is

L(P, Q)(A) =
P(A) + Q(A)

2
.

If P and Q are both probability functions, so is their arithmetic pool.
Where the arithmetic pool of P and Q appeals to the arithmetic mean

of the credences they assign, their geometric pool appeals to the geomet-
ric mean. The arithmetic mean of p and q is (p + q)/2; their geometric
mean is

√
pq. However, we cannot take the pooled probability in A to be√

P(A)Q(A) because doing so does not always deliver a probability func-
tion. Instead, we must use the normalized geometric mean rather than the
geometric mean itself. But that means we can define the geometric pool
of P and Q only over a specified partition. If A = {A1, . . . , An} is a finite
partition, then the pooled probability in Ai is

GA(P, Q)(Ai) =

√
P(Ai)Q(Ai)

∑n
j=1

√
P(Aj)Q(Aj)

.

Note that this is defined only if there is Ai inA such that P(Ai), Q(Ai) > 0.
In this case, we say that P and Q have an overlapping support in A. (We
define geometric pooling over infinite partitions in the Appendix.)3

2 Pooling probabilities of sequences

Now suppose you meet your fellow and they tell you their probabilities for
each of the possible sequences of coin tosses. How should you update your
probabilities in those sequences?

Baccelli and Stewart (2023) argue that geometric pooling is a good strat-
egy in this case. Let’s suppose you and your fellow shared the same prior
probability function P before you started collecting evidence. The crucial
point is that the evidence you have collected since then takes the form of a
disjunction of states of the world from S ; and similarly for your fellow. If
you witnessed heads, tails, then heads, then your evidence is the disjunc-
tion of every state of the world in which the sequence of tosses begins in
that way.

We write E for your evidence and F for your fellow’s. Then Baccelli and
Stewart note the following striking fact:

Proposition 1. If P(EF) > 0, then, for any state S in S ,

GS (P(− | E), P(− | F))(S) = P(S | EF).
3For some formal background on linear and geometric pooling, see Genest and Zidek

(1986). For some recent philosophical discussion, see Dietrich (2010), Dietrich and List
(2016), Russell, Hawthorne and Buchak (2015), and Baccelli and Stewart (2023).
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That is, pooling your posterior probabilities with your fellow’s gives the
same probabilities over the sequences as updating your shared prior with
the aggregate evidence.

What’s more, if we use Jeffrey conditionalization to extend the geomet-
ric pool over S so that it assigns probabilities also to the chance hypotheses
inH, Proposition 1 extends as well.4

Note that arithmetic pooling very much does not boast the feature de-
scribed in Proposition 1. Suppose the coin will be tossed just two times, so
that there are four possible sequences, HH, HT, TH, and HH. And sup-
pose you and your fellow both assign prior probabilities as follows:

HH HT TH TT
P(−) 1/3 1/6 1/6 1/3

Suppose you observe that the first toss lands heads and your fellow ob-
serves that the second toss lands tails. Then your shared prior updated on
the aggregate evidence places all probability on HT:

HH HT TH TT
P(− | EF) 0 1 0 0

But the arithmetic mean of your posteriors does not:

HH HT TH TT
P(− | E) 2/3 1/3 0 0
P(− | F) 0 1/3 0 2/3

L(P(− | E), Q(− | F)) 1/3 1/3 0 1/3

However, while the feature described in Proposition 1 distinguishes ge-
ometric pooling from arithmetic pooling, the former is not unique in hav-
ing it, and so it’s not clear that the result provides quite the support for
geometric pooling that Baccelli and Stewart suggest. Consider harmonic
pooling, for instance: if A = {A1, . . . , An} is a partition, and P and Q have
overlapping support among A, the harmonic pool of P and Q is defined as

HA(P, Q)(Ai) =

P(Ai)Q(Ai)
P(Ai)+Q(Ai)

∑n
j=1

P(Aj)Q(Aj)

P(Aj)+Q(Aj)

.

Then we have the following result, analogous to Proposition 1:
4In order to apply Jeffrey conditionalization, we need conditional probabilities for each

chance hypothesis Hi given each sequence S. These will be different for P, P(− | E) and
P(− | F), but it doesn’t matter which of these we use. If we use P, then Jeffrey conditional-
ization says that your new probability in Hi is

∑
S∈S

GS (P(− | E), P(− | F))(S) P(Hi | S) = ∑
S∈S

P(S | EF) P(Hi | S),

where the equality follows from Proposition 1. And the right-hand side here reduces to
P(Hi | EF). If instead we use P(− | E) or P(− | F), similar reasoning gives the same result.
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Proposition 2. If P(EF) > 0, then, for any state S in S ,

HS (P(− | E), P(− | F))(S) = P(S | EF).

Now, as Baccelli and Stewart note, any pooling operator for which an
analogue of Propositions 1 and 2 holds must agree with geometric pooling
in the cases in question. That is, it must pool P(− | E) and P(− | F) in
the same way geometric pooling does. But that’s only because it must pool
them to give P(− | EF). Harmonic pooling does that; but it doesn’t agree
with geometric pooling in all cases—not by a long way.

Another reason that Proposition 1 gives only limited support to geo-
metric pooling is that it doesn’t do what you might want it to do in cases in
which you and your fellow have different priors. Here is the generalization
of Proposition 1 that covers such cases, where P is your prior and Q is your
fellow’s:

Proposition 3. If P(− | E) and Q(− | F) have overlapping support among S ,
then, for any state S in S ,

GS (P(− | E), Q(− | F))(S) = GS (P, Q)(S | EF)

That is, if you take your prior updated on your evidence and your fellow’s
prior updated on theirs, and then combine them using geometric pooling,
you get the same result as if you had combined your prior and your fellow’s
using geometric pooling and then updated on the aggregate evidence. But
you might only be interested in your fellow’s opinion to extract the evi-
dence that informs it, preferring to retain your own prior rather than pool
with theirs.

In fact, there are pooling operations that deliver this:

∆A(P, Q)(Ai) =

{
0 if Q(Ai) = 0,

P(Ai)
∑Aj :Q(Aj)>0 P(Aj)

if Q(Ai) > 0.

This rule ignores everything about your fellow’s opinions, except whether
they are zero or nonzero. Really, it just uses the zeros to identify their evi-
dence, then conditionalizes your posterior on that evidence. Small wonder,
then, that we have the following analogue of Proposition 1: if P(EF) > 0,
then

∆S (P(− | E), P(− | F))(S) = P(S | EF).

And indeed this rule will also usually favour your way of interpreting the
evidence and ignore your fellow’s, which geometric pooling does not. That
is, if Q is regular over S , so that Q(S) > 0 for all sequences S in S , and if
P(EF) > 0, then

∆S (P(− | E), Q(− | F))(S) = P(S | EF).
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This observation points up a third problem with an argument for geo-
metric pooling based on Proposition 1. In order to use geometric pooling
this way, you have to know all your fellow’s opinions about the sequences.
They need to tell you Q(S | F) for every sequence S in S . But if they’ve
communicated all that, and if their prior Q is regular, they’ve already told
you what their evidence F is. So you might as well just conditionalize on F.
It’s strictly easier to ask what their evidence is and conditionalize on that
than it is to get their full set of opinions over the possible sequences and
take the geometric pool of those with yours.

3 Pooling probabilities of chance hypotheses

Next, suppose you meet your fellow and they tell you, not their probability
for each possible sequence, but their probability for each chance hypothe-
sis. How should you update your probabilities in those hypotheses then?

We will begin by describing how geometric pooling behaves in this
case, extending some observations from the literature. Then, in Section 5,
we will use what we’ve discovered to scrutinise an argument that appeals
to geometric pooling’s performance in computer simulations.

As before, suppose you and your fellow begin with a common prior.
Then you each observe your own series of coin flips, and you each condi-
tionalize on what you’ve observed. Then your fellow shares their posterior
opinions, but this time about the coin’s bias.

In Section 2, we saw that if you geometrically pool posterior credences
in the different possible sequences, then you can incorporate your fellow’s
evidence perfectly. But we noted that it’s in fact easier for them just to tell
you their evidence, than to tell you their credence in each sequence. It’s
not so difficult, however, for them to share their credences in the different
chance hypotheses, particularly if these are given by a standard probability
distribution determined by a few parameters, such as a Beta distribution.5

So suppose they do share that. What happens when you pool your proba-
bilities with theirs?

We saw that, if you pool your credences in the possible sequences of
coin tosses, arithmetic pooling performs poorly; it also performs poorly if
you pool your credences in the chance hypotheses.6 To illustrate, suppose
you and your fellow both start with a uniform prior over the possible bi-
ases. You then observe 70 heads out of 100 flips, while they observe 30
heads out of a different 100 flips. If you then take the arithmetic pool of
your two distributions over the possible biases, the result will be the bi-
modal distribution (pink solid line) in Figure 1. But the desired result is the

5Figure 3 illustrates some of the Beta distributions. We will meet them again shortly.
6This is noted by Winkler (1968, B68, Figure 2), who illustrates the point with a plot

similar to Figure 1.
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Figure 1: The blue dashed line gives the distribution obtained by conditionalizing your
shared prior on the aggregate evidence, while the pink solid line gives the arithmetic pool
of your posterior and your fellow’s. The orange dotted line gives the result of updating
the shared uniform prior on an observation of 30 heads and 70 tails, while the turquoise
dash-dotted line gives the result of updating instead on an observation of 70 heads and 30
tails.

unimodal distribution (blue dashed line), since that is what conditionaliz-
ing your uniform prior on the aggregate data would give.

However, when you use geometric pooling in this case, it performs
considerably better. It won’t be exactly the same as conditionalizing your
shared prior on the aggregate evidence, but it will be similar. The propor-
tions will be right, but some information will be lost: it will be as if the
sample sizes were cut in half. To illustrate, suppose again that you observe
70 heads out of 100 flips, while your fellow observes 30 heads out of a sep-
arate 100 flips. If you pool your posteriors over the biases geometrically,
the result will be the same as if you had conditionalized your shared prior
on 50 heads out of 100 flips.

Figure 2 illustrates this example in the case where the shared prior
was uniform over the possible biases.7 The geometric mean (pink solid
line) only approximates conditionalizing on the aggregate evidence (blue
dashed line). But it does much better than arithmetic averaging did: com-
pare Figure 1.

The general result being illustrated in Figure 2 is that pooling opinions
about the coin’s bias geometrically is equivalent to conditionalizing on half
the aggregate data. If you observe k heads out of m flips, and your fellow
observes l heads out of n flips, then the geometric pool of your posteriors

7Again, this is noted by Winkler (1968, B68, Figure 2).
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Figure 2: The blue dashed line gives the distribution obtained by conditionalizing your
shared prior on the aggregate evidence, while the pink solid line gives the geometric pool
of your posterior and your fellow’s. As before, the orange dotted line gives the result of
updating the shared uniform prior on an observation of 30 heads and 70 tails, while the
turquoise dash-dotted line gives the result of updating instead on an observation of 70
heads and 30 tails.

is the same as conditionalizing on (k + l)/2 heads out of (m + n)/2 flips.8

Proposition 4. Let X be the number of heads in the first m flips, Y the number of
heads in the next n flips, and Z the number of heads in some sequence of (m+ n)/2
flips. Where, recall,H is the partition of possible biases,

GH(P(− | X = k), P(− | Y = l)) = P(− | Z = (k + l)/2).

One way to think about this result is that taking the geometric mean over
the possible biases correctly gleans the direction the aggregate evidence
points in, but with its force or magnitude understated.

What’s more, Proposition 4 extends to propositions beyond the chance
hypotheses. Once geometric pooling fixes your new probabilities in the
possible biases of the coin, the Principal Principle steps in and does the rest,
determining your new probabilities in each of the possible sequences in
such a way that your new probability in a sequence is the probability you’d
assign if you were to conditionalize your prior on the halved aggregate

8See the Appendix for a more rigorous statement and proof: Proposition 4 is the special
case of Theorem 6 where α = 1/2 and s = 2. Theorem 6 generalizes results that are noted
in passing by Winkler (1968, B64-5) and Morris (1983, Section 6), who consider the special
case where the priors are Beta distributions.

8



sample.9

Another way to think about Proposition 4 connects to arithmetic pool-
ing, but applied to the next coin toss. Suppose you meet your fellow and
they tell you their probability in H, the prediction that the next toss will
land heads. How should you update your probability in H?

Suppose P is your prior probability function and E is your evidence,
while Q is your fellow’s prior and F is their evidence. In many cases, the
arithmetic pool of P(H | E) and Q(H | F) will approximate updating your
prior on the aggregate evidence using Bayes’ rule. After all, if E and F give
the frequencies of heads in two large, disjoint samples of equal size, then
P(H | E) will closely match the frequency in your sample, and Q(H | F)
will closely match the frequency in your fellow’s. And in that case, the
arithmetic mean (P(H | E) + Q(H | F))/2 will closely match the over-
all frequency in the aggregated sample you’ve amassed between you, and
P(H | EF) will closely match that too.

Why only “closely” match, why not exactly? Because we have to ac-
count for the influence of priors. Your opinion P(H | E) doesn’t just reflect
the frequency of heads in your sample, it also reflects your beliefs about the
coin from before you observed that sample, which are encoded in P. Like-
wise for your fellow’s opinion, Q(H | F). But if the sample is large, and
your priors treated the flips as independent and identically distributed,
then the observed frequency must be very close to the resulting opinion.
In which case the arithmetic mean of opinions will closely match the opin-
ion you would have if you were to conditionalize your prior on the full,
aggregated sample.

Now, speaking very loosely, Proposition 4 tells us that taking the ge-
ometric pool over the biases is the same as taking the arithmetic mean
of the underlying, aggregate data. Rather than combining your positive
observations with your fellow’s, you split the difference: (k + l)/2. This
suggests that pooling the probabilities over the chance hypotheses geomet-
rically will have the effect of pooling the probabilities over the predictions
arithmetically, at least approximately. In fact, when the two agents’ samples
are of equal size (m = n), it has exactly this effect for a wide range of priors
known as the Beta distributions—which include the uniform distribution.

Proposition 5. Let X, Y, Z, and S be as in Proposition 4, and let H be the event
of heads on an unobserved flip. If m = n and P has a Beta distribution over the
possible biases in the partitionH, then

GH(P(− | X = k), P(− | Y = l))(H) =
P(H | X = k) + P(H | Y = l)

2
.

9See Footnote 2 for the statement of the Principal Principle. Note that, if you condi-
tionalize your prior on the halved aggregate sample, i.e., Z = (k + l)/2, then the Principal
Principle requires of your posterior that P(S | Hi & Z = (k + l)/2) = Ci(S | Z = (k + l)/2).
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Figure 3: Some examples of Beta distributions

Insofar as pooling predictions arithmetically is attractive, this result helps
to make pooling over chances geometrically attractive as well. The two
methods go hand-in-hand in a range of interesting cases. To give a sense
of the result’s scope, Figure 3 illustrates the variety of Beta distributions by
way of some examples.

4 Three generalizations

Proposition 4 tells us that geometric pooling over the chance hypotheses
effectively averages the data acquired by the two parties, provided they
share a common prior. This result raises three natural questions, which
we’ll answer in this section by generalizing Proposition 4 in three ways.

First, what if there are more than two possible outcomes? So far we’ve
only discussed coin flips, but the result of Proposition 4 extends to pro-
cesses with more than two possible outcomes. For example, suppose you
roll a six-sided die behind a screen 100 times and conditionalize on what
you observe. Then your fellow does 100 rolls of their own and conditional-
izes on what they observe. Let the data you each observe be as follows:

Your Data 10 10 10 20 20 30
Their Data 30 20 20 10 10 10

If you then geometrically pool your posteriors over the possible biases, the
result will be the same as if you had conditionalized your common prior
on a sample of 100 rolls where the counts are:

Average Data 20 15 15 15 15 20

10



We’ll state a general theorem that captures this phenomenon momentarily
(see Theorem 6).

Second, what if you and your fellow begin with different priors? Once
again, Proposition 4 generalizes in a natural way: the result of geometric
pooling is still the same as conditionalizing on the average data, except that
the prior being conditionalized is the geometric pool of your prior and your
fellow’s. Informally, conditionalizing and then pooling has the same effect
as pooling and then conditionalizing on the averaged data.10

This generalization is formally elegant, but it won’t always be philo-
sophically satisfying. The issue is the same one we raised for Proposition 3:
you might only be interested in your fellow’s opinion for the data that in-
forms it. In which case, you’ll want to conditionalize your own prior, not
the geometric pool of your respective priors.

Still, we are often interested in others’ opinions for more than just the
evidence that informs them. And if you think there’s something to your
fellow’s way of interpreting data, then you might want to incorporate some
of that into your own prior. Suppose specifically that, if you were to learn
what their prior was, then you would adopt the geometric pool of your
respective priors. Then this generalization is just right. It amounts to con-
ditionalizing on what your fellow’s prior was, and then conditionalizing
on the average data.

Third and finally, what would it take to get the full body of aggregate
data, rather than the average data where the sample size is cut in half? It
helps here to revisit the definition of geometric pooling, with the radical
sign rewritten as an exponent. That is, we write

√
x as x1/2:

GA(P, Q)(Ai) =
(P(Ai)Q(Ai))

1/2

∑n
j=1
(

P(Aj)Q(Aj)
)1/2 .

A natural thought is that the sample size gets cut in half because of the 1/2
exponent. And this thought suggests a more general definition, where we
let the exponent be any proportion 0 ≤ α ≤ 1:

Mα
A(P, Q)(Ai) =

(P(Ai)Q(Ai))
α

∑n
j=1
(

P(Aj)Q(Aj)
)α .

For a given choice of α, call the resulting pooling rule multiplicativeα pooling.
Our third generalization says that α is the proportion of the aggregate

data that gets conditionalized on. In terms of coin flips, if you observe k
heads out of m tosses and your fellow observes l heads out of n tosses, then

10Note that this is different from the “external Bayesianity” property introduced by
Madansky (1964). External Bayesianity concerns the case where both agents learn the same
evidence, while here they learn different evidence.
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multiplicativeα pooling over the biases is the same as conditionalizing on
α(k + l) heads out of α(m + n) tosses. That is,

Mα
H(P(− | X = k), P(− | Y = l)) = P(− | Z = α(k + l)),

where Z is the number of heads in some sequence of α(m + n) tosses.
The answer to our third question then is: set α = 1, rather than 1/2.

Then, pooling with your fellow will give the same result as conditional-
izing on the full body of aggregated data, theirs and yours together. In
Figure 2 for example, the dotted orange and dash-dotted green curves will
then combine to give the dashed lavender curve, rather than the solid pink
approximation to it.11

Why bother with geometric pooling then? Why would we ever want
to set α = 1/2 instead of 1? Because we often want to pool with the same
person on more than one occasion, and in that case choosing α = 1 can
be disastrous. Every time you pool with your fellow using α = 1, all their
data gets counted anew. And this means their data gets double counted the
second time you pool with them, triple counted the third time, and so on.

For example, suppose you and your fellow each do one flip, pool, then
flip again and pool again. And let’s imagine the sequence you observe
is HT, while they observe TT. If α = 1, then the second round of pool-
ing will effectively double count the flips from the first round. The final
result after two rounds of pooling will be as if you had observed the se-
quence HTHTTT. So the sample size will actually be inflated, with two
non-existent flips; and the frequency will be off too, with 1/3 heads instead
of the true 1/4. Further iterations will compound this effect, yielding even
more distorted results.

Choosing α = 1/2, however, avoids this problem entirely. The fre-
quency of heads and tails in the total, aggregate data is then always ac-
curately reflected in the results of pooling. After repeated iterations of
observing-and-pooling, if 1/3 of the observed flips have been heads, then
the agents’ posteriors will be as if they had conditionalized on observing a
sequence that is 1/3 heads.

So there is a tradeoff here. When pooling just once, α = 1 avoids leav-
ing evidence on the table. But for repeated pooling, only α = 1/2 avoids
double-counting. The catch is that the sample size is cut in half. In the next
section we’ll look at an application where this tradeoff plays a crucial role.

Let’s now bring together the three points of this section. First, the result
of Proposition 4, which we initially presented in terms of coin tosses, gener-
alizes to die rolls and other events with more than two possible outcomes.
Second, it also generalizes elegantly to the case where you and your fellow

11Setting α = 1 gives the pooling rule that Easwaran et al. (2016) call upco, and Dietrich
(2010) and Dietrich and List (2016) call multiplicative pooling.
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have different priors—although the philosophical significance of this gen-
eralization depends on your appraisal of your fellow’s way of interpreting
data. Third and finally, the result also generalizes to multiplicativeα pool-
ing: pooling over the chance hypotheses amounts to conditionalizing on a
similar sample whose size is α of the true sample’s size.

The following result incorporates all three generalizations, phrased in
terms of rolls of an s-sided die.

Theorem 6. Let X = (X1, . . . , Xs) be the vector of counts from the first m rolls,
Y the vector of counts from the next n rolls, and Z the vector of counts from some
sequence of α(m + n) rolls. If P and Q have overlapping supports on the partition
of possible biasesH, then

Mα
H(P(− | X = k), Q(− | Y = l)) = Mα

H(P, Q)(− | Z = α(k + l)).

Informally put, taking the multiplicativeα pool of your posterior with your
fellow’s has the same result as conditionalizing the multiplicativeα pool of
your respective priors on a sample of α(m + n) rolls, where the observed
counts are given by α(k + l).

5 Beyond conditionalization: Douven on abduction

In this section we put Proposition 4 to work. We show that it explains the
success of certain social-epistemic strategies observed in recent computer
simulations. It even identifies the optimal strategy, in one important sense.

Douven (2019, 2022) and Douven & Wenmackers (2017) study groups
of agents facing exactly the sort of problem we’ve been studying here. They
seek to learn the bias of a coin by tossing it in private, updating on what
they observe, and then sharing their updated opinions with one another.
Crucially though, the agents in these simulations are not conditionalizers.
In some simulations they do conditionalize on their private observations,
but in other simulations they instead use alternative update rules. And in
none of the simulations do they conditionalize on the opinions reported by
their fellows. Instead they use linear, geometric, or harmonic pooling.

The headline result is that the communities in these simulations have
more accurate beliefs when they use certain alternatives to conditionaliza-
tion for their private observations (toss outcomes), and geometric pooling
for their social evidence (others’ opinions about the bias).12 This result pro-
vides simultaneous arguments against conditionalization, and for geometric
pooling. The simulations compare a variety of “package deals,” where an
update rule for responding to private evidence is paired with a pooling rule

12In addition to accuracy, Douven also considers the goal of speed, understood as how
soon a majority of the community becomes confident in the true hypothesis. We focus
exclusively on accuracy here, to keep the discussion manageable.
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for responding to social evidence. And it turns out that the best packages,
in terms of accuracy, include geometric pooling but not conditionalization.

What we’re about to see is that Proposition 4 not only explains this re-
sult. It also identifies the best possible package: a way of updating on
private evidence which, when paired with geometric pooling, is provably
optimal with respect to accuracy. But we need to understand the details of
these simulations first.

Douven studies several alternatives to conditionalization, inspired in
various ways by the method of inference to the best explanation. But for
ease of exposition, we will discuss only the one he dubs EXPL.13 The EXPL
rule is very similar to Bayes’ rule, but with greater emphasis on fit-to-the-
data. When updating on a body of evidence E, EXPL adds a bonus quantity
c to the hypothesis with the highest likelihood, P(E | Hi). The new proba-
bility of hypothesis Hi, call it P′(Hi), is

P′(Hi) =
P(Hi)P(E | Hi) + ci

∑j[P(Hj)P(E | Hj) + cj]
,

where ci = c if Hi maximizes P(E | Hi), and ci = 0 otherwise.
The value we choose for c determines how much our simulated agents

emphasize fit-to-the-data. At the start of each simulation, we’ll fix a value
of c and keep it constant throughout. But we’ll experiment with different
values in different simulations, to see what works best. Following Douven,
we’ll try values from 0 to 1, in 0.1 increments. Notice that, when c = 0, the
EXPL formula just is Bayes’ theorem, so EXPL has conditionalization as a
special case.

In addition to c, two other parameters also need to be chosen at the start
of each simulation. One is the actual bias of the coin, p, which is what the
agents are trying to discover. Here again we’ll experiment with values in
the range from 0 to 1 in increments of 0.1. Thus there are 11 hypotheses for
our simulated agents to consider: Hi is the hypothesis that the true bias is
p = i/10, where i ∈ {0, 1, . . . , 10}.

Finally, a third parameter, ε, controls how “open-minded” agents are.
In Douven’s simulations, agents only pool with those whose opinions are
within a certain distance ε of their own. The distance between opinions is
measured by the sum of absolute differences:14

10

∑
i=0
|P(Hi)−Q(Hi)|.

13Douven actually finds that an alternative he calls “Popper’s Rule” does even better than
EXPL. But, again, we focus on EXPL for expository reasons.

14Douven also considers other distance measures, but again we focus on just one for
simplicity.
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Since the maximum possible distance is 2, we will consider values of ε in
the range from 0 to 2, in increments of 0.1. (Douven only considers values
up to 1, but we’ll see that this omits important results.)

So here’s how each simulation works. At the start, we pick values for
each of the three parameters c, p, and ε. Then we create 50 agents, all
with a uniform prior over the possible biases. Each agent performs one flip
of the coin privately, and updates on the result using the EXPL rule with
the chosen value of c. Then they pool geometrically with everyone within
distance ε of their own opinion. This flip-update-pool cycle then repeats,
for a total of 500 cycles.

At the end of each cyle, after pooling, we gauge the community’s accu-
racy. More precisely, each individual agent’s inaccuracy is evaluated using
the Brier score,

10

∑
i=0

(P(Hi)−V(Hi))
2,

where V(Hi) = 1 if Hi is true, and 0 otherwise. The average Brier score
of all 50 agents is then calculated, and at the end of all 500 cycles these
averages are summed to generate an overall score for that simulation.

Figure 4 shows the results.15 Each square represents a choice of values
for c, p, and ε. The square’s colour shows the expected inaccuracy for a
community using that combination of values, based on 50 simulations av-
eraged together. Lower scores are better, and the best ones in each panel
are marked with an asterisk.

The conditionalizers are the bottom row of each panel, where c = 0.
But the communities with the best scores are consistently those with high
values of c, and also high values of ε. That is, the most accurate communi-
ties have agents who strongly favour hypotheses that fit their private data,
but are also very “open-minded” in that they pool even with those whose
opinions differ greatly from their own.

A natural thing to wonder about this result is: how is it possible? Ac-
cording to an influential theorem of Greaves & Wallace (2006), conditional-
ization minimizes expected Brier score. So how can conditionalization be
dominated by an alternative rule, as it is here?

The answer is that the c = 0 agents only conditionalize on their private
evidence. They do not conditionalize on the opinions of their fellows; in-
stead they use geometric pooling. And Proposition 4 tells us they suffer a
kind of “data loss” as a result. With two agents, geometric pooling effec-
tively cuts each agent’s sample in half. When 50 agents pool geometrically,

15Code for Figures 4 and 5 is available on GitHub. Compare Figure 3 in Douven (2019)
and Figure 7.3 in Douven (2022). Note that our results look slightly different, for two rea-
sons. First, we explore the full range of possible values for ε. Second, our simulations use
the definition of EXPL Douven states in the text, which differs from the implementation in
the accompanying code. Nothing we will say hangs on this second difference; either way,
the results are the same in the respects that matter here.
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Figure 4: Simulation results for communities using EXPL and geometric pooling. Each
square shows the expected Brier score for a choice of c, p, and ε, based on 50 runs averaged
together. The white asterisks mark the best scores in each panel.

their samples are effectively scaled down by 1/50. So the “conditionaliz-
ers” in these simulations are actually leaving a lot of evidence on the table.

This analysis suggests a better way for these agents to update on their
private evidence. Instead of using EXPL, they should conditionalize on
their data but scaled up by a factor of 50. That is, if an agent observes 1
head, they should conditionalize on the proposition that they observed 50
heads instead. Ditto for tails. If we then set ε = 2, so that all 50 agents
always pool with each other, the result will be the same as if they had all
conditionalized on the aggregate evidence, by Proposition 4.

We could test this method by running new simulations, but we don’t
have to. By Greaves & Wallace’s theorem, conditionalizing on the aggre-
gate evidence is the optimal strategy for minimizing expected Brier score.16

Since our proposal is equivalent, it too is optimal.17 It won’t be optimal

16Strictly speaking, their result only addresses a single agent’s Brier score. But it extends
readily to a group’s average Brier score, when its members share a common prior, as here.
And indeed it applies not only to the Brier score but to any strictly proper scoring rule.

17Note that, in Douven’s set up, we only measure the accuracy of our agents’ probabilities
after they’ve updated on both the private and social evidence from a given round; we do not
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within every panel, i.e. for every value of p. But no feasible rule can be. It
does best on average though, since it has the lowest expected Brier score
relative to a uniform prior over p. If we do repeated simulations, picking a
random value for p each time, no procedure can do as well on average.

So we agree with Douven that, when conditionalizing on your social ev-
idence is unavailable, there is a way to compensate for the loss of expected
accuracy that results: change how you update on your private evidence.
But we disagree on how best to do that. Douven says you should use a rule
like EXPL with a high value of c.18 We say you should conditionalize on
a scaled up version of the sample you in fact witnessed. This proposal is
provably better in expectation.

Proposition 4 also explains why a high-c strategy does best in Figure 4.
Updating on private evidence using EXPL with a high c approximates our
proposal of conditionalizing on a scaled up sample. Both are ways of “over-
fitting” your private evidence—of giving special favour to the hypotheses
that best fit your actual private evidence. Coupled with a high value of ε
and geometric pooling then, a high c approximates conditionalization on
the aggregate evidence.

One consequence of this insight is that, as the number of other agents in
the group decreases, so does the optimal value of c. This is because the op-
timal way to update, if you’re then going to pool the results geometrically,
is to update on your private evidence scaled up by the size of the group.
And as the group size diminishes, using EXPL with lower values of c will
approximate that optimal solution more closely. Indeed, as we see in Fig-
ure 5, if there are just five agents then the optimal value of c is zero, which
is just conditionalization.

6 Conclusion

How well, then, does geometric pooling serve as a means to combine your
probabilities with your fellow’s, when you wish to gain the benefit of their
evidence?

If your fellow shares their probabilities in the possible sequences of coin
tosses, geometric pooling does serve you well, as long as you shared a prior

measure their accuracy after updating on the private evidence and then measure it again
after they’ve updated on the social evidence. If we were to do that, neither our proposal
nor Douven’s would be optimal; if we were to do that, the only optimal approach would be
to update by Bayes’ Rule on both private and social evidence. By measuring accuracy only
after both private and social updates have taken place, we can get the accuracy benefits of
Bayes’ Rule by using a strategy for private update and a strategy for social update that,
when combined, match Bayes’ Rule perfectly.

18Actually, Douven finds that another rule he calls “Popper’s Rule” outperforms EXPL.
But the same conclusion applies: our proposal is provably better in expectation, because it
is equivalent to conditionalizing on the aggregate evidence.
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Figure 5: The same setup as Figure 4, but with 5 agents rather than 50.

with your fellow or you wish to pool their prior with your own. But many
pooling operators do this, including harmonic pooling. And if you do not
wish to pool your priors, there are alternatives that are better. What’s more,
it would be easier simply to share the evidence itself than to share the cre-
dences in the sequences to which it has given rise.

If your fellow instead shares their probabilities in the chance hypothe-
ses, geometric pooling leads to a posterior that points in the same direction
as the aggregate evidence, but with less conviction than the pooled evi-
dence warrants. It’s as if you’ve updated on half the evidence.

This observation allows us to see why the abductive updating rules
studied by Douven seem to do well as a private updating rule, when paired
with geometric pooling as your social updating rule: abductive updating
approximates the posterior you’d obtain by conditionalizing on an appro-
priately scaled up version of your private evidence. But it also allows us to
see a private updating rule that will do better on average than Douven’s.

So, in the end, it’s a mixed bag. Geometric pooling has some features
that make it attractive when your purpose is to extract evidence from your
fellow’s probabilities. And it outperforms arithmetic pooling in some cases,
though not all. But it must be handled with care.
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7 Appendix

In this Appendix, we give formal statements and proofs of the results in the
main text. We first prove Proposition 3, which establishes Proposition 1 as a
special case; then we prove Proposition 2. Next we prove Theorem 6, which
has Proposition 4 as a special case, before finally proving Proposition 5.
This covers all six results stated in the paper.

We begin by formally defining the family of multiplicative pooling rules,
of which geometric pooling is a special case.

Definition 1 (Multiplicative pool; discrete case). Let P and Q be probability
functions. And let A = {Ai} be a countable partition on which P and Q are both
defined. Suppose P(Ai), Q(Ai) > 0 for at least one Ai. Then,

Mα
A(P, Q)(Ai) =

(P(Ai)Q(Ai))
α

∑Aj∈A(P(Aj)Q(Aj))α
.

We call Mα
A(P, Q) the multiplicativeα pool of P and Q over A.

Note that M
1
2
A(P, Q) is the geometric pool of P and Q, and we write GA(P, Q).

Definition 2 (Multiplicative pool; continuous case). Let f and g be probability
density functions on Rn with overlapping supports. Let D be that overlap, and fix
α ≥ 0. Then for x ∈ Rn we define

Mα( f , g)(x) =
( f (x)g(x))α∫
D( f (x)g(x))α

.

We call Mα( f , g) the multiplicativeα pool of f and g.

Again M
1
2 ( f , g) is the geometric pool of f and g, which we write G( f , g).

Now we prove a general version of Proposition 3. Since the result holds
not only for geometric pooling (α = 1/2), but for multiplicativeα pooling
in general, we state and prove this more general version.

Proposition 7. Let E and F be subsets of S such that P(− | E) and Q(− | F)
have overlapping support on S . Then for any state S in S ,

Mα
S (P(− | E), Q(− | F))(S) =Mα

S (P, Q)(S | EF).

Proof. First we analyzeMα
S (P, Q)(S | EF). By definition,

Mα
S (P, Q)(S) =

(P(S)Q(S))α

∑S∈S (P(S)Q(S))α
.

So for S ∈ EF,

Mα
S (P, Q)(S | EF) =

(P(S)Q(S))α

∑S∈EF(P(S)Q(S))α
, (1)

19



withMα
S (P, Q)(S | EF) = 0 for S 6∈ EF.

Now considerMα
S (P(− | E), Q(− | F)). For S ∈ E,

P(S | E) =
P(S)

∑S∈E P(S)
,

with P(S | E) = 0 for S 6∈ E. Similarly, for S ∈ F,

Q(S | F) =
Q(S)

∑S∈F Q(S)
,

with Q(S | F) = 0 for S 6∈ F. Thus for S ∈ EF, where c is the requisite
normalizing constant,

Mα
S (P(− | E), Q(− | F))(S) =

1
c

(
P(S)

∑S∈E P(S)
Q(S)

∑S∈F Q(S)

)α

=
(P(S)Q(S))α

c(∑S∈E P(S)∑S∈F Q(S))α
. (2)

While for S 6∈ EF we haveMα
S (P(− | E), Q(− | F))(S) = 0.

Now observe that the numerators in equations (1) and (2) are the same.
For both distributions, the nonzero probability masses are proportional to
(P(S)Q(S))α when S ∈ EF, while for S 6∈ EF both assign mass 0. Hence
these must actually be the same distribution. �

This establishes Proposition 3, which is the special case where α = 1/2.
Proposition 1 then follows as the further special case where P = Q.

Next, we prove Proposition 2, which we restate here for convenience.

Proposition 2 (restated). If E and F are subsets of S such that P(EF) > 0, then
for any state S in S ,

HS (P(− | E), P(− | F))(S) = P(S | EF).

Proof. First consider the case where S 6∈ EF. Then either P(S | E) = 0 or
P(S | F) = 0, so HS (P(− | E), P(− | F))(S) = 0 by definition.

Now suppose S ∈ EF. Then by the definition of harmonic pooling,
where c is an appropriate normalizing constant:

HS (P(− | E), P(− | F))(S) = c
P(S | E)P(S | F)

P(S | E) + P(S | F)

= c
P(S)2/[P(E)P(F)]

P(S)/P(E) + P(S)/P(F)

= c
P(S)/[P(E)P(F)]
1/P(E) + 1/P(F)

= c
P(S)

P(F) + P(E)
.
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Thus HS (P(− | E), P(− | F))(S) is proportional to P(S) for S ∈ EF, and
is zero otherwise. This implies H(P(− | E), P(− | F))(S) = P(S | EF), as
desired. �

That establishes the three results of Section 2, where the topic was pool-
ing over sequences. Next we turn to the results for pooling over chance
hypotheses, which were the topic of Sections 3 and 4.

We first give a more formal statement of Theorem 6. Here we consider
only the continuous case, as the discrete case runs closely parallel.

Theorem 6 (formal). Let A1, . . . , Am+n be categorical random vectors of length
s. Fix a value 0 ≤ α ≤ 1 such that α(m + n) is an integer, and let

X =
m

∑
i=1

Ai, Y =
n

∑
i=m+1

Ai, Z =
α(m+n)

∑
i=1

Ai.

Let f , g, and h be probability density functions such that the Ai are i.i.d. with
parameter vector T = (T1, . . . , Ts). Write fT for the marginal distribution of f
over T, and similarly for gT and hT. If hT = Mα( fT, gT), then

Mα
(

fT|X(− | k), gT|Y(− | l)
)
(t) = hT|Z(t | α(k + l)). (3)

Proof. We first analyze the left-hand side of equation (3). By Bayes’ theorem
and our i.i.d. assumption,

fT|X(t | k) = c1 f (t)∏
i

tki
i ,

gT|Y(t | l) = c2 g(t)∏
i

tli
i ,

where c1 and c2 are appropriate normalizing constants. By the definition of
Mα, where c3 is another normalizing constant:

Mα
(

fT|X(− | k), fT|Y(− | l)
)
(t) = c3

(
c1 f (t)∏

i
tki
i c2 g(t)∏

i
tli
i

)α

= (c1c2)
αc3 ( f (t)g(t))α ∏

i
tα(ki+li)
i . (4)

Now we analyze the right-hand side of equation (3). By hypothesis,

hT(t) = c4 ( f (t)g(t))α,

where c4 is the appropriate normalizing constant. So, by Bayes’ theorem
and the i.i.d. assumption,

hT|Z (t | α(k + l)) = c5 ( f (t)g(t))α ∏
i

tα(ki+li)
i , (5)

where c5 is again an appropriate normalizing constant. Since equations (4)
and (5) are proportional, these must actually be the same distribution. �
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Observe that, in the special case of Theorem 6 where α = 1/2 and s = 2,
equation (3) becomes

G
(

fT|X(− | k), gT|Y(− | l)
)
(t) = hT|Z(t | (k + l)/2).

This is the statement of Proposition 4 in the continuous case.
Finally, we prove Proposition 5, whose formal statement is as follows.

Proposition 5 (formal). Let A1, . . . , Am+n and H be Bernoulli random variables,
with X, Y, and Z as in Theorem 6. Let P be a probability function such that the Ai
and H are i.i.d. with shared parameter T, with f the associated p.d.f. And let R be
a probability function with h its associated p.d.f., such that H ∼ Bern(T) and

hT = G
(

fT|X(− | k), fT|Y(− | l)
)

.

If m = n and fT is Beta(a, b), then

R(H) =
P(H | X = k) + P(H | Y = l)

2
. (6)

Proof. We begin by analyzing the right-hand side of equation (6). Because
of the conjugate relationship between the Beta and binomial distributions,
fT|X(− | k) and fT|Y(− | l) have the following Beta distributions:

T | X = k ∼ Beta(a + k, b + m− k),
T | Y = l ∼ Beta(a + l, b + m− l).

Now, by the law of total probability, the probability of a Bernoulli random
variable like H is the expected value of T. Since the expected value of a
Beta(x, y) distribution is x/(x + y), this gives us

P(H | X = k) =
a + k

a + b + m
,

P(H | Y = l) =
a + l

a + b + m
.

Taking the arithmetic average yields

P(H | X = k) + P(H | Y = l)
2

=
a + (k + l)/2

a + b + m
. (7)

Now we consider equation (6)’s left-hand side. By assumption,

hT = G
(

fT|X(− | k), fT|Y(− | l)
)

,

which we can rewrite using Theorem 6 with α = 1/2 as:

hT = fT|Z(− | (k + l)/2).
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The right-hand side here is another Beta distribution:

T | Z = (k + l)/2 ∼ Beta(a + (k + l)/2, b + m− (k + l)/2).

Since its expected value is R(H), we have

R(H) =
a + (k + l)/2

a + (k + l)/2 + b + m− (k + l)/2
=

a + (k + l)/2
a + b + m

. (8)

As equations (7) and (8) are equal, this completes the proof. �
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