
Is there an ethics of algorithms?

Felicitas Kraemer • Kees van Overveld •

Martin Peterson

Published online: 3 July 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We argue that some algorithms are value-laden,

and that two or more persons who accept different value-

judgments may have a rational reason to design such

algorithms differently. We exemplify our claim by dis-

cussing a set of algorithms used in medical image analysis:

In these algorithms it is often necessary to set certain

thresholds for whether e.g. a cell should count as diseased

or not, and the chosen threshold will partly depend on the

software designer’s preference between avoiding false

positives and false negatives. This preference ultimately

depends on a number of value-judgments. In the last sec-

tion of the paper we discuss some general principles for

dealing with ethical issues in algorithm-design.

Keywords Algorithm � Image analysis �
Medical technology � False positive � False negative

Introduction

The focus of this article is on ethical aspects of algorithms.

An algorithm is, roughly speaking, a finite sequence of

well-defined instructions that describe in sufficiently great

detail how to solve a problem. Both computers and humans

use algorithms for solving a wide range of problems.

However, in this paper we shall be exclusively concerned

with algorithms implemented in computers.

At first glance it might be tempting to conclude that

algorithms are value-free entities that do not, at least not in

their most abstract form, have any ethical dimensions.

However, in this article we argue that this commonsense

view about algorithms is false. Many, but not all, algo-

rithms implicitly or explicitly comprise essential value-

judgments. By an ‘essential value-judgment’ we mean the

following: If two algorithms are designed to perform the

same task, such as classifying a cell as diseased or non-

diseased, these algorithms are essentially value-laden if one

cannot rationally choose between them without explicitly

or implicitly taking ethical concerns into account. Another

way of saying this is that the algorithm cannot be designed

without implicitly or explicitly taking a stand on ethical

issues, some of which may be highly controversial.

If true, our claim about essentially value-laden algo-

rithms has to be taken seriously by software engineers who

design algorithms. If some algorithms are essentially value-

laden, i.e. if people who design algorithms cannot avoid

making ethical judgments about what is good and bad, then

it is reasonable to maintain that software designers are

morally responsible for the algorithms they design.1

Although the term ‘ethics of algorithms’ might have far-

reaching connotations, it nevertheless captures what is at

stake here. If our claim about essentially value-laden

F. Kraemer � K. van Overveld � M. Peterson (&)

Section for Philosophy and Ethics, Eindhoven University

of Technology, P.O. Box 513, 5600 MB Eindhoven,

The Netherlands

e-mail: m.peterson@tue.nl

URL: www.martinpeterson.org

F. Kraemer

e-mail: f.kraemer@tue.nl

K. van Overveld

e-mail: cvoverve@tue.nl

1 Software designers can, of course, be morally responsible also for

algorithms that are not essentially value-laden. A fatal accident

caused by a faulty algorithm can be (partially) blamed on the software

designer, irrespective of whether the algorithm is essentially value-

laden or not.

123

Ethics Inf Technol (2011) 13:251–260

DOI 10.1007/s10676-010-9233-7

algorithms is correct, there will indeed be an ethics of

algorithms.

The issue that we address has to some extent already

been touched upon in the literature. Turilli seeks to develop

a solution to ‘‘the problem of specifying computational

systems that behave in accordance with a given set of

ethical principles’’.2 Allen et al. argue that, ‘‘we need to

integrate artificial moral agents into … new technologies to

manage their complexity’’.3 Finally, Arkin argues that

there is a need for, ‘‘immediate investment in … machine/

robot ethics’’.4 Although we do not necessarily disagree

with these authors, we wish to point out that their papers

are concerned with questions that are slightly different

from the issue discussed here. Turilli, Allen et al., and

Arkin discuss how we can construct algorithms and sys-

tems that behave in accordance with ethical principles. As

we argue in the next section, such algorithms need not be

essentially value-laden themselves. Indeed, an algorithm or

system that behaves in accordance with some ethical

principles can itself be ethically neutral. What we wish to

discuss in this article is the ethical features of the algorithm

itself.

The structure of this article is as follows. In ‘‘Value-

laden algorithms and the design process’’ we characterise

some of the central concepts used in the paper and argue

that algorithm design is in many respects similar to

designing other technological artefacts. In ‘‘A real exam-

ple’’ we discuss a real example of an essentially value-

laden algorithm used in medical image analysis, and in

‘‘The precautionary principle and ethical theories’’ we

discuss some ways of dealing with the ethical problems

raised by this algorithm. Finally, in ‘‘Should ethical values

be user-defined?’’, we argue that software designers should

as far as possible leave ethical choices to users, and when

this is not possible the ethical assumptions underlying the

algorithm should at least be made transparent. This may

lead to new or refined procedures in the process of software

engineering.

Value-laden algorithms and the design process

It is notoriously difficult to give a precise characterisation

of what an algorithm is. Numerous definitions have been

proposed in the literature.5 However, nothing in our rea-

soning hinges on how exactly algorithms are formally

defined. The definition of an algorithm suggested in

‘‘Introduction’’ will suffice for our present purposes.

Arguably, the claim that many algorithms implicitly or

explicitly comprise essential value-judgments cannot be

accurately assessed without first defining some of its cen-

tral concepts. We take a value-judgment to be any propo-

sition expressing a view on how things ought to be or not to

be, or what is good or bad, or desirable or undesirable. It

takes little reflection to see that not all algorithms express

value-judgments. Consider, for instance, algorithms used

for calculating the lexicographical order of a finite set of

strings, such as the ones used to put words in alphabetical

order. Given the input to this algorithm, there is only one

possible correct output. Therefore, this task is fully speci-

fied in terms of various logical relationships, which require

no approximation or interpretation.

That said, some algorithms clearly produce genuine

value-judgments. Consider, for example, algorithms used

in decision support programs, i.e. systems that help

decision makers to make better decisions by ranking a set

of alternative actions with respect to some predefined

criteria. A typical outcome of an algorithm used in such a

program is a verdict like ‘‘Alternative X is the best

option’’ or ‘‘Alternative X is better than alternative Y

with respect to criterion Z’’. It would be pointless to deny

that these sentences express genuine value-judgments.

This is acknowledged by Turilli, who discusses how to

specify ‘‘systems that behave in accordance with a given

set of ethical principles’’.6 However, the fact that an

algorithm or system yields a value-judgment as its output

does not prove that the algorithms used for producing the

value-judgments are essentially value-laden, as pointed

out in ‘‘Introduction’’. The string of sentences (or data)

that is produced by running through an algorithm might

very well be value-laden even if the algorithm itself is not

value-laden.

Let us take a closer look at this important point. The

general features of the kind of value-judgments generated

by decision support programs can be clarified by invoking

Kant’s famous distinction between hypothetical and cate-

gorical imperatives. A hypothetical imperative is a state-

ment about what you ought to do, given that you wish to

respect some exogenously defined goal. ‘‘Don’t study

philosophy if you wish to become rich’’ is a hypothetical

imperative. A categorical imperative is a value-judgment

that tells us what we ought to do irrespective of our desires

or goals. The distinction between hypothetical and cate-

gorical imperatives does not exhaust the logical space of all

possible value-judgments, but it illuminates the nature of

the kind of value-judgments that are most likely to be

encountered in computer programs used for aiding

2 Turilli (2007: 49).
3 Allen et al. (2006: 13).
4 Arkin (2009: 2).
5 See e.g. Sipser (1997). 6 Turilli (2007: 49).

252 F. Kraemer et al.

123

decisions. Such value-judgments are best characterised as

hypothetical value-judgments, because they tell you what

you ought to do given that you wish to achieve a specific

aim. However, as pointed out above, the presence of a

hypothetical value-judgment does not entail that the algo-

rithm used for generating the recommendations comprises

value-judgments. The underlying algorithm can, when

taken in isolation, be completely value-free.

So what, then, could it possibly mean to say that an

algorithm comprises a value-judgment and therefore has an

essential ethical dimension? Consider the following

suggestion.

ALGORITHM COMPRISING AN ESSENTIAL

VALUE-JUDGMENT

An algorithm comprises an essential value-judgment if

and only if, everything else being equal, software

designers who accept different value-judgments would

have a rational reason to design the algorithm differently

(or choose different algorithms for solving the same

problem).

Note that this criterion does not make the definition

circular. It is indeed true that the term ‘value-judgment’

occurs both in the left-hand part and in the right-hand part

of the criterion, but the term that is to be explained is

‘algorithm comprising an essential value-judgment’, not

‘value-judgment’. (Recall that we have already explained

above how we understand the term ‘value-judgment’.) It is

also worth noting that our necessary and sufficient criterion

explains why an algorithm producing hypothetical imper-

atives, such as the decision aid program discussed above,

does not comprise essential value-judgments. If two or

more software designers are asked to write a decision aid

program it does not matter what ethical principles (or other

value-judgments) the software designers themselves sub-

scribe to. Since the aim of the program is to produce

hypothetical imperatives, the algorithm itself can be

entirely value-free.7 It is certainly true that value-judg-

ments are produced by a successful implementation of the

program, but it is not true that two or more software

designers accepting different value-judgments would ever

have a rational reason to design the underlying algorithm

differently.

We now come to a fundamental assumption in this

paper, viz. that a software designer designing an algorithm

is facing a decision process that is in many respects similar

to that faced by people designing other technological

artifacts. If true, this entails that value-judgments that are

built into an algorithm will in many respects be similar to

value judgments that feature in other design processes. For

this reason it is helpful to elaborate a bit on the design

processes from which algorithms and other technological

artifacts are derived.

Let us first explain what we mean by ‘design’ by pro-

posing a necessary condition we believe all such activities

have to fulfill. (For present purposes, we can do without a

sufficient condition.)

DESIGN ACTIVITY: Something is a design activity

only if it is an activity where a designer (or a team of

designers) make decisions in order to reach a pre-defined

goal.

We use the term ‘variable’ both for characterising what

it means to ‘make decisions’ and for ‘reaching a goal’. We

assume that a variable stores exactly one piece of infor-

mation. For instance, when designing a bicycle, the

designer can decide that the front wheel shall have a

diameter of 60 cm; this ‘diameter of the front wheel’ is a

variable, and ‘60 cm’ is the value stored in this variable.

However, we must carefully distinguish the (four) different

ways in which values can be stored in a variable.

First, the designer can decide that a variable shall have a

particular value. For the rest of this paper, this settles our

definitions of ‘making a decision’ as ‘assigning a value to a

variable’, assuming that the decision-maker has the

authority to assign the chosen value to the variable in

question. For instance, no designer can decide that ‘this

bicycle will have a maximum velocity of 250 km/hour’,

since the maximum velocity of a bicycle is the result of a

range of other decisions and empirical circumstances.

Variables that may occur in a decision are called decision

variables or category-I variables.

Second, a variable can take a value as part of the

assessment of the degree to which a design-objective was

met. For instance, suppose the bicycle we are designing

should be as light as possible; then the value of the variable

‘weight of the bicycle’ helps to assess if we were suc-

cessful. Such variables will be called objective variables or

category-II variables. Notice that any category-II variable

receives a value as the final consequence of assigning

values to category-I variables, plus a number of (physical,

economical, and social) mechanisms that causally propa-

gate the category-I values through the designed artifact and

its usage.

From the account sketched above, we see that cate-

gory-II variables are (in a mathematical sense) a function

of category-I variables: the design function. However,

they are also a function of another class of variables. In

order to see this, note that the weight of the bicycle

depends on e.g. the density of the chosen material. If we

7 It is worth noticing that some decision support systems may apply a

reasoning algorithm that, although deterministic, is too complicated to

be followed by human users (e.g., since it would take too long to be

practical). In that case, the user cannot do anything else but follow up

on the algorithm’s suggestion or ignore the suggestion altogether.

This renders the decision support algorithm value-laden.

Is there an ethics of algorithms? 253

123

choose carbon fiber (a possible value for the category-I

variable ‘material of the bicycle’), we have to accept that

the density of carbon fiber occurs as an argument in our

design function. Such variables cannot be controlled by

the designer. We call them context variables or category-

III variables. From the perspective of the designer, they

are constants.

In all but trivial cases, the design function is immen-

sely complicated. It is next to impossible to write down

the values of category-II variables even if we know the

values of category-I and category-III variables. We can

regard it, however, as a composition of a large number of

much simpler functions. The weight, for instance, is the

sum of the weights of the two wheels plus the weight of

the frame. The weight of one wheel is not a category-II

variable (because the design is not necessarily better if

this weight is less); it is also not a category-I variable (if

we decide the diameter, the weight is no longer inde-

pendent); finally it is not in category-III because it is not

a constant. It is what we call an auxiliary variable or a

category-IV variable.

This completes our general outline of the design pro-

cess. What it amounts to is the establishment of a network

of functional relationships between variables in categories

I, II, III, and IV and the assignment of values to the cate-

gory-I variables; the ‘quality’ of the design is assessed by

inspecting the resulting values for the category-II variables.

Consider Fig. 1.

The four categories characterised in Fig. 1 suggest an

important link between ethics and the freedom of the

designer: The choice of category-II variables may reflect,

among other things, the designer’s ethical view. For

example, the designer might stipulate that the bicycle be

constructed from recycled materials (reflecting the value of

sustainability), and that it must be manufacturable in third-

world countries (reflecting the value of geopolitical jus-

tice). In this respect we should observe that category-II

variables come in two versions: requirements, that is:

predicates that must be true (say, ‘the bicycle shall be

lighter than 15 kg’), and desires that relate to variables

subject to optimisation (say, ‘the bicycle shall be as light as

possible’). Among other things, the framework of four

categories allows us to clarify trade-offs in the design, it

helps us to pinpoint compromises, and it provides insight

into possible design alternatives. We will use it here to

decouple, on the one hand, the acceptance of an ethical

position (such as the categorical imperative) from the

implementation of the consequences of this position in a

design (a hypothetical imperative): The first consists of

deciding which ethical values should be represented; the

second of representing these ethical values in terms of

category-II variables.

A real example

In this section we discuss some examples of algorithms that

are essentially value-laden. All our examples, one of which

is real, are concerned with a particular kind of algorithm

used in medical image technologies. Very briefly put,

medical image technologies aim at representing human

biological structures in computers in an accurate way, such

as human organs and cells in blood samples, and thereby

improve the diagnostic or therapeutic prospects of diseases

affecting the biological structures in question. One of the

many ethical issues raised by such algorithms is the risk of

using algorithms that produce false positive and false

negative results. By definition, a false positive result occurs

whenever the algorithm triggers the system to count

something (a cell, a symptom of a disease) in a digital

image that is not actually there. A false negative occurs if

an algorithm in a similar vein fails to identify a structure in

the picture that is actually there.

For all practical means, it is virtually impossible to

totally eliminate the risk of getting false positives and false

negatives. However, if one is willing to accept a large

number of false positive results one will typically get a

smaller number of false negatives. In order to understand

why, imagine you are asked by an eccentric millionaire to

build a device that automatically counts the number of

tigers in the jungle who passes through a certain spot.

Naturally, if you build a device that simply counts every-

thing yellow that passes through the jungle you will get a

rather large number of false positive results, since e.g. bees,

bananas, and yellow flowers will trigger the device.

However, if on the other hand, you impose more conser-

vative criteria on what is to count as a positive result and

design the device such that only very large yellow items are

detected, then you can expect the number of false negatives

to rise (since e.g. new-born tigers babies will not be

detected by the device).

Clearly, software designers designing toy algorithms for

detecting tigers, as well as real-life algorithms used in
Fig. 1 Designing as a process of connecting 4 types of variables.

Arrows indicate functional dependencies

254 F. Kraemer et al.

123

medical image technologies, have to make a trade-off

between minimising the number of false positives or the

number of false negative results. This trade-off will inev-

itably be based on a value-judgment. There is simply no

objective fact of the matter about whether it is more

desirable to avoid a false positive or a false negative.

Different users may have different preferences, and several

conflicting preferences appear to be equally rational. It

therefore seems hard to deny that an algorithm used for,

say, counting the percentage of cells infected by a virus in

relation to the number of non-infected cells will invariably

contain a value-judgment about how many false positive

results are tolerable in relation to the number of false

negative ones. That said, both false positive and false

negative results may give rise to severe negative effects for

individual patients. Doctors base diagnostic as well as

therapeutic decisions on what they come to believe about

e.g. the number of infected cells in relation to the number

of non-infected cells.

We can also illustrate our point about essentially value-

laden algorithms by way of a real example. To start with,

recall that in ‘‘Value-laden algorithms and the design

process’’ we discussed some of the choices faced by

designers by discussing the design of a material object (a

bicycle). However, as pointed out in that section, the

design process is roughly the same when designing

immaterial artifacts such as algorithms. We can therefore

use the general design framework introduced in ‘‘Value-

laden algorithms and the design process’’ for illustrating

how values for category-I variables propagate in the

direction of category-II variables.

In the image to the right we see an MR-scan depicting a

cross section of a human heart. For the purpose of diag-

nosing a variety of possible pathologies, it is necessary to

accurately estimate the blood volume of the heart during

various stages of a heart-beat cycle. The difference

between blood and heart muscle tissue occurs as a differ-

ence in grey values in MR images. Estimating the blood

volume starts with establishing which part of the image is

colored lighter grey, and counting the number of pixels in

this light grey area. This is called segmentation between

light and dark, as depicted schematically in the diagram

below.

One way of carrying out a segmentation is to use a

numerical threshold, say T. This means that pixels with a

lightness value above T are labeled ‘light’ and pixels with a

lightness value below T are labeled ‘dark’. The border

between light and dark areas is, however, not sharp

(Fig. 2).8

It is quite common to introduce thresholds in segmen-

tation-like algorithms. Such thresholds serve as nice

examples of category-I variables in the design process of

the algorithm. There is no a priori correct value for such

thresholds. There is no rigorous first principles from which

they can be derived, since the noise in the image is an

inevitable artifact of the MR measuring process, caused by

numerous non-modeled sources. Software engineers typi-

cally choose a value that ‘seems reasonable’ for thresholds.

In the example above we see how the choice for this

threshold influences the estimated blood volume. This

estimate will in turn affect further values, and eventually

the diagnosis. So in borderline cases the diagnosis will

(indirectly) depend on the value of the threshold T.

Of course, if the anatomical configuration is far from a

borderline case (either ‘very’ healthy or ‘very’ pathologi-

cal), there is obviously no problem. For the majority of

pathological conditions, however, there is a continuum

between ‘healthy’ and ‘pathological’. Somewhere in this

continuum there is a grey zone where the diagnostic out-

come will critically depend on thresholds somewhere along

the computational pipeline.9

8 The algorithm outlined here is a deliberate simplification of actual,

modern segmentation algorithms. In particular, the algorithms

demonstrated in the cited website are much more sophisticated. For

Footnote 8 continued

our argument, however, this is not relevant. Even advanced algo-

rithms typically involve parameters, the values of which are to be

chosen in order to decide, eventually, between ‘normal’ and ‘patho-

logical’ cases.
9 In principle, an algorithm can detect when it bases a decision on a

‘near-borderline’-case. Sophisticated algorithms sometimes give an

estimate of the reliability of their conclusions (for instance: long-term

weather predictions, e.g. in the form of error-bandwidths). In this

way, an algorithm can become less value-laden, since it moves part of

the responsibility in the direction of the (human) user.

Is there an ethics of algorithms? 255

123

Now, given that we take the computational output of a

medical diagnosis support system to be a designed artifact,

we can ask ourselves what the category-II variables are in

this example. Apart from trivial ones, such as patient safety

during clinical measurement, and operational comfort for

the medical specialist, we may want the quality of the

(automated) diagnosis to be ‘good’. But the notion of

goodness must of course be rendered more precise, and this

is exactly where our observations concerning false posi-

tives and false negatives come in. In borderline cases the

bias towards false positives or false negatives may to a

large extent be determined by the values of thresholds or

other category-I variables.

At this point it could be objected that the best way

forward is to design the algorithm such that it totally

eliminates all false positive and false negative results.

However, a closer analysis of the risks for getting false

positives and false negatives in medical images shows that

this is not likely to be a feasible option. First, all algorithms

that are applied to a large set of measurements will be

sensitive to stochastic effects in the data set, and this will

automatically yield false positive and negative effects.

Second, it should be noted that the images are in most cases

numerical (re-)constructions of large amounts of physical

measurements. This point has important consequences:

Nowadays the quality of such computer generated images

is getting close to being photo realistic. That is, the data is

presented (rendered) as if it is an actual photo of some 3-D

internal organ or tissue structure, perhaps even isolated

from its environment. Such rendering or isolation, how-

ever, requires complicated algorithms that include seg-

mentation (as mentioned above), as well as much other

subtle image processing. So rather than being objective

photographs, the 3D medical images that specialists look at

(and base their diagnosis on) are the result of an elaborate

algorithmic process, depending on arbitrary thresholds in a

difficult-to-predict manner. Now, medical specialists, like

any other humans, are accustomed to interpret plausible 3-

D images as accurate projections of corresponding 3-D

objects. It is very difficult not to interpret a realistically

looking 3-D image as a trustworthy projection of a 3-D

object. This introduces the risk that one will forget that in

order to generate these 3-D images, a number of decisions

about thresholds had to be taken. Had some decisions been

taken differently, the image could have looked (very) dif-

ferent—and, as we argue, there is no a priori way to give

the correct value for such thresholds.

Understanding the relations between what is seen in the

image and what really exists in a patient’s body (or in the

microscopic slice of tissue being examined) therefore

requires a thorough understanding of the various algorith-

mic steps that are applied to the physical data in their

transformation towards a collection of colored pixels. Such

transformations include a choice of filters (involving vari-

ables with values that may significantly affect the eventual

‘looks’ of the image – and therefore the conspicuousness of

certain types of anomalies) and perhaps geometrical algo-

rithms (such as contouring, segmentation, tracking, etcet-

era). These filters and algorithms have to be chosen with

some goals in mind – but these goals cannot typically, for

practical reasons, be formulated in terms of minimising the

risk of acquiring false negatives.

The third and last reason why it is not feasible to design

algorithms that avoid all errors can be formulated as fol-

lows. Many (semi)automated diagnostic tools have been

developed in recent years, and these diagnostic tools typ-

ically incorporate implied hypotheses of expected pathol-

ogies. For instance: a probe to identify a potential

aneurism, stenosis or tumor can only do so because it

expects certain characteristic features of, say the shape or

volume of such anomalies. An experienced medical doctor

realises when she sees something ‘unexpected’; a software

program usually cannot. Again, these diagnostic tools may

not have been developed with the goal of minimising the

percentage of false negatives in mind. Finally, there is one

further problem. Software for complicated tasks such as

medical diagnosis is often immensely complicated. Much if

it consists of components that may have been developed

earlier for ‘general purposes’; these components are re-

used in order to make the software production process

economically feasible. Segmentation algorithms are an

example of such components. Components are preferably

treated as black boxes: based on their formal, functional

specifications, their behavior can be assumed to be ‘cor-

rect’. The ethical position, however, that was adopted

during the construction of such a component when either

choosing a more conservative or more liberal threshold, is

Fig. 2 Segmentation in a noisy image. For a larger threshold value,

T1, the estimated area V1 of the ‘blood’ segment will be lower than the

estimated area V2 which is found with a lower threshold T2. It is not

a priori clear, however, which of the two threshold values is the

‘correct’ one. The software engineer chooses a threshold without real

argument—thereby biasing the outcome of the algorithm when it is

used on patient data. This may statistically influence the change of false

positive diagnostic errors in favour of false negatives, or vice versa

256 F. Kraemer et al.

123

typically not part of their formal specification.10 That

means that the same segmentation algorithm, applied in

two different systems, will behave equally with respect to

its formal, functional requirements, but at the same time it

may behave oppositely with respect to its tendency to

produce false positive or false negative judgments.

The total complexity of highly interrelated physical

techniques, algorithms, heuristics and visualisation meth-

ods is immense, and there is little hope to optimise the

entire, integrated chain in terms of minimising the chance

of false negatives. What may be feasible, however, it to

take this chain apart in a systematic way, and to analyse the

various stages as if they were (to some extent) independent.

This route may be facilitated to use a framework such as

the 8-layers model developed by one of the authors to

argue about the information contents in images. This model

separates this information into coherent chunks (e.g., the

shape-related information is separated from the texture-

related information, which is separated from the 3-D sur-

face related information, etcetera.)

The precautionary principle and ethical theories

In this section we discuss two different ways of addressing

ethical issues raised by the risk of obtaining false positive

and false negative results when using medical image

algorithms. In the next section we shall identify and discuss

some ethical issues that apply to algorithm design in

general.

Briefly put, we propose that a possible way of managing

false positive and false negative results obtained from

medical image algorithms is to adopt an epistemic inter-

pretation of the precautionary principle.11 The second

option, which we will also explore in depth, is to approach

this choice as an ethical judgment to be determined by an

ethical theory.

Let us first consider the precautionary-oriented, episte-

mic strategy. The precautionary principle was originally

invoked by policy makers for addressing environmental

issues, such as global warming, toxic waste disposal, and

marine pollution. In recent years it has also been suggested

that the precautionary principle may also be applied to

medical issues. David B. Resnik argues that ‘‘properly

understood, the [Precautionary Principle] can provide

physicians and patients with a useful approach to medical

decision making.’’ The precautionary principle can,

however, be interpreted in many different ways. According

to the epistemic (belief-guiding) interpretation outlined in

Peterson (2007), the precautionary principle should be

characterised in terms of what it urges us to believe. To put

it more precisely, the epistemic version of the precaution-

ary principle holds that it is better to get a false positive

rather than a false negative result, contrary to what is

commonly accepted in science, since this will prevent

doctors and patients from falsely believing that someone

who is in fact ill is healthy.

Scientists generally agree that it is more important to

avoid false positives than false negatives. This is because

scientific knowledge tends to be cumulative: We add new

beliefs about what the world is like to a set of already

existing beliefs; and the justification for the new beliefs

typically depends in more or less intricate ways on the old

beliefs. Therefore, if we start to accept too many false

positive beliefs we may end up in a situation in which

future research is directed in the wrong direction by our

false positives. A more conservative approach, in which

false negatives are preferred over false positives, is more

likely to be successful in the long run, since it makes it

more likely that we will not base new beliefs on old but

false ones.

However, when discussing medical image algorithms it

is far from clear that we should adopt the same set of

(epistemic) values that guide, or at least ought to guide,

scientific research.12 The reason for this is that the conse-

quences of falsely believing something to be safe when it is

not might be disastrous. If the algorithm is designed such

that doctors come to believe that patients who are actually

diseased are not, then the doctors may indirectly cause

indirect harm to patients by failing to treat them. We

therefore conclude that when addressing ethical aspects of

medical image algorithms it is far from clear that medical

decision makers should prefer algorithms that make them

believe what is most likely to be true. On the contrary, a

strong case can be made that medical image algorithms

should be designed such that they are more likely to pro-

duce false positive rather than false negative results. That

said, it is of course essential to make sure that an increased

number of false positives does not lead to too many

unnecessary and potentially dangerous operations. The

computer image is just a tool. The final responsibility for

10 By ‘ethical position’ we mean the decision at which level the

threshold should lie. We will deal with this in detail in the next

section.
11 This section is partly based on some ideas first presented in

Peterson (2007).

12 To be precise, we should distinguish between on the one hand,

medical imaging algorithms used exclusively in interaction with a

medical specialist, and on the other hand, algorithms used to screen

large volumes of data to seek for pathologies. In the latter type of

cases the data volume is too large for (human) medical staff to handle

in given clinical contexts (consider e.g. yearly screenings of ten

thousands of women for early signs of breast cancer). In such cases,

the risk for statistically significant biases in the results (that are

ethically value-laden) is much larger than in the first case.

Is there an ethics of algorithms? 257

123

deciding whether a surgical intervention is appropriate has

to be taken by the doctor.

It is important to bear in mind that our conclusion about

the importance of avoiding false negatives in medical

image algorithms is a value-judgment, not a factual one.

No observations or other purely empirical methods can be

appealed to for backing up this conclusion. This is part of

the explanation of why medical image algorithms are

essentially value-laden. However, as with nearly all value-

judgments, good reasons can also be given against this

value-judgment. For example, it could be claimed that the

software designer designing the algorithm ought to perform

a detailed cost-benefit analysis of the pros and cons of

accepting different trade-off rates between false positives

and false negatives. This is an approach that, broadly

speaking, tallies well with traditional consequentialist

intuitions. It may turn out, for instance that the total utility

of accepting some false negatives but avoiding a very large

number of false positives may actually be optimal, because

of various empirical circumstances. It is beyond the scope

of this paper to take a definitive stand on whether the

consequentialist view outlined above is at least as plausible

(or even more plausible) than the precautionary approach.

Here we just wish to highlight that the choice of a trade-off

rate between false positives and false negatives is a genuine

value-judgment, and that this makes medical image algo-

rithms essentially value-laden.

Let us now consider an alternative, slightly more theo-

retical approach to the choice between false negatives and

false positives. The ethical assumption underlying this

approach is in short the following: A doctor’s decision

about whether avoiding false negatives is better than

avoiding false positives should depend in part on the

answer to the question of how dangerous the suspected

disease is for the patient. The more dangerous it is, the

more important it will be to detect it, and the more

acceptable it is to take the risk of mistakenly identifying it

in a patient (i.e. to produce a false positive). The same

holds, secondly, for contagious diseases that could jeop-

ardise others. Third, a rising number of false negatives is

less acceptable if the faulty diagnosis is likely to bring

about drastic side-effects such as e.g. a dramatically

diminished quality of life after diagnosis, or even the

triggering of suicidal tendencies in those who are mistak-

enly informed of a positive result in the testing of a disease.

For instance, the mass screening for breast-cancer in

women has recently raised severe criticism due to the fact

that it bears a high risk of false-positives. Being wrongly

diagnosed with breast cancer is usually extremely dis-

turbing for women and their families.13

The choice for a certain threshold in an algorithm is a

decision that is a judgment about which there is, or at least

could be, a controversy between advocates of the major

theories of normative ethics. This supports our claim that

algorithms manifest or reflect certain ethical judgments.

This point can be illustrated as a choice between deonto-

logical and consequentialist or utilitarian theories of nor-

mative ethics.

Deontologically minded users of the software are most

likely to focus on the physical and mental integrity of the

individual patient. Therefore, in a Kantian vein, medical

doctors will most probably opt for the implementation of

some more liberal algorithm when it comes to comput-

erised image analysis of severe diseases, aiming at more

false positives and less false negatives. In such a Kantian

vein, it is pre-eminent to protect the individual patient, i.e.

to avoid doing harm to him or her. Such harm would be

most likely to be done if a severe disease remains

undetected and therefore untreated. For this reason, the

deontologist is willing to put up with problematic con-

sequences of more false positives that are brought about

by her choice.

In contrast, a scientist who tries to gather statistical data

about a population of patients may wish to use the same

software, but she will typically prefer more strictly or

conservatively designed algorithms. This will bring about

results that are more in line with consequentialist or utili-

tarian decision-making: What is important in this per-

spective is that the body of scientific data as a whole

remains valid and intact, because this will typically bring

about better consequences in the long run, although some

individual patients may have to suffer along the road. This

is in accordance with the consequentialist or utilitarian

view that overall well-being in society should be our focus

of attention, rather than the rights or needs of single indi-

viduals. Therefore, on this view, aiming at scientific

insights that benefit the greatest number of people is the

highest priority. This means that within the consequen-

tialist approach, scientific results should be free from false

positives as far as possible. It is therefore acceptable that a

relatively large amount of false negatives will arise.

It is beyond the scope of this paper to take a stand on the

controversy over deontological and consequentialist nor-

mative theories. However, it is important to note that the

choice of a threshold value for a certain algorithm goes

hand in hand with some normative background assump-

tions specified by the software designer. Problems arise if it

is unforeseeable whether the background assumptions of

the designer will be in accordance with those of future

users (i.e. a doctor or a scientist). If the ethical assumptions

made by the software designer remain implicit and differ

from those preferred by the user, we face a rather severe

problem: Without knowing it, the user who bases her

13 See e.g. Gigerenzer et al. (2009) about these problems of screening

and their statistical implications.

258 F. Kraemer et al.

123

decisions on the output of the software will base those

normative choices on ethical assumptions that are in con-

flict with the implicit ethical assumptions made by the

software designer.

Should ethical values be user-defined?

Our general view is that software designers should, as far

as possible, leave ethical decisions to users (say, with an

external switch to choose between ‘preference for false

positives’ or ‘preference for false negatives’). Moreover,

when this is not possible the ethical assumptions in the

algorithm should at least be transparent and easy to identify

by users. In the case of medical image algorithms the users

amount to medical doctors and scientists. For the reasons

outlined in ‘‘The precautionary principle and ethical theo-

ries’’, physicians who use a software will typically work on

the assumption that it is better to get a false positive than a

false negative. But when scientists use exactly the same

software they are likely to have the opposite ethical view.

Such users will typically avoid false positives in the first

instance. These divergent ethical judgments could, of

course, easily be implemented into the software by

including some code that allows the user to specify her

preference between false positive and negatives.

We are aware that such a leave-it-to-the-user approach

may sometimes be impossible to implement, as indicated

above. There are cases in which it may just not be feasible

to directly ask users to express the required kind of ethical

judgments in numerical or quasi-numerical terms. Having

to take a stand on fundamental ethical issues before using a

software may be too difficult, and it may also be too

impractical to ask users to make the relevant ethical

choices. In such cases the underlying ethical assumptions

should at least be made transparent. However, in what

follows we shall set such cases aside and focus on cases in

which it may actually be feasible to eliminate ethical

judgments as far as possible from the algorithms underly-

ing the software.

At the heart of the matter is the fact that it is not just a

practical decision that must be made when designing an

algorithm, but a genuinely ethical one. To opt for either a

consequentialist or utilitarian or a deontological attitude

towards e.g. the choice between false positives and false

negatives amounts to a value judgment that brings about

ethically relevant implications for the patient’s health, for

those who are in touch with her, and for the progress of

science as a whole. As explained above, we therefore

advocate that the software designer should design the

algorithm such that it remains flexible and applicable to the

requirements of different ethical settings. To be more

precise, we propose that algorithms as far as possible

remain open to the user’s ethical preferences. The design of

the algorithm must allow the user to choose the circum-

stances in which she situates herself. We therefore think

that it is not enough that the designer makes his or her

assumptions transparent by letting the user know what the

ethical assumptions in the design stance were. Rather, it is

necessary that the designer leaves it to the user to specify

what ethical parameters to choose.

Having said this, we are of course aware that we now go

beyond what is usually required in the literature on the

ethics of image analysis. One of the few comments on the

ethics of image analysis stems from Gert-Jan Lokhorst who

was interviewed by van Strien (2008). He suggests that

software has to be trained on image materials that resemble

the ones it will have to analyse in the clinic, because the

software will recognise and identify only those matters on

which it was explicitly trained before. Moreover, Lokhorst

suggests that doctors have to undergo proper training

before they use the software. This will ensure that users

become aware of which sorts of image analysis samples the

system is familiar with, and this in turn ensures that users

will be able to properly assess the competences of the

software. Lokhorst’s final suggestion is that users and other

relevant parties should be provided with some basic

knowledge about the situations in which the algorithms

were developed by the designer, because (i) this will enable

them to decide in which clinical situations the program

should be applied and in which not, and (ii) it must also be

made clear in advance who is responsible for which step in

the process of image analysis.

Lokhorst thus implicitly agrees with us that it is essen-

tial to make the software designer’s ethical choices trans-

parent to the user. However, our way of formulating this

ethical requirement is more far-reaching than Lokhorst’s.

As explained above, we maintain that the software designer

must leave the responsibility for defining the default state

of the software to the user herself. This is required for

avoiding possible discrepancies between the ethical back-

ground assumptions of the software designer and users.

The example of the stenosis in ‘‘A real example’’ shows

that there is no a priori ‘‘correct’’ threshold value. How-

ever, the very first choice made by the software designer

will influence all further steps of diagnosis. In borderline-

cases, those choices may even affect the treatment sug-

gested to the patient by the doctor. This is disturbing,

especially in face of the fact that the software designer may

lack the proper medical background of a fully trained

physician.

According to our argument for implementing user-

defined ethical values, the doctor treating the individual

patient should be enabled to make the relevant choice

herself, as far as possible. If the patient is facing a severe

condition, the threshold value should perhaps be set more

Is there an ethics of algorithms? 259

123

liberally, to make sure that at any sign of deterioration,

treatment is initiated. However, if the health condition of

the patient is estimated as overall good, the threshold value

should be set more conservatively to avoid ‘‘false alarms’’

that could lead to surgical interventions causing unneces-

sary harm to the patient.

Conclusion

We conclude that a strong case can be made for the claim

that some algorithms are essentially value-laden. Some

algorithms, such as those used for classifying cells as dis-

eased or non-diseased, forces the designer of the algorithm

to take a stand on controversial ethical issues, e.g. whether

it is more desirable to prefer false positive errors over false

negative ones. This is a controversial ethical issue, on

which there is a lot of disagreement among ethicists. We

propose that designers of algorithms should, as far as

possible, leave ethical issues to users, and when this is not

possible, the ethical assumptions in the algorithm should at

least be transparent and easy to identify by users.

Acknowledgment The authors wish to thank Robin van der Sligte

for extremely helpful discussions, and Sven Diekmann and Rosemary

Lowry for helpful comments on earlier drafts.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

Allen, C., Wallach, W., & Smit, I. (2006). Why machine ethics? IEEE
Intelligent Systems, 21, 12–17.

Arkin, R. C. (2009). Accountable autonomous agents: The next level.
Position paper for the DARPA Complete Intelligence Workshop,

Feb. 2009.

Gigerenzer, G., Mata, J., & Frank, R. (2009). Public knowledge of

benefits of breast and prostate cancer screening in Europe.

Journal of the National Cancer Institute. doi:10.1093/jnci/djp

1237.

Peterson, M. (2007). Should the precautionary principle guide our

actions or our beliefs? Journal of Medical Ethics, 33(1), 5–10.

Resnik, D. B. (2004). The precautionary principle and medical

decision making. Journal of Medicine and Philosophy, 29(3),

281–299.

Sipser, M. (1997). Introduction to the theory of computation, PWS

Publishing Company.

Turilli, M. (2007). Ethical protocols design. Ethics and Information
Technology, 9, 49–62.

van Strien, W. (2008). Opvangen zwakheden maakt beeldtechnieken

waardevoller (interview met G.J.C. Lokhorst). Ethiek, Ond-
erzoek en Bestuur, pp. 20–25. March 2008.

260 F. Kraemer et al.

123

http://dx.doi.org/10.1093/jnci/djp1237
http://dx.doi.org/10.1093/jnci/djp1237

	Is there an ethics of algorithms?
	Abstract
	Introduction
	Value-laden algorithms and the design process
	A real example
	The precautionary principle and ethical theories
	Should ethical values be user-defined?
	Conclusion
	Acknowledgment
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

