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Abstract
We would very much like any nascent superintelligence to share our

core values—but it seems our values are too complex to program or
hardwire explicitly. Our best hope may thus be to design any potential
superintelligence to learn values like ours. This “value learning” approach
to AI safety faces three particularly philosophical problems: first, it is
unclear how any intelligent system could learn its final values, since to judge
one supposedly “final” value against another seems to require a further
background standard for judging. Second, it is unclear how to determine
the content of a system’s values based on its physical or computational
structure. Finally, there is the distinctly ethical question of which values
we should best aim for the system to learn. This paper outlines a potential
answer to these interrelated problems, centering on a “miktotelic” proposal
for blending a complex, learnable final value out of many simpler ones.

Here’s a serious problem. Suppose, as many think, that humans will someday be
able to create an artificial superintelligence—an intelligence whose intellectual
capacities outstrip ours the way ours outstrip those of ants. Such a superintel-
ligence is likely to have values quite different from ours; just as we wouldn’t
expect it to love doughnuts or sunny beaches, so we shouldn’t assume it would
share our desires for social connection, or high art, or the general welfare. It
seems an intelligent system could value any goal, no matter how foreign to us;
as the standard trope goes, a superintelligence could in principle value ever
more paperclips in the world. In efficient pursuit of such a foreign value the
superintelligence could wipe us out with no more thought or malice than we give
to anthills on a construction site.1

(I will be taking it for granted that this is a serious worry. If you are one of the
many who feel it is easy to dismiss the problem, I can here only urge you to read

∗Thanks to Einar Duenger Bøhn, John Danaher, Matthew Liao, Eric Schwitzgebel, Marija
Slavkovik, and two anonymous reviewers.

1Of course no one thinks the “paperclip maximizer” is likely; it’s just to illustrate that
without the particularities of human evolutionary history, an AI is free to have any goal. To
think no intelligence could value such a thing is mere anthropomorphizing—no intelligence we
know today would value such a thing. The example is originally from Bostrom (2003).
The comparison to our concern for ants is also a common trope in the literature, and goes

back at least as far as Daniel Dewey in Andersen (2013).
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Nick Bostrom’s Superintelligence (2014), or some of these other references.2 I
for one went into the literature skeptical, and came out scared.)

A natural solution to this problem is to attempt to design the superintelligence
with fundamental values similar enough to ours. This has become known as the
goal of value alignment. This proposed solution to the superintelligence problem
has its own problem, though: human-friendly values are too complex for us to
hardwire or program explicitly. After all, as Bostrom points out, philosophers do
not even agree on how to paraphrase key values like happiness into other similarly
abstract terms, let alone into concrete computational primitives (loc. 4332).

A natural solution to the complexity of values problem (for the value alignment
solution to the superintelligence problem) is at least as old as Alan Turing, but
getting notoriously more successful all the time. When some computational
task is too complex to program explicitly, you must design the machine to
learn to achieve it. This technique has already worked on tasks like winning go
games against professional humans and scoring above human average on reading
comprehension tests. In this case, we would like to make sure any nascent
superintelligence will learn complex, human-friendly values. This constitutes
the subfield of value learning, in the intersection of machine learning and value
alignment.3

To many—including me—value learning seems like our best hope for getting non-
disastrous superintelligence. But of course, value learning also faces problems.
This paper concentrates on three particularly philosophical hurdles for the project.
I consider them in order of increasing difficulty; correspondingly, the sections
dedicated to them get shorter and sketchier as we go.

Problem one: learning goals in service of another goal is routine for AIs, but
in this case we want the potential superintelligence to learn complex “final”
values—ends in themselves. But good arguments seem to show no cognitive
system could learn its final values.

Related philosophical issue: the metaethical debate between
moral rationalism (according to which, roughly, pure intellect can
direct us toward ethical goals) vs. sentimentalism (according to which,
roughly, reason can have nothing to say about fundamental values).

Problem two: we do not know how to map computational states—especially
in connectionist architectures—onto a system’s abstract reasoning. In particular,

2Chances are very good Bostrom has thoroughly addressed the reasons you are tempted
to dismiss the worry. My (2017) paper was the best comfort I could concoct in response to
Bostrom, and that comfort was pretty cold. If you don’t have time for Bostrom’s book, maybe
try instead one of these:

• https://www.vox.com/future-perfect/2018/12/21/18126576/ai-artificial-intelligence-
machine-learning-safety-alignment

• https://waitbutwhy.com/2015/01/artificial-intelligence-revolution-1.html
• https://futureoflife.org/background/aimyths/

3See Soares (2016) or Shah (2018) for an overview.
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looking at a machine state is not typically enough to determine the particular
content of a system’s values. But the particular content is very much at issue in
value alignment.

Related philosophical issue: the debate in the philosophy of mind
over whether and how mental content can be “naturalized”—that is,
shown to be a purely physical property (in some broad sense).

Problem three: even if we were perfectly confident of being able to prime the
superintelligence to learn any complex values we wanted, there is still the thorny
question of which values we would like something with amazing superpowers to
have.

Related philosophical issue: the traditional philosophical prob-
lem of normative ethics—the problem of determining what is right
and wrong.

I sketch an interrelated solution to these problems, revealed as they are considered
in detail. The heart of the proposal is to build a complex, learnable value in
a computationally respectable way out of the right blend of simpler values. In
the philosophical tradition of resorting to ancient Greek, I call this proposal
miktoteleology (“blended-goal-studies”).

Learning final values

The first problem, recall: we want a potential superintelligence to be able to
learn a final goal, but there is good reason to think no cognitive system can
learn a final goal. To see why, it is important first to get clearer on the sense of
“value” at play.

It is not clear what exactly it takes for a system to have real values. We tend to
agree that the system we call “Nick Bostrom” has values, and the system we
call “the Great Red Spot of Jupiter” does not. In between are problem cases,
like bees, amoebas, and Roombas. For the purposes of saving humanity, we
needn’t get too hung up on the philosophy here; a superintelligent system that
behaves in a way consistent with valuing ever more paperclips over anything
else is no less dangerous if the philosophers declare on a priori grounds that
such systems possess no genuine values. Instead, we can be content with what
philosophers of mind call the functionalist account of mental states, according
to which (very roughly) what determines the possession of mental states is the
right combinations of system inputs, internal system processing, and system
outputs.4 Broadly speaking, if a system internally processes its sensory input in
the right way to generate behavior aimed at maximizing the total number of

4For an old but good overview of functionalism, see Churchland (1988). Of course there
remain many further interesting philosophical questions about whether such functionalism
determines all relevant senses of value, meaning, consciousness, ethical worth, and so on. Like
many philosophers, I am inclined to say “yes”—but it is beside the point here.
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paperclips in the world, then functionalists are happy to say that system does
indeed genuinely value a world with more paperclips in the relevant sense.

Now there is a kind of value learning, on this broad functionalist sense, that is
relatively straightforward for AIs. For example, the AI AlphaZero was simply
taught the rules of chess. After playing itself and learning what works and what
doesn’t for a few hours, it learned that things tend to go better when you do
not give away your queen—it learned to value the queen more than the knights
(again, and from now on, in our broad functionalist sense). But this kind of
value learning is not directly relevant to the value alignment problem. AlphaZero
treats the queen as valuable only because it has figured out that typically, the
queen helps it achieve its further value of winning chess games. In the odd
situation where a queen sacrifice would lead to a win, AlphaZero would happily
sacrifice the queen.

Philosophers distinguish instrumental values from final ones. For AlphaZero,
having the queen on the board is usually of instrumental value, because it usually
serves as an instrument toward the further goal of winning. But the chess variant
of AlphaZero values chess wins “in themselves”, not for achieving some further
purpose; the wins are of final value for it. For humans, a standard example of
an instrumental value is money. We might seek money to be able to afford a
vacation, and we might seek a vacation in order to relax, and we might want
to relax in order to feel good. If asked why we want to feel good, in turn, we
understandably have little to say. The regress of “why” stops at the final goals,
which are sought for their own sakes.

It is only learning final goals that is philosophically problematic. To see why,
consider what is required for a physical system to be able to learn something.
I assume first that arbitrary changes to a cognitive system do not count as
learning; if cosmic rays or a dull hammer rearrange my brain, then even if the
resulting cognition is better (no comment), we shouldn’t count this improvement
as learning. In other words, learning must be purposeful—the result of some
cognitive function to adjust other cognitive functions according to feedback. This
feedback serves as an internal measure of error, in effect assessing the distance
between how things seem to be and how they “should” be. Such error signals
thus implicitly contain both a representation of some aspect of the system’s
current state (how it is now doing) and the goal state (from which it may err).
Speaking very loosely, a system with a learning mechanism contains both a
“belief” about how the system is doing, and a “desire” for how the system should
be doing. Speaking more generically and somewhat more strictly, the system
has representations with both indicative content about how things are (like our
beliefs), and imperative content about what to do (like our desires).5

5Beliefs are the paradigmatic indicatives, and desires are the paradigmatic imperatives, but
there are surely many levels of mental content that fish or mice or robots might have that are
not as sophisticated as beliefs and desires. For a better catalog of ways that our representations
differ from those of simpler cognitive systems, see the conclusion of Millikan (1989). (I am
using “representation” in a broad sense, roughly synonymous with other philosophical terms of
art like “intentionality” and “mental content”.)
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One helpful approximation is to think of the system’s indicatives as afferent
information, flowing up from sensory input to report how things are, and the
imperatives as efferent information, flowing down toward motor output to bring
about helpful actions. Especially given the kind of recurrent feedback between
layers in brains, this picture emphasizes that there will not be sharp boundaries
between indicatives and imperatives. For example, consider an instrumental goal
such as “gather the purple berries.” This representation is imperative relative to
lower levels of implementation, since it serves as an abstract directive about how
to move. But it is also indicative relative to goals like nutrition and survival,
since it serves as a hypothesis about how to achieve those further goals. In this
sense instrumental goals are indicative as well as imperative, and their indicative
component makes it easier to see how they can be adjusted and learned when
experience intervenes.

Now we are in a better position to see why learning a final goal is problematic.
To learn a putatively final goal would be to adjust it based on a measure of
success, which is thereby to adjust it against some further standard. That would
just show the putatively final goal was actually an instrument for the further
standard, which is the real final goal. In effect, final goals can have no indicative
content, and so no learnable content. Arguments like this, to the effect that
reasoning cannot alter final ends, have their roots in Aristotle and David Hume;
I have just adapted them somewhat for the context of machine learning, so that
we can more clearly see its echoes in the modern debate.6

Thus for example Nick Bostrom argues that the standard machine learning
technique of reinforcement learning (RL) isn’t properly understood as value
learning. A reinforcement learner typically gets rewarded for certain kinds of
sensory inputs, and uses these reinforcements to update an evaluation function
that estimates the expected value of a policy—a proposed series of actions
(depending on environmental responses), or probability distribution over them.7
Bostrom points out that “what is being learned” in an RL agent “is not new final
values but increasingly accurate estimates of the instrumental values” (loc. 4388).
The RL’s final value remains its fixed reward function.

Bostrom’s related concern about using RL agents to learn friendly values is
that RL agents are ultimately rewarded by having a certain kind of indicative
information stream. This gives any clever such agent incentive to “wirehead”—
that is, to hijack its indicative stream to send only maximally rewarding signals.
As a simple illustration, imagine a reinforcement learner rewarded for “seeing”
(e.g., having information extracted from its cameras contain) gigantic piles of
paperclips. A clever such system could simply tape a high-resolution picture of
many paperclips in front of its camera, and enjoy constant reward on the cheap.
Even better, a truly resourceful system that understood its own design could
simply inject the digitization of such an image downstream from its camera,

6See Aristotle (350BC) Book III, and Hume (1739) 2.3.3.
7The standard RL text is Sutton and Barto (1998).
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without any need for the picture or tape.8 (Thus the term “wireheading”, from
old experiments using electric current to stimulate mouse brains’ reward centers
directly.)

Wireheading is just an extreme version of the very human phenomenon of wishful
thinking, in which we come to believe that things are as we want them to be.
More neutrally, wishful thinking involves artificially adjusting the indicative
information stream to match the imperative one better. Note if the imperative
side is also thoroughly malleable, as it would be in genuine final value learning,
there is another potential problem for RL: the learner could instead manipulate
the imperative stream to match the indicative one. We might call this converse
phenomenon thinkful wishing, and it too probably occurs in humans—as for
example when we decide we didn’t really want the grapes that are out of our
reach (they are probably sour).9

Based on such doubts Bostrom seems to prefer the “utility agent” learning
approach from Hibbard (2012) over RL. Utility agents attempt a clean separation
between the indicatives and imperatives—roughly a state estimator for the former,
and a utility function for the latter. The state estimator tries to figure out which
possible world the agent is in (as a probability distribution over them), the utility
function scores the worlds for values, and the value learner uses the combination
to learn the utility-maximizing policy. Because a paperclip-maximizing utility
agent scores a world with more actual paperclips higher than a world with mere
pictures of paperclips, it would have no reason to pursue a policy designed to
bring about the world with mere pictures of paperclips. Everitt and Hutter
(2016) point out that “the difference between RL and utility agents is mirrored
in the experience machine debate” from Nozick (1974). As they summarize it,

given the option to enter a machine that will offer you the most
pleasant delusions, but make you useless to the “real world”, would
you enter? An RL agent would enter, but a utility agent would not.10

But I suspect the utility agent approach will have similar problems with wishful
thinking. As Bostrom is well aware, the ways a world could be are too fine-
grained even for a superintelligence to track. (Consider, for starters, all the
permutations of particles that would result in a phenomenally identical chair.)
This means the utility agent must abstract to the relevant aspects of the way
the world is—where it seems “relevance” must be determined ultimately by
the agent’s goals. If the superintelligence is learning how best to abstract—as
anything worthy of the name must—it must be learning against a standard of
success with goals. But here there is danger very like wishful thinking, because

8Just in case such short-circuiting sounds at all farfetched, consider that nature designed
orgasms to reward reproductive behavior—and that we humans (and many other animals)
have found ways to achieve this reward without the intended behavior.

9The term “thinkful wishing” is from collaboration with Eric Lormand.
10Everitt and Hutter (2016) p. 2, footnote 1. As a reviewer points out, this applies only in

general to utility agents; we could design ones whose utility function would enjoin them to
enter the experience machine.
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it is a fine line between learning abstractions in order to better achieve goals
efficiently, and learning abstractions to make it look more as though goals were
being achieved.11

Furthermore, utility agents that are true value-learners must be able to adapt
their utility functions as well, and this introduces dangers of thinkful wishing in
addition to wishful thinking. For example, Bostrom’s own favored value-learning
utility agent adapts a proposal from Dewey (2011) into what he calls an “AI-VL”.
Instead of possessing one straightforward utility function, the AI-VL considers a
wide range of possible utility functions, and assigns each a weight representing
its guess that this is the correct utility function, given its estimate of how the
world is. (You can imagine the AI-VL implicitly saying, “Given how things
appear to me, I am 3% confident that utility function U1 is the right one, 17%
confident it is U2 instead . . . ”) In the meantime it treats the weighted average
(.03U1 + .17U2 + . . .) as its current utility estimator. You might naturally wonder
on what basis the AI-VL could assign or update these guesses about which is
the “correct” utility function. The answer is that utility functions are assessed
against a background “value criterion.”12

AI-VL has its problems, of course. For starters, it is “wildly computationally
intractable” (loc. 4564). It also pushes much of the problem back a step, into the
difficulties of specifying a detailed value criterion that is both largely under our
control and computationally inferrable. (The key suggestion later in this paper
can be seen as a step toward solving this problem.) Another problem—one more
to our point—is that if the system is adjusting its goals based on its estimate of
how the world is, there will again be pressure toward thinkful wishing, because
its proposed policies are more likely to have higher expected utility if the utility
function comes to score easily accessible worlds more highly.13

Finally, and even more to our point, the AI-VL still does not seem to learn a
final goal, because its real final goal seems to be the “value criterion”, which
assesses utility functions to find the good ones. Bostrom concedes that the
value-learning utility agent actually “retains an unchanging final goal”, and then
says something intriguing:

Learning does not change the goal. It changes only the AI’s beliefs
about the goal. (loc. 4473)

If the value-learning superintelligence has a fixed final goal, in what sense is it
learning its values? Bostrom suggests here that changing beliefs about a fixed

11Related ontological concerns are in De Blanc (2011).
12Where Ui(w) ∈ U is a utility function scoring possible worlds, and ν(Ui) is the “value crite-

rion” (most generically, “Ui is the correct target utility function”), AI-VL estimates the target
utility function and so the value of any possible world as Û(w) =

∑
Ui∈U Ui(w)P (ν(Ui)|w).

13Everitt and Hutter (2016) propose a value learning system VRL, a hybrid between utility
agent and RL, which learns its utility function through reinforcement. Everitt and Hutter then
show that a standard such VRL will have incentive to “optimise its evidence” toward “a more
easily satisfied utility function” (p. 10)—in other words, to thinkfully wish. They propose a fix
for this concern, but rightly worry about its generality.

7



final goal is sufficient to learn the goal. Note that changing beliefs about a
target goal presupposes that the goal starts out sufficiently mysterious to the
agent. Bostrom’s own example of a value criterion is “maximize the realization
of the values [I’ve] described in [this] envelope.” (If we managed to design a
superintelligent utility agent trying to learn such a goal, it would have little
incentive to harm us along the way, since it would find it fairly probable that
harming us would violate the goals written in the envelope.) This illustrates
how a utility agent could retain one fixed goal while its particular guesses about
the nature of that goal might vary in both content and confidence, as it learns
about Bostrom and tries to guess what he might have written.

A more down-to-earth example of a value criterion would be to “do what humans
would find most rewarding.” Such an agent would have to infer by our behavior—
including (defeasible) weight on behavior like our coaching and self-reports—what
we would find rewarding. This approach to value learning is called “Inverse
Reinforcement Learning”, because the agent must learn a reward function from
policies and observations rather than, in standard RL, learning a policy from
observations and rewards.14

Indeed we humans sometimes only learn what’s valuable to us after we observe
our own behavior—and not necessarily then, either. In other words, we humans
seem to be final-value learners in this sense, because our own final goals are
plausibly quite mysterious to us. Consider for example Ebeneezer Scrooge’s
transformation in Dickens’ A Christmas Carol (1843). We might naturally
describe his character arc by saying that he used to have the final goal of
“hoarding wealth”, but through the story’s events changed his final value to
something like “spreading good cheer” instead. And since this change was not
arbitrary, but for the better, we could say he learned a new final value.

On the other hand, we might say instead that Scrooge always had the fixed
but more mysterious goal of “increasing personal happiness”, and he changed
his beliefs about how best to obtain that one fixed goal. As Aristotle pointed
out long ago, “to say that happiness is the chief good seems a platitude, and a
clearer account of what it is still desired”15—in other words, happiness is one of
those opaque, learnable final goals.

Either way, I am happy to say with Bostrom that Scrooge, the inverse reinforce-
ment learner, and the envelope values maximizer are all “learning” new final
values in at least this important and relevant sense: they are attempting to
specify their vague and opaque final goals more precisely. And perhaps it is no
coincidence that one of the few ethical views that makes room for reasoning
about final ends is called specificationism, according to which “at least some
practical reasoning consists in filling in overly abstract ends . . . to arrive at

14See Ng and Russell (2000) for the seminal paper, Sezener (2015) for a more flexible (and
more computationally troublesome) take, and Hadfield-Menell et al. (2016) for incorporating
the observed agent’s feedback (“cooperative inverse reinforcement learning”).

15Aristotle (350BC), 1097b22.

8



richer and more concretely specified versions of those ends.”16 So here we have
something of a solution to our first value learning problem: how can we learn a
final value? Answer: if it is abstract enough, we can attempt to specify it more
concretely.

It may seem obviously unwise to give a potentially superintelligent value learner
a deliberately underspecified and mysterious goal. I share this misgiving; I
just think providing a precise and unmysterious goal must be even worse. For
one thing, the danger from superintelligence is not really unpredictability. A
monomaniacal superintelligent paperclip maximizer, for example, would be
utterly predictable—at least in its final goal—but no less dangerous for that.
For another thing, our own values are complex and vague, so we can be confident
that a superintelligence with a precise and simply-stated goal (simple enough
at least for humans to program it directly) will not align with our interests.17

After all, if we could specify exactly and briefly what our values consisted in,
there would be a lot less moral disagreement in the world.

Another apparent problem with this proposal is its threat of circularity. On
this picture, final values can be specified by beliefs; more generally, top-level
imperatives can be altered by upstream indicatives. But the indicatives, after all
(instrumental goals on down) are aimed ultimately toward fulfilling the top-level
imperatives. What, then, is the ultimate arbiter? Or is it possible, as Henry
Richardson asks, to do practical deliberation “without an umpire”?18

Though problematic, such cases are quotidian. Sometimes, when faced with the
tension between a deep desire for tasty grapes and a belief that they are well
out of reach, we keep the desire and alter our instrumental goals, devising new
strategies until we come to believe “I can get those grapes” (and eventually “I am
tasting yummy grapes”). Other times, the belief that the grapes are unattainable
is the relatively stubborn thought, and we attenuate the desire for them instead.
Which happens depends on whatever other tiebreakers are nearby in the cognitive
system. Philosophers are long familiar with such situations, in which any one
element may be revised to satisfy enough of the others, and no elements are
needed to be foundational or axiomatic. It comes up in epistemology, for example,
where higher-level (more abstract) indicatives conflict with lower-level (more
perceptual) ones. Suppose you perceive something truly surprising—perhaps, a
tiny flying elephant. In some circumstances you might decide your senses are not
currently trustworthy (say, you just took a hallucinogen); in other circumstances
you might revise your higher-level beliefs about the probability of such things
occurring (say, you are visiting a top-secret genetic engineering lab). In such cases
we seek to resolve the conflict while causing the fewest other conflicts and tensions
elsewhere. In other words, we seek overall coherence. Ethical specificationism
suggests we appeal to similar overall coherence considerations when determining

16Millgram (2008) p. 744. See also Kolnai (1962), and Richardson (1994) for an extended
treatment.

17See Yudkowsky (2011).
18Richardson (1994) p. 137.
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whether the belief should alter the final value (through specification), or the final
value should alter the belief (through action to bring about new perceptions).

The exact nature of coherence reasoning is itself a matter needing further
specification.19 The basic idea, though, is to systematize a set of elements
between which exist varying degrees of support and tension, typically without
holding any special subgroup as inviolable. Thagard and Verbeurgt (1998) and
Thagard (1988) suggest that it is best modelled as what computer scientists
call a “weighted constraint satisfaction problem.”20 For a simple example,
imagine planning the seating chart for a wedding. Between any two guests
you might assign some degree of positive or negative conviviality (including
perfect neutrality), and then try variations of table assignments to maximize
the conviviality total. Optimizing these calculations is in general impossible for
even a supercomputer to do in a reasonable amount of time—as anyone who has
tried such tasks will be unsurprised to learn.

In our case, seeking coherence among the various and differently-weighted in-
dicatives and imperatives in the system seems to me an especially apt way to
capture how abstract content could guide specification of a final goal while
not already deductively containing some specification. Since an aim at overall
coherence ultimately shapes both the imperatives and indicatives, we could
say that maximal coherence is the true, final, fixed, unlearnable goal of such
an agent—the ultimate “umpire.”21 Indeed, I suspect coherence-seeking is a
necessary condition for being an intelligent agent in the first place, and find
support in views like that of Friston et al. (2015).

But of course agents could not seek “pure” coherence, for its own sake. The
coherence must involve satisfying imperatives already in place for the system,
such as for food, or for images of paperclips. We don’t want our superintelligence
to learn any complex, abstract goal. Thus so far we have only the barest hint of
high-level design for an agent that can learn complex values: we want it to be
a coherence reasoner, able to adjust its final goals (via specification) based on
its beliefs, while also aiming its beliefs (in particular its assessment of how it’s
doing) toward satisfaction of (its best current guess at) its final goals. We’ve
already seen two examples of such “coherence” reasoning schemata—inverse
reinforcement learning and AI-VL. But how do we engineer a coherence reasoner
to learn an abstract, complex, vague goal that also has decidedly friendly content?
This brings us to our next two problems for value learning.

19As Elijah Millgram (2008) puts it, “coherence is a vague concept; we should expect it to
require specification” (p. 741). Note in particular that the coherence sought here is not (just)
the probabilistic coherence demanded by Bayesian reasoning, familiar to many AI theorists.

20In collaboration with Millgram, Paul Thagard developed accounts of deliberative coherence
in Millgram and Thagard (1996) and Thagard and Millgram (1995); see also Thagard (2000).
Though inspired by such work, I now lean toward an alternative Millgram also mentions—see
e.g. Grünwald (2007).

21Note Richardson (1994) would not agree; see his section 26. (His account relies instead on
a “sovereign deliberator” that I find dubious in light of naturalism and AI.)
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Learning specific final values

The second philosophical problem implicated in the value alignment problem is
to determine the relation between a system’s physical or computational structure
and that system’s values. We have been taking a “functionalist” approach to
such questions, where valuing some state roughly means processing observations
in a way designed to select actions that achieve that state. But this requires
spelling out. Adapting the parable of the thermostat from Daniel Dennett’s
(1981) paper, we could spin functionalist-style stories according to which an
ordinary paperclip-manufacturing machine of today “wants” to bend wire into
paperclips when it “believes” it is receiving wire in one end, “wants” to sit idle
when it “believes” its power is off, and so on. But no one is inclined to say
that an ordinary paperclip-making machine of today has a real value of making
paperclips. Dennett’s hypothesis is that we do not attribute making paperclips
as a goal to such a machine because it is not very resourceful in achieving
it—in other words, on a standard reading of “intelligence” as adaptability in
achieving goals, the machine is not intelligent. If the wire isn’t fed just right or
the electricity isn’t on, no paperclips will be made.

But now consider variations on ever-more sophisticated and resourceful paperclip-
making machines. Suppose it has sensors indicating when it is about to run
out of wire, and able to dispatch itself in the direction of more. Suppose it has
sensors for, and safeguards against, being turned off or losing a power supply.
Suppose it experiments with new paperclip designs, has various ways to sense
whether it is successful in making more paperclips, and so on. At some point—at
least at the point where it is able to coax us into providing it with more raw
materials—the functionalist should say that thing really does, literally, want to
make paperclips.

This still leaves room for debate over the precise content of such values, however—
and getting the precise content right is very much at issue in value alignment.
Consider a well-worn philosophical illustration of simple but still indeterminate
mental content: suppose a small dark patch moving through a frog’s visual field
causes the frog to snap out its tongue, thereby catching and swallowing a tiny
dark metal ball that happened to be sailing by.22 Between the stimulus and the
response, there was some causally-related activity in the frog’s brain—the frog
was, very broadly speaking, thinking. But what exactly was it thinking about?
We might naturally say that the frog’s brain mistakenly was thinking hey, a
fly, and so snapped at it. Or perhaps it was just thinking of it more broadly
as insect? Or more narrowly as a fly that is nearby and healthy? Or perhaps,
looking up the causal chain for more distal causes for the cognition, it was
thinking of food, or survival affordance, or inclusive genetic fitness enhancer? Or
perhaps we should be looking further down the causal chain, to more proximal
causes—perhaps it was just thinking hey, a small dark flying thing, or hey, a

22The case is discussed extensively in Fodor (1990), but is older than that; the source
reference tends to be Lettvin et al. (1959).
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spot on the retina. If so, the frog wasn’t mistaken at all, since there was a small
dark flying thing and spot on the retina; it just took (by evolutionary design) a
reasonable chance on such a thing’s correlating with flies.23

I have found myself growing more and more sympathetic to Dennett’s view on
this matter: he doubts that there is a determinate fact of the matter about
the frog’s mental content in such cases, and furthermore thinks this is not a
serious problem.24 Still, I think, we can take his point that more intelligence—
i.e., more sophisticated routes to goal satisfaction—nails down mental content
more precisely. If the frog also had infrared sensors that needed to be triggered
simultaneously with the right retinal stimulations, for example, then dark moving
spot is no longer sufficiently explanatory for why its tongue snapped; it would
have to be at least dark, warm moving spot. Suppose we add acute smell, acute
hearing, eyes that are telescopic and high-speed (that is, with a high “critical
flicker fusion” threshold), an ingrained memory bank of various sensory profiles
to snatch at and not snap at, and the capacity to add to and adjust that memory
bank based on experience. Each such addition means fewer plausible candidates
for what the frog thinks it is snapping at. Dennett (1981) says

the more we add, the richer or more demanding or specific the seman-
tics of the system, until eventually we reach systems for which unique
semantic interpretation is practically (but never in principle) dictated.
. . . [A]s systems become perceptually richer and behaviorally more
versatile, it becomes harder and harder to make substitutions in
the actual links of the system to the world without changing the
organization of the system itself. If you change its environment,
it will notice, in effect, and make a change to its internal state in
response. (p. 30–31)

The suggestion here, I take it, is that mental content can be relatively constrained
by multiple routes of embedding in the environment.25 A frog that does not
alter its behavior when its environment throws it more metal balls than flies is
not particularly sensitive to the details of its environment, while one that goes
seeking greener, more fly-infested pastures when bombarded with metal balls is
more plausibly “thinking” about flies and “noticing” that it isn’t getting any.

The examples so far have exposed a philosophical tendency to focus on indicative
mental content, but I propose we take a similar lesson on the imperative side.
Recall the paperclip maximizer that taped pictures to its cameras, because it

23Neander (2018) has a good overview of the indeterminacy problem in the context of
“teleological” theories for reading mental content off of physical facts. The best example of
such a theory, perhaps, is based in Ruth Garrett Millikan’s seminal (1984).

24See e.g. Dennett (1987).
25At least, our access to and attributions of mental content will be more constrained, if not

the content itself.
Note Fred Dretske (1986) takes the learning aspect to be especially important; as long as

there are a fixed number of sensory routes s1, s2 . . . sn to fly detection, we can always say
what’s really meant is “s1, or s2, or . . . sn” rather than “fly”. But not so if the set of
perceptual routes is indeterminate, depending on what the creature learns.
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was rewarded when its visual stream included massive piles of paperclips. The
content of that reward signal is unclear: is it a loose, easily subvertible directive
actually to make more paperclips? Or is it a more narrow directive to gain
images of paperclips, by hook or by crook? One way to put the question, roughly
speaking, is to look at the prototypical causal chain explaining the behavior, and
ask where on that chain are the content-determining causes: a distal cause, like
the designers’ intentions? An intermediate cause, like paperclips? Or a proximal
cause, like the digitized sensory stream of paperclips?

This strikes me as a question like whether the frog is thinking about survival
affordances, flies, or dark moving spots. In the frog case, I suggested that
multiple low-level perceptual modes can constrain the indicative content toward
the richer and appropriately intermediate cause (a fly). Similarly, in the RL
case, perhaps the proximal content of multiple, incommensurable reward signals
can triangulate on an imperative with rich and appropriately distal content. If
the paperclip maximizer is rewarded not just for visual inputs of paperclips,
for example, but also for the right combination with the feel of wire (or raw
materials) through its intake channels, the characteristically tinkly sound the
clips make as they hit the pile, and so on, then it becomes more plausible that
taken together the system has a goal of making paperclips.

It seems to me that this is roughly the solution evolution found for us humans.
On average—and despite short-circuiting opportunities—enough humans reach
the distal evolutionary goal of reproduction through a combination of proximal
rewards for eating, having sex, caring for young, and so on.26 This is not to
imply that reproduction is our one true final goal, but only the goal nature
imperfectly designed us to achieve; the multiplicity of things we find rewarding
together point us at least as well toward “happiness” or “life satisfaction” or
some such. Of course the possibility that such goals may totally subvert nature’s
“intended” goal for humanity illustrates the danger here; we have to do at least
as well as eons of natural selection.

What I propose, in effect, is that we provide a value learner with multiple,
concrete, simple, and proximal final values with the aim that, through coherence
reasoning, they will blend into the content of one abstract, complex, and distal
final value. These are the agents I called miktotelic: “blended-goal” agents.

I think this also proposal matches our subjective experience of specifying our
final values. As a kind of case study, consider the story of Howard Raiffa’s
difficult decision. He was an academic who at one point had to decide whether
to keep his comfortable post at Columbia University, or take a new job offer
from Harvard. While pacing the halls and fretting, the story goes, he ran into
the philosopher of science Ernest Nagel. Nagel archly pointed out that Raiffa’s
academic expertise was in the relatively new field of decision theory. “Apply

26Honestly I often think of this on the simple model from a computer game I used to play
(back before my own reproductive successes), The Sims. To keep your simulated person happy
in the game requires maintaining several ever-decaying signals at once: “hunger”, “social”,
“bladder”, “hygiene”, “energy” (requires enough rest), and “fun”.
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your own theories,” Nagel in effect told Raiffa. “Crunch the numbers.” To this,
Raiffa infamously replied, “Come on, Ernest. This is serious.”27

In point of fact, Raiffa said in an interview that he did apply his theories
and crunch the numbers—he and his wife looked at “ten objectives which we
scored and weighed.”28 (It’s worth nothing, though, that after the calculations
were done, they also “tested” their decision by committing in every way except
formally, to see how they slept for a week.) Though few sit down to do the
math, the attempt to weigh different “objectives” against each other should
sound familiar. When faced with hard decisions like these, it feels as though
one decision fits some of our values, another fits other of our values, and we are
not sure how to trade them off. For our purposes we can imagine the Raiffas
had just three objectives to trade off: perhaps support for research (including
colleagues, teaching load, and interdisciplinary opportunities), material comfort
(salary, benefits, and relative cost of living), and culture (including network of
friends). We might imagine the scores came out something like this:

research comfort culture
Harvard 7 8 4
Columbia 5 6 9

Let us call the individual objectives the “simple” values, and the complex tradeoff
that the Raiffas are seeking to maximize the “complex value.”29 Such decisions
are easy when one option outscores the other on all the simple values—but often,
as here, there is no such “dominating” solution. (Raiffa explicitly says neither
choice dominated.) If we simply add up the individual scores, then Columbia
edges out Harvard, but Harvard wins if we count the number of simple values
for which it’s better. Or, like the Raiffas, we could assign weights of relative
importance to the simple values, and take the weighted average: if for example
they assigned weights of 〈5, 3, 2〉 to the respective values then Harvard wins, and
if they assigned weights of 〈3, 3, 4〉 then Columbia wins. But then how are those
weights to be set?

Assuming we are biological machines, there must be some algorithm somewhere
to settle on such questions. (Anyway there would have to be one for AIs.) Of
course the algorithm in question could be arbitrary, taking random factors of one
kind or another into account, in effect flipping a mental coin. But I do not think
so. Sure, some elements will typically be arbitrary, such as framing effects of

27I got this story from Thagard, who recently claims pretty good corroboration for it; see
e.g. the opening of chapter 6 in Thagard (2010).

28Raiffa and Fienberg (2008) p. 142.
29These are not meant as actual examples of what I mean by “simple” values in humans,

which I take ultimately to be biological, fixed reinforcers roughly like the “four Fs” (food, fight,
flight, and reproduction). Thus a relatively simple value like “adventure” might itself be a
complex blend of lower-level reinforcers to do with novelty and how it is registered in the brain
(biologically as dopamine, or computationally as surprisal measure, etc.).
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the question, or our mood at the time. But to say such hard choices are entirely
arbitrary (when no option dominates) is quite a skeptical position—it suggests
there can be no better or worse answers in these cases. I trust this is not our
experience; we fret about playing our different objectives against each other
because we think one combination will be better for us, and we don’t know which
it is. This notion that some combinations of simple values could be better or
worse than others is, I suggest, what makes it the case that there really is some
further, complex, underspecified value like “happiness” blended out of them.

The first challenge here is to spell out the “blending”. On the one hand, the
multiple simple goals must ultimately be in some sense reducible to one measure
of overall preference, it seems, in order to result in definitive and non-arbitrary
action selection.30 On the other hand, the simple goals cannot be perfectly
fungible if they are to be truly distinct. For example, if to the Raiffas more
creature comfort is perfectly exchangeable for less culture and vice versa, then
we may as well treat their sum as one disjunctively characterized value for
maximizing.

Such difficulties have already been explored in the literature on multi-objective
optimization. In multi-objective reinforcement learning, for example, the reward
comes from a vector of simple reinforcers 〈r1, r2, . . . , rn〉. Like the Raiffa case
above, such vectors of are generally not straightforwardly comparable, so policy
selection requires some further strategy. For miktotelic purposes, the most
appropriate strategy is to find a principled way to scalarize the vector, smashing
its elements into one uber-reward number.31 The Raiffas did this by taking
a weighted average of the simple values, but there are many more complex
possibilities.

As an oversimplified example, a paperclip maximizer might need a fairly consistent
tactile sense of wire being fed to the twist-and-cut component, but only occasional
visual inputs of piles of paperclips, and even less common sensory reassurances
that there is a sufficient supply of metal in the world to continue.32 Some
constraints would also apply to relations among different component reward
signals; perhaps the reward for the proprioceptive sense of having gone through
a twist-and-cut motion should always outweigh visual rewards, for example.
Meeting or failing these constraints might involve different kinds of rewards or
penalties in the final measure; perhaps any time r3 < r17, the agent incurs a
reward equal to 25% of r17, or perhaps if there is any time interval of length n
over which the total of r6 falls below some set parameter, the agent incurs a

30For a nuanced discussion of such commensurability, see chapter VI of Richardson (1994).
31See Wang (2014) and Gábor, Kalmár, and Szepesvári (1998). Another strategy besides

scalarizing is to treat each Pareto-optimal policy proposal as a kind of sub-agent with negotiating
power; see Critch (2017). I might mention that yet another type of approach to reconciling
multiple basic values is to elaborate the DECO model of deliberative coherence from Millgram
and Thagard (1996) into a model of “belief-desire coherence”—as I have previously (2003)
sought to do.

32This is oversimplified in part because an intelligent agent would learn some of these as
instrumental goals.
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penalty exponential in the shortfall.

So far we have considered an RL version of miktotelic agents, but similar
considerations apply for miktotelic utility agents: instead of one utility function,
provide a vector 〈U1, U2, . . . , Un〉 of utility functions, plus a set of constraints. In
both cases, each component utility function or reward signal might be relatively
simple, but determining the resulting total reward or utility via the constraints is
computationally complex.33 This complexity of determining the final preference
ordering (to pick a term neutral between the RL and utility agent cases) is
crucial—it is what makes the blended, complex value mysterious enough to
require learning. If there is one complex phenomenon underlying all the simple
imperative signals (as fly might underlie dark warm buzzing . . . spot), the
value learning agent will have to resort to any available information in order to
approximate it.34

Thus suppose, in a (relatively) simple case, we wish our superintelligence to
maximize human happiness. This is an abstract goal, in need of specification;
Scrooge had trouble specifying it, and so do we. How could we seed it in a
value-learning AI? If we just treat visual appearances of smiles as proxy evidence
for happiness, then as Eliezer Yudkowsky (2011) points out, the superintelligence
could “tile the future light-cone of Earth with tiny molecular smiley-faces.”
Clearly we would not have succeeded in a superintelligence with values that have
happiness in their content. But if visual appearances of smiles bring defeasible
reward, and so do audible signals of laughter, and volunteered verbal reports of
happiness, and lighthearted whistling, and contented sighs, and longing gazes,
and ecstatic dancing, and lack of coercion, and certain fMRI results, and so
on—and if all those reward signals are set with constraints and thrown into a
coherence calculation, then it may be (may be) that the coherently reasoning,
miktotelic value learner will be forced to start theorizing about how best to
balance these conflicting considerations, and at some point stumble upon the
idea that there is one mysterious phenomenon underlying (enough instances of)
them all, worthy of investigating.

No doubt the miktotelic approach faces its own serious challenges. The most
obvious is what I think of as the recipe problem: it will be difficult to determine
what simple values, in what arcane mixture, together blend into genuine pursuit
of a complex and friendly final goal. Normally we can try to reverse engineer a
complex recipe by patient trial and error. But when it comes to superintelligences,
we probably won’t have that luxury; our first trial (and error) is likely to be our
last.

33I mean the reward signals or utility functions can be “simple” in the sense of low Kolmogorov
complexity: essentially, they require relatively few lines of code to specify precisely. Calculating
the combined total is “complex” in the different sense that, as in other weighted constraint
satisfaction problems, finding the vector to optimize the scalar typically cannot be done in
reasonable amounts of time (even by a superintelligence), and must be approximated.

34There is more to be said about when and whether there is an “underlying phenomenon”. I
will not be saying it here, though.
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Even if we had complete recipes for each candidate complex friendly goal, though,
we would still have to choose which final values we should design an agent to
learn. This was our third philosophical problem for value learning, to which I
now briefly turn.

Learning specific ethical final values

Chapter 13 of Superintelligence considers the question of ideal seed values in
detail. As Bostrom points out, it is closely related to—but not necessarily the
same thing as—asking what the ethically correct value system is for any agent
to have.

Obviously I will not be settling the question of the right value system here—but I
want to suggest that coherence reasoning can help, given properly seeded simple
values. Though philosophers disagree on the moral facts, there is fairly broad
agreement on the method that should ideally be used to extract them: “wide
reflective equilibrium.”35 This method is basically itself a form of coherence
reasoning: look at considered evaluative judgments of particular cases, and
try to generalize them into principles; then, test the principles against the
cases—sometimes revising the principle, and sometimes rejecting the particular
judgments, depending on the overall coherence.36

For example, we could potentially give a miktotelic agent an array of basic
reinforcements and inhibitions to correspond with our own varied and particular
judgments of rightness and wrongness, and let the coherence engine determine
a theory that best unifies these. It might have basic aversions to perceptions
of violence, say—but then coherence calculations might determine that some
particular acts of violence are justified by wider principles gleaned from other
basic aversions. A superintelligence would presumably be particularly good at
calculating such coherence, and perhaps come to a value system that we admire
from our own perspective as clearly more coherent than our own.

In summary, then, here are the interrelated answers to the three problems with
which we began.

1. An agent can learn a final goal by specifying an ambiguous, complex final
goal through a coherence calculation.

2. An agent can have a complex final goal of fairly determinate content by
building it out of simple goals blended with constraints on their relations.

3. An agent can learn the right final goal by seeding it with simple values
of the type that in coherent reflective equilibrium will lead to plausible
ethical principles.

35The seminal statement is in Rawls (1971), with elaboration in e.g. Daniels (1979).
36Reflective equilibrium over human value judgments seems as though it would result in

something closely related to the “Coherent Extrapolated Volition” from Yudkowsky (2004);
Bostrom discusses the proposal in some detail starting from loc. 4907.
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Obviously, this “miktotelic” proposal for machines learning values is—like much
philosophical work—just the barest outline of how to proceed. Even if it with-
stands criticism at the conceptual level, there is much more work to be done on
the computational one.
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