
 

  
  

  
 

  
 

 
 

  
 
 
 
 

 
  

 
 

  
 
 

 
 

 

    

 

 

 

 

 

2 Multiple Patterns, Multiple 
Explanations 

Steve Petersen 

Introduction 

At the heart of the unificationist account of scientific explanation is the 
idea that we explain events by subsuming them into wider patterns (Kitcher 
1989). We can supplement this key idea with a formal theory of patterns, 
according to which a pattern is a regularity in the explananda that allows for 
data compression. This notion is lifted from algorithmic information theory 
(AIT), which also goes by the name “Kolmogorov complexity theory.” (AIT 
studies theoretical limits of data compressibility and identifies the informa-
tion content of a particular data string with the length of its best compres-
sion (Li and Vitányi 2008).) This formal pattern-based approach results in 
a robust version of explanation unificationism that is both immune to its 
usual criticisms and able to incorporate the best insights of rival accounts. A 
detailed defense of this “patternist” account of explanation is in the works. 
For this volume, though, I would like to highlight an independent feature: 
the patternist account of explanation can provide both a rigorous sense of 
how data can admit multiple explanations and a rigorous sense of how 
some of those explanations can conjoin, while others compete. 
I frame this as a response to James McAllister (2007), who argues 

that  three AIT-based model selection techniques—such as the patternist 
one I propose—are not adequate, exactly because they  cannot accommo-
date the multiple overlapping patterns that data sets frequently exhibit.1 

He gives three helpful examples of data sets with overlapping patterns, and 
we will focus on the simplest: a time series of temperatures at a particular 
spot on Earth. McAllister points out such a data set will have cyclical pat-
terns such as daily and yearly variation, as well as longer-term cycles from 
sunspots and the Earth’s precession. There will also be non-cyclical pat-
terns, such as the “hockey stick” of global climate change. McAllister says 

each of these models [diurnal variation, sunspots, etc.] must be 
regarded, in the light of our current knowledge, as very close to the 
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Multiple Patterns, Multiple Explanations 39 

truth: there are strong grounds for considering each pattern to be a 
genuine component of the data, and for regarding the hypothesized 
cause of the pattern to be a real physical phenomenon. 

(p. 888) 

He then argues that 

standard quantitative techniques for choosing among data models 
[such as from AIT] . . . lack the conceptual resources to allow for the 
possibility that a data set can be correctly analyzed in several differ-
ent ways. 

(p. 890) 

On the full account of my view, such compressing models are patterns, 
and those patterns can themselves be explanatory.This immediately seems 
wrong for the toy data set before us: the mere regularity of daily tempera-
ture variation is clearly not itself explanatory of the data. Rather, the 
explanation of that variation is (roughly) the rotation of the Earth. But 
this is just an artifact of the toy example because the explanation advert-
ing to the Earth’s rotation is relative to a different data set that includes 
such astronomical facts. Patternist explanation, as a form of unifcation-
ism, is a  global affair. When we consider all data actually available to us, 
the laws of physics come out as the fundamental explanatory regularities. 
(Patternism also allows for higher-level explanations at different levels of 
abstraction, but that is a long story.) In this toy example, I am pretend-
ing that our only evidence is this data series. Thus we are pretending the 
daily variation is a brute regularity that is minimally explanatory, but not 
itself explained (in the same way fundamental laws of physics could be 
unexplained regularities that explain). 
So although the chosen example does not make much sense of why I 

take models to be explanatory, that is beside the point here; the example 
is sufficient to make McAllister’s concern about accounts like mine clear. 
If we take such models to be explanatory, then McAllister’s examples 
illustrate how a data set can have multiple, noncompeting explanations. 
We would like a way to say that any such pattern  partially explains the 
data and consider how multiple partial explanations can combine or 
compete. McAllister holds that AIT-based accounts cannot accommodate 
this desideratum; here I aim to show that mine can. 

Patternist Explanation 

First I present the core of my patternist view, focusing on the relevant 
portions for this issue. Start with the “data set” at hand, such as the time 
series of temperatures from McAllister’s examples. Consider those data 
as encoded in one binary string x. (One simple example of binary data 



 
  

 

 
 

 

  
 

 

 
 

 
 

 

 
 

 

 

 

 

  

40 Steve Petersen 

encoding: a spreadsheet file containing the data, as represented in bits on 
your computer.) Next, fix a friendly universal Turing machine (UTM), 
U.2 By definition the universal U can emulate any other Turing machine, 
as run on any input; we simply encode the Turing machine to emulate, 
and the input to that emulated Turing machine (TM), as an ordered pair 
(p,n). (We can think of the emulated TM p as the “Program” and n as the 
“iNput” to that program.) The result is written U(p,n). 

The Kolmogorov complexity of data x, written KU(x), is the length of 
its best compression—that is, its complexity is the length of the shortest 
(p,n) required for U to output x. The standard example of how regulari-
ties allow for compression is a very long string of m 1s for some large 
enough m. Code like “for i from 1 to m: print 1” will be much briefer 
than the original string, showing the string to be quite simple. In the tra-
dition of Daniel Dennett’s “Real Patterns” (1991), any such  compressing 
regularity is basically all that I mean by a pattern. 

Pattern 

p is a pattern in data x iff it is the program portion of a compression 
of x, that is there is an n such that U(p,n) = x and len(p,n) < len(x). 

Since being a pattern is a necessary condition for explanation on my 
account, we could call any such pattern a  potential explanation of the 
data. For our purposes we can think of the input n to p as the noise term, 
although “noise” isn’t quite right, since it can contain details of realiza-
tion in addition to error terms and may carry patterns itself. Calling n 
the “noise” is only appropriate insofar as it is  intended to carry the non-
patterned information. The simplicity of the pattern and of the noise are 
measured by their lengths, that is, the number of bits they each require 
to be fed into the UTM in order to recreate the original data set exactly. 
For example, we could model our time series of temperatures by trying 
to curve-ft it to some polynomial. If we pick a very simple polynomial, 
such as a straight line, then the p portion of the compression will be quite 
short—but we will also need a lot of error terms, encoded into a much 
longer n, to reproduce the original data losslessly. On the other hand we 
can pick a polynomial with no error terms if it has as many degrees as 
there are data points. But then of course the polynomial will be extremely 
complicated, resulting in a very long p portion. Seen this way, the game 
of curve-ftting is to fnd the right trade-off between model simplicity and 
model ft. AIT provides a common currency in which to make that trade: 
the length in bits of p (model) and n (noise). 
It is important to emphasize, especially in response to McAllister, that 

program p is only a pattern in the data if its length together with the 
length of the noise term n are shorter than the original data x. This is 
crucial in the AIT tradition of Minimum Description Length for finding 
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a good trade-off between model simplicity and data fit: any additional 
model complexity must pay for itself with smaller error terms, and larger 
error terms must pay for themselves in model simplicity (Grünwald 
2007). Only data sets with some real regularity can actually be  com-
pressed by a trade-off between these two considerations. 

A data set like our time series of temperatures x will exhibit multiple 
patterns in this sense: it is very plausible that each of the regularities 
McAllister mentions will, on their own, be sufficient to compress x. But 
this does not yet show that data sets can have multiple explanations, 
because not all patterns are genuinely explanatory on my account. For 
example, a mere preponderance of 1s over 0s will be enough to compress 
a long-enough binary string (by Shannon-Fano encoding), and so will be 
a genuine pattern in the string by my definition—but this compressing 
regularity tells us nothing about what we would intuitively consider the 
reason for such a preponderance.3 

To account for this, patternist explanation requires a fundamental 
notion that I call a “proper” explanation. A proper explanation is basi-
cally an “ideal compression” of the data, in a specific sense: not only are 
the (p,n) together minimal in length, but the p is the shortest possible of 
all such pairs in that minimal length.4 So a proper explanation is the sim-
plest program portion of the best compression of the data. 

Proper Explanation 

Pattern p* properly explains data x iff p* is a shortest pattern por-
tion of a maximal compression, that is, KU(x) < len(x) and for some 
n, U(p*,n) = x, and for any q and m, if U(q,m) = x then len(p*,n) 
≤ len(q,m) and len(p*) ≤ len(q).5 

Preference for such a model seems to be roughly the concern McAllis-
ter had in mind: this “one model to rule them all” looks like it would 
crowd out all the particular, individual explanatory patterns in x that 
might interest a scientist. Worse, these proper explanations are extremely 
demanding; it is very unlikely we have identifed all patterns in tempera-
ture variation, for example, and in general extracting all the explana-
tory regularities from a data set is an uncomputable ideal. Thus we 
possess very few if any proper explanations. Yet it seems that there is 
at least some important sense in which science does, now, possess good 
explanations—in particular, as McAllister’s example illustrates, it seems 
that even though we are unlikely to have found the best possible explana-
tion of x in terms of all its regularities, we already possess several  partial 
explanations of it, none of which is the whole story. 
So to address concerns like McAllister’s and accommodate the possi-

bility of multiple explanations, patternist explanation must make sense of 
such partial explanations. The key move is to define partial explanations 



    

 
 

 
  

    

  

 

 

 

 

 
   

 

 

 
  

  

 

 

  
 

 

42 Steve Petersen 

as any pattern that, in a precise algorithmic sense, provides some infor-
mation about the proper explanation. String a provides information 
about another string b just in case KU(b | a) < KU(b), where KU(b | a) is 
the conditional Kolmogorov complexity: the length of the shortest (p, n) 
required to produce b given string a as input “for free.” In sum, a pro-
vides information in this sense about b when b is easier to compress if a 
is already known. The measure of  how much easier, in bits, is called the 
algorithmic mutual information between a and b:6 

I (a b: ) = K ( )b −K (b | a)U U 

Note this sense of “provides information” contrasts with a more stan-
dard reading, where to provide information is to eliminate some possi-
bilities. To say string x starts with a 1 provides information about x only 
in the latter sense. 
Algorithmic mutual information allows us to define a partial explana-

tion as one that gives some information about the proper explanation: 

Partial Explanation 

Pattern p partially explains data x if and only if p provides informa-
tion about x’s proper explanation p*, that is, for some n, U(p, n) = x, 
and len(p, n) < len(x), and KU(p* | p) < KU(p*). 

Thus patternism formalizes a strategy for partial explanation that is 
perhaps familiar from Peter Railton’s (1981) proposal: we start with an 
“ideal explanatory text” (what I’m calling the “proper” explanation) and 
count the right information about that ideal text as partially explanatory. 

An ideal compression of x will exploit all patterns McAllister mentions 
and then some—but simply noting the variation from a 24-hour cycle 
will surely be enough to compress the data to some extent, and this pat-
tern seems very likely to be part of the best compression. Roughly put, 
a programmer trying to compress the data as far as possible would hap-
pily incorporate a subroutine that can adjust for daily variation and then 
layer other factors (such as the yearly cycle) on top of it. This is why, on 
my view, it is right to say the daily cycle helps explain the temperature 
variation at that spot. It may also of course be the most  relevant partial 
explanation in some particular context. McAllister worries the best com-
pression “disregards all the other patterns” (p. 890), but on this account 
it incorporates all the patterns that are partially explanatory. 
Note that because we won’t typically have the proper explanation in 

hand, we typically won’t be able to  know whether some pattern provides 
information about the proper explanation, so we won’t know whether 
the pattern is partially explanatory. Strictly speaking any account accord-
ing to which explanation is factive will run this risk—we can always 



  

  

 
 

 

 

 

  
   

 

 

 

 
 

 

 

 
 

 

 

Multiple Patterns, Multiple Explanations 43 

think we have an explanation and be wrong. But my account may seem 
more worrisome on this score because it is harder to see how we could be 
justified in thinking some pattern is part of the ideal explanation. Com-
pressions are rare, though; there can certainly be patterns that tell us 
nothing about the proper explanation, but I think just finding one is some 
evidence we are on the right track. In practice the patternist about expla-
nation will simply seek the best patterns for the purpose. When we are 
lucky enough to find two or more patterns in the data, we can consider 
the degree to which they conjoin or compete (in the sense cited later), 
slowly triangulating on the proper explanation. 
McAllister closes his paper by suggesting that an algorithmic approach 

to model choice must, at the least, be able to take a pre-specified tolerance 
for noise into account since plausibly this is what practicing scientists do 
when they work at different levels of abstraction, examining different 
patterns. He claims that approaches like mine cannot accommodate this. 
Here I have tried to show how they can: by appealing to genuine patterns 
in the data, partial explanations allow for approaching a data set at dif-
ferent levels of noise tolerance. But this does not mean “anything goes” 
either; to be good objects of scientific inquiry, the patterns in play must 
still compress, even with the noise term. And to count as explanatory, 
they must tell us at least something about the full, “proper” explanation. 

McAllister’s Anticipatory Response 

McAllister anticipates a response like mine, namely 

to claim that there is indeed a unique best model of any such data 
set—the one corresponding to the sum of several or all the patterns 
that can be identified in the data—and that the quantitative tech-
niques can be expected to pick out this pattern as the closest to the 
truth. 

(p. 891) 

He gives two reasons this response will not work; I will respond to them 
in turn. 

First, the sum of all patterns that can be identified in the data would 
probably coincide with the complete data set itself, since any discrep-
ancy between a data set and a pattern identified in it can be endlessly 
analyzed as a sum of further patterns. 

(p. 891) 

Perhaps in the grip of my own view, I confess it is not easy for me to make 
sense of this passage; I suspect McAllister means something quite differ-
ent by “pattern,” or perhaps “sum.” In my defned sense of “pattern,” 
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at least, it is clear that the sum of all patterns does not “coincide” with 
the data set itself. For a simple example, think again of the program “for 
i from 1 to m: print 1,” which I suppose is the one best compression of a 
long string of 1s. That program is thus the “sum of all patterns” for a long 
string of 1s, but it is not the same as that long string. 
Also—again, in my defined sense of “pattern”—it is not true that the 

discrepancy between the pattern and the data set (which I take to be the 
n term) can be “endlessly analyzed as a sum of further patterns.” Though 
partial explanations may leave some patterns in the n term, the ideal 
compressing program behind the “proper explanation” must squeeze out 
any such regularities, leaving its noise term incompressible. 7 At any rate, 
however McAllister understands “discrepancies,” they cannot be endlessly 
analyzed as compressing patterns (I’m not sure how literally he meant 
this); in general a lossless compression cannot itself be compressed.8 

So let us put this objection down to a miscommunication about “pat-
terns” and turn to McAllister’s second response: 

Second, scientists adduce individual patterns in data as evidence for 
claims about the contributions of individual causal factors. The evi-
dence for a claim about the existence and effect of a causal factor 
consists of the component pattern that is determined by that causal 
factor alone: it does not consist of the resultant pattern determined 
by the combination of several or all causal factors operating in a 
physical system . . . . For these reasons, the notion of a sum of several 
or all patterns does not nullify the reality or the significance of each 
component pattern. 

(p. 891–892) 

McAllister rightly points out that scientists will want to isolate different 
such patterns; in the case of x, for example, climate change scientists will 
likely focus on the long-term patterns, while meteorologists will focus on 
more daily ones. I hope it’s clear that patternism can account for this. We 
often focus on one aspect of the “ideal explanatory text” or the other for 
pragmatic reasons. The climate change scientist and the meteorologist are 
both studying legitimate partial explanations of the variation in x. 
McAllister summarizes his position this way: 

In this paper, I argue that the assumption that an empirical data set 
provides evidence for just one phenomenon is mistaken. It frequently 
occurs that data sets provide evidence for multiple phenomena, in the 
form of multiple patterns that are exhibited in the data with differing 
noise levels. This means that, in these cases, several different models 
of a data set must be regarded as equally close to the truth. In the 
light of this fact, none of the standard techniques for selecting among 
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models of data sets can be considered adequate, since none allows for 
the possibility that a data set may admit multiple models. 

(p. 886–887) 

I think the best thing to say, in cases like the temperature time series, 
is not that the diurnal, annual, etc. models are all “equally close to the 
truth”—rather, they are all  part of the whole truth, and some may be big-
ger parts than others. 

Measuring Competition and Conjunction 

I would like to close with a related advantage. Not only can patternist 
explanation accommodate multiple explanations, but it also can provide 
a precise measure of the extent to which different partial explanations of 
data can conjoin or compete. Recall the information that partial explana-
tion p provides about the proper explanation p* is measured in bits by 
I(p : p*) = KU (p*) − KU (p* | p). It seems to me that if partial explana-
tions p and q each capture different aspects of the proper explanation, so 
that they are perfectly complementary, then this means that together they 
would provide as much information about proper explanation p* as each 
individually. Where pq is the concatenation of the two programs, then, 
we should have9 

I(p : p*) + I(q : p*) = I(pq : p*) 

I would consider such a pair of partial explanations to be perfectly con-
junctive. On the other hand, p and q might be totally redundant—that is, 
once you have the information from one, the other does not help to com-
press p* further at all. In this case the savings of both together will be no 
better than the most informative alone. If p is the more informative pat-
tern, so that I(p : p*) > I(q : p*), then complete redundancy would mean 

I(p : p*) = I(pq : p*) 

(Note it can never be the case that p gives more information than p and 
q do together.) When p and q are redundant like this, they are perfect 
competitors; there is no reason to take both on board. We might prefer 
p, since it contains all the information in q and more—it “screens off” q. 
Or we might prefer q for its more narrow focus given a specifc interest, 
especially if it is shorter. But in no situation would we want to use both. 
There are many possibilities between these, where there is some com-

peting overlap of information but also some coordination between the 
two partial explanations. Since the worst that can happen in conjoining 
the two is no improvement over the best of the two (perfect competition), 
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and the best that can happen is for each to maintain its full explanatory 
force, so that the two together are as powerful as each separately (perfect 
conjunction), we can measure the  degree of complementarity by compar-
ing how each does separately vs . both together. That is, take the sum of 
bits saved by each individually, and subtract off the bits saved by the two 
together. The result will range between zero for perfect conjunction, and 
the size of the wasted number of bits of the worse explanation for perfect 
competition. We can thus normalize by this worst possible case, to get a 
measure in [0 1, ]: 

I ( p p ) + I (q p: *) − I ( pq p: *  : *)
0 ≤ ≤ 1 

: *))min (I ( p p: *) , I (q p  

Here 0 is perfect conjunction, and 1 is perfect competition. 10 

Readers of this collection especially may be familiar with Jonah Sch-
upbach and David Glass’s two desiderata for hypothesis competition 
(2017): 

1. “Hypothesis competition is a matter of degree.” 
2. “There are two pathways to hypothesis competition: a direct path-

way and an indirect pathway via the evidence.” 

We have just seen how patternism captures the frst of these. The sec-
ond is not so straightforward in this AIT framework. In the tradition of 
inference to the best explanation (Harman 1965), all the hypotheses are 
intended as explanations, and explanations always have their  explananda 
as their evidence. So it is not clear how hypotheses can compete “directly” 
as explanations, independently of what they purportedly explain. 11 

We would further like to be able to compare two hypotheses in practice, 
where we usually don’t know the proper explanation. When we have two 
potential explanations p and q of data x—that is, two compressing regu-
larities that may or may not provide part of the proper explanation—we 
can ask the extent to which they overlap in compressing x using similar 
mechanisms as mentioned previously. Since the Kolmogorov complexi-
ties of our strings will generally be unknown, we can instead ask whether 
pattern p can help compress the noise term for q, or vice versa. There 
is no straightforward, tractable algorithm here; it is a matter of under-
standing the patterns well enough to see whether and how they might 
interact.12 As a simplified example, suppose p divides the temperature 
time series x into 24-hour chunks and exploits the predictable curve for 
each such chunk well enough to compress them—but it treats the aver-
age temperature for each such chunk as unexplained noise. Suppose q, 
meanwhile, exploits the yearly pattern in the average of each 24-hour 
chunk but treats the variation within each 24-hour chunk as unexplained 
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noise. Then they can each compress each other’s noise terms, and we have 
(apparently) conjunctive explanations; p and q together will compress 
x by about as much as the sum of each individual compression. On the 
other hand, if pattern r takes into account yearly variation and the tem-
perature trend from climate change, it is a clear competitor with yearly 
pattern q—we might choose the simpler q for some purposes, or the more 
accurate r for others, but never both together. 
As cases like this illustrate, I wholeheartedly agree that data sets can 

exhibit multiple explanatory patterns, some pairs of which compete and 
some pairs of which conjoin. In my book, this is just one more reason to 
approach explanation as a patternist. 

Notes

 1. Specifically he argues that AIT, Minimum Description Length (MDL) (Grün-
wald 2007), and the related Akaike Information Criterion (Forster and Sober 
1994) for model selection all fail to account for multiple patterns in data. My 
patternism is closely allied with MDL, which I think is more accurately taken 
as a branch of AIT.

 2. Which data encoding we choose does not matter much, assuming it is com-
putable, since it comes out in the wash when choosing the universal Turing 
machine. I use “friendly” basically to mean that U should be both prefix-free 
and additively optimal; see Li and Vitányi (2008). Normally the subscript 
for the reference UTM is suppressed, since as a function all friendly UTMs 
differ only by a constant. But since the Turing-machine-relativity may be of 
philosophical significance, we will conscientiously preserve it.

 3. If on the other hand there is no further fundamental regularity responsible 
for that preponderance—as for example a universe consisting solely of one 
pure Bernoulli process—then I would say the mere statistical preponderance 
is the best (because only) explanation available.

 4. Note that there will typically be a number of program-input pairs that can 
reproduce x in the minimal length, since we could hard-code an argument 
into the program, or load some of the program portion as data input.

 5. The clause “KU(x) < len(x)” guarantees that x is compressible and so guaran-
tees that p is a pattern as defined.

 6. This is intended, of course, to be analogous with conditional probabilities 
and the more traditional mutual information from Shannonian information 
theory. The “mutual” is justified in both cases because this relation is sym-
metric—or more carefully, in the algorithmic case, it is symmetric up to a 
constant, once defined a bit more carefully. See Grünwald and Vitányi (2003) 
Section 5.2.

 7. See Vereshchagin and Vitanyi (2004) for the proof, which strictly speaking 
holds up to an additive O(log len(x)) for overhead.

 8. Otherwise we could then compress that compression losslessly, and so forth. 
But lossless decompressions are unique: no matter the technique, at most 
two strings can be compressed down to one bit, at most four more can be com-
pressed down to two bits, and so on. So clearly not just any string can be 
“endlessly” compressed.

 9. I am neglecting small constant fudge factors for concatenation and such 
throughout. 

10. We could generalize this to any finite set {pi}1n of partial explanations: 
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ei I( p pi : *) - I( ... n :p p  p p*)
1 2 

e I p p - max I( :( : *)  p p*)i i i 

11. I did find some potential ways to characterize something like “direct” 
hypothesis competition in my framework, but they are probably not worth 
the space here. 

12. This is not to say there’s no algorithm for doing such inference—only no 
algorithm that is both straightforward and tractable. 
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