Skip to main content
Log in

On the relation between recent neurobiological data on perception (and action) and the Husserlian theory of constitution

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

The phenomenological theory of constitution promises a solution for “the problem of consciousness” insofar as it changes the traditional terms of this problem by systematically correlating “subject and ” “object” in the unifying context of intentional acts. I argue that embodied constitution must depend upon the role of kinesthesia as a constitutive operator. In pursuing the path of intentionality in its descent from an idealistic level of “pure” constitution to this fully embodied kinesthetic constitution, we are able to gain access to different ontological regions such as physical thing, owned body and shared world. Neuroscience brings to light the somatological correlates of noemata. Bridging the gap between incarnation and naturalisation represents the best way of realizing the foundational program of transcendental phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baylis, G. C., Rolls, E. T., and Leonard, C. M. 1985. Selectivity between faces in responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Research 342: 91–102.

    Google Scholar 

  • Berti, A. and Frassinetti, F. 2000. When far becomes near: remapping of space by tool use. Journal of Cognitive Neuroscience 12 (3): 415–420.

    Google Scholar 

  • Booth, M. C. A. and Rolls, T. E. 1998. View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cerebral Cortex 8: 510–523.

    Google Scholar 

  • Desimone, R., Albright, T. D., Gross, C. G., and Bruce, C. 1984. Stimulus-selective properties of inferior temporal neurons in the macaque. The Journal of Neuroscience 4 (8): 2051–2062.

    Google Scholar 

  • di Pellegrino, L., Fadiga, L., Fogassi, L., Gallese, V., and Rizzolatti, G. 1992. Understanding motor events: a neurophysiological study. Experimental Brain Research 91: 176–180.

    Google Scholar 

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., and Taub, E. 1995. Increased cortical representation of the fingers of the left hand in tring players. Science 270: 305–307.

    Google Scholar 

  • Fadiga, L., Fogassi, L., Pavesi, G., and Rizzolatti, G. 1995. Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology 73 (6): 2608–2611.

    Google Scholar 

  • Fourneret, P. and Jeannerod, M. 1998. Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36 (11): 1133–11440.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., and Rizzolatti, G. 1996. Action recognition in the premotor cortex. Brain 119: 593–609.

    Google Scholar 

  • Hasselmo, M. E., Rolls, E. T., Baylis, G. C., and Nalwa, V. 1989. Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of monkey, Experimental Brain Research 75: 417–429.

    Google Scholar 

  • Husserl, E. 1973a Zur Phänomenologie der Intersubjectivität, Husserliana XIII, hrsg. v. I. Kern, Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Husserl, E. 1973b. Ding und Raum. Vorlesungen 1907, Husserliana XVI, hrsg. v. U. Claesges, Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Husserl, E. 1976. Ideen zu einer reinen Phänomenologie und phänomenologischen Philosophie I. Husserliana III/1–2. Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Husserl, E., Mss B III 9, 1931; D 10 I, III, 1932; D 12 III, 1931; D 13 I, 1921.

  • Iriki, A., Tanaka, M., and Iwamura, Y. 1996. Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport 7: 2325–2330.

    Google Scholar 

  • Karni, A., Meyer, G., Jezzard, P., Adams, M., Turner, R., and Ungerleider, L. 1995. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377: 155–158.

    Google Scholar 

  • Libet, B., Gleason, C. A., Wright, E. W., and Perl, D. K. 1983. Time of conscious intention to act in relation to cerebral activities (readiness potential). The unconscious initiation of a freely voluntary act. Brain 102: 193–224.

    Google Scholar 

  • Lipps, T. 1903a. Einfühlung, innere Nachahmung, und Organempfindung. Archiv für die Gesamte Psychologie I. Bd, 2. Heft. Leipzig: W. Engelmann.

    Google Scholar 

  • Lipps, T. 1903b. Grundlegung der Ästhetik. Hamburg/Leipzig: Leopold Voss.

    Google Scholar 

  • Locke, J. 1961. In: J. W. Yolton (ed),An Essay Concerning Human Understanding. London: Dent.

    Google Scholar 

  • Merzenich, M., Nelson, R., Stryker, M., Cynader, M., Schoppmann, A., and Zook, J. 1984. Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of comparative Neurology 224: 591–605.

    Google Scholar 

  • Merzenich, M., Nelson, R., Kaas, J., Stryker, M., Jenkins, W., Zook, J., Cynader, M., and Schopmann, A. 1987. Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. The Journal of comparative Neurology 258: 281–296.

    Google Scholar 

  • Merzenich, M. and deCharms, R. 1995. Neural representations, experience, and change. In: R. Llinas and P. Churchland (eds), Mind and Brain, pp. 61–81. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mogilner, A., Grossman, J., Ribary, U., Joliot, M., Volksmann, J., Rapaport, D., Beasley, R., and Llinas, R. 1993. Somatosensory cortical plasticity in adult humans revealed by magnetoencephalography. Proceedings of the National Academy of Science USA 90: 3593–3597.

    Google Scholar 

  • Nudo, R., Milliken, G., Jenkins, W., and Merzenich, M. 1996. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys, The Journal of Neuroscience 15–16 (2): 785–807.

    Google Scholar 

  • Pascual-Leone, A. and Torres, F. 1993. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116: 39–52.

    Google Scholar 

  • Pascual-Leone, A., Grafman, J., and Hallett, M. 1994. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263: 1287–1289.

    Google Scholar 

  • Perrett, D., Rolls, E. T., and Caan, W. 1982. Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research 47: 329–342.

    Google Scholar 

  • Recanzone, G., Merzenich, M., Jenkins, W., Grajski, K., and Dinse, H. 1992. Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. Journal of Neurophysiology 67 (5): 1031–1055.

    Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., and Fogassi, L. 1996. Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3: 131–141.

    Google Scholar 

  • Rizzolatti, G. and Gallese, V. 1997 From action to meaning: A neurophysiological perspective. In: J.-L. Petit (ed), Les Neurosciences et la Philosoophe de l'Action, pp. 217–229. Paris: Vrin.

    Google Scholar 

  • Rolls, E. T. and Baylis, G. C. 1986. Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of monkey. Experimental Brain Research 65: 38–48.

    Google Scholar 

  • Rolls, E. T., Baylis, G. C, Hasselmo, M. E., and Nalwa, V. 1989. The effect of learning on the face-selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Experimental Brain Research 76: 153–164.

    Google Scholar 

  • Rolls, E. T. 1995. Learning mechanisms in the temporal visual cortex. Behavioral Brain Research 66: 177–185.

    Google Scholar 

  • Rolls, E. T. and Deco, G., 2002. Computational Neuroscience of Vision. Oxford: Oxford University Press.

    Google Scholar 

  • Sterr, A., Müller, M., Elbert, T., Rockstroh, B., Pantev, C., and Taub, E. 1998 Perceptual correlates of changes in cortical representation of fingers in blind multifinger Braille readers. The Journal of Neuroscience 18 (11): 4417–4423.

    Google Scholar 

  • Tanaka, K. 1996. Inferotemporal cortex and object vision. Annual Reviews of Neurosciences 19: 109–139.

    Google Scholar 

  • Wall, J., Felleman, D., and Kaas, J. 1983. Recovery of normal topography in the somatosensory cortex of monkeys after nerve crush and regeneration. Science 221: 771–773.

    Google Scholar 

  • Wall, J., Kaas, J., Sur, M., Nelson, R., Felleman, D., and Merzenich, M. 1986. Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. The Journal of Neuroscience 6 (1): 218–233.

    Google Scholar 

  • Xerri, X., Merzenich, M., Jenkins, W., and Santucci, S. 1999. Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys. Cerebral Cortex 9: 264–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, JL. On the relation between recent neurobiological data on perception (and action) and the Husserlian theory of constitution. Phenomenology and the Cognitive Sciences 2, 281–298 (2003). https://doi.org/10.1023/B:PHEN.0000007311.81399.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHEN.0000007311.81399.33

Navigation