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Abstract. An o-minimal expansion of an ordered group is called
semi-bounded if there is no definable bijection between a bounded
and an unbounded interval in it (equivalently, it is an expansion of
the group by bounded predicates and group automorphisms). It
is shown that every such structure has an elementary extension N
such that eitherN is a reduct of an ordered vector space, or there is
an o-minimal structure N̂ , with the same universe but of different
language from N , with (i) Every definable set in N is definable
in N̂ , and (ii) N̂ has an elementary substructure in which every
bounded interval admits a definable real closed field.

As a result certain questions about definably compact groups
can be reduced to either ordered vector spaces or expansions of
real closed fields. Using the known results in these two settings,
the number of torsion points in definably compact abelian groups
in expansions of ordered groups is given. Pillay’s Conjecture for
such groups follows.

1. Introduction

An expansion of an ordered abelian group or an ordered vector space
by bounded predicates is sometimes called a semi-bounded structure (a
combination of semi-linear and bounded). The definable sets in such a
structure are called semi-bounded sets. Structural results about semi-
bounded sets can be found in [21], [17], [22],[13], [5] (in the o-minimal
setting) and [1] (in arbitrary ordered abelian groups). Some results in
[15] apply as well.

In this paper I return to the semi-bounded setting, in order to reduce
a question about the torsion points of a definably compact groups in
o-minimal expansions of ordered groups to similar results in expansions
of real closed fields, [9], and in ordered vector spaces, [11].

The idea is as follows: Let M = 〈M,<, +, · · ·〉 be a semi-bounded
structure whose theory is assumed to be not linear (see [13]). By the
Trichotomy Theorem, [19], a real closed field is defined on some open
fixed interval I ⊆ M . An interval J ⊆ M will be called short if it is
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in definable bijection with I; otherwise it is called long. The structure
M will be called short is every bounded interval in M is short.

As will be observed, every definably compact group in a short model
is contained in a finite cartesian product of some bounded interval and
therefore definable in an o-minimal expansion of a real closed field.
Hence, all results about definably compact groups in expansions of real
closed fields hold when the model is short.

Given an arbitrary semi-bounded structure M whose theory is not

linear, one can find N Â M, and a new o-minimal structure N̂ , with
the same universe as N , basically by extending all partial 0-definable
linear maps defined on long intervals to global linear maps, and at the
same time restricting dcl(∅). Furthermore, every 0-definable set in N
is still definable in N̂ , possibly over parameters. Having done that, the
set of short elements D ⊆ N becomes an elementary substructure of

N̂ .
Now, every N -definable group is definable in N̂ and because N̂ has a

short elementary substructure D, one can transfer the Edmundo-Otero
result, [9], about the torsion points of definable groups in expansions

of real closed fields to groups definable in N̂ and hence in N .
Together with the result of Eleftheriou and Starchenko, [11], on de-

finable groups in ordered vector spaces, one obtains (see Theorem 7.6
below):

Theorem 1.1. If G is a definably connected, definably compact abelian
group in an o-minimal expansion of an ordered group then for every k,

Tork(G) = (Z/kZ)n.

Since this is the only missing ingredient for proving Pillay’s Conjec-
ture for definable groups in o-minimal expansions of groups, one may
conclude the conjecture in this setting as well (see Section 8).

Remark 1.2. The treatment of semi-bounded sets suggested here does
not make use of the known structure theorems for definable sets in
semi-bounded structures (see [17] and [5]), where the analysis is given
in terms of bounded sets and unbounded intervals. Instead, bounded
sets are replaced by those bounded sets that are contained in Dn and
unbounded intervals are replaced by long intervals. At the end of the
paper several conjectures are made about possible structure theorems
for definable sets and groups in semi-bounded structures.

Notation The lettersM,N ,D are used for structures whose universe,
respectively, is M,N, D.
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2. The basic definition and properties

As is shown by Edmundo in [5], semi-boundedness has several equiv-
alent definitions. Here I use the following:

Definition 2.1. A semi-bounded structure M = 〈M, <, +, · · ·〉 is an
o-minimal expansion of an ordered group without poles. Namely, there
is no definable bijection between a bounded interval and an unbounded
interval. Note that this is a property which is preserved in elementarily
equivalent structures.

Example 2.2. (1) Every ordered vector space is semi-bounded. This
follows from quantifier elimination.

(2) The expansion Rbdd of the ordered group of real numbers by re-
stricted multiplication is a semi-bounded structure in which every in-
terval admits a definable real closed field. In fact, every bounded semi-
algebraic set is definable in Rbdd. See [17] for details.

(3) Any elementary extension of Rbdd is still semi-bounded, but only
intervals of finite size are in definable bijection with (0, 1) (indeed, this
follows from 2.5 below). Hence (see 3.3) only those intervals admit a
real closed field structure.

2.1. Expansions of ordered groups. GivenM an o-minimal expan-
sion of an ordered group, there are three possibilities for the theory of
M:
(a) Th(M) is linear (see [13]). In this case, by the same paper there
exists N ≡ M, with N a reduct of an ordered vector space over an
ordered division ring (with the same addition and linear ordering as
the underlying group of N ).
(b) Th(M) is not linear. In this case, as is not hard to see, the theory
of every interval in M (with the induced structure) is not linear either.
It follows that no interval in M is elementarily equivalent to a reduct
of an interval in an ordered vector space and therefore, by Trichotomy
Theorem ([19] Theorem 1.2), a real closed field whose ordering agrees
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with that of M, is definable on some interval (−a, a). There are two
sub-cases to consider:

(b1) M is semi-bounded.
(b2) M is not semi-bounded. In this case, one can endow the

whole structure M with a definable real closed field R (but the under-
lying group addition might not coincide with that of the field). Indeed,
this is claimed in [19], but the reference there is not precise, so I spell
out the argument: Assume that σ : (b1, b2) → (c, +∞) is a definable
map with limt→b2 σ(t) = +∞. Without loss of generality, b2 − b1 < a.

Using translation, it can be assumed that b1 = 0 and b2 < a. How-
ever, being inside a real closed field, the intervals (0, a) and (0, b2) are
in definable bijection, so (c,∞) (and therefore also (0,∞)) is definably
bijective to the positive elements of R. This is clearly enough to get a
real closed field on the whole of M.

2.2. Model theoretic preliminaries. Assume now that M is an o-
minimal expansion of an ordered group, which is semi-bounded.

An immediate corollary of this assumption is: If f : (a, b) → M is
a definable function on a bounded interval then f is bounded on (a, b)
and therefore the limit of f(t) as t tends to a (or b) exists in M .

Proposition 2.3. If M ≺ N and M1 is the convex hull of M in N
then M1 ≺ N .

Proof. Without loss of generality, the language contains a constant
for every element of M . It is sufficient to see that dclN (M1) = M1.
Equivalently, for every M -definable function F (x̄) in N , and every ā
from M1, F (ā) ∈ M1. Use induction of the number of variables in F .

Assume that F (w̄, y) is of n + 1 variables, n ≥ 0, and ā and b are
from M1 with (ā, b) ∈ domF . Let fw̄(y) = F (w̄, y). By partitioning
the graph of F , we may also assume that for every w̄, the domain of
fw̄ is either empty, or it is an open (bounded or unbounded) interval.
Also, without loss of generality, every fw̄ is monotonely increasing (the
decreasing case is handled similarly).

Assume first that domfā = N . In this case, Since b is in the convex
hull of M , there are b1 < b < b2, b1, b2 ∈ M , and hence fā(b1) ≤
fā(b) ≤ fā(b2). Since fā(b1), fā(b2) ∈ dclN (ā) one may use induction to
conclude that they are in M1, so by convexity so is fā(b).

If domfā = (c, +∞), for c ∈ M then c is in dclN (ā) hence, by induc-
tion it is in M1. One can now find b2 ∈ M such that c < b < b2. By the
comment preceding the proposition, we may assume that f is defined
on the closed interval [c, b2] (this is precisely where semi-boundedness
is used!). We now proceed as above. The remaining case is handled
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similarly. ¤

Recall that for ordered structures M⊆ N , M is said to be Dedekind
complete in N if for every element n ∈ N , if m1 < n < m2 for some
m1, m2 ∈ M then n has a standard part in M . Namely, there exists
m ∈ M with no element of M strictly between n and m. Note that
if M1 is convex in N then it is clearly Dedekind complete in it. The
following powerful theorem of Marker and Steinhorn [14] will be used
below:

Theorem 2.4. If M is an elementary substructure of N which is
moreover Dedekind complete in N then for every N-definable set X ⊆
Nk, the set X ∩Mk is definable in M.

Corollary 2.5. (1) Assume that F : S × (a, b) → M is a definable
map such that for every s ∈ S, the map fs(x) = F (s, x) is
a bijection between the bounded interval (a, b) and (0, ds) for
ds > 0. Then there exists an m ∈ M such that for every s ∈ S,
ds < m.

(2) If M ≺ N , a < b in M , c < d in N and (a, b) is in definable
bijection with (c, d) then there exists m ∈ M such that d−c < m.

Proof. (1) If not, then in an elementary extension N of M, there exist
s ∈ S and ds ∈ N greater than all elements ofM such that fs : (a, b) →
(0, ds) is a definable bijection. Let M1 be the convex hull of M. Then
by Proposition 2.3, M1 is an elementary substructure of N , which is
obviously Dedekind complete in N .

Let Γ be the intersection of the graph of fs with M1 × M1. By
Theorem 2.4, Γ is definable inM1 and it is still the graph of a definable
function. Moreover, because fs was a bijection, for every y > 0 in
M1 there exists x ∈ (a, b) ⊆ M1 such that fs(x) = y. Therefore
there exists in M1 a surjective map between a sub-interval of (a, b)
and the interval (0, +∞). This is impossible because M1 and M are
elementarily equivalent so M1 must be semi-bounded as well. ¤

(2) This easily follows from (1).

3. Short and long intervals

M is assumed to be semi-bounded and in addition Th(M) not linear.
Fix an element, call it 1 > 0, such that a real closed field, whose

universe is (0, 1) and whose ordering agrees with the M-ordering, is
definable in M. Assume from now on that 1 ∈ dcl(∅).
Definition 3.1. Two open intervals (a, b) and (c, d) are called equiva-
lent if there exists a definable bijection between them.
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An element a ∈ M is called short if either a = 0 or (0, |a|) and (0, 1)
are equivalent; otherwise it is called tall. An interval (a, b) is called
short if b− a is short, otherwise it is called long.

The following lemma can be proved using standard o-minimal ar-
guments, together with the fact that every definable function on a
bounded interval has a limit at the endpoints of the interval.

Lemma 3.2. If (a, b) and (c, d) are equivalent intervals then there ex-
ists a definable and continuous, strictly monotone bijection between
them (if the intervals are bounded one can always choose the bijection
to be increasing).

Corollary 3.3. For any interval I ⊆ M , I is short if and only if I
admits a definable real closed field whose ordering agrees with that of
M.

Proof. If I is short then, by the last lemma it has a definable order-
preserving bijection with (0, 1) so admits a definable real closed field.
For the converse, if I admits a real closed field structure, then after
translation one may assume that either (0, 1) ⊆ I or I ⊆ (0, 1). In
both cases one gets an interval inside another real closed field so the
two are in definable bijections. (Actually, by [16], the fields on (0, 1)
and I and are also definably isomorphic but this will not be required
here). ¤
Lemma 3.4. (1) If I is a short interval then it is definably bijective

with any subinterval of I. In particular, if a is short and 0 <
|b| < |a| then b is short.

(2) If (a, b) and (b, c) are short interval then so is (a, c).
(3) If a and b are short elements then so are a + b and −a.

Proof. (1) By the last lemma, I admits a reals closed field structure
whose ordering agrees with the M-ordering. In a real closed field any
two 1-dimensional open intervals are definably bijective.

(2) Since (a, b) is in bijection with (0, 1) is it also in bijection with
(0, 1/2), and similarly, (b, c) is in bijection with (1/2, 1).

(3) This is immediate from (2). ¤
Lemma 3.5. Assume that f : X → M is a definable continuous
function whose domain X is a definably connected set, contained in
a cartesian product of short intervals. Then f(X) is contained in a
short interval.

Proof. If not, then by definable choice there is a definable curve in X
which is in bijection with a long interval in M . Using projections one
gets a bijection between short and long intervals. Contradiction. ¤



RETURNING TO SEMI-BOUNDED SETS 7

Proposition 3.6. The set D of all short elements in M is a convex
subgroup of M . If M is |T |+-saturated then D 6= M , and in particular,
D is not definable.

Proof. By 3.4, D is a convex subgroup. It is left to see that when M is
|T |+-saturated then D 6= M (saturation is important since, for exam-
ple, in the expansion of the additive reals by restricted multiplication
we have D = M). Assume towards contradiction that D = M .

Consider the type p(x) which says, for every ∅-definable family of
injections from (0, 1) into M , that none of these maps is a bijection
between (0, 1) and (0, x). By our assumptions, this type is inconsistent,
hence there are finitely many definable families of injections from (0, 1)
into M such that for every x ∈ M , one such injection gives a bijection
between (0, 1) and (0, x). It follows that there exists a definable family
of maps {fs : s ∈ S} such that each fs is a bijection between the
intervals (0, 1) and (0, ds), and {ds : s ∈ S} = M . This contradicts
Corollary 2.5. ¤

Here are several corollaries:

Corollary 3.7. (1) Let {fs : s ∈ S} be a 0-definable family of
bijections, fs : (0, 1) → Is, Is ⊆ M an open interval. Then the
set {|Is| : s ∈ S} is bounded above and its supremum is a short
element in dcl(∅).

(2) Let {Is : s ∈ S} be a 0-definable family of intervals in M.
(i) If all intervals are short and M is |T |+-saturated then there
exists a short m in dcl(∅), such that the length of every Is is at
most m.
(ii) If all intervals are long then there exists a tall b ∈ dcl(∅)
such that the length of every Is is not less than b (no saturation
is required).

(3) For every short element 0 < a ∈ M there exists a short m ∈
dcl(∅) with a < m.

Proof. (1) Let J = {|Is| : s ∈ S}. By 2.5, the set J is bounded above,
hence its supremum b exists in dcl(∅). b must be short because b/2 is
a shorter than some element of J and all elements of J are short.

(2) (i) Because M is |T |+-saturated there exists a definable family
of bijections fs : (0, 1) → Is, s ∈ S. Now apply (1).

(ii) Let J = {|Is| : s ∈ S}. Without loss of generality, J is closed
upward, hence of the form (b,∞) or [b,∞), for b ∈ M0. Clearly, if
b ∈ J then it is tall and we are done, so assume b /∈ J . Now b must be
tall because 2b is greater than some element of J and all elements of J
are tall.
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(3) Because a is short, there exists an ∅-definable family of maps
F = {fs : s ∈ S}, with each fs : (0, 1) → (0, as) a definable bijection,
and a = as0 for some s0 ∈ S. Now apply (1). ¤

4. Affine and linear functions

Here M is a semi-bounded and Th(M) not linear.
Some of the results in this section, such as 4.4 and 4.8, were proved

in [15] for unbounded intervals instead of long ones.

Definition 4.1. A function f : (a, b) → M is called linear on (a, b) if
for every x, y ∈ (a, b), if x + y ∈ (a, b) then f(x) + f(y) = f(x + y).
The function is affine if for some (all) c ∈ (a, b), the function fc(x) =
f(c + x)− f(c) is linear on (a− c, b− c).

f : (a, b) → M is called locally affine if for every x ∈ (a, b) there
exists a neighborhood on which f is affine.

Two functions f, g defined on a neighborhood of 0 are said to have
the same germ at 0 if there is ε > 0 such that f |(−ε, ε) = g|(−ε, ε).

Here are some facts about affine and linear functions:

Fact 4.2. (1) If f is affine on (a, b) then for every c, d ∈ M , the
function f(x + c) + d is also affine on (a− c, b− c).

(2) If f is affine on (a, b) then for every c, d ∈ (a, b), the functions
fc and fd, defined above, have the same germ at 0.

(3) If f is affine on (a, b) then it is continuous.
(4) If f is affine on (a, b) then it is either constant or strictly mono-

tone.

Proof. (1) This follows easily from the definition.
(2) Assume that c < d. Then by assumption, fc is linear on (a−c, b−c)
and therefore, for all x, y such that x + y ∈ (a− c, b− c),

f(c + x + y) = f(c + x) + f(c + y)− f(c).

Letting y = d− c one gets

f(d + x)− f(d) = f(c + x)− f(c)

for all x near 0, hence fc and fd have the same germ at 0.
(3) Consider c ∈ (a, b). By o-minimality, there exists c′ ∈ (a, b) such
that f is continuous at c′, and by (2) the germs of fc and fc′ at 0 are the
same. However, fc′ is continuous at 0, and therefore fc is continuous
at 0 as well. Clearly, this implies that f is continuous at c.
(4) Assume that f is not constant. Then, by o-minimality, there exists
c ∈ (a, b) such that f is strictly monotone, say increasing, near c. This
implies that fc is strictly increasing at 0, and therefore, by (2), for all
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d ∈ (a, b), fd is strictly increasing near 0. This in turn implies that f
is increasing near d for all d. O-minimality implies that f is strictly
increasing on (a, b). ¤

Lemma 4.3. For a definable f : (a, b) → M , the following are equiva-
lent:

(1) f is affine on (a, b).
(2) f is locally affine at every c ∈ (a, b).
(3) For every c, d ∈ (a, b) the germs of fc and fd at 0 are the same.

Proof. (1) ⇒ (2) is obvious. (2) ⇒ (3): Assume that f is locally affine
at every point of (a, b) and consider the definable equivalence relation
c ∼ d if fc and fd have the same germ at 0. By 4.2(2) and the fact
that f is locally affine, every ∼-class is open. But then every ∼-class is
also closed (its complement is open) hence by definable connectedness
there is exactly one such class.

(3) ⇒ (1): Note that by 4.2 (3), f is continuous on (a, b). One needs
to show, for every d ∈ (a, b), that the function fd(x) = f(d + x)− f(d)
is linear on (a − d, b − d). It is easy to see that for d ∈ (a, b), the
function fd also satisfies assumption (3). Hence, one may assume that
0 ∈ (a, b) and that f(0) = 0 and the goal is to show that f is linear.

By assumption, for all c ∈ (a, b), in there is J 3 0 such that for all
x ∈ J ,

(1) f(c + x)− f(c) = f(0 + x)− f(0) = f(x).

Given an arbitrary c in (a, b), let

C = {x ∈ (a, b) : x + c ∈ (a, b)&f(x + c) = f(x) + f(c)}.
It is sufficient to show that C = (a− c, b− c).

By continuity, C is closed in (a − c, b − c). It clearly contains 0
hence it is sufficient to show that it is also open. Fix d ∈ C and let
J 3 0 be small enough so that f(c + d + y)− f(c + d) = f(y) and also
f(d + y)− f(d) = f(y), for all y ∈ J . Then, since d ∈ C, for all y ∈ J ,

f(c + d + y)− f(c)=f(c + d + y)− f(c + d) + f(c + d)− f(c) =
= f(y) + f(d) = f(y + d).

It follows that the set d + J is contained in C and therefore C is
open. Hence, f is affine on (a, b). ¤

Two affine functions f1 : I → M and f2 : J → M are said to
be equivalent if the associated linear functions f1(a + x) − f1(a) and
f2(b + x)− f(b), a ∈ I, b ∈ J , have the same germ at 0
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Lemma 4.4. If (a, b) is an interval in M (a, b ∈ M ∪ {±∞}) and
f : (a, b) → M is 0-definable then there are a = a0 < · · · < an = b in
dcl(∅) such that whenever I = (ai, ai+1) is long the restriction of f to
I is affine.

Proof. The function f can be assumed to be continuous and strictly
increasing (the decreasing case is handled in the same way). The set of
all x such that f is affine near x is 0-definable, and therefore there is a
0-definable partition a = a0 < · · · < an = b such that on each (ai, ai+1)
either f is locally affine (hence, by 4.3, affine on the whole interval) or f
is nowhere affine. It is sufficient to see that whenever the latter occurs
then the interval must be short. Assume towards a contradiction that
f is nowhere affine on (ai, ai+1) and that the interval is long. Notice
that the interval remains long in any elementary extension hence one
may assume that M is sufficiently saturated.

Consider the map g(x) = f(x+1)−f(x), defined on the long interval
J = (ai, ai+1−1). The function g is continuous and, by our assumption
on f , it is positive everywhere. The interval J can be partitioned into
finitely many sub-intervals such that g is either constant or strictly
monotone on each sub-interval. At least one of those intervals is long.

Claim 4.5. If f(x+1)−f(x) is constant on a long interval J ′ = (a′, b′)
then f is affine on a subinterval of J ′.

Proof of Claim Consider the set Y ⊆ M whose elements are all those
y0 < b′ − a′ such that f(c1 + y0) − f(c1) = f(c2 + y0) − f(c2) for all
c1, c2 ∈ (a′, b′ − y0). Clearly, 1 ∈ Y and because J ′ is long, so is every
n·1. It follows that Y is infinite and hence contains a nonempty interval
(c, d). If one fixes c0 ∈ (c, d) and write the elements of (c, d) as c0 + t
for t ∈ (c− c0, d− c0) then for every c1, c2 in a suitable interval J ′′ and
for every t sufficiently close to 0, one has

f(c1 + c0 + t)− f(c1) = f(c2 + c0 + t)− f(c2)

and in particular,

f(c1 + c0)− f(c1) = f(c2 + c0)− f(c2).

Subtracting the second equation from the first one obtains, for every t
sufficiently close to 0,

f(c1 + c0 + t)− f(c1 + c0) = f(c2 + c0 + t)− f(c2 + c0).

Since this is true for every c1, c2 ∈ J ′′ it follows that f is affine on the
interval J ′′ + c0, ending the proof of the claim.

Since f is assumed to be nowhere affine, the function f(x+1)−f(x)
is strictly monotone on every long interval in the partition of J . We
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assume then, without loss of generality, that f(x + 1)− f(x) is strictly
increasing on J .

Claim 4.6. There is d ∈ D such that for every x ∈ J , g(x) < d.

Proof of Claim Indeed, consider the family of maps, hx : (0, 1) → M ,
x ∈ J , given by hx(t) = f(x + t) − f(x). This is a definable family of
strictly increasing continuous bijections between (0, 1) and the interval
(0, g(x)), hence (clearly, all intervals (0, g(x)) are short) by Lemma
3.7, there exists a bound d ∈ D such that g(x) < d for all x ∈ J , thus
proving the claim.

It now follows that the map g, which is injective on J , sends J into
the interval (0, d). This is impossible because J is long while (0, d) is
short. This ends the proof of the claim and the Lemma. ¤
Remark 4.7. Note that two linear functions, defined on the same open
interval I 3 0 are equivalent if and only if they agree one at least one
nonzero element in their common domain (see for example Proposition
4.1 in [13]).

As in the case for unbounded intervals, one can prove that there is
no infinite definable family of non-equivalent linear functions on long
intervals:

Lemma 4.8. If F = {fs : s ∈ S} is a 0-definable family of linear
functions, fs : (0, as) → M then there are finitely many 0-definable
linear functions λ1, . . . , λk, and a short b ∈ dcl(∅), such that for every
s ∈ S,
(i) Either |as| < b, or
(ii) For some i = 1, . . . , k, the function fs is the restriction of λi to Is

(in particular, Is is contained in dom(λi)).

Proof. Fix a family F as above. First note that if one proves the
statement in an elementary extension N ÂM then it is true for M as
well, so we may assume that M is |T |+-saturated.

The equivalence relation on linear functions induces a 0-definable
equivalence relation ∼ on S and by definable choice there exists a 0-
definable set of representatives S1 ⊆ S for the ∼-classes. For s ∈ S, let
Is = (0, as).

For every r ∈ S1, let Jr =
⋃

s∼r Is, and let λr =
⋃

s∼r fs (this makes
sense because of the equivalence). Our goal is to show that there is
a finite set F ⊆ S1 such that for all r ∈ S1 \ F , the interval Jr is
short. Indeed, if that is proved then, by 3.7 there is an upper bound
b ∈ M0 on the length of all Jr, r ∈ S1 \F , and therefore |Is| < b for all
s ∼ r ∈ (S1 \ F ).
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Assume towards contradiction that there are infinitely many r ∈ S1

for which Ir is long. By continuity arguments (applied to the end-
points of Js) one may find an infinite definable S2 ⊆ S1 and a tall `
such that for every r ∈ S2, (0, `) ⊆ Jr. Since the equivalence class of a
linear function is determined by its value at a single non-zero element,
it is possible to re-parameterize the family {λr : r ∈ S2} by λr(`) and
so assume that S2 is an open interval in M .

Fixing a generic r0 ∈ S2 then, by continuity, for r sufficiently close
to r0 the element a = λr(`) − λr0(`) is a short element. The function
λr(t)−λr0(t) is now a linear function (hence continuous and monotone)
sending the long interval (0, `) onto the short interval (0, a). Contra-
diction.

It was therefore shown that for all but finitely many r ∈ S1, the do-
main of λr is a short interval, whose length is bounded by some short
b ∈ D. It is left to see that this finite set of r’s is 0-definable. This can
be done by considering the 0-definable set of intervals {Jr : r ∈ S1}. If
all Jr’s are short there is nothing to do. Otherwise, what was shown
so far implies that there are only finitely many Jr’s of maximal length
(possibly infinite). This set is clearly 0-definable so can be omitted,
consider the remaining Jr’s and repeat the process, until there are no
remaining long Jr’s in the family. ¤

Remark 4.9. In the notation of the last proof, it is possible that S1

will be infinite, namely that there will be an infinite family of nonequiv-
alent linear maps, all defined on short intervals. This will imply the
definability of local multiplication over the group 〈M, +〉 but does not
contradict semi-boundedness.

The following lemma will not be used in the subsequent arguments.
It is included here for a possible future use.

Lemma 4.10. Assume that C ⊆ Mn+1 is an open cell, C1 the projec-
tion of C on the first n coordinates. If F : C → M is a 0-definable func-
tion then there are finitely many 0-definable linear functions λ1, . . . , λk,
each defined on a long interval, and for every x ∈ C1, there is a par-
tition of the interval Cx as follows: a0(x) < a1(x) < · · · < ar(x) (r
depending on x), and for every i, either
(i) The interval (ai(x), ai+1(x)) is short, or
(ii) The function fx(y) = F (x, y) is affine on (ai(x), ai+1(x)) and the
map t 7→ fx(ai(x) + t)− fx(ai(x)) is the restriction of one of the λ′js.

Proof. By moving to an elementary extension, we may assume that M
is |T |+-saturated. The initial partition of every Cx is given by Lemma
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4.4. As is shown in that proof, the partition of Cx is uniform in x (it
partitions Cx according to the points at which F (x,−) is locally affine)
and hence there exists a uniform bound on the number of intervals in
that partition. For every x, consider all intervals in the partition of
Cx on which fx is nowhere affine. This is a 0-definable family of short
intervals, hence by 3.7, there is a short upper bound b on the length of
all of these intervals.

The remaining intervals in Cx are those on which fx is affine and
now consider the family of all fx, restricted to these intervals, as x
varies in C1 (namely, for every x ∈ C1 there might be finitely many
such functions). By translation, one may assume that each such func-
tion is linear. Applying 4.8 one obtains finitely many definable linear
functions λ1, . . . , λk and a short element b, such that every interval in
this family is either of length less than b or is a restriction of some λi,
i = 1, . . . , k. This implies the lemma. ¤

5. Changing the language

Assume that M is semi-bounded and Th(M) is not linear.

Let Λ be the collection of all 0-definable linear functions whose do-
main is a long interval of the form (−aλ, aλ) (with possibly aλ = ∞).
For every 0-definable X ⊆ Dn in M, let RX be an n-place predicate
symbol and let LD be the collection of all those predicates.

Let
L̃ = {<, +, 1} ∪ LD ∪ {λ : λ ∈ Λ},

where each λ is a unary function symbol. Let M̃ be the corresponding

L̃-structure whose universe is M and all other symbols in the language
interpreted naturally (with λ taken to be 0 outside (−aλ, aλ)).

Obviously, every 0-definable set in M̃ is 0-definable in M. The
converse is almost true, in the following sense:

Theorem 5.1. Let M̃C be the expansion of M̃ by a new constant
symbol for every element in dclM(∅). Then, every 0-definable set in

the structure M is 0-definable in M̃C.

Proof. This will be done by induction in a usual o-minimal method. It
is sufficient to show that every 0-definable f : U → M , where U is an

open cell Mn, is 0-definable in M̃C .

Definition 5.2. Let U ⊆ Mn be an open set, f : U → M a definable
function. For S ⊆ {1, . . . .n}, the function f is S-bounded if if for
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all i ∈ S there exists d ∈ D such that πi(U) ⊆ [−d, d] (where πi

is the projection onto the i-th coordinate). In particular, every f is
∅-bounded.

Note that if S = {1, . . . , n} and f is 0-definable inM and S-bounded
then its domain is contained in Dn and by 3.5, its image is contained
in a short interval, so after translation by an element of dclM(∅), one

sees that the function is 0-definable in M̃C . It is sufficient to prove the
following claim:

Claim 5.3. Let f : U → M be a 0-definable function in M. If f is
S-bounded, for some S ( {1, . . . , n} and i /∈ S then f can be defined

using finitely many 0-definable sets in M̃C, together with finitely many
0-definable functions in M which are S ∪ {i}-bounded.

Once the claim is proved, then by proceeding to handle the S ∪ {i}-
bounded functions one can eventually reach {1, . . . , n}-bounded func-
tions, thus proving the theorem.
Proof of Claim 5.3.: Use induction on n:

For n = 1: By partitioning domf in M, we may assume that f is
either affine or nowhere affine on its domain. The domain of f is an
open interval which is 0-definable hence contains a point a0 ∈ dclM(∅).
If we replace f with f̃(x) = f(a0 + x)− f(a0) then f̃ is 0-definable in

M, 0 ∈ dom(f̃) and f̃(0) = 0.

If domf̃ is short then f̃ is 1-bounded, which implies that it is 0-

definable in M̃. If domf̃ is long then, by 4.4, f̃(x) must be affine
on some long interval, which implies it is everywhere affine. Since

f̃(0) = 0, it is actually linear and 0-definable (see 4.8) in M, therefore
equals λ(x) for some λ ∈ Λ.

In both cases, f is clearly defined using f̃ , +, and a0 ∈ dcl(∅), hence

it is 0-definable in M̃C .

The n + 1 case: Without loss of generality, i = n + 1 /∈ S. By
standard o-minimal methods one may assume the following:
(1) The domain of f is an open cell C in Mn+1 whose projection in Mn

is denoted by C1:

C = {(x, y) ∈ C1 ×M : h1(x) < y < h2(x)},
for 0-definable h1, h2 : C1 → M ∪ {±∞} such that h1 < h2 on C1.
(2) For every x ∈ C1, the following hold:
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(a) The fiber Cx is either M , or of the form (h1(x), h2(x)) for h1(x) ∈
M , and h2(x) ∈ M ∪ {+∞}, uniformly in x. (Indeed, if Cx is of the
form (−∞, b) then f(x, y) can be replaced by f(−x, y))).
(b) The function fx(t) = f(x, t) is continuous and is either constant,
strictly increasing in t, or strictly decreasing in t, uniformly in x.
(c) Either, for every x ∈ C1 the function fx is nowhere affine, or for
every x ∈ C1 the function fx is affine on its domain.

By definable choice, there exists a 0-definable h0 : C1 → M such
that h0(x) ∈ Cx for every x ∈ C1. By partitioning C1 (and therefore
C) further, we may assume that h0 is continuous. Now, replace f by

f̃(x, t) = f(x, h0(x) + t)− f(x, h0(x)).

The domain of f̃ is

Ĉ = {(x, t) : x ∈ C1&h1(x)− h0(x) < t < h2(x)− h0(x)},

hence (x, 0) ∈ Ĉ, for every x ∈ C1. The function f̃ is still S-bounded

and f̃(x, 0) = 0 for all x ∈ C1.
By induction, h0, h1, h2, f(x, 0) and f(x, h0(x)) are 0-definable in

M̃C . Also, f can clearly be recovered, without parameters, from f̃ us-
ing h0(x), h1(x), h2(x), f(x, h0(x)) and +, so it is sufficient to show that

f̃ can be defined using finitely many 0-definable sets in M̃C , together
with finitely many 0-definable functions in M which are S ∪ {n + 1}-
bounded.

Case 1 For every x ∈ C1, the function fx(t) = f(x, t) is nowhere affine.
In this case, by 4.4, every interval (h1(x) − h0(x), h2(x) − h0(x)) is

short and hence there exists an upper bound b ∈ D to the length of

all Ĉx. Namely the domain of f̃ is contained in C1 × (0, b), so f is
S ∪ {n + 1}-bounded.

Case 2 For every x ∈ C1 the function fx(t) is affine on its domain.

It follows that every f̃x is linear. By Lemma 4.8, there exists a short
element b and there are finitely many functions λ1, . . . , λk ∈ Λ such

that for every x ∈ C1, either |Cx| < b, or f̃x is a restriction of one of

the λi’s to Ĉx.
By further partitions (using λ1, . . . , λk), it can be assumed that either

for every x ∈ C1, f̃x is the restriction of some λi (same λi uniformly in
x), or for every x ∈ C1, Cx ⊆ (0, b).
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In the first case, f̃ is 0-definable in M using C and functions in Λ,

so by induction it is 0-definable M̃C . In the second case, the domain

of f̃ is contained in C1 × (0, b) so it is S ∪ {n + 1}-bounded. ¤
Lemma 5.1 shows in particular that if a structure M has no poles

then every definable set is defined using the ordered group structure,
global 0-definable linear functions, and finitely many bounded sets
(which may include the graphs of linear function on long intervals).
This shows that the “no poles” definition of semi-boundedness implies
the one from the introduction. The opposite implication is proved using
automorphisms (see the proof of Theorem 1.2 in [17]). The equivalence
of the two definitions was originally established by Edmundo in [5].

6. Extending partial linear maps to global ones

M is semi-bounded with a nonlinear theory
By Lemma 5.1, one can assume that M is an LC-structure, where

L = {<, +, 1} ∪ {RX ∈ LD} ∪ {λ ∈ Λ}
and C names all elements of dcl(∅).

For λ ∈ Λ, denote by λ̂ the corresponding equivalence class of the

linear function, and let Λ̂ be the collection of all those equivalence

classes. Notice that Λ̂ is a ring under point-wise addition. Moreover,
because the image of a long interval under a linear function is also long,

Λ̂ is closed under composition and compositional inverse, therefore it
is an ordered division ring. Actually, as in Corollary 9.3 in [19], since
Th(M) is not linear, a real closed field R is definable in a neighborhood

of 0, and therefore the compositional group Λ̂\{0} can be embedded in

GL1(R) which is commutative. It follows that 〈Λ̂, +, ◦〉 is an ordered
field. Let

L̂ = {<, +, 1} ∪ {RX ∈ LD} ∪ {λ̂ ∈ Λ̂}.
The following result is a variation of Theorem 6.1 from [13].

Theorem 6.1. There exists an elementary extension N ÂM and an

L̂-structure

N̂ = 〈N̂ , <, +, 1, {RX ∈ LD}, {λ̂ ∈ Λ̂}〉,
with the same universe and same interpretation for {<, +, 1} ∪ LD as

N , in which every λ̂ is interpreted as a linear map from N to N which
extends all corresponding λ ∈ Λ, and furthermore:

(i) N̂ eliminated quantifiers, and is o-minimal.
(ii) The set D of short elements of N forms an elementary substructure

of N̂ .
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Note that if every element of M is short then Λ = Λ̂ and N̂ = N .

Proof. Consider the following reduct of M:

MΛ = 〈M, <, +, 1, {λ ∈ Λ}〉,
. By Theorem 6.1 in [13], there exists an elementary extension NΛ Â
MΛ, and an ordered vector space

V = 〈NΛ, <, +, 1, {λ̂ ∈ Λ̂}〉
over the field Λ̂, with the same universe as NΛ, where every partial

linear map λ ∈ Λ is extended to a global linear map λ̂ : NΛ → NΛ.
Indeed, although there is a linearity assumption in Theorem 6.1 from
[13], the proof itself is done in the setting of an o-minimal expansion
of an ordered group by partial linear functions, as given here.

Let
L0 = {<, +, 1} ∪ {λ : λ ∈ Λ}

and

L1 = {<, +, 1}∪{λ ∈ Λ}∪{λ̂ ∈ Λ̂} ; L2 = L = {<, +, 1}∪{λ ∈ Λ}∪{RX ∈ LD},
and let L̂ = L1 ∪ L2.

Let T1 be the L1-theory of V (i.e. with additional names for all
partial linear maps from Λ) and let T2 be the L2(M) theory of M (i.e.
with a name for each element of M).

By Robinson’s Consistency Theorem, T1 ∪ T2 is consistent, hence

there exists an L̂-structure

N̂ = 〈N̂ , <, +, 1, {RX ∈ LD}, {λ ∈ Λ}, {λ̂ ∈ Λ̂}〉,
which is an elementary extension of M as an L2-structure and is el-
ementarily equivalent to VΛ as an L1-structure. In particular, every

global linear map λ̂ : N̂ → N̂ extends all the corresponding equivalent
partial linear maps λ ∈ Λ.

Consider the following (see Proposition 5.1 in [13]):

Proposition 6.2. Let V be an ordered vector space over a field Λ̂,
I = [−a, a] a closed interval in V , and let

V = 〈V, <, +, {λ̂ : λ ∈ Λ̂}, {P : P ∈ P}〉
be an expansion of V by some collection P of subsets of In, for various
n. Assume also:
(i) P contains all those a-definable sets in the ordered vector space V .
(ii) P is closed under definability in I, namely, every 0-definable set in
the structure I = 〈I, {P : P ∈ P}〉 is already in P.

Then V eliminates quantifiers.
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Let us see first why this proposition implies that N̂ is o-minimal.
We let D denote the set of all short elements in the L2-structure

N = 〈N̂ , <, +, 1, {RX ∈ LD}, {λ ∈ Λ}〉
(which, recall, is an elementary extension of M).

It is clearly sufficient to consider finitely many predicates from LD

so, there exists a ∈ dclN (∅)∩D, such that all those RX ’s are contained
in I = [−a, a] for some a ∈ D.

For a ∈ D, let I = [−a, a] and let Pa be the collection of all 0-
definable subsets of In, as n varies, in the o-minimal structure N .

Claim 6.3. Pa satisfies assumption (i) and (ii) of Proposition 6.2 (see

below), with respect to the ordered vector space structure V̂ = 〈N̂ , <

, +, 1, {λ̂ ∈ Λ̂}〉.
Proof. (i) Every a-definable subset of In in V̂ is already in Pa:

The problem is that V̂ has linear functions which do not exist in
N . However, by quantifier elimination in ordered vector spaces, every

a-definable subset of N̂n in the ordered vector space V̂ , is a boolean
combination of solutions to:

(2)

λ̂1(x1)+· · ·+λ̂k(xk)+λ̂k+1(a) = 0 ; λ̂1(x1)+· · ·+λ̂k(xk)+λ̂k+1(a) > 0,

for λ̂i ∈ Λ̂.
Because I is contained in D, for every xi ∈ I, λ̂i(xi) = λi(xi) and

therefore these equalities and inequalities are already definable in N
and hence belong to Pa.

(ii) Every I-definable set is in Pa: This is clear from the definition
of Pa. End of Claim 6.3.

Now that the assumptions of Proposition 6.2 are established, one
may conclude that the structure

N̂a = 〈N̂ , <, +, 1, {P : P ∈ P}, {λ̂ ∈ Λ̂}〉
has Quantifier elimination.

Since every N̂ -formula φ involves only finitely may predicates RX ,
there exists a ∈ D, for which all those RX are contained in some

[−a, a]n. Because N̂a has QE, there exists a quantifier-free N̂a-formula
ψ which defines the same set as φ, and because every predicate in Pa

is already in LD, the formula ψ is actually an N̂ -formula. It follows

that N̂ eliminates quantifiers.

Let us see why N̂ is o-minimal. Again, it is sufficient to show:
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Claim 6.4. For every a ∈ D, N̂a is o-minimal.

Proof. We still use I = [−a, a]. By quantifier elimination, every 0-

definable set in N̂a is a boolean combination of terms inequalities in
the ordered vector space structure, and formulas of the form

(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)) ∈ X,

for some I-definable X ⊆ Ik and t1, . . . , tk terms in the ordered vec-
tor space language. It is clearly sufficient to handle this last type of
formulas, which gives rise to 1-variable formulas:

(λ̂1(x) + a1, . . . , λ̂k(x) + ak) ∈ X,

for a1, . . . , ak ∈ N . It may be assumed that none of the λ̂i is 0. Because

λ̂(x) + a = λ̂(x + λ̂−1(a)), every such formula defines a set of the form:

B = {x ∈ N̂ : (λ̂1(x + b1), . . . , λ̂k(x + bk)) ∈ X},
for b1, . . . , bk ∈ N̂ . Now let

A = {(x1, . . . , xk) ∈ N̂k : (λ̂1(x1), . . . , λ̂k(xk)) ∈ X}.
Because X ⊆ Ik (and I is short) the set A is also contained in some Jk,
for some short J , and therefore definable in the o-minimalN itself. The

set B is now the set of all x ∈ N̂ such that (x, . . . , x) ∈ A−(b1, . . . , bk).
This set is also definable in N and therefore it is a finite union of
intervals.

The structure N̂a, and therefore N̂ , is o-minimal. ¤
For every λ̂ ∈ Λ̂, λ̂(D) ⊆ D, hence the set D ⊆ N is an L̂- sub-

structure of N̂ , which is denoted by D̂. It is left to see that D̂ is an

elementary substructure of N̂ :
This is a repetition of the proof of Theorem 1.2 from [17]. By o-

minimality, it is sufficient to prove that dclN̂ (D) = D. Equivalently, it
will be shown that for every a ∈ N \D, there exists an automorphism

σ of N̂ , fixing D point-wise, such that σ(a) 6= a.

Fix a ∈ N̂ \ D. Because D is a Λ̂-subspace of N , it has a (non-

definable) complement Dc in N̂ such that N = Dc ⊕D (ordered lexi-
cographically) as an ordered vector space. If one now takes σ(d) = d
for every d ∈ D, and σ(y) = 2y for every y ∈ Dc then σ is an au-
tomorphism of the ordered vector space V whose fixed elements are

exactly the elements of D. Because every other atomic relation of N̂ is

contained in Dn for some n, σ is clearly an automorphism of N̂ fixing
D point-wise and moving a. It follows that dclN̂ (D) = D and therefore
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D̂ is an elementary substructure of N̂ . This ends the proof of Theorem
6.1 ¤
Remark 6.5. Proposition 6.2 above is exactly Proposition 5.1 from
[13]. However, it was pointed out by Belegradek, [1], that the proof of
that proposition contained a serious gap. The gap was then fixed by
Belegradek himself, using an idea of Hrushovski, to yield a similar, but
slightly different result. The two results are discussed in Appendix,

7. Definable groups in semi-bounded structures

There are several papers on definable sets and groups which are
definable in o-minimal expansions of ordered groups (rather than real
closed fields). The main difficulty there is the lack of a triangulation
theorem and therefore the development of the basic topological tools is
much more difficult. In [2] and [7] sheaf Cohomology for such structures
has started to emerge. In [8] the authors use this Cohomology to give
an upper bound for the number of torsion points in abelian definable
groups. In [6] other properties of groups in the semi-bounded setting
are developed.

Recall that by Pillay’s Theorem, [20], every definable group admits
a finite definable atlas making it into a topological group. Namely,
there exist finitely many definable open subsets of Mn, {Ui : i =
1, . . . , k}, together with definable injections φi : Ui → G, such that

G =
⋃k

i=1 φi(Ui), the transition maps are continuous, and such that the
group operations on G are continuous when read through the charts.
The topology induced on G by the atlas is called the group topology
of G.

Here is a simple observation:

Lemma 7.1. If G is a definably compact group in a semi-bounded
structure then its universe and all charts must be a bounded set.

Proof. Because M is semi-bounded, if G is not bounded then one of
its charts Ui is not bounded either. Hence, there exists a definable
injection σ : (a,∞) → Ui whose image is unbounded. Because G is
definably compact the curve φi ◦ σ(t) map has a limit point g in G
(in the group topology) as t tends to ∞. This limit point belongs to
another chart Uj but now it is easy to obtain a definable injection from
an unbounded interval to a bounded set. Contradiction. ¤
7.1. Definable groups in short models.

Definition 7.2. LetM be an o-minimal semi-bounded structure which
is not linear. M is called short if every element in M is a short element.
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It follows that if M is a short model then every definably compact
group in M is definable in some o-minimal expansion of a real closed
field. Indeed, all the charts of G must be bounded so there exists an
interval I such that all charts are contained in In for some n. Because
M is short I admits a definable real closed field.

This in turn implies, using the (heavy) theorem of Edmundo and
Otero [9]:

Corollary 7.3. If G is a definably compact, definably connected abelian
n-dimensional group in a short model then for every k ∈ N,

Tork(G) = (Z/kZ)n.

7.2. Uniformity in parameters. Because not every definable group
in o-minimal expansion of group can necessarily be embedded, as a
topological group, in Mn (Eleftheriou has recently found an example of
a non-embeddeble semi-linear group), there is some subtlety in showing
that definable connectedness and definable compactness, with respect
to the group topology, are definable properties in parameters.

In this section M can be any o-minimal expansion of a group.

Lemma 7.4. Let M be semi-bounded and let {Gs : s ∈ S} be a uni-
formly definable family of abelian groups. Then:
(i) The set of s for which Gs is definably compact is definable.
(ii) The set of s for which Gs is definably connected is definable.

Proof. (i) Without loss of generality every Gs has the same dimension
n. Again, by Pillay’s theorem, [20], there exists, uniformly in s, a
definable family of open subsets of Mn, {Ui,s : s ∈ S, i = 1, . . . , k},
together with a definable family of bijections φi,s : Ui,s → Gs, such

that Gs =
⋃k

i=1 φi,s(Ui,s) for every s ∈ S, the transition maps are
continuous, and such that the group operations on Gs are continuous
when read through the charts. By 7.1, it may be assumed that each
Ui,s is a bounded subset of Mn (the set of s ∈ S for which all charts
Ui,s are bounded is clearly definable). Note that by definition of the
group topology, each φi,s is a homeomorphism between Ui,s (in the Mn

topology) and its image (in the group topology).
For every ε > 0 in M and a definable open U ⊆ Mn, let U ε be the

set of all elements in U whose distance (using the maximum norm)
from the boundary of U is greater than ε. This is easily seen to be
an open set as well. The following claim is based on an observation of
Eleftheriou:

Claim 7.5. Let G be definable in an o-minimal expansion of a group.
Assume that all charts {Ui : 1 ≤ i ≤ k} in the atlas of G are bounded.
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Then G is definably compact if and only if there exists an ε > 0 such
that

G=

k⋃
i=1

φi(U
ε
i ).

Proof. If G is definably compact then the negation of the condition
yields a definable curve γ : (0, a) → G, such that for every t,

γ(t) ∈ G \
k⋃

i=1

φi(U
t
i ).

If g ∈ G is the limit of γ(t) as t tends to 0 (which exists by definable
compactness) then for some i = 1, . . . , k, φ−1

i (g) ∈ Ui, therefore for all
sufficiently small ε > 0, φi(g) ∈ U ε

i . This easily leads to a contradiction.
For the converse, if there exists an ε as above, then any definable

curve γ in G will be eventually contained in one of the φi(U
ε
i ), and

because U ε
i is bounded the curve φ−1

i (γ(t)) has a limit in x ∈ Mn, which
must be in Ui. The element φi(x) ∈ G is the limit of γ(t). ¤Claim

Returning now to the lemma, clearly, the ε-condition in the above
claim is first-order, therefore once all the charts of every Gs are bounded,
the set of s ∈ S for which Gs is definably compact is definable.

(ii) We still use the above notation for the atlas of every Gs. We first
make the following general observation: Assume that X is a topological
space, with a finite cover X =

⋃k
i=1 Ui by open connected U ′

is. Let GX

be the graph on {1, . . . , k} with an edge {i, j} if and only if Ui∩Uj 6= ∅.
Then X is connected if and only if GX is a connected graph. The same
statement is true if X is a definable space and we replace “connected”
by “definably connected”.

By replacing each Ui,s by its definably connected components (this
can be done uniformly in s) we may assume that each chart Ui,s is
definably connected. Now, the above condition on the connectedness
of the graph associated to the cover {φi,s(Ui,s) : 1 ≤ i ≤ k} is clearly
first-order and uniformly definable in s, so the set of s ∈ S for which
Gs is definably connected is definable. ¤
7.3. Torsion of definably compact groups.

Theorem 7.6. Let G be a definably compact, definably connected,
abelian group in an o-minimal expansion M of an ordered group. Then
for every k ∈ N, we have

Tork(G) = (Z/kZ)n.

Proof. By Eleftheriou-Starchenko [11], the result holds for groups defin-
able in ordered vector spaces over ordered division rings, and hence for
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all linear expansions of ordered groups. By Edmundo-Otero the result
holds in those expansions which are not semi-bounded (see discussion
in Section 2.1)

One may therefore assume that M is semi-bounded. Consider the

structure N̂ as given in Theorem 6.1, and its elementary sub-structure

D̂ (which is a short model).

The group G is definable in the structure M and therefore in N̂ ,
possibly over a finite tuple of parameters s. Namely, G = Gs for some
0-definable family {Gs : s ∈ S} of definable groups, in the structure

N̂ . By 7.4, one may assume that for every r ∈ S(D̂), the group Gr(D̂)
is definably connected, definably compact abelian group.

Because D̂ is a short model, given k ∈ N, for every r ∈ S(D̂),

Tork(Gr(D̂)) = (Z/kZ)n. This is clearly a first order property of D̂,

hence it is true in N̂ as well and in particular for G = Gs. ¤

8. Pillay’s Conjecture

As is pointed out in [12] (see Remark 4 at the end of Section 8), the
presence of an ambient real closed field is used twice in the proof of
Pillay’s Conjecture:
1. In order to apply Theorem 2.1 from [18] to a definably compact
group G one needs to know that closed subsets of G are closed and
bounded. This is true if G can be made affine, which in expansions
of real closed field can always be achieved, but false in general. The
following idea was suggested by Eleftheriou:

Using Claim 7.5, there are finitely many pairs of bounded open sets
V1 ⊆ U1, . . . , Vk ⊆ Uk, subsets of Mn, such that for each i, Cl(Vi) ⊆ Ui

(closure taken in Mn) and such that

G =
⋃
i

φi(Ui) =
⋃
i

φi(Vi).

Given any closed set X ⊆ G, each set φ−1
i (X)∩Cl(Vi) is closed and

bounded in Mn. As is shown in Lemma 3.10 of [11], this is sufficient
in order to apply Theorem 2.1 in [18] and prove the required result:

If X ⊆ G is a definable closed set (with respect to the group topology)
and M0 is a small model then the set of M0-conjugates of X is finitely
consistent if and only if X has a point in M0.

2. The second, and more substantial, missing ingredient in the proof of
Pillay’s Conjecture is Theorem 7.6, which is now proved in this setting
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as well.

It therefore follows that Pillay’s conjecture holds in expansions of
ordered groups.

9. some open questions

9.1. The structure of definable sets. In [17] and [5], structure the-
orems for definable sets in semi-bounded structures are given. The
conjecture below is a natural strengthening of those results.

Conjecture 1 If M is semi-bounded then every definable subset of Mn

can be written as a finite union of sets of the form:

C + {Σk
i=1(λi,1(ti), · · · , λi,n(ti)) : t1 ∈ I1, . . . , tk ∈ Ik},

for a definable C ⊆ Dn, λi,j ∈ Λ and I1, . . . , Ik long (possibly un-
bounded) intervals.

9.2. Definable groups in semi-bounded structures. It was shown
by Edmundo, Eleftheriou, [6], that every definable group in a semi-
bounded structure has a definable normal subgroup which is definably
isomorphic to 〈Mn, +〉, such that the quotient is definably isomorphic
to a bounded group (namely, a group whose universe is a bounded
set in Mn). Because of the above conjectured structure theorem and
because definable functions are linear outside short intervals, the fol-
lowing conjecture seems reasonable:

Conjecture 2 Let G a definable abelian group in a semi-bounded struc-
ture. Then there exist a definable group B ⊆ Dn (i.e. B is definable in
some o-minimal expansion of a real closed field), a semi-linear group
A and a definable extension

0 → A → G0 → B → 0,

such that G is isomorphic to a definable quotient U/L, for U a
∨

-
definable open subset of G0 and L a finitely generated lattice in U .

The conjecture, if true, will allow to analyze every definable group
in an o-minimal expansion of ordered groups in terms of semi-linear
groups and groups definable in expansions of real closed fields.
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9.3. A general transfer principle. The arguments used to prove
Theorem 7.6 can clearly be used to transfer other results from o-
minimal expansions of real closed fields to o-minimal expansions of
groups. This suggests a possible general transfer principle between o-
minimal expansions of fields and of groups. The following conjecture
is modeled after another transfer principle, suggested by L. van den
Dries in [4] (and proved false in the original setting):

Let φ(R1, . . . , Rn, f1, . . . , fk) be a sentence in a language L expanding
the language of ordered sets, with R1, . . . , Rn, f1, . . . , fk all relation and
function symbols that are different than <.

Conjecture 3 Assume that φ(R1, . . . , Rn, f1, . . . , fk) holds in every
o-minimal L-expansion of a real closed field, where < is interpreted as
the natural ordering of the field.

Then φ(R1, . . . , Rn, f1, . . . , fk) holds in every o-minimal L-expansion
of an ordered group that is not linear, where < is interpreted as the
natural ordering.

The arguments presented here show that it is enough to prove the
above for short models.

10. Appendix

I now return to Proposition 6.2 (Proposition 5.1 from [13]). As was
pointed out in [1], the proof for that theorem contained an error. The
error was fixed in Belegradek’s paper, using an idea of Hrushovski.
However, the new result (Fact 0.1 in [1]), reads as follows:

Fact 10.1. Let V be an ordered vector space over an ordered division
ring D, a a nonnegative element in V and

V = 〈V, <, +, {λ : λ ∈ D}; {P : P ∈ P}〉
an expansion of V by a collection P of relations on I = [−a, a]. Sup-
poses that every relation on [−a, a] which is a-definable in V belongs to
P. Then the structure V admits elimination of quantifiers.

To see that Fact 10.1 implies Proposition 6.2 it is left to prove (under
the assumptions of 6.2):

Every a-definable subset of In in the structure V is already 0-definable
in I = 〈I, {P : P ∈ P}〉.

Proof. We may assume that V is sufficiently saturated. It is sufficient
to prove that every automorphism of I can be extended to an automor-
phism of V which fixes a. Let σ : I → I be such an I-automorphism.
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By assumption (i) of 6.2, the relation < |I2 is in P , and therefore σ
is order preserving. Let W be the D-linear span of I in V . It is a
convex subspace of V and, again by (i) of 6.2, σ can be extended to an
ordered-vector-space automorphism of W , which necessarily fixes a. It
is not hard to see that σ can now be extended further to an ordered-
vector-space automorphism of V , call it σ again. Since σ|I preserves
all relations from P , it is an automorphism of V , with σ(a) = a. ¤
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