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Abstract
Over the past few decades, cognitive science has identified several forms of reason-
ing that make essential use of conceptual knowledge. Despite significant theoret-
ical and empirical progress, there is still no unified framework for understanding 
how concepts are used in reasoning. This paper argues that the theory of concep-
tual spaces is capable of filling this gap. Our strategy is to demonstrate how vari-
ous inference mechanisms which clearly rely on conceptual information—includ-
ing similarity, typicality, and diagnosticity-based reasoning—can be modeled using 
principles derived from conceptual spaces. Our first topic analyzes the role of expec-
tations in inductive reasoning and their relation to the structure of our concepts. We 
examine the relationship between using generic expressions in natural language 
and common-sense reasoning as a second topic. We propose that the strength of a 
generic can be described by distances between properties and prototypes in concep-
tual spaces. Our third topic is category-based induction. We demonstrate that the 
theory of conceptual spaces can serve as a comprehensive model for this type of rea-
soning. The final topic is analogy. We review some proposals in this area, present a 
taxonomy of analogical relations, and show how to model them in terms of distances 
in conceptual spaces. We also briefly discuss the implications of the model for rea-
soning with concepts in artificial systems.
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1 Introduction

Concepts are often understood as the ‘building blocks of thought’ (e.g., Fodor, 
1983; Pinker, 2007). Consequently, they are assumed to play a central role in the 
explanation of rational thinking. However, theories of concepts in psychology 
and philosophy rarely integrate theories of reasoning and vice versa. The upshot 
is that no scientific or philosophical story provides a systematic explanation of 
how concepts are involved in the processes that characterize reasoning.

The divorce between these two areas of research traces back to classical logic, 
which was founded upon the idea that a theory of argument validity can dispense 
with a theory of conceptual content. In other words, logic is presumed to be 
‘topic neutral’ since it regards the syntax of a few logical operators as sufficient 
for constructing a theory of rational inference (see, MacFarlane, 2000). In psy-
chology, the influence of this heritage is evident in what is often referred to as the 
‘deductivist paradigm’ (or ‘classical view of reasoning’). This perspective posits 
that inference operates through the application of abstract rules to propositionally 
structured information, akin to a proof-theory system (e.g., Rips, 1994; Smith 
et  al., 1992). However, many forms of human reasoning are evidently concept-
based and rely on semantic mechanisms that go beyond the scope of classical 
logic. In addition, experimental psychology has demonstrated that the thematic 
content of the problems we reason about affects both the strategies used and pro-
cessing fluency; something that has proven challenging to reconcile with the syn-
tactic paradigm (see, Pollard & Evans, 1987; Kellen & Klauer, 2020).

Despite significant theoretical and empirical progress, a unified model explain-
ing how concepts are used in reasoning remains elusive. This article utilizes the 
theory of conceptual spaces (Gärdenfors, 2000, 2014) as a comprehensive frame-
work for analyzing various concept-based inferences explored in cognitive sci-
ence. The fundamental premise of our approach is that reasoning exploits the 
structural properties of conceptual representation, and not the syntactic properties 
of language—as is assumed in the classical view. Conceptual spaces enable us 
to model several key notions to the analysis of reasoning within psychological 
literature, such as prototypes, similarity, typicality, and diagnosticity. The appli-
cability of these definitions across a range of psychological areas underscores the 
unifying strength of our approach.

The critical motivation behind our proposal aligns with the so-called ’new 
paradigm in the psychology of reasoning’ (see Tessler & Goodman, 2019; Oaks-
ford & Chater, 2020), which uses Bayesian models (and probabilities in general) 
to examine various aspects of reasoning and rationality. However, our approach 
diverges in several key aspects. Firstly, the new paradigm predominantly focuses 
on the use of conditionals in domain-general forms of reasoning. In contrast, 
the conceptual space approach centers on domain-specific inference types that 
depend on the extralogical terms of the language rather than the structure of the 
sentences. Secondly, the new paradigm does not delve into the nature of concepts 
or their role in reasoning, while the framework presented here bridges these two 
areas of inquiry. Lastly, we posit that not all mechanisms employed in reasoning 
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can be modeled probabilistically. For instance, we will demonstrate in the sec-
tion on generics that probabilistic models fail in handling certain cases. Simi-
larly, probabilistic models do not effectively accommodate analogical reasoning. 
Furthermore, people frequently violate fundamental principles of probabilites 
while reasoning. A classic example is the ‘Linda problem’ (Tversky & Kahne-
man, 1982), which exhibits the so-called conjunction fallacy. Osta-Vélez, M., & 
Gärdenfors, P. (2022a) illustrate how this example can alternatively be analyzed 
in terms of expectations based on similarities rather than probabilities.1

Our analysis will begin by examining inferential processes that make use of the 
prototypical structure of concepts. Thanks to the pioneering work of Rosch (1975) 
and Barsalou (1985), it is now widely accepted that most natural categories possess a 
prototypical structure. This feature of semantic representation is particularly impor-
tant for cognitive tasks such as categorization, but it also plays a role in inferences 
under uncertainty. Our first topic will be a model of reasoning based on expectations 
about concepts. It is important to note that our notion of expectation is non-probabil-
istic.Our second topic concerns the role of generic expressions in concept formation 
and reasoning. Generics are statements of the form Xs are Ys” (e.g., "Tigers are 
striped”) or Xs cause Y” (e.g., ”Sharks kill people”), and they have been notoriously 
difficult to analyze using traditional logical tools. The numerous proposals in the 
literature all have encountered problems. We propose that generics should not be 
approached from a truth-conditional perspective, but should rather be regarded as 
sentences that express expectations that may vary in strength. This allows them to 
convey information about the structure of categories and to be used in conjunction 
with factual knowledge to draw practical conclusions. To quantify the strength of a 
generic expression, we suggest employing the concept of typicality which we deef-
ine in terms of distances between properties and prototypes in conceptual spaces. 
Our third topic of investigation focuses on inductive reasoning. Philosophers have 
extensively studied induction, but it continues to present challenges, particularly for 
logic-based approaches. One prominent form of concept-based reasoning is cate-
gory-based induction, an inferential mechanism that utilizes knowledge of concep-
tual relationships to estimate the likelihood of projecting a property from one cat-
egory to another. For example, inferring that wolves have a certain property because 
dogs share the same property seems plausible due to the strong similarity between 
these categories. In recent decades, psychologists have identified several features of 
this mechanism and proposed various formal models to account for it. In our analy-
sis, we review some of the key proposals and argue that the theory of conceptual 
spaces can serve as a unifying framework for modeling category-based induction.

Our final topic centers around analogy, a fundamental cognitive mechanism 
that helps organize our conceptual knowledge by identifying similarities between 

1 It’s also worth noting that in the tradition of symbolic AI, attempts have been made to construct mod-
els that elucidate the relationship between concepts and reasoning. A notable example is Semantic Net-
works, which have found diverse applications in reasoning studies (see Shastri, 1989). Additionally, Non-
monotonic logic was developed for similar purposes (see Brewka, 1991). More recently, various forms 
of Description Logics, particularly Typicality Logic, have been designed to model how we reason with 
prototypes (for example, Lieto and Pozzato, 2019). However, none of these models is built on or inspired 
by cognitive hypotheses about conceptual structure.
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seemingly disparate areas of knowledge. Analogy is widely recognized to play a 
critical role in reasoning (e.g., Bartha, 2010; Hofstadter & Sanders, 2013). However, 
the literature on analogies is quite diverse, with various theories being put forth. 
In our analysis, we review some of the most significant proposals in this area and 
present a comprehensive model that includes a taxonomy of analogical relations. 
Our proposed model offers a new perspective on how to conceptualize and model 
analogies, using the concept of distances in conceptual spaces. This approach 
provides a unified framework for understanding analogical reasoning and its 
underlying cognitive processes.

Each of the four concept-based cognitive mechanisms that we examine in this 
article has traditionally been studied in isolation using different approaches. How-
ever, a central theme of this article is to demonstrate that there are strong relation-
ships between them, all of which rely on similarity, typicality and diagnosticity. We 
argue that by using conceptual spaces as a modeling tool, we can better understand 
these interrelationships. Our proposed model offers a unification of these different 
mechanisms, enabling us to generate new predictions about reasoning with concepts.

2  The Role of Expectations in Reasoning

Studying reasoning from the perspective of classical logic ties us to two unwarranted 
assumptions: Firstly, that inference is a relation between sentences (or propositions). 
Secondly, that argument validity depends exclusively on the formal structure of the 
premises and the conclusion and is independent of their meaning or the context in 
which the inference is drawn (see Gärdenfors, 1992). This leads us to conceive rea-
soning from a purely syntactic perspective without any relation to semantic notions 
(e.g., Bonatti, 1994). The contents of the predicates in the sentences are considered 
completely irrelevant (e.g., Fodor & Pylyshyn, 2015). In brief, classical logic pre-
sumes a sharp distinction between form and content and depicts reasoning as infor-
mationally conservative in that the information in the conclusion of an argument is 
contained in the premises.

Everyday reasoning, however, clearly builds on more than the logical form of 
explicit premises. Because most of our decisions are made under uncertainty, our 
inferential mechanisms can hardly afford to be informationally conservative (see 
Oaksford & Chater, 2009). We must constantly take risks and use our background 
knowledge in productive ways to complement the explicit information on the prem-
ises. One of our main theses is that much of this background information consists of 
knowledge about the structure of concepts and their relations to each other.

One particular way in which this use of background knowledge expresses itself 
is through our expectations about the world. For instance, if we see that an apple is 
red, we expect it to be sweet; or if we turn the ignition key of a car, we expect the 
engine to start. In general, our expectations about the world are crucial for guiding 
our reasoning and actions in everyday life, and they build directly on the structure of 
our background knowledge.

In the logical tradition, such expectations have been put to work in so-called 
nonmonotonic logic. Gärdenfors (1992) and Gärdenfors and Makinson (1994) have 
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argued that much of nonmonotonic logic can be reduced to classical logic with the 
aid of an analysis of the expectations working as hidden premises in arguments. The 
guiding idea is that when we try to find out whether a conclusion C follows from a 
set of premises P, the background information that we use in inferences does not 
only contain the premises in P, but also information about what we expect in the 
given situation, so that we end up with a larger set of assumptions. Such expectations 
can be expressed as default assumptions, that is, statements about what is normal or 
typical. They include not only our knowledge as limiting case but also other beliefs 
that are regarded as plausible enough to be used as a basis for inference as long 
as they do not give rise to inconsistencies. Expectations are thus defeasible in the 
sense that if the premises in P conflict with some of the expectations, we do not use 
them when determining whether C follows from P. Expectations are used basically 
in the same way as explicit premises in logical arguments; the difference being that 
expectations are, in general, more defeasible than the premises.

This approach is limited in that it does neither say anything about how the expec-
tations arise nor about how their strength in an argument can be gauged. We shall 
argue that knowledge about the structure of concepts and what is typical of things 
falling under a concept can be used to fill these gaps. For this purpose, we next 
introduce the theory of conceptual spaces as a tool for modelling such knowledge.

3  Conceptual Spaces as a Modelling Framework

3.1  The Basic of Conceptual Spaces

Conceptual spaces (Gärdenfors, 2000, 2014) have been developed as a research pro-
gram in semantics studying the structure of concepts and their interrelations using 
geometrical methods. The approach builds on two central ideas about the composi-
tion and structure of concepts and properties: (i) they are composed by clusters of 
quality dimensions, many of which are generated by sensory inputs such as color, 
size and temperature; (ii) they have a geometric or topological structure that is the 
result of the integration of the specific structures of the dimensions.

Quality dimensions can be integral or separable. They are integral when you can-
not assign to an object a value in one dimension without assigning another value 
in another dimension (Maddox, 1992). For instance, it is not possible to attribute a 
value to pitch of a tone without attributing one to loudness. When quality dimen-
sions are not integral, they are called separable.2

We define the notion of domain as a set of integral dimensions that are separa-
ble from all other dimensions. For instance, human color properties are composed 
of three fundamental parameters of color perception: hue, saturation and brightness 
(Gärdenfors, 2000, 2014). Any color perception is mapped onto some specific val-
ues to these dimensions. More generally, different colors can be described as regions 
of possible values of these three parameters (see Fig. 1).

2 There exist several psychological tests for determining whether dimensions are integral or separable 
(Garner, 1974; Maddox, 1992; Melara,1992).
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A central criterion in this theory is that natural properties (like colors) correspond 
to convex regions of a single domain (Gärdenfors, 2000: 71). A region is convex 
when for every pair of points x and y in the region, all points between them are also 
in the region. In this way, the criterion assumes that the notion of betweenness is 
meaningful for the relevant domain.

The central notion of ‘conceptual space’ is defined as a collection of one or more 
domains with a distance function (metric) that represents properties, concepts, and 
their similarity relations. The distance function can vary; the most common one is 
the Euclidean, but also Manhattan and polar metrics may be appropriate in different 
contexts (see, Shepard, 1964; Johannesson, 2002; Gärdenfors, 2014).

Similarity between concepts and objects is defined a monotonically decreasing 
function of their distance within the space (Shepard, 1987). This makes our notion 
of similarity different from that of Tversky (1977), which is based on comparing the 
number of properties that two objects have in common with the properties where 
they differ.

3.2  Properties and Concepts

Many predicates in natural language, in particular those expressed by nouns, can-
not be defined within a single domain, but as clusters of properties. This fact leads 
us to divide predicates into properties and concepts. While properties are convex 
regions of single domains, concepts are convex regions within a set of intercon-
nected domains (Gärdenfors, 2000: Sec. 4.2.1). For most concepts, the domains that 
compose them can be correlated in different ways. For example, in the case of the 
concept fruit, properties like size and weight, or ripeness, color, and taste co-vary. 
These co-variations generate expectations crucial for inferential procedures that 
exploit semantic properties.

As an example, consider a basic conceptual space for fruit defined as a composi-
tion of properties of fruits from the domains of color, taste, ripeness, texture, and 
shape. The ‘fruit space’ will be the Cartesian product of these five domains. And the 

Fig. 1  Color space. The 
property red is represented as 
a convex region that corre-
sponds to specific values of hue, 
saturation and brightness (color 
figure online)
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concept apple will occupy specific subregions of these domains that correspond to 
the possible properties of these fruits together with correlations between regions of 
these domains, as it is represented in Fig. 2.

An important advantage of representing concepts in this way is that it allows 
us to account for the prototypical structure of categories in a natural way (Gärden-
fors, 2000; Lakoff, 2008; Rosch, 1975, 1983). If concepts are defined as convex 
regions within n-dimensional spaces, a certain point in each region can be inter-
preted as the prototype for the property or concept. In the opposite direction, given 
a set of prototypes p1, p2,…, pn and a Euclidean metric, a set of n concepts can be 
delimited by partitioning the space into convex regions such that for each point 
x ∈ Ci, d

(
x, pi

)
< d

(
x, pj

)
 when i ≠ j. This partitioning is the so-called Voronoi tes-

sellation, a two-dimensional example of which is illustrated in Fig. 3. Thus, assum-
ing that a metric is defined on the subspace that is subject to categorization, a set of 
prototypes will by this method generate a unique partitioning of the subspace into 
convex regions.3

Within this framework, objects are seen as instances of concepts and are mapped 
into points of the space, and concepts are represented as regions (connected sets of 
points). This allows for representing graded membership and degrees of typicality 
(Rosch et al., 1975; Hampton, 2007); that is, we can represent objects in the space 
as being more or less typical instances of the categories according to their position 
relative to the prototype. Representing typicality in this way has several advantages 

Fig. 2  The concept of an apple as a subregion of ‘fruit space’. The dotted lines represent correlations 
between properties for the concept apple

3 The Voronoi tessellation works also for other kinds of metrics (see Okabe et al.,1992).

Fig. 3  Voronoi partitioning in 
a 2-dimensional space (color 
figure online)
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in terms of cognitive economy for processes like categorization (Gärdenfors, 
2000, 2014) and inductive inference (Gärdenfors & Stephens, 2018; Osta-Vélez 
& Gärdenfors, 2020). As we will argue, this fact is crucial for representing 
expectations.

3.3  Context, Domain Salience, and Dynamic Conceptual Spaces

An important phenomenon that any theory of concepts must account for is that 
psychological similarity is a variable measure dependent on the context (Goodman, 
1972). In particular, as Nosofsky (1986) noticed, conceptual similarity is modulated 
by attention to specific domains of the compared concepts. For instance, apples are 
seen (generally) as more similar to tomatoes than dates. However, in the context 
of choosing dessert, in which ‘sweetness’ is a salient feature, the similarity 
judgment is expected to change. Context effects have been extensively studied in 
the psychological literature (see Goldstone et  al., 1997; Keßler et  al., 2007), and 
geometrical models of similarity have been often criticized because of their 
limitations in accounting for such effects (Tversky, 1977; see Decock & Douven, 
2011 for a review). The conceptual spaces model, however, doesn’t suffer from 
these shortcomings (Johannesson, 2000; 2002). The context-sensitive character of 
psychological similarity is accounted for in terms of a weighted distance measure. 
For instance, within the context of a Euclidean metric, the distance measure will 
include salience weights wi that modify the salience of dimension i in the conceptual 
space:

When a larger value is given to a weight wi, the conceptual space is magnified 
along that dimension, which means that dimension i will become more important 
when determining the similarity between categories because larger distances (that 
is, dissimilarities) are penalized more when wi is high (Gärdenfors, 2000: 20). 
As we will show later, this weighted distance function will have a central role for 
accounting for the role of context in case-based induction.

4  Typicality and Diagnosticity

We next show that conceptual spaces, thanks to their particular metric structure, 
allow us to model typicality and diagnosticity, which are central notions in the anal-
ysis of concepts and reasoning with concepts.

4.1  Generating Expectations

We first present how expectations can be modelled in terms of conceptual spaces. 
We submit that expectations depend crucially on the prototypical structure of 

d(x, y) =

√∑

i

wi(xi − yi)
2
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concepts. In this article, we only analyze expectations about the properties of the 
objects we reason about and do not consider relations between objects.

The underlying method of generating expectations follows from a version of the 
Gricean principle of maximal informativeness (Grice, 1975). If you are informed 
that an object x should be categorized as, for example, a bird, but you do not know 
more about what kind of bird x is, then you expect that x has all the prototypical 
properties of birds: that x has wings, that it has a beak, that it builds nests, that it 
sings, that it flies, and so on. The principle of maximal informativeness requires that 
your informant should have communicated something more specific, if these expec-
tations about x are not fulfilled.

Furthermore, when new information is added, expectations are restructured. If, 
after learning that x is a bird, you learn that it is an ostrich, you will no longer expect 
that it flies, nor that it sings. Instead, some new expectations will be added, such that 
x is big, that it runs fast and that it kicks hard.

4.2  A typicality Criterion

This analysis of expectations can be formalized using conceptual spaces. The 
representation C(M) of a concept M can be seen as a subset of the Cartesian product 
of n domains:

An object x falling under M is represented as a n-dimensional point 
x = ⟨x1, x2, ..., xn⟩ ∈ C(M) such that each xi in x represents the coordinates of x in the 
domain.

The central idea is that the expectations towards a sentence M(x) are 
structured around the prototype pM of M, which is also a n-dimensional point 
pM = ⟨pM

1
, pM

2
, ..., pM

n
⟩ ∈ C(M) with the peculiarity that each coordinate pM

i
 falls 

within a region of Di that represent a prototypical property of the concept M.4 This 
is to say that if the only thing we know about x is that it falls under concept M, we 
will expect it to be (close to)pM , that is, to have all the prototypical properties.

Our expectations towards an object categorized as M may well go beyond the 
properties determined by M’s prototype. For instance, if we know that x is an apple, 
we might expect that it is red, but we wouldn’t be surprised if when we eventually 
see that x is actually green; after all, green is also a common (and as such expected) 
property for apples. Since most objects can have different properties in the same 
dimension, it makes sense to consider all non-prototypical ones as secondary 
expectations. In the conceptual space framework, this means that representing 
an object under a concept M implies that it may occupy any possible position in 
the space C(M) . Different positions imply different properties for the object. The 
properties that do not apply to pM are weaker (more defeasible) than the ones that 
apply to pM . In general, we claim that for any property R in C(M) its degree of 

C(M) ⊆ Di × D2 × ... × Dn

4 Here we assume that the prototype is a unique point. However, this may be relaxed to assuming that 
there is a prototypical region (Douven, 2016).
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defeasibility can be specified as a function of its position relative to the prototype of 
M.

Our task is now to construct an ordering of properties that reflects their strength 
of expectations (and thus, their degree of defeasibility). One way of doing this is by 
measuring the distance to the closest point where the property is not satisfied.5 The 
criterion measures the distance of a region to a prototype via its closest point (see 
also Lewis & Lawry, 2016). We can use the distance function from the conceptual 
space to obtain this kind of information.6 We will talk about the ‘typicality degree’ 
of a property R in C(M) —written “ TM(Ri) ”— as a measure of its expectedness, and 
propose the following measure:

4.3  Typicality Measure

1. For any prototypical property Ri in C(M) , TM
(
Ri

)
= min

x∈¬Ri(x)
d
(
x, pM

)

2. For any non-prototypical property Rk in a conceptual space C(M) , 
TM

(
Rk

)
= min

x∈Ri(x)
d
(
x, pM

)

The measure gives us a way to determine the typicality degree of every 
property in a conceptual space and, as a consequence, it can be used as a basis 
for constructing the desired expectation ordering of properties. We then define 
the ordering as the expectation ordering of properties associated to concept M as 
follows: Given two properties Ri , Rk in C(M) , Ri is more expected than Rk (i. e., 
Ri > Rk ) iff TM

(
Ri

)
> TM

(
Rk

)
 . The typicality measure produces a fine-grained order 

of expectations that makes it possible to compare individual properties. Note that 
the degree of expectation of a property is a positive function of the strength of the 
nonmonotonic inference←|∼. The idea of ‘inference strength’ can be understood 
in a subjective way as the ‘level of confidence’ that a subject has regarding some 
non-monotonic inference. The most entrenched properties in the ordering will 
generate inferences that are perceived as almost certain (e.g., “If x is a bird, then 
it has feathers”) while less entrenched properties will produce weak and uncertain 
inferences (e.g., “If x is a bird, then it is small”).

4.4  Diagnosticity

This notion of diagnosticity is founded on the principle that certain properties of 
a category can serve as key differentiators, distinguishing it from other categories 
within the same contrast class (see Tversky, 1977). For instance, consider the prop-
erty of having wings in the category of bird. This property is highly diagnostic 

5 There are other possibilities to define the expectation ordering between properties, for example by 
using average distances between a prototype and a region or looking for nearest neighbors (Sadler and 
Shoben, 1993). It is a matter of empirical research to determine which method gives the results that best 
fits with how humans reason.
6 For any point x ∈ (M) and property R ⊆  Di ⊆ (M), “R(x)” means that the coordinate corresponding to 
dimension  Di falls under the subregion corresponding to R.
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because it significantly differentiates birds from other contrastive animal categories 
that typically lack wings, such as mammals or reptiles. This kind of properties has 
an important role on the structure of concepts because they are maximally informa-
tive and minimize uncertainty and ambiguity during categorization.

In our model, we address the influence of the contrast class by considering the 
prototype of the immediate superordinate category. We can define diagnosticity in 
terms of typicality in conceptual spaces as follows:

1. A property R is diagnostic for category M if R is not a prototypical property 
(according to our Typicality Criterion) of the immediate superordinate category 
of M.

2. Given a category M, its immediate superordinate category N, and two properties 
Ri and Rk inC(N) , the diagnosticity of Ri — writtenDM,N(Ri)—is equal to TM(Ri)

TN (Ri)
.

It is important to note that in the typicality and diagnosticity measures we do 
not count numbers of instances, but the measures are based on similarity to the 
prototype. In other words, our model is not probabilistic. Probabilistic models will 
not give the right results for expectation orderings since some properties that are 
probable may be atypical.7 For example, the prototypical turtle is adult, while it is 
very probable that a turtle dies before adulthood.

5  Generics

The prototypical structure of concepts not only expresses itself while reasoning 
under uncertainty. It also becomes evident in everyday communication, particularly 
when we use generic sentences to convey information about the world efficiently. 
Generic sentences are expressions of the form “Fs are Gs,” like “Ducks lay eggs,” 
“The French like wine,” or “Tigers are ferocious.” Such sentences are central to eve-
ryday communication and cognition and they have attracted the attention of psychol-
ogists, philosophers, and linguists for a long time (e. g., Gelman, 2010; Krifka et al., 
1995; Leslie & Lerner, 2016).

On the surface, generics seem to be about the prevalence of properties over 
groups of entities. However, when we analyze how they are used in everyday cog-
nition, we see that statistical factors play a minor role. For instance, people usu-
ally consider the statement “Sharks kill people” valid. Yet, human deaths caused by 
sharks are very rare, and many species of sharks are completely harmless to humans. 
Likewise, the generic “Lions have manes” is often assumed to be valid even if it is 
only true for a relatively small subclass of ducks (mature males).

Since much of our world knowledge comes from them, generics are of great 
epistemological interest (Gelman, 2021). However, they are particularly difficult to 
analyze since they express very different kinds of information using the same lin-
guistic format. Several attempts have been made (e.g., Cohen, 2004; Pelletier & 

7 An example of a probabilistic model is Lieto and Pozzato (2019).
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Asher, 1997; Sterken, 2015b), but they all face problems (see Leslie, 2008). Some of 
the models are probabilistic (e.g. Tessler & Goodman, 2019; van Rooij & Schultz, 
2019), but, as we have explained in the introduction, there are strong arguments 
against using probabilistic model to account for reasoning with concepts.

The following classical example is a reductio showing that a simple assignment 
of truth conditions will not work:

(1) Birds fly.
(2) Penguins do not fly.
(3) Penguins are birds.

The paradox is that all three sentences are valid generics, but they cannot all be 
true if they are interpreted as universal sentences.

For a logician, a typical reply is to say that (1) and (2) are not real universal 
sentences but implicitly mean something like “Typically, birds fly” or “Usually, 
penguins do not fly.” Following this intuition, many have assumed that the “deep 
structure” of generic statements combines two predicates with a hidden operator 
(named “Gen”) that refers to some adverb of quantification like “typically,” 
“generally,” or “usually.” Many have believed that specifying Gen is the key to 
determining the truth-functional structure of generics, (see e.g., Pelletier & Asher, 
1997), but Leslie (2008) convincingly shows that there is no satisfactory description 
of the semantics of Gen.8 We believe that an analysis of the meaning of generics 
in terms of their functional role in reasoning with concepts is more fruitful than a 
truth-functional one. 

Our proposal involves not looking upon generics as statements that can be evalu-
ated in isolation. Instead, we take a cognitive approach that focus on their interac-
tion with other statements that function as expectations in reasoning as analyzed in 
the previous section (cf., Leslie, 2008; Prasada et al., 2013). More specifically, our 
claims are that (i) generics have degrees of strength that can be evaluated according 
to their relation to large clusters of propositions encoding conceptual knowledge and 
(ii) they are particularly relevant in inductive inferences.

In the literature, there has been a discussion concerning how many types of 
generics should be distinguished. For example, Leslie et al. (2011) and Prasada et al. 
(2013) suggest that there are at least five types. We propose a new classification 
that distinguishes between two main kinds of generics: (a) Property generics dealing 
with characteristic properties of objects, and (b) diagnostic generics dealing with 
the diagnosticity of concepts.9

Our analysis builds on an elaboration of the classical distinction between 
‘knowledge-that’ and ‘knowledge-how’ (Ryle, 1949) which adds ‘knowledge-what’ 

9 This distinction is essentially the same as Pelletier and Asher’s (1997) distinction between non-epi-
sodic and episodic generics, although we emphasize the role of causality.

8 It cannot be equivalent to any of the traditional quantifiers ‘all’, ‘most’ or ‘some’ (Carlson, 1977). And 
Gen cannot be systematically applied to all generics since its scope varies: “Tigers are striped” holds for 
most tigers while “Ducks lay eggs” only for a minority of ducks. Thus, it seems that it is impossible to 
describe Gen as a form of quantifier.
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to the classification (Gärdenfors & Stephens, 2018). Knowledge-that concerns 
relations between agents and propositions that describe the world, while knowledge-
how concerns abilities, dispositions and actions of an agent. In contrast, ‘knowledge-
what’ concerns the ability to categorize, in particular to know relations between 
categories and properties.

‘Knowledge-what’ can be broken down into three types of information about 
categories: Defining properties, characteristic properties and accidental facts (see 
also Keil & Batterman, 1984 and Gärdenfors & Stephens, 2018). These three types 
of information can be illustrated with an example concerning the category “spiders’ 
web”:

• Defining Spiders’ webs are made from a protein fiber extruded from the spider’s 
body.

• Characteristic Spiders’ webs are used for catching insects.
• Accidental Spiders’ webs are abundant in the cellar.

Defining properties of a category refer to information that pertains to the 
“core” meaning of its lexical counterpart. Characteristic properties refer to 
general knowledge about the category, that is, properties that generally hold of the 
category (exceptions may be possible). In the case when characteristic properties 
are formulated in sentences, the distinction between defining and characteristic 
corresponds to the distinction between definitional and law-like sentences that 
has been made within philosophy of science (Hempel, 1965). We do not assume, 
however, that there is a shared border between defining and characteristic properties. 
Accidental facts contain information about particular instances of a category.

Generics such as “Blue whales eat plankton” and “Tigers are striped” are used 
to express some of the characteristic properties of categories whale and tiger. A 
sentence such as “Tigers are mammals” is defining. In contrast, factual universals, 
such as “Blue whales can be seen around the Cape of Good Hope” and “Tigers can 
be found in the Himalayan foothills” express accidental facts about the world that 
are not part of the characteristic properties of the concepts.

5.1  Property Generics Express Relations Between Concepts

Property generics have the form “As are B” or “As have B”, where A denotes a 
category (expressed by a noun or a noun phrase) and B denotes a property (gener-
ally expressed with the aid of an adjective). We claim that these generics do not 
capture any statistical fact regarding the property and the class of objects denoted 
by the noun, but rather express that the property is particularly relevant for the 
concept represented by the noun. In most cases, these generics convey informa-
tion about the typicality or diagnosticity of a property. Consider for instance, the 
generic “Lions have manes.” While most lions do not in fact have a mane (only 
adult males do), the generic is generally accepted because having a mane is both 
typical and diagnostic of the category lion.
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Now, compare “Lions have mane” with the accidental “Lions are in the back-
yard.” They are inferentially different: “Lions are in the backyard” is upward 
entailing (see Huang, 2011), that is, it will remain true if we substitute “lion” 
for any of its superordinate concepts (for example animal). This is clearly not the 
case for “Lions have mane” since “Animals have mane” is not valid.

It is well-known that generics and accidental universals behave in different 
ways linguistically, as pointed out by Lawler (1973):

(D) Blue whales eat plankton.
(E) A blue whale eats plankton.
(F) Blue whales can be seen around the Cape of Good Hope.
(G) A blue whale can be seen around the Cape of Good Hope.

(4) describes a characteristic property of blue whales. It can be exchanged for 
the indefinite singular version in (5). The generic expresses a relation between 
the concept blue whale and the property of feeding on plankton. In contrast, (6) 
is an accidental universal. A test for this is that it cannot be exchanged for the 
indefinite singular version in (7).

Our second claim regarding property generics is that their meaning depends 
on the structure of background knowledge together with pragmatic factors. In the 
literature, generics have been mostly analyzed as isolated expressions. We shift 
the perspective and see generics as expectations that must be evaluated together 
with other expectations (see also Leslie, 2012). We propose that property generics 
(as sentences expressing knowledge-what) concern compatibility relations 
between the semantic domain of the predicated property and the category in 
the sentence. In brief, generics concern more or less prototypical properties of 
concepts: The more prototypical a property is for a concept, the stronger will 
be the corresponding generic. Depending on the available information, generics 
might interact differently with background knowledge and be used differently 
in reasoning. Surprisingly enough, there has been no previous attempt in the 
literature to specify how our knowledge of category structure interacts with our 
knowledge of predicated properties.

The rationale behind this is the same as explained in Sect. 4.1: When one cat-
egorizes an object x as C, expectations about properties that x is supposed to have 
because of falling under C can be used to generate generics. These expectations 
will respect an ordering that follows from the prototypical structure of the con-
cept and that it is sensitive to Grice’s principles of communication. For instance, 
if you are informed that an object x should be categorized as a bird, but you do 
not know more about what kind of bird x is, then, as before, you expect that pro-
totypical properties can be applied to x. Grice’s principle of maximal informa-
tiveness says that your informant should have communicated something more 
specific if these generic properties do not apply to x. We, therefore, interpret a 
property generic “Fs are G” as “Fs that are similar to the prototype have the prop-
erty G.”
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The Gricean pragmatic principle, plus the prototypical organization of the 
expectation ordering, tells us which set of generics fit better with some piece of 
information. In other words, it is possible to establish an ordering of generics 
according to their strength that will mirror the internal ordering of prototypical 
properties in the expectation set. For example, compare the following two valid 
generics:

 (8)  Elephants have trunks.
 (9)  Elephants are grey.

“Having a trunk” is a more characteristic property of elephants than being 
grey. One can quite easily accommodate the occurrence of a white or a black 
elephant, and perhaps also a pink one. An elephant, without a trunk, however, 
is a damaged elephant and is much less expected than a non-grey elephant. In 
terms of our typicality measure, a non-grey elephant is more typical than an 
elephant without a trunk. This is illustrated in Fig. 4, where the measures d1 and 
d2 represent the typicality of ‘grey’ and ‘having a trunk’.

The main prediction of this approach is that the strength of a property generic 
will be a positive function of the typicality degree of the property within a 
conceptual space. The general rule is that the more typical a property is for a 
particular category, the stronger is the generic. This rule explains why the 
proportion of instances is not decisive for how useful a generic is in arguments. 
For example, “Books are paperbacks” is highly probable, but the generic does 
not concern a characteristic property.

The most important consequence of this analysis of how generics are used 
in reasoning is that it does not require any additional linguistic or logical 
operators whatsoever. In particular, no Gen or default operators are needed. 
Instead, we assume that generics can be ordered according to the strength of 
their expectations within the appropriate conceptual space.

5.2  The Role of Diagnosticity in Generics

Concepts can be understood as organized in hierarchical structures with a horizontal 
and a vertical dimension (Rosch, 1983). The horizontal dimension concerns con-
trast relations between concepts at the same abstraction level. For example, dog, cat, 
lion, and horse are in a contrasting relation since any object falling under one of 
them is automatically excluded from the others. This type of relation occurs when 
concepts are included in the same partitioning of a superordinate category (in our 
example, mammal). The subordinate/superordinate relation is encoded in the vertical 
dimension. We will refer to the contrast class of concept M as the set CC(M) con-
taining the concepts that are different from M but share its immediate superordinate 
category with it.

Many generics turn out to express properties that are diagnostic for a concept. 
Consider.
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 (10)  Lions have manes.

That generic expresses that.

Lions, in contrast to other felines, have manes.

In other words, having a mane is diagnostic for lions in CC(lion) = {tiger, 
cheetah, jaguar, leopard, etc.}.

In our model, we address the influence of the contrast class by considering the 
prototype of the immediate superodinate category. A property is diagnostic when 
it maximizes the dissimilarity between a category and the categories in its contrast 
class, speeding up categorization (Tversky, 1977). The measure of diagnosticity that 
we proposed in Sect. 4.3 assures that for any two similarly distinctive properties of 
a category (with respect to its contrast class), the one with the highest typicality 
degree will be the one with more diagnostic value.

We predict that generics with diagnostic properties are easier to endorse than 
generics with non-diagnostic ones because of the positive cognitive effects of learn-
ing or confirming them on agents’ conceptual systems. For instance, (10) should be 
seen as more informative than “lions have whiskers” because ‘having manes’ con-
tains information that is specific to the category and helps to differentiate it from 
other categories, while ‘having whiskers’ is common to all members in CC(lion) 
and can be inferred from characteristic knowledge of the superordinate feline.

Now, some properties can have diagnostic value for a category and still be non-
prototypical or even rare. Consider the generic:

(K)  Frenchmen eat horsemeat.

Horsemeat is atypical in the diet of most French people, although it is common 
in a few regions of the country; why then is (11) considered an acceptable generic? 
The answer is that the diagnostic value of the property in (11) in relation to CC 
(Frenchmen) compensates for its low degree of typicality. In other words, the 

Fig. 4  The typicality of ‘grey’ 
and ‘having a trunk’ in the 
elephant region
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property eat_horsemeat will be more expected for Frenchmen than for any other 
category in CC(Frenchmen).

On the basis of these ideas, we propose that a generic of the form “M is R” is 
a valid diagnostic generic if R has high diagnostic value for M (with respect to a 
presumed superordnitae category N). This criterion would allow us to capture the 
intuition that generics with prototypical properties with diagnostic value are stronger 
than generics with atypical properties that also have diagnostic value: For instance, 
“Frenchmen speak French” is stronger than “Frenchmen eat horsemeat.”

The above analysis suggests that there are two factors at work in the evaluation 
of a generic. The first has to do with the degree of typicality of the property in the 
generic, and the second with its informational contribution in the form of diagnos-
tic value. To illustrate the difference between them, compare (10) with the generic 
lions_have_bones. Although very strong, the latter generic may seem obvious 
because the information in it is “inferentially available” for any competent language 
user. That is, minimal knowledge about the category lion allows you to infer that 
generic. On the other hand, (10) contains information that cannot be inferred from 
the superordinate of lion and which contributes to the specification of the category 
in relation to its contrast class.

In contrast to property generics, diagnostic generics do not pass Lawler’s 
(1973) test: The generic “Frenchmen eat horsemeat” does not express the same as 
“Frenchman eats horsemeat” and similarly “Lions have manes” is different from 
“A lion has a mane”. This observation supports that the two types of generics are 
indeed different.

In the literature (Leslie, 2008; Prasada et  al., 2013; Sterken, 2015a; van Rooij, 
2019), so-called “striking property generics” have been brought forward as a special 
type of generics. Two examples are the following:

 (12)  Ticks transmit Lyme disease.
 (13)  Sharks kill people.

Our proposal is that it is not the fact that they concern striking events that make 
them valid, but that they are diagnostic generics. Even though very few ticks 
carry the Lyme disease, this is more frequent in ticks than in any other category 
in CC(ticks) (the superordinate may perhaps be bugs–ticks are not insects but 
arachnids). Ticks may, in fact, be the only animals that carry the disease. Given this 
analysis, we reject the proposal that striking property generics form a separate class.

5.3  The Function of Generics

A fundamental pragmatic question is: What is the use of generics? In brief, our 
answer is that their main role is to express expectations of different strengths that 
can be used in the forms of reasoning that we present in this book. We speculate that 
children at an early age learn to reason with the expectations that are generated by 
the generics, but we know of no empirical investigations related to this position.
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It seems that generics have a central role in teaching, in particular in what is 
called “natural pedagogy”, that is, teaching by parents and others in everyday 
circumstances (Csibra & Gergely, 2009). We tell our children, already when they 
are small, things like: “cats say meow, dogs say woof, and cows say moo”.10 Later in 
school, they learn generics like “tigers have stripes”, “copper conducts electricity” 
and “democracies have freedom of speech”. Such property generics is a way of 
presenting characteristic properties of various categories (Leslie, 2008). Learning 
about categories is primarily done via their characteristic properties.11 And when 
it comes to diagnostic generics containing striking properties such as “dogs bite 
people”, they function as guidelines for caution in actions (Sterken, 2015a).

Mattos and Hinzen (2015) argue that natural pedagogy is one of the main 
functions of language. They write that humans have a “specific capacity to acquire, 
through communication, different kinds of information–respectively, knowledge 
about kinds and knowledge about particular events, actions and state of affairs which 
we will call here simply ‘knowledge about facts’” (Mattos & Hinzen, 2015: 7). 
They also argue that children learn knowledge about kinds earlier than they learn 
knowledge about facts.

6  Category‑Based Induction

6.1  properties of Category‑Based Induction

In a pioneering article, Rips (1975) studied a type of inductive inference that 
exploits information about individual categories for estimating the probability of 
property projection among them. For instance, “Dogs have sesamoid bones; thus, 
wolves have sesamoid bones” relies on the conceptual similarities among the cat-
egories dog and wolf, and not on the logical form of the argument or some other 
propositionally codified property. In particular, Rips saw that similarity among cat-
egories was a guiding principle for this kind of reasoning, and he proposed that the 
prototypical structure of natural categories also plays a role in judging the strength 
of inductive arguments.

Such processes, called category-based induction (CBI), are fundamental to 
our cognitive lives because of their role in dealing with uncertainty: they allow 
us to reason about some unknown concept M by exploiting information stored 
in our conceptual system about things that resemble M. They are, arguably, the 
clearest example of how concepts are constitutive of inductive reasoning (Feeney, 
2017: 167). Understanding how CBI works, and especially which features of our 
conceptual systems this form of reasoning exploits, can shed light on the general 
problem of the role of concepts in inferences. In this section, we discuss the general 
features of CBI and show how conceptual spaces can model them. 

11 Van Rooij (2018) emphasizes the role of learning generics.

10 Children’s picture books of animals and other object categories highlight the diagnostic properties of 
the categories.
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CBI arguments are composed of generic sentences (e.g., ‘Dogs have sesamoid 
bones,’ or ‘Bears love onions’) both in the premise(s) and in the conclusion. We 
abbreviate an inference of the form ‘X have property R; thus, Y have property R’ as 
‘X ➝ Y’. One argument for this abbreviation is that, in almost all studies, subjects 
typically have little or no knowledge about the property R and therefore it does not 
influence the strength of the argument.12

CBI arguments can be classified in two major ways: according to their number of 
premises and whether the conclusion is at the same conceptual level as the premises 
or in some superordinate category. When the premise(s) and conclusion categories 
are at the same conceptual level the argument is called ‘specific,’ as in robin ➝ 
crow. When the argument involves a generalization (a “jump” to a superordinate 
conceptual level), then it’s called ‘general,’ as in table ➝ furniture.

The empirical literature has shown that the most robust criterion used in CBI is 
similarity among categories (Rips, 1975; Carey, 1985; Osherson et al., 1990; Lopez 
et  al., 1992). This can be formulated as that our expectations regarding property 
projection among two categories X and Y are a positive function of the similarity 
between X and Y. For instance, arguments like “Ostriches are R, then emus are R” 
are generally seen as stronger than arguments like “Ostriches are R, then blue jays 
are R” simply because ostriches are more similar to emus than to blue jays.

The typicality of the categories in the premises of CBI arguments also have a 
positive effect on the expectations of property projection. For instance, the inference 
“Robins have enzyme E; thus, ostriches have enzyme E” is often judged as stronger 
than “Penguins have enzyme E; thus, ostriches have enzyme E”, because the 
category robin is more typical of bird than the category penguin. Hampton and 
Cannon (2004) have shown that arguments with a highly typical category in the 
conclusion (like chicken ➝ robin) are judged as stronger than arguments with non-
typical conclusion categories (like chicken ➝ vulture).

This typicality effect also produces what is called ‘asymmetry,’ that is, the fact 
that switching the categories from the premises and conclusion often changes the 
expectations of property projection, according to the degree of typicality of the cat-
egory in the premise(s). For instance, arguments like “Cows have enzyme E; thus, 
otters have enzyme E” is considered stronger than arguments like “Otters have 
enzyme E; thus, cows have enzyme E” since cows are more typical mammals than 
otters.

Another important aspect is that subjects assume a common superordinate 
category of the premises when making inferences or judging the strength of this 
kind of argument. Sometimes this superordinate category appears explicitly in the 
conclusion; other times, it is just considered implicitly. Four important phenomena 
related to such evoked superordinate category have been studied in the empirical 
literature: homogeneity, monotonicity, nonmonotonicity, and premise diversity.

Homogeneity refers to the idea that the more abstract and less homogenous the 
category in the conclusion is, the weaker the argument. For instance, arguments like 

12 This is the standard procedure in most CBI studies. Of course, it would be interesting to investigate 
the influence of an R explicitly, but that would make the experimental procedure much more cumber-
some.
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“Robins are S and blue jays are R; thus, all birds are R” are judged stronger than 
“Robins are R and blue jays are R; thus, all animals are R.” This is not surprising at 
all. As we said before, we deal with different degrees of uncertainty when evaluat-
ing arguments or making inferences that involve generalizations. The more abstract 
the category in the conclusion, the more information we need from the premises to 
cover it.13

A possible way of explaining this is by referring to similarity and typicality as the 
two main criteria for using categories. Basic level categories are more homogenous. 
As such, it is easier for us to apply criteria of similarity among their members. 
Abstract categories are more diverse and less homogenous, so comparing their 
members in terms of similarity is more complex (for instance, the category animal 
include highly dissimilar subcategories, such as elephant and starfish). Along the 
same line, basic categories have clear prototypes, while it is complicated for us to 
construct prototypes for abstract categories (see, Ungerer and Schmid, 2006: Ch. 
2 for an explanation). In this sense, typicality, considered as a criterion for using 
categories, is stronger in basic-level categories than in abstract ones.

Monotonicity refers to the fact that the addition of premises, as long as their 
categories are included in the evoked superordinate category, strengthen the 
argument (Osherson et al., 1990). For instance, an argument of the form (robin & 
hawk) ➝ bird is weaker that an argument of the form (robin & hawk & pigeon) 
➝ bird. However, if we add to the premises a category that is not from the 
evoked superordinate category, then the argument becomes weaker. This is called 
‘nonmonotonicity.’ For instance, an argument with the categories (peacock & crow) 
➝ bird is stronger than an argument that goes from (peacock & crow & rabbit) ➝ 
bird.

Finally, empirical studies have shown a ‘diversity effect’ in CBI (Feeney & Heit, 
2011; Osherson et al., 1990): Arguments like “Horses have an ulnar artery and seals 
have an ulnar artery; thus, all mammals have an ulnar artery” are considered as 
stronger than the argument “Horses have an ulnar artery, and cows have an ulnar 
artery; thus all mammals have an ulnar artery.” The less similar the categories 
in the premises are, the stronger the argument tends to be. An interesting way of 
understanding this phenomenon builds on the idea of ‘category coverage’ (Osherson 
et al., 1990). As we mentioned before, when performing or evaluating categorical 
inductions, we take as a reference (implicitly or explicitly, according to whether we 
deal with a specific or general argument) some superordinate category that includes 
all the categories in the premises. The strength of the argument will depend, to some 
extent, upon how the categories in the premises cover this superordinate category. 
For instance, similar categories like horse and cow have less coverage of the 
superordinate category than dissimilar categories like horse and seal. In this sense, 
coverage can be described in terms of similarity.

13 As argued by Sloman and Lagnado (2005:106), we seem to have a ‘preferred level of induction’ that 
coincides with what Mervis and Rosch (1981) called ‘basic-level’ categories, i.e., categories with an 
intermediate level of specificity (e.g., dog or chair).
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6.2  Modeling CBI in Conceptual Spaces

Osta-Vélez & Gärdenfors, (2020) introduced a model of CBI based on conceptual 
spaces. In our modeling, we use the expression ‘ ExpR(X → Y)Z ’ to stand for the 
expectation that the property R is projected from category X to category Y, with Z as 
the lowest-level superordinate category that contains both X and Y. Here we focus on 
the simplest case of category-based inference: single premises/specific arguments.14 
For this kind of inductive inference, we want ExpR(X → Y)Z to satisfy the following 
criteria:

• It is positively correlated with sim(X, Y) , where sim(X, Y) denotes the similarity 
of X and Y;
• It is positively correlated with sim(X, pZ) , where pZ is the prototype of Z;
• It is positively correlated with sim(Y , pZ).

The rationale for the first condition is that the more similar the categories X 
and Y are, the more expected will it be that Y has property R if X has it. Regarding 
condition (ii), the intuition is that the more prototypical X is, the more expected 
it is that another category Y has property R, given that X has it. Condition (iii) is 
motivated by Hampton and Cannon’s (2004) conclusion-typicality: the more 
prototypical Y is the more expected it is that Y has property S if X has it.

To illustrate the basic idea of our approach with a simple case, let us assume that 
X and Y are small regions so that we can identify them with points in a conceptual 
space.15 Then, given a conceptual space representing the categories X, Y, and Z and 
the distance function d of the space, we can account for the three conditions above 
by the following equation:

where a and b are positive constants such that a > b . This assumption expresses that 
premise typicality contributes more to expectations than conclusion-typicality since, 
according to the literature, the former is a more prevalent phenomenon than the 
latter. The values of both a and b must be empirically determined from data about 
CBI judgements.

Now, following Shepard’s (1987) universal law of generalization, which claims 
that similarity is an exponentially decreasing function of distance, we can take the 
logarithm of (i) and obtain:

By convention, for any two categories X and Y  , 0 ≤ sim(X, Y) ≤ 1 and 
sim(X, Y) = 1 if X = Y .

Now, equation (2) captures the basic idea that for single-premise specific 
arguments the expectations of property projection among categories are 

(1)ExpR(X → Y)Z = (d(X,Y) ⋅ d(X, pZ)a ⋅ d(Y , pZ)b)−1

(2)logExpR(X → Y)Z = sim(X, Y) + a ⋅ sim
(
X, pZ

)
+ b ⋅ sim

(
Y , pZ

)

14 For a more general analysis, see Osta-Vélez, M., & Gärdenfors, P. (2020).
15 For a more general treatment, see Osta-Vélez, M., & Gärdenfors, P. (2020).
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determined by a weighted sum of three factors: premise-conclusion similarity, 
premise-typicality, and conclusion-typicality.

Equation (1), applied to a set of prototypes for categories, captures similarity, 
premise and conclusion typicality and asymmetry effects in CBI. For instance, 
when considering the sentence “emus have property R,” people expect more 
that ostriches also have property R than that penguins have it. This is due to 
the similarity effect since sim(emu, ostrich) > sim(emu, penguin) . If we construct 
a “bird space” through some set of prototypes, this inequality would be imme-
diately represented by the relative positions in the space of the two pairs < emu, 
ostrich > , and < emu, penguin > (see Fig. 5). And it can be measured via the dis-
tance function of the space. Since sim(emu → ostrich) > sim(emu → penguin) , it 
follows that ExpR(emu → ostrich)bird > ExpR(emu → penguin)bird.

As we mentioned, this model also predicts asymmetry and premise and conclusion-
typicality. For instance,ExpR(robin → emu)bird > ExpR(emu → robin)bird since 
sim(robin, pbird) > sim(emu, pbird) and a > b . Regarding conclusion-typicality 
assume, following the bird space in Fig. 4, that sim(ostrich, vulture) ≈ sim(ostrich, robin) 
and that sim(ostrich, pbird) ≈ sim(vulture, pbird) . Then 
ExpR(ostrich → robin)bird > ExpR(ostrich → vulture)bird since sim

(
robin, pbird

)
 is 

significantly larger than sim
(
vulture, pbird

)
.

The model presented so far only concerns arguments with blank properties. 
However, there is robust evidence that the perceived strength of CBI arguments 
can be influenced by knowledge that agents have about the properties in the 
arguments as well as of possible causal relations between properties and 
categories (see Rehder et al., 2001; Coley et al., 2005). For reasons of space, we 
will not elaborate on this problem here. However, in Osta-Vélez, & Gärdenfors, 
(2020) we indicate possible ways of modeling this through manipulation of the 
weights of certain dimensions in the distance functions of the space.

6.3  Experimental Evidence

There is a wealth of experimental evidence concerning category-based induc-
tion (see Heit, 2000; Feeney, 2017). Osta-Vélez, & Gärdenfors, (2020) show that 
our model can account for a large majority of the results of these experiments. 
Most of the experiments, however, only report qualitative results. Our model also 
allows quantitative predictions once the metric of underlying conceptual space 
has been estimated. Douven et al. (2021) present a study that explicitly tests some 
such predictions of our model. Rather than descriptions of objects, the stimuli 
used were generated from 49 pictures of objects from Douven (2016) that look 
like cups, vases and bowls and which are organized 7-by-7 along the dimensions 
of width and height. The psychological distances between the objects have been 
carefully determined in Douven (2016). Consequently, a distance function for the 
space of the objects was already available.

The experiment tested two hypotheses generated from our model: (i) The 
strength of proximity-influenced arguments can be predicted from the distance 
in the conceptual space between the object in the premise and the object in 
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the conclusion, as well as from how typical these objects are of the projected 
property. (ii) Truth ratings of conditional sentences mentioning two embodying 
proximity-influenced inference can be predicted on the exact same basis.

To test the first hypothesis, the participants were shown 12 pairs of objects 
randomly selected from the 49 in the space. For each pair, the participant was 
asked to suppose that the vessel that appeared on the left was a vase and then to 
indicate whether that gave them reason to believe that the vessel on the right was 
a vase as well. The response had to be given on a 7-point Likert-scale. For the 
second hypothesis, the participants were shown the same 12 pairs. In this part, 
the participants were asked to evaluate the truth of a conditional sentence of the 
form “If the vessel on the left is a vase, so is the vessel on the right.” They were 
then asked to indicate whether they thought this was true or false, but they were 
also given the option “neither”.

The results provided strong support for both hypotheses: antecedent–consequent 
similarity was strongly associated with perceived argument strength, respectively, 
degree of truth. For further details, see Douven et al. (2021).

7  Analogies

So far, we have analyzed inferential mechanisms that use similarity relatively 
straightforwardly; but there are even more sophisticated ways our cognition 
exploits this relation. Analogy is a paradigmatic example of this. For instance, 
consider the sentence.

(N)  Cheetahs are like race cars.

If (14) is read as expressing a straightforward “overall” similarity between the 
categories (as in “leopards are like cheetahs”), then it would not make sense to any 

EMU OSTRICH

BIRD

ROBIN

PENGUIN

VULTURE

Fig. 5  “Bird space” representing the positions of the different bird categories relative to a prototype
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competent language user. However, (14) is meaningful under an interpretation in 
which the similarity relation is understood as focusing on a salient feature shared 
between the categories (speed); in other words, if it is read as an analogy.

From a semantic and cognitive perspective, analogical statements are rather 
peculiar: Their role is not to convey information about states of affairs in the world 
but to enrich and structure our conceptual knowledge by pointing out similarity 
relations across seemingly distant fields of knowledge. In this sense, they have 
an epistemic function that appears particularly relevant to the organization and 
formation of abstract categories (see Gentner & Hoyos, 2017). 

While the literature on analogies is vast, there are no general frameworks that 
explain analogical mechanisms as part of the family of cognitive processes that 
exploit conceptual similarity. This section will show how conceptual spaces can 
address this gap. In particular, we will argue that analogy is a domain-specific 
mechanism that depends on dimensional salience and that can be characterized as a 
search procedure.

Two types of analogical structures have monopolized the attention in the last 
decades: direct and composed analogies. The former compares an individual source 
with an individual target, like in (14). The latter compares two pairs of objects or 
categories according to some salient relation between the elements in each pair. For 
instance, the sentence “the foot is to the leg as the hand is to the arm” is a composed 
analogy since the salient (mereological) relation between foot and leg is symmetrical 
to the mereological relation between hand and arm. In this section, however, we 
focus on composed analogies. We will use the notation A:B:C:D for a composed 
analogy where the pair A:B is compared to the pair C:D.

7.1  Dimensional Salience

The approach advanced here builds on two observations. First, we claim that com-
posed analogies need to be analyzed in the light of a theory of conceptual structure. 
Second, we propose that in most cases, analogical similarity depends on dimen-
sional salience, more precisely, on identifying one or more dimensions (domains) 
that will serve as a frame of comparison for the categories in the analogy. The 
degree of salience of these dimensions for the given categories correlates with the 
analogy’s ‘quality’ or ‘aptness.’ This last idea is rather straightforward. Consider the 
following analogies:

(O)  Dog:puppy::cat:kitten
(P)  Sweet:apple::sour:lemon
(Q)  Hot:warm::cold:cool
(R)  Rabbit:lion::tuna:shark

Each of these analogies consists of projecting a salient semantic relation among 
the categories of the first pair into the categories of the second pair. This relation 
depends on identifying one or more dimensions of the categories that can serve 
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as ‘analogy factors’. In (15), the analogy factor is the age dimension, in (1) it is 
the taste domain, in (17) the temperature dimension, and in (18) size and ferocity 
dimensions. The analogy factor is generally differential: it selects a dimension in 
which the categories of the first pair have significantly different values. A challenge 
while evaluating an analogical relation is to identify, among the many dimensions 
that can constitute the categories involved, which are the ones that can better bear 
the analogical relation. For example, size can be a good candidate for analogy 
factor in (1), but color clearly not. In our approach, the dimensions that are going 
to have priority as potential analogy factors are the most salient dimensions of the 
categories in the first pair. Such a salience factor is difficult to model in proposition-
based computational implementations.

A straightforward prediction of this approach is that the processing speed 
of an analogy will be positively correlated with the degree of saliency of the 
analogy factors and negatively correlated with the number of dimensions that can 
be considered as potential analogy factors. For instance, (17) is a straightforward 
analogy because a unique dimension relates its four categories; (18), on the other 
hand, offers multiple possible dimensions as potential analogy factors and, as 
a consequence, it has a higher degree of analogical complexity.While classical 
approaches tend to look for highly general models of analogy (Gentner, 1983; 
Holyoak & Thagard, 1989), our view departs from the idea that analogy is concept-
specific. Our position is that analogies exploit properties of the representational 
structures associated with the words that appear in them. Since different word 
classes represent different kinds of concepts (Gärdenfors, 2014), we need a theory 
that integrates different sub-models. In contrast to traditional approaches in logic 
and computer science where all predicates are treated on a par, we aim to show 
that dividing them into their different conceptual roles will yield more fruitful 
computational systems, specified as different search procedures.

7.2  Analogy as Search

From a computational perspective, we propose that analogy can be understood as a 
search procedure, that is, as a problem-solving strategy that consists of searching on 
a database for an element that meets a specific condition established by the problem. 
We then characterize analogical problems as having the following components:

Search space A set of concepts in a lexicon L.
Initial state A:B::C:X (with X unknown).
Goal condition Find (at least) one element X in L such that the semantic relation 
in A:B is replicated in C:X.
Search algorithm To be defined after an analysis of the kind of semantic relation 
in the initial state.
Final state A concept (or preference order of concepts) satisfying the goal condi-
tion.
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In this framework, the process of solving (or verifying) an analogy begins by 
identifying the semantic relation in A:B and restricting the search space accordingly 
in the light of C. For instance, the analogy red:apple::yellow:X is about a fruit 
category and a prototypical property in the color dimension. The search space for X 
will be the conceptual space of fruit and the goal condition will be satisfied by fruit 
categories for which the color yellow is prototypical.16The second step consists of 
specifying the search algorithm, which will depend on the semantic relation to be 
replicated. Once decided its type, the algorithm is applied to the restricted search 
space looking for one or more categories that satisfy the goal condition: to find an 
element that complete a ‘semantic symmetry’ between A:B and C:X.

An important point is that this semantic relation can be of various types. We 
distinguish between (i) categorical (dimensional) relations (e.g., tuna:shark or 
hot:cold), (ii) property-category relations (e.g., yellow:lemon), (iii) event-based 
relations (e.g., open door:closed door), and (iv) part-whole relations (e.g., foot:leg). 
In Osta-Vélez, & Gärdenfors, (2022b), we advanced several search algorithms based 
on conceptual spaces that model the reasoning underlying these analogies-types. In 
this section we will limit ourselves to describing two of these algorithms.

7.3  Category‑Based Analogies

One of the earliest models of analogy was developed by Rumelhart and Abrahamson 
(1973), who showed that it is possible to express analogical similarity as a function of 
the semantic distance between categories represented as points in a multidimensional 
space. In particular, they claimed that analogies of the form A:B::C:D must follow a 
‘parallelogram rule’ according to which the vectorial distance between categories A and B 
must be equal (or highly similar) to the vectorial distance between C and D.

In a series of experiments using Henley’s (1969) 3-dimensional mammal-space 
(see Fig. 6 for some examples), Rumelhart and Abrahamson showed that when pre-
sented with analogy problems like monkey:pig::gorilla:X, with rabbit, tiger, cow, 
and elephant as alternatives for X, subjects rank the four options following the paral-
lelogram rule. The parallelogram model predicts that cow is the preferred solution. 
Their experiment clearly supported the model.

We propose a generalized version of the parallelogram model which follows the semi-
algorithmic approach described in the introduction. The basic idea is that the conceptual 
space in which the vectorial comparison is carried out is not fixed, but rather depends on 
the dimensions that are taken as analogy factors in each specific analogy.

In our model, the categories in a category-based analogy A:B::C:D are convex 
regions of a common conceptual space M, since they are all at the same conceptual 
level. For the sake of simplicity, we assume that each of these categories has a 
precise prototype represented by a point in the space. For category X, we refer to 
that point as pX . The following describes the main steps of the search algorithm.

16 Another type of analogy involves finding a new domain where the semantic relation between A and 
B corresponds to the relation between c and X. For example, “The immune system is to the body like 
police to a society” which results in some understanding of an immune system. We are grateful to an 
anonymous reviewer for pointing this out.
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 (i) Given a composed analogy A:B::C:X, with X unknown, the first step in the 
process consists in finding the smallest conceptual space M such that A, B, 
C ⊂ M. This space corresponds to the immediate superordinate category of 
A, B, and C. For instance, in tiger:rabbit::eagle:X, M will be animal but, in 
tiger:rabbit::truck:X, M will be thing. M will be the search space in which 
the algorithm will operate. Notice that the number of dimensions apt for 
establishing an analogical comparison depends on the specificity of M (that 
is, its place in Rosch’s (1983) vertical level of categorization). Dimensions 
that are available for animals in tiger:rabbit::eagle:X like diet, ferocity, or 
humanness cannot be applied to things in tiger:rabbit::truck:X.

 (ii) The second step consists in selecting from M a set of salient dimensions D1, 
D2,…,Dn where the salience is generally determined by the difference between 
A and B (often only one dimension is relevant). For instance, consider the 
relation tiger:rabbit::eagle:robin. Ferocity and size are two salient dimensions 
of animal, since an important difference can be established between tiger 
and rabbit across these dimensions. If these differences can be replicated for 
categories eagle and robin, then the analogy is sound. The choice of these 
dimensions as frame of comparison will generate a ‘new’ lower-dimensional 
conceptual space M* with a distance function d*.17 This modulated distance 
function will be used to compute what we have called analogical similarity 
and constitutes the main difference with the Rumelhart and Abrahamson’s 
parallelogram model.

 (iii) The last step of the search algorithm is the application of the parallelogram rule 
on M* for choosing the optimal solution to X in A:B::C:X. For this, we start 
with the prototypes pA, pB , pC , and the vector �������⃗pApB in M*, and we find the point 
y�M∗ that is the head of a new vector �����⃗pCy that is as close as possible (same 
direction and magnitude) to �������⃗pApB . The category X ⊆ M that gives the strongest 
analogical relation will be the one whose prototype pX is closer to y than any 
other prototype in M, that is, pX such that d∗(pX , y) < d∗(pZ , y)∀pZ ∈ M.

Let us illustrate this procedure with a toy example. Consider the incomplete anal-
ogy mouse:wolf::rabbit:X and a reduced search space with categories hippo, buf-
falo, elephant, and gorilla. M will be the mammal space used by Rumelhart and 
Abrahamson (1973) (see Fig.  6), and the dimensions that will serve as frame of 
comparison in the space M* will be size and ferocity, due to the salient difference 
that the categories mouse and wolf maintain across them. The humanness dimension 
in Fig. 6 is less salient and will not be part of M*. Then, in a weighted conceptual 
space M*, a point y will be determined as the head of a vector with tail in the proto-
type of rabbit that is equivalent to the vector formed by the prototypes of mouse and 
wolf. Assuming the positions of the prototypes as depicted in Fig. 7, the prototype 
of buffalo is the optimal solution to the analogy since it is closer to y than any other 
prototype in M*.

Analogies are not all or nothing, but have degrees of aptness or soundness. For 
instance, categories that are very close (in the weighted conceptual space) to the 

17 Notice that M and M* are the same search space since they include the same set of subcategories.



 P. Gärdenfors, M. Osta-Vélez 

1 3

optimal choice in a category-based analogy might also be good solutions. In addition 
to this, it is possible that different sets of dimensions are taken as analogy factors, 
generating multiple possible sound analogies. We believe that, for most cases, there 
is a particularly salient set of dimensions that will produce the strongest analogical 
relation. However, offering a systematic criterion for finding it is rather complicated 
because it is strongly dependent on the subjects’ knowledge of a particular semantic 
domain, as well as on the semantic intuitions rooted in a community of speakers. 
Ultimately, finding the set of salient dimensions for a given category is an empirical 
question.18

7.4  Property‑Based Analogies

An important limitation of Rumelhart and Abrahamson’s (1973) model is that it can 
only deal with analogies at the same conceptual level. Consider the following two 
examples:

 (19)  Apple:red::banana:yellow.
 (20)  Fish:swim::bird:fly.

(19) and (20) are sound analogies, but they cannot be analyzed in terms of the 
parallelogram model. How can we compare a color with a fruit or an animal with a 
means of motion? From a formal perspective, there is no way of comparing two vec-
tors from different conceptual spaces.

We call analogies like (19) and (20) property-based analogies. Naturally, since 
the semantic relation between the pairs of terms in these analogies differs from that 

Fig. 6  Mammal space organized around the size, humanness, and ferocity dimensions. From Rumelhart 
and Abrahamson (1973: 3)

18 Some empirical methods for determining dimensional salience in natural categories can be found in 
Sloman et al. (1998) and Rein et al. (2007).
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characterizing category-based analogies, explicating them via a search algorithm 
requires a different approach. In particular, the search space for X will be the set of 
lexical items associated to common properties of the category in the C-part of the 
analogy.

Our proposal for property-based analogies is rather straightforward: We claim that 
the strength of an analogy depends on two factors: first, on the identification of the 
dimension(s) that corresponds to the property in the pair and second, on identifying 
the typicality degree of that property for the category in the pair. In other words, we 
evaluate the aptness of these analogies by checking that the properties in the pairs 
are from the same dimension and, with the aid of our typicality condition, that they 
are similarly expected for the category in the pair. In this sense, an analogy like (20) 
must be considered as stronger than the variant fish:swim::bird:walk because, even 
if birds can walk, flying is more typical than walking for that category (see Osta-
Vélez, & Gärdenfors, 2022b).

Given an analogy A:B::C:X where A and C are categories and B is a property of 
A in dimension D, the choice for X which gives the strongest analogical relations is 
a different property in D whose typicality degree is closer to B’s typicality degree 
than the typicality degree of any other property in D. We predict that if there are 
various properties in D with the same typicality degree as B for category C, then 
the analogy will be weaker than for categories for which this is not the case. For 
example, the analogy lion:beige::raven:black must be judged as stronger than 
lion:beige::dog:brown because several colors other than brown are also typical for 
the category dog.

An important contribution of our approach is its detailed analysis of the role of 
semantic similarity in analogy. Propositional-based views, such as Gentner’s (1983), 
or Thagard’s (Thagard et al., 1990) also rely on semantic similarity but ignore the 
modulating role of dimensions and salience. We show that focusing on conceptual 

Fig. 7  Mammal space M* with weights in the size and ferocity dimensions (based on Rumelhart & Abra-
hamson, 1973)
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structure rather than propositional structure has clear advantages for explaining the 
diversity of analogies and for designing modeling algorithms.

8  Conclusion

Within philosophy, reasoning with concepts has received comparatively little 
attention since such reasoning does not conform to the assumption that the validity 
of an argument depends only on the formal structure of premises and conclusion. 
In contrast, research concerning concept-based reasoning has been a lively field 
within psychology, generating a wealth of experimental investigations. However, 
this research has been developed in a rather fragmentary manner, using different 
theoretical frameworks and modeling tools. Clarifying the relationship between 
reasoning and concepts has thus become necessary. Given the intricate nature of 
this relationship and the diverse mechanisms through which it unfolds, it would be 
beneficial to approach this task within the confines of a unified theory.

As a proposal for unifying these areas and building on the idea that rational 
inference exploits properties of conceptual structure rather that syntactic properties 
of language, we have presented a framework based on conceptual spaces. Using the 
distance measure provided by the conceptual spaces, we can model typicality as 
distances to prototypes and similarity as distances between points. These measures 
play a central role for all the types of reasoning we have considered. By exploiting 
the measures, our model thereby allows for new quantitative predictions, which 
cannot be made from previous psychological models. Here, we have focused on 
expectations, generics, category-based induction and composed analogies, but the 
general framework of conceptual space can also be applied to other related areas, 
such as direct analogies, metaphors, and causal reasoning. The model also makes it 
possible to compare the predictions and the results from the different subareas, as is 
the case of the relationship between generics and non-monotonic reasoning based on 
expectations.

We claim that our model offers a significant advantage over earlier approaches 
as it provides greater explanatory depth. While other methods focus solely on 
some computational aspects of inference and assume a particular format of 
mental representation of conceptual information without critical evaluation, our 
model explains both why concepts have the structure they do and how inferential 
mechanisms operate over these structures. This level of detail provides a more 
comprehensive understanding of the mechanisms that underlie human reasoning and 
decision making.

Our approach can be empirically tested through a number of well-established 
experimental paradigms in psychology. These include Induction Tasks, which 
examine participants’ ability to make generalizations based on specific instances or 
categories (e.g., Heit, 1998); Feature Listing, which involves eliciting attributes of 
a concept from participants, with frequency and order of features offering insight 
into their conceptual understanding (e.g., Sloman et al., 1998); and Exemplar ratings 
and typicality judgments, which involve categorizing and rating objects based on 
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their resemblance to previous examples or a prototypical instance (e.g., Verheyen & 
Égré, 2018). Furthermore, Spatial Arrangement tasks ask participants to physically 
arrange items based on perceived similarity, offering a spatial representation of 
conceptual relationships (see Richie et  al., 2020), and Multidimensional Scaling 
(MDS) uses distance-based statistical techniques on sets of similarity judgments to 
visually represent the structure of conceptual spaces, allowing for a robust analysis 
of conceptual similarity and dissimilarity (e.g., Rips, 1975). Collectively, these 
diverse paradigms provide a rigorous empirical framework to test the validity and 
applicability of the models presented herein.

In this review, we have not directly considered computational applications of 
the model. However, the possibility of developing such applications has been one 
of our motivations for presenting a model that is based on distance measures in 
conceptual spaces. Since there already exist computational models of conceptual 
spaces (Adams & Raubal, 2009; Chella et al., 2001; Gärdenfors, 2014; Lieto, 2021, 
Wheeler et al., 2022), our accounts of the different forms of concept-based reasoning 
can, in principle, be computationally implemented. The first step would be do 
describe domain structures. This involves, above all, specifying their geometric and 
topological structure. The second step is to give information about how the resulting 
space is partitioned into concepts. Using prototypes and Voronoi tessellations, 
this can be done in a computationally efficient way. Representing information by 
conceptual spaces requires computations that involve vectors, using inferences based 
on similarities, rather than mechanisms based on tree searching in a rule-based 
symbolic approach. Developing such implementations of conceptual spaces could 
enable the creation of new forms of automated reasoning that go beyond systems 
based on logical formalisms or neural networks, something that would be useful in 
the efforts to simulate common-sense reasoning with concepts.
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