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In this paper, I’d like to describe and motivate a new species of mathe-
matical structuralism. In the philosophy of mathematics, structuralism is a
genus of theses concerning the subject matter and ontology of mathematics,
as well as the correct semantics for mathematical language. Each species
that belongs to that genus is motivated by the observation that mathemati-
cians are agnostic about the intrinsic or internal nature of the objects that
they study. In this sense, structuralism is very much a philosophy of math-
ematics that is inspired by and guided by mathematical practice. Math-
ematicians are indifferent to the non-mathematical features of the objects
they study. They care only about the so-called structural features of those
objects. For instance, they care that 2 is less than 3 and that π is transcen-
dental. They do not care whether 2, 3, or π is a set or a class of sets, a
Dedekind cut in the rationals or an equivalence class of Cauchy sequences
of rationals, a universal or a particular, an abstract object or a concrete one,
a necessary existent or an entity that exists only contingently, and so on.
But, while each species of structuralism agrees on this indifference, they
differ significantly on the ontology and semantics of mathematics that best
accommodates it.

Why offer a new species of structuralism when the genus is already so
crowded? The subject matter of mathematics, together with the seman-
tics of mathematical language, has an extensive job description. There are
many boxes that any candidate ontology and semantics would ideally tick.
As we will see, while each of the existing species of structuralism ticks
many of these boxes, they all leave many untouched. I hope that my new
version will tick all of the boxes.

My strategy is as follows: I will begin with a species of structuralism as
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memory of my late PhD supervisor, John Penn Mayberry (1939-2016), a determined set-
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different from my final proposal as can be. Then I will raise an objection
to that species that will lead us to formulate a new species that avoids the
objection. But now I will note a objection to this new species, and I will
formulate a further new species that avoids both objections. And so on. I
will repeat this process until we arrive at our new version of structuralism,
which avoids all objections.

Before we start, a disclaimer: this paper covers quite a lot of ground.
Each new tickbox in the job description for the subject matter of mathemat-
ics deserves, and has received, much more detailed discussion than I am
able to give it here. But this paper is programmatic — my purpose is to
motivate moving to a new version of structuralism. So I hope readers will
forgive me if I reject their favoured version of structuralism without the full
discussion they would wish.

1 Structuralism and the axiomatic method

As John P. Burgess (2015) argues in detail, structuralism in the philoso-
phy of mathematics is the inevitable response to the introduction of the ax-
iomatic method as the fundamental methodology of mathematics towards
the end of the nineteenth century. And the axiomatic method was, in turn,
the inevitable conclusion of the quest for greater rigour in mathematics and
the attempt to expel geometric, spatial, and other forms of intuition from
mathematical proofs and definitions. According to the axiomatic method,
each area of mathematics — real or complex analysis, probability or mea-
sure theory, group theory, number theory, graph theory, linear algebra,
topology, and so on — is characterized by a set of axioms. These pick out
the items of interest in that area — the real numbers, the complex field, the
probability spaces, the groups, the natural numbers, the graphs, the vector
spaces, the topological spaces, and so on. They do this by spelling out the
properties shared by all of the items of interest.

If we take a set-theoretic approach, the items of interest are systems. In
this context, a system consists of an underlying set or a family of under-
lying sets, perhaps equipped with some distinguished elements of those
sets, distinguished functions involving those sets, and relations amongst
the members of those sets. Thus, for instance, Cayley’s group axioms char-
acterise the subject matter of group theory (Cayley, 1854). They apply
to systems (G, e, ∗), where e is a distinguished element of the underlying
set G, and ∗ is a binary function on G. Similarly, Dedekind’s axioms for
a complete ordered field characterise the subject matter of real analysis
(Dedekind, 1872). They apply to systems (R, 0, 1,+,×,<), where 0, 1 are
distinguished elements of R, + and × are binary functions on R, and < is
a binary relation on R. And Peano’s axioms for a vector space characterise
the subject matter of linear algebra (Peano, 1888). They apply to systems
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(V, K, 0,+V , 0, 1,+K,×K, ·), where 0 is a distinguished element of V, +V is
a binary function on V, 0, 1 are distinguished elements of K, +K, ×K are
binary functions on V, and · is a function defined on K×V. And so on.

On the other hand, if we take a category-theoretic approach, the items
of interest are categories, or objects in categories. There are (at least) four
ways in which we might formulate the axiomatic method on this approach.
On the first, which we might call the category-based approach, the axioms
characterise a certain sort of category, saying that the items of interest in
the area of mathematics in question are all and only the categories of this
sort. This is close to the set-theoretic approach, except that the axioms are
stated in terms of the behaviour of objects and morphisms in the categories
in question, not in terms of underlying sets, distinguished elements, and so
on. Thus, for instance, we can give axioms that say when a category can
be viewed as a group.1 On the second, which we might call the object-based
approach, the axioms characterize the category whose objects are all and
only the items of interest in the area of mathematics in question. Thus, the
axioms specify how the morphisms between the items of interest behave.
As Steve Awodey puts it:

“From Dedekind, through Noether, and to the work of Eilen-
berg and Mac Lane, the fact has clearly emerged that mathe-
matical structure is determined by a system of objects and their
mappings, rather than by any specific features of mathematical
objects viewed in isolation.” (Awodey, 1996, 209)

For instance, we can give axioms that characterize the category Grp, whose
objects are all the groups and whose morphisms are the group homomor-
phisms; and those axioms pay attention only to the behaviour of mor-
phisms between groups — they say nothing of the internal nature of the
groups themselves. On the third way, which we might call the functor-based
approach, the axioms characterise a generic category in such a way that we
can identify the items of interest in a particular area of mathematics with
the functors from that generic category into the category of sets, Set. This
is the strategy that Lawvere presented in his dissertation; the generic cat-
egories that he describes are known as Lawvere theories (Lawvere, 1963).
On the final way, which we might call the particular-object-based approach,
the axioms characterize a particular sort of object in a particular sort of cat-
egory, saying that the items of interest are all and only those objects in those
categories. For instance, we might give axioms that pick out the natural
numbers object in a given topos (Lawvere, 1963).

1Namely, when it contains one object, and all of the morphisms from that object to it-
self are left- and right-invertible. The elements of the group are then the morphisms, the
group multiplication operation is the composition operation on morphisms, and the group
identity element is the identity morphism on the single object in the category.
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Note: on both the set-theoretic and the category-theoretic approaches,
each area of interest comes equipped with a notion of structure-preserving
map, or homomorphism. In the set-theoretic case, this is usually determined
by the nature of the systems to which the axioms apply. Since a group is a
system (G, ∗G, eG), a group homomorphism is a function ϕ : G → H such
that (i) ϕ(eG) = ϕ(eH) and (ii) ϕ(g ∗G g′) = ϕ(g) ∗H ϕ(g′) — that is, ϕ pre-
serves the distinguished element eG of G and the binary operation ∗G on G.
However, there are cases in which the homomorphisms cannot be read off
the nature of the systems. For instance, a topological space (X, T) is a set T
of subsets of an underlying set X satisfying particular closure conditions —
the subsets are called the open sets of the topological space. The structure-
preserving mappings from one underlying space X to another X′ are the
continuous mappings, to wit, those for which the inverse image of an open
set in X′ is an open set in X. In the category-theoretic case, in contrast, the
structure-preserving mappings are given for the category-based approach
by the functors between the categories, for the object-based and particular-
object-based approach by the morphisms in the category of all items of in-
terest, and for the functor-based approach by the natural transformations
between the functors. Thus, on the object-based approach, a group homo-
morphism is a morphism in the category Grp; a homomorphism between
topological spaces is an morphism in the category Top. An invertible ho-
momorphism is called an isomorphism. This notion will become important
when we come to distinguish different species of structuralism.

This, then, is the axiomatic method, the methodology of mathematics
that structuralism seeks to accommodate. But there are different ways in
which we might accommodate this methodology, and these give rise to a
number of different species of structuralism.

2 Extreme Structure Realism

Here is an extreme version of structuralism: Number theory is concerned
with a single simply infinite system (N, 0, s), which we call the natural
number system. Real analysis is concerned with a single complete ordered
field (R, 0, 1,+,×,<), which we call the real number structure. Group the-
ory is not concerned with just one system; it is concerned with many. But
there is just one group for each isomorphism class: thus, there is just one
Klein Vierergruppe V4, just one cyclic group Zn of order n (for given n), just
one permutation group Sn of n symbols (for given n). And so on for other
areas of mathematics. In general, for every isomorphism class, there is just
one privileged representative that belongs to the subject matter of mathe-
matics. As Steve Awodey (2014, 1-2) puts it: “The following statement may
be called the Principle of Structuralism: Isomorphic objects are identical”.
This is not to deny that other systems exist. For instance, one might still
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hold that the system of finite Zermelo ordinals and the distinct system of
von Neumann ordinals are both simply infinite systems; or that both the
system of Dedekind cuts in the rationals and the distinct system of equiva-
lence classes of Cauchy sequences of rationals are complete ordered fields;
or that the set of symmetries on a rectangle that isn’t a square constitutes
a Klein Vierergruppe, as does the distinct group comprising the elements
(±1,±1) under coordinate-wise multiplication. Extreme Structure Realism
just says that those other systems do not belong to the subject matter of
number theory, real analysis, or group theory, respectively.

On this view, what accounts for the indifference that mathematicians
show towards the internal nature of their objects of study is that the objects
posited here — the natural number structure and the natural numbers them-
selves, the real numbers and the real numbers themselves, the elements of
the Klein Vierergruppe, and so on — have no internal nature. That is what
distinguishes this view from old-fashioned platonism. As structuralists of
this stripe sometimes put it, the objects of mathematical study are incom-
plete — they have only structural properties; they have no non-structural
properties. Thus, 2 is less than 3 and π is transcendental, but it is neither
true nor false that 2 is a set-theoretic member of 3, neither true nor false
that 2 is a mereological part of 3, neither true nor false that π is a Roman
emperor, and so on. As Dedekind puts it, when speaking of the elements of
the unique complete ordered field that is the subject matter of real analysis:
they have none of the properties that “one would surely attach only very
unwillingly to the numbers” (Dedekind, 1888a). Or, as Stewart Shapiro
puts it, when speaking of the elements of the simply infinite system that is
studied by number theory:

“[O]ne can look into the identity between numbers denoted by
different descriptions in the language of arithmetic [...] But it makes
no sense to pursue the identity between a place in the natural-
number structure [i.e. an element of the simply infinite system]
and some other object, expecting there to be a fact of the matter”
(Shapiro, 1997, 79).

3 Burgess’ Incompleteness Objection

The first objection to Extreme Structure Realism that we will consider was
raised by John P. Burgess (1999, 286) in his review of Shapiro’s book-length
exposition of the position. As we will see, this objection can be answered,
but its answer will be illuminating for what follows, so I include it here.

Extreme Structure Realism takes the subject matter of number theory to
be a privileged simply infinite system (N, 0, s) whose elements are incom-
plete in some sense. There are various ways one might spell out this claim
of incompleteness: the elements of N have only their number-theoretic
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properties; they have only their structural properties; they have only those
properties ascribed to them by mathematicians; they have only the proper-
ties that they share with all corresponding elements of other simply infinite
systems. But, as Burgess points out, however we put it, this incompleteness
claim can’t be true.

For instance, take the natural number 0, which is the zero element of
(N, 0, s). And suppose we make the incompleteness claim precise by say-
ing that 0 has only those properties that it shares with all zero elements of
simply infinite systems. That is, 0 has property Φ iff, for all simply infinite
systems (N, 0, s), 0 has property Φ. But now consider that very property,
namely, the property of having only those properties that you share with
all zero elements of simply infinite systems. That is, consider the prop-
erty Ψ such that x has Ψ iff, for any property Φ, x has Φ iff, for all simply
infinite systems (N, 0, s), 0 has Φ. 0 has that property, but there are zero
elements of other simply infinite systems that do not — in some simply in-
finite systems, for instance, you are the zero element, but you do not have
property Ψ. Thus, if 0 is incomplete in this sense, then it is not incomplete in
this sense. Made precise in this way, the incompleteness claim of Extreme
Structural Realism leads to a contradiction. And similar objections can be
raised for the other ways of making the incompleteness claim precise.

There are various ways we might try to weaken the incompleteness
claim so that it does not lead to a contradiction (Shapiro, 2006; Linnebo &
Pettigrew, 2014). We might, for instance, restrict attention to the first-order
properties of systems and say that the first-order properties of a number
are precisely the first-order properties it shares with the corresponding el-
ements in all simply infinite systems. But 0 has the first-order property
of being the number of unicorns in Bristol in 2016, while that first-order
property is not shared by the zero elements of all simply infinite systems
— again, you are the zero element in some simply infinite systems, but you
are not the number of unicorns in Bristol in 2016. Or we might restrict our
claim to the intrinsic properties of a system and say that the intrinsic prop-
erties of a number are precisely the intrinsic properties it shares with the
corresponding elements in all simply infinite systems. But 0 has the intrin-
sic property of being abstract and the intrinsic property of not being a set,
while there are zero elements that do not have those intrinsic properties —
again, you are a zero element in some systems, but you are not abstract;
and the set containing only you and the Eiffel Tower is the zero element in
some systems, but that does not have the property of not being a set.

In both cases, what goes wrong is the same, and it is what Burgess orig-
inally identified: by trying to ensure that our numbers have the properties
required of them by their role as the objects of number theory, and by try-
ing to ensure that they have no more than these properties, we endow them
with the properties — being the number of unicorns in Bristol in 2016, or
the property of being abstract or not being a set — that accrue to them be-
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cause they are the objects of number theory; and these properties are not
shared by many of the corresponding elements in other simply infinite sys-
tems. This leads to the following suggestion (Linnebo & Pettigrew, 2014,
271-2). Some properties of objects are more fundamental than others. The
property of being Scottish and the property of being a philosopher are more
fundamental properties of me than the property of being a Scottish philoso-
pher; the property of being tall is more fundamental than the property of
being tall or extrovert. Similarly, the property of being the additive identity
element of the natural numbers is a more fundamental property of 0 than
being abstract or not being a set. So, we might say: a natural number has
a property Φ fundamentally iff the corresponding position in every simply
infinite system also has property Φ (whether fundamentally or not). This
captures what the structuralist wants, but it also allows that a natural num-
ber can have properties — such as being abstract, or being the number of
unicorns in Bristol in 2016 — that the corresponding element in some other
simply infinite systems lack. It simply demands that the natural number
does not have those other properties fundamentally. Rather, they are de-
rived properties; properties that the natural number has in virtue of having
the fundamental properties it does. This, I think, answers Burgess’ objec-
tion.

4 Hellman’s Permutation Objection

Next, we turn to Hellman’s permutation objection against Extreme Struc-
ture Realism (Hellman, 2006, 545). According to Extreme Structure Real-
ism, (N, 0, s) is the unique privileged simply infinite system that provides
the subject matter of number theory. When I quantify over all natural num-
bers, I quantify over the elements of N; when I talk of particular num-
bers, I talk of particular elements of N, such as 0, s(0), s(s(0)), and so
on. Now, suppose that π : N → N is a permutation of the elements
of N. And now consider the system (N, 0π, sπ), where 0π = π(0) and
sπ(n) = π(s(π−1(n))), for any n in N. Then, since (N, 0, s) is a simply in-
finite system, so is (N, 0π, sπ). What’s more, since the elements of the latter
system are precisely the elements of the former system, the elements of the
latter are incomplete in the way required by structuralism just in case the
elements of the former are. Thus, there is nothing to tell between (N, 0, s)
and (N, 0π, sπ) as the subject matter of number theory. Nothing in the
practice of number theory could possibly tell between them. Thus, there
are as many legitimate candidates for the subject matter of number theory
as there are permutations of the natural numbers, that is, continuum-many.

It seems to me that this is devastating for the version of Extreme Struc-
ture Realism that I find in Dedekind’s writings, and which I will call Dedekind
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Structure Realism or DSR.2 For Dedekind, every isomorphism class contains
only one privileged member that belongs to the subject matter of math-
ematics. But he says no more about this privileged member than that it
belongs to the isomorphism class and that it is incomplete, perhaps in the
sense spelled out above in our response to Burgess’ incompleteness objec-
tion. He says so little about this privileged member because he thinks there
is no more to say. But precisely because he says so little about it, Hellman’s
objection shows that, if there is one simply infinite system that answers to
what he does say, then there are continuum-many. And similarly for other
isomorphism classes. Thus, there can be no non-arbitrary way to select the
unique simply infinite system that is the subject matter of number theory.

A natural response to this is to concede that there are many incomplete
simply infinite systems that have equal claim to be the subject matter of
number theory, and to say that, while it might seem that number theory is
talking only of one simply infinite system, it is in fact quantifying over all
and only the incomplete simply infinite systems. Thus, take the following
sentence of number theory, which states the Green-Tao theorem (Green &
Tao, 2008):

For any n in N, there are a, b in N such that, for all k in N, if
k ≤ n, then ak + b is prime.

Then, according to this amended version of Dedekind’s structuralism, it
says:

For any incomplete simply infinite system (N, 0, s), and for any
n in N, there are a, b in N such that, for all k in N, if k ≤(N,0,s) n,
then ((a×(N,0,s) k) +(N,0,s) b) is prime(N,0,s).

Call this species of structuralism Amended Dedekind Structure Realism or
DSR+. This, I think, is the version of structuralism that Lawvere (1994) ex-
tracts from the use of category-theoretic language and techniques in math-
ematics. As Lawvere articulates this view, a set, which for the category
theorist is simply a minimally structured system, is “a bag of dots which
are devoid of properties apart from mutual distinctness” (Lawvere, 1994,
6). That is, the elements of a set have no internal nature — the only fun-
damental property of the set itself is its cardinality. What’s more, Lawvere
takes the same to be true of all mathematical systems, not just the sets —
their elements have no internal nature.

“In the mathematical development of recent decades one sees
clearly the rise of the conviction that the relevant properties
of mathematical objects are those which can be stated in terms
of their abstract structure rather than in terms of the elements

2For a different interpretation of Dedekind, see (Reck, 2003) and (Yap, 2009a).
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which the objects were thought to be made of.” (Lawvere, 1966,
1)

On this, Lawvere and Dedekind agree. But Lawvere, unlike Dedekind,
does not require there to be just one such system for each isomorphism
class — he allows that there might be many, just as DSR+ does. After all,
category theory has a particular name for categories that contain just one
representative of each isomorphism class — they are called skeleton cate-
gories. And Lawvere does not claim that all of mathematics takes place
inside skeleton categories.

While Dedekind’s version of Extreme Structure Realism must be amended
to accommodate Hellman’s objection, Stewart Shapiro’s version, which I
call Shapiro Structure Realism or SSR, need not (Shapiro, 1997). It is natural
to say that two isomorphic systems share something in common, namely,
their structure. Shapiro reifies this shared structure by positing, for each
isomorphism class, a universal that he takes to be what is shared by sys-
tems in that isomorphism class. That is, he says that, for each isomorphism
class, there is a universal, and the particulars that participate in this uni-
versal are all and only the systems in that isomorphism class. Thus, there
is a universal corresponding to the class of all complete ordered fields; it is
this universal that they all share in common. Similarly, there is a universal
corresponding to the class of Klein Vierergruppen, one corresponding to
the class of all simply infinite systems, and so on (Shapiro, 1997, 74).

Now, for Shapiro, this universal is not is itself just a system that belongs
to the isomorphism class of its participants — just as the universal echidna
is not itself an echidna. However, Shapiro does claim that there is a per-
spective from which we might view the universal — the perspective that
he calls the places-as-objects perspective — such that, from that perspective,
it is a system from the isomorphism class to which it corresponds. In this
respect, it is not like the universal echidna, which is not an echidna from
any perspective (Shapiro, 1997, 83-4).

For Shapiro, then, this system — namely, the one extracted from the
universal corresponding to a given isomorphism class by considering it
from the places-as-objects perspective — is the unique system belonging to
that isomorphism class that belongs to the subject matter of mathematics.
While any other system obtained from it using Hellman’s permutation trick
will also belong to the isomorphism class, it will not belong to the subject
matter of mathematics. And what’s more, this exclusion is not arbitrary in
the way it would have to be if we were to make DSR true. By saying more
than Dedekind about what the privileged member of an isomorphism class
is — it corresponds to the universal that covers that class — and how it
is obtained — it is extracted from that universal by considering it from a
particular perspective — Shapiro avoids Hellman’s complaint.

However, in the endeavour of formulating mathematical structuralism,
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saying more about the mathematical objects you posit comes with risks.
As I noted at the beginning, the central motivation for mathematical struc-
turalism is to describe a subject matter for mathematics and a semantics
for mathematical language that accommodates and respects the indiffer-
ence that mathematicians exhibit towards the internal nature of the entities
they study. Extreme Structure Realists respond to this by trying to posit
entities with no internal structure. They try to posit entities that have none
of the properties towards which mathematicians are indifferent; that is, in-
complete entities. As we saw in our response to Burgess’ incompleteness
objection above, they cannot do this on pain of contradiction. They can say
that the objects of mathematics have none of the properties to which math-
ematicians are indifferent fundamentally; but they must accept that, by hav-
ing only those properties fundamentally, and by being the objects of math-
ematics, those objects immediately accrue further properties derivatively —
for instance, the property of being the number of unicorns in Bristol in
2016, or having only those properties fundamentally about which math-
ematicians are not indifferent. These are the properties that are forced on
these objects by having such a sparse set of fundamental properties. How-
ever, Shapiro goes much further. He says that the objects of mathematics
are a certain new sort of universal — a structural universal — that can be
considered from different perspectives, sometimes as a system, sometimes
not. In order to answer Burgess’ incompleteness objection, Shapiro must
say that these properties are not fundamental to these objects, but derived.
But they go well beyond what is demanded of these objects by simply hav-
ing the sparse set of fundamental properties that they have. These extra
properties — the properties that come with being structural universals —
are not forced on these objects by only having as their fundamental prop-
erties those towards which mathematicians are not indifferent. Dedekind’s
incomplete systems are the miminal objects that have only those funda-
mental properties.

Thus, Shapiro’s proposal seems at odds with the Extreme Structural Re-
alist’s quest for ontology for mathematics composed of minimal objects.
However, he might respond that, while his structural universals are not de-
manded by incompleteness considerations, they are demanded by unique-
ness considerations, as Hellman’s objection shows. If there is to be just one
privileged member of each isomorphism class that will belong to the sub-
ject matter of mathematics, then it must have something that picks it out
from all the isomorphic copies obtained by Hellman’s permutation trick.
And that will require it to have more than strictly follows from having the
sparse set of fundamental properties about which mathematicians are not
indifferent.

Thus, we have two options: SSR and DSR+. Both avoid Hellman’s per-
mutation objection. Shapiro retains a single privileged member of each
isomorphism class, but does so at the expense of going well beyond what
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mathematicians would endorse. The amended version of Dedekind’s species
of structuralism countenances many different members of an isomorphism
class amongst the subject matter of mathematics, but none of them go be-
yond what mathematicians would endorse. How should we choose? As
we will see, neither is ideal.

5 Weaver’s representation theorem objection

Let us move now to the third objection to Extreme Structure Realism. This
is due originally to George Weaver (1998), though Jessica Carter (2005,
2008) also presses a related point using more sophisticated examples from
mathematical practice. The point is straightforward: contrary to the moti-
vating claim of structuralism, mathematicians are sometimes not indiffer-
ent to the internal nature of the objects that they study. Weaver notes that
this is particularly true in the case of representations theorem. The pur-
pose of such theorems is to show that each mathematical object of one sort
is isomorphic to some mathematical object of another sort. If there were
but one representative of each isomorphism class within the subject mat-
ter of mathematics, these theorems would be trivially true. And, even if
there were many such representatives, these theorems are only interesting
if some of those representatives have an internal nature — the interest of a
representation theorem is that one mathematical object with a certain sort
of internal nature is isomorphic to a mathematical object with a different
sort of internal nature. Thus, amongst the subject matter of mathematics,
we must find systems whose elements have an internal nature.

The most striking example of a representation theorem is Cayley’s The-
orem in group theory. This says that, for every group G, there is a sub-
group of the symmetric group on the underlying set of G, Sym(G), that is
isomorphic to G. The symmetric group on G, Sym(G), is the group whose
elements are the permutations of the elements of the underlying set of G,
whose identity element is the identity mapping on the underlying set of G,
and whose group multiplication operation is the composition operation on
mappings. Thus, the elements of Sym(G) have an internal nature. They
are one-one mappings from a given set to itself. And this nature is crucial
for the theorem. The theorem says that any group can be represented by
a group whose elements have this specific sort of internal nature. But the
feature that makes that particular sort of group distinctive is not something
that can be stated in the language of group theory. It is not some fact about
how the group multiplication operation behaves. Rather, it is a feature of
the internal nature of the objects of the group.

There are two ways in which a structure realist — a proponent of SSR
or DSR+ — might respond to this objection. They might argue that we can
interpret Cayley’s Theorem without positing systems whose elements have
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an internal nature; or they might accept that such systems are required to
interpret Cayley’s Theorem, and introduce them into the subject matter of
mathematics along with the incomplete system(s) already included by SSR
and DSR+.

Consider the first option. This is the idea behind a number of defini-
tions in category theory. It is endorsed explicitly by certain category the-
orists, such as F. William Lawvere (1994) and Steve Awodey (1996, 2014),
though it is worth noting that there is nothing in the mathematics of cat-
egory theory that demands it. The point is that category theory is able to
take mathematical statements that are ostensibly about entities with an in-
ternal nature and interpret them instead as statements that concern only
the morphisms between different objects in a category, or the functors be-
tween different categories. The famous definition of a product of two ob-
jects in a category illustrates how this might be done in principle (Eilen-
berg & Mac Lane, 1945). Consider the claim, from group theory, that to
every pair of groups, G and H, there corresponds a direct product G× H,
which is also a group. This is standardly taken to mean that there is a
group G× H whose elements have a particular internal nature, and whose
identity element and group multiplication operation are specified in terms
of that internal nature: each element of G × H is an ordered pair (g, h),
where g is in G and h is in H; the identity element is eG×H = (eG, eH), and
(g, h) ∗G×H (g′, h′) = (g ∗G g′, h ∗H h′). In category theory, however, the
claim is interpreted as concerning only the objects and the morphisms of
the category, Grp, namely, the groups and the group homomorphisms. It
says nothing about what the elements of those groups are. In category the-
ory, a direct product of two groups G and H is an object G × H equipped
with two morphisms, ϕG : G × H → G and ϕH : G × H → H, known as
projection morphisms, such that the following holds: if there is an object C
and morphism ψ : C → G× H, then there are morphisms θG : C× G and
θH : C → H such that (i) ϕG ◦ ψ = θG and (ii) ϕH ◦ ψ = θH. By this sort
of construction, category theory is able to capture the mathematically rel-
evant content of the notion of a direct product group — which we would
usually express set-theoretically in a way that makes explicit reference to
the internal nature of the elements of a direct product group — without
making reference to the internal nature of any of the objects in question.
Another example: in Lawvere’s axiomatization of the category of sets, he is
able to state the power set axiom — which tells us that for every set there is
another whose elements are precisely the subsets of the first — without say-
ing anything about the internal nature of the elements of any set (Lawvere,
1965). And so on for other constructions that initially seem to refer to the
internal nature of the elements of systems. In this way, a category-theoretic
reading of structure realism avoids Weaver’s objection. Let’s call this po-
sition DSR∗. Its ontology is that of DSR+, but it uses category-theoretic
techniques, such as those just outlined, in order to interpret all mathemat-
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ical statements as concerning just incomplete systems and the morphisms
between them.

Now consider the second option. On this option, SSR and DSR+ must
include in the subject matter of mathematics not only the privileged in-
complete representative(s) of each isomorphism class, but also certain rep-
resentatives whose elements have an internal nature — thus, not just the
incomplete representative(s) of the isomorphism class of symmetic groups
of order n (for any n), but also, for each set S of cardinality n (for any n),
the group of permutations on S, for example — and the elements of these
system have an internal nature. As Carter (2008, 199) puts it: “mathematics
certainly deals with structures, but [...] structures may not be all there is to
mathematics”.

Which other representatives must SSR and DSR+ include in the subject
matter of mathematics? To find out, we can look to mathematical prac-
tice, for they must include enough other representatives to underwrite that
practice — recall: structuralism is a philosophy inspired and motivated by
mathematical practice. When do mathematicians feel able to construct a
new sort of group or ring or probability space? It is exactly this question
that Zermelo set out to answer when he laid down his original axioms for
set theory (Zermelo, 1908). Nowadays, too often, we think of the iterative
conception of sets as the fundamental conception of the set-theoretic uni-
verse — first, you have the null set; then you have its power set; then you
have the power set of that; and so on. But this picture originates in Zer-
melo’s 1930 paper on the subject (Zermelo, 1930). In his 1908 paper, he
sought to bring together the principles that had been laid down by Cantor
(1883) and Dedekind (1888b). While Cantor was particularly interested in
the theory of pure cardinality, Dedekind was interested in systematically
enumerating the operations that mathematicians routinely use when they
construct the systems that form the subject matter of their study. In §8 of
Was Sind Und Was Sollen Die Zahlen?, for instance, Dedekind gives the defi-
nition of what we would now call the union of a family of sets and says that
the union exists whenever the sets in the family exist. In §17, he introduces
the notion of the intersection of a family of sets and says, again, that the
intersection exists whenever the sets exist. In §25, he asserts that the image
of a set under a mapping that is defined on each element in it is itself a set,
an assumption that became Fraenkel’s and Skolem’s axiom of replacement
(Fraenkel, 1922; Skolem, 1922). He does not mention a power set axiom
nor an axiom of separation, but Zermelo makes good on these omissions
as well as cleaning up Dedekind’s original formulations. Astonishingly, in
this first attempt at such an enumeration, Zermelo (later supplemented by
Skolem and Fraenkel) comprehensively listed the operations that underpin
the constructions that are carried out within standard mathematics. Thus,
SSR and DSR+ must at least add to the subject matter of mathematics those
systems whose underlying sets can be constructed using the operations of
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Zermelo-Fraenkel set theory — we will call these systems the set-theoretic
systems.

Supplemented in this way, SSR becomes SSR+ and DSR+ becomes DSR++.
However, if we avoid Weaver’s and Carter’s objection by expanding the
subject matter of mathematics in this way, SSR+ and DSR++ face a new
objection. They posit all the set-theoretic systems in a given isomorphism
class as well as the incomplete systems that they posited originally. How-
ever, there is a version of structuralism that posits only the set-theoretic sys-
tems — this is Set-Theoretic Structuralism or STS (Bourbaki, 1970; Mayberry,
2000). According to this, the subject matter of mathematics consists of only
the set-theoretic systems — the simply infinite system of von Neumann
ordinals; the simply infinite system of the Zermelo ordinals; for any set-
theoretic system that represents the rationals, the complete ordered field of
the Dedekind cuts on that system and the complete ordered field of equiv-
alence classes of Cauchy sequences on that system; and so on. Now, take a
sentence that SSR would interpret as concerning the unique privileged in-
complete simply infinite system (N, 0, s). STS, in contrast, would interpret
that sentence as quantifying over all set-theoretic simply infinite systems —
the von Neumann ordinals, the Zermelo ordinals, Hellman-style permuta-
tions of them, and countless others. Similarly, where SSR would interpret
the claims of real analysis as concerning the unique, privileged complete or-
dered field whose elements have no internal nature, STS interprets them as
quantifying over all set-theoretic systems that are complete ordered fields.
And so on. In realist versions of structuralism, such as SSR or DSR∗, we ac-
count for any indifference that mathematicians exhibit towards the internal
nature of their objects by saying that the objects they study have no internal
nature. In STS, in contrast, we account for any such indifference by saying
that, while the objects that those mathematicians study have internal na-
tures, mathematicians often ignore that internal nature and talk only of the
properties that any system will share with another that is isomorphic to it
and whose only difference is in the internal nature of its elements.

6 Parsimony vs faithfulness

Thus, we have STS, which posits all the set-theoretic systems, and nothing
more. And we have SSR+ and DSR++, which posit all the set-theoretic sys-
tems, and also posit a raft of incomplete systems as well. Considerations of
parsimony would therefore seem to tell against SSR+ and DSR++, and in
favour of STS. Unless there is something in favour of the former and against
the latter that outweighs this consideration, it seems that we should reject
SSR+ and DSR++. What might that be? Shapiro (1997, 2006) holds that one
of the advantages of SSR/SSR+ over other species of structuralism (includ-
ing, I presume, DSR+/DSR∗) is that it provides a subject matter for mathe-
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matics that allows us to give a semantics for mathematical language that is
faithful to its surface grammar. According to Shapiro, mathematicians use
expressions such as ‘N’, ‘R’, ‘V4’, ‘the natural numbers’, ‘the real numbers’,
‘the Klein Vierergruppe’, ‘π’, ‘e’, ‘0’, ‘1’, etc. as singular terms. Thus, any
faithful semantics for their language should identify, for each of these ex-
pressions, a single entity to which that expression refers. SSR/SSR+ does
this: ‘N’ refers to the unique, privileged incomplete simply infinite system,
as does ‘the natural numbers’; ‘0’ refers to the zero element of that system
(at least when that expression occurs in a paper on number theory); and so
on. According to STS, in contrast, ‘N’ and ‘the natural numbers’ are not sin-
gular terms, but free variables ranging over all simply infinite systems; and
‘0’ is a dependent variable that names the zero element of the simply infi-
nite system in question. Thus, according to Shapiro, SSR/SSR+ provides a
semantics that is faithful to the syntax of mathematical language; STS does
not. And this, you might think, warrants the larger ontology posited by
SSR+.

I’m not sure how we should weigh the faithfulness of a semantics against
the parsimony of an ontology when we are adjudicating between rival
philosophies of mathematics, but fortunately I don’t think this is neces-
sary. As Pettigrew (2008) argues, the linguistic evidence does not favour
treating ‘N’, ‘the natural numbers’, etc. as singular terms rather than as a
particular sort of free variable. Of course, Shapiro is right in thinking that
an expression like ‘N’ looks initially like a proper name, which is a singu-
lar term; and the definite article in ‘the natural numbers’ again suggests
that the expression refers to a unique object, which would make it a sin-
gular term as well. But consider the following sentence from a chemistry
textbook: ‘1H is stable’. Or consider this sentence from Quine’s ‘On What
There Is’: “McX never confuses the Parthenon with the Parthenon-idea”
(Quine, 1980). Or this sentence from earlier in this very paper you are cur-
rently reading: “There are two ways in which the structure realist might
respond to this objection”. From these three sentences consider the expres-
sions ‘1H’, ‘McX’, and ‘the structure realist’. Are they singular terms? As
with ‘N’ and ‘the natural numbers’, they initially seem to be. But a little
thought makes clear that this is not how they function.3 There is no unique
entity to which ‘1H’ refers; Quine did not use ‘McX’ to pick out any par-
ticular person; and nor did I use ‘the structure realist’ to do so. Rather, in
each case, they act as free variables that range over a class of entities —
‘1H’ ranges over all atoms of the isotope of hydrogen with one proton and
no neutrons; ‘McX’ ranges over all philosophers who hold the views that
Quine ascribes to McX in his paper; ‘the structure realist’ ranges over all

3This is not to deny that one might give a semantics on which they are singular terms,
perhaps using the ontology of Kit Fine’s theory of arbitrary objects (Fine, 1985). The claim
here is only that this is not the natural reading.
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structure realists. Thus, these expressions are what Pettigrew (2008) calls
dedicated free variables. We use free variables often in mathematics: ‘Let r be
a real number in the closed unit interval’; ‘Suppose m, n are natural num-
bers such that m

n =
√

2’; and so on. In each case, we introduce the free
variable — ‘r’, ‘m’, ‘n’ — by stipulating the properties we are going to as-
sume of it — being a real number in the closed unit interval; being natural
numbers whose ratio is the square root of 2; and so on. Then we reason
using this free variable, never assuming that what it ranges over has any
properties other than those given by the stipulation. Finally, we reach some
conclusion involving the free variable. And we can infer that this conclu-
sion holds of any entity that satisfies the stipulation. In the case of ordinary
free variables, such as ‘r’, ‘m’, ‘n’, the stipulation is required because each
might be used with different stipulations in different mathematical contexts
— I might use ‘r’ to range over all real numbers in the closed unit interval,
but I might also use it to range over all transcendental real numbers or just
over all real numbers or all non-negative real numbers, and so on. How-
ever, there are some free variables that are dedicated to being introduced
by a particular stipulation. In these cases, it is not necessary to make the
stipulation every time they are used. ‘1H’ is an example. It is always used
to range over all atoms of the isotope of hydrogen with one proton and
no neutrons. ‘McX’ is (now) another. Quine fixed its stipulation forever,
at least amongst philosophers. ‘The structure realist’ is another. And, we
might think, ‘N’, ‘the natural numbers’, ‘R’, ‘0’, ‘π’, etc. are others as well.
Pettigrew does not argue that they are. Rather, he argues that there is no
way to tell simply by looking at the grammar of the sentences that contain
them, and the inferences between such sentences that mathematicians en-
dorse, whether a given expression is a singular term or a dedicated free
variable. Thus, it does not count in favour of SSR that it can provide a se-
mantics for mathematical language on which these expressions are singular
terms. STS provides a semantics for them on which they are dedicated free
variables. And, as we have seen, no evidence from mathematical practice
can tell between treating them one way and treating them another.

We began, in section 2 with an extreme version of structure realism,
which then divided, in section 4, into SSR and DSR. In the light of Hell-
man’s objection, we replaced DSR with DSR+. In the light of Weaver’s
objection, we replaced SSR with SSR+ and we moved either to DSR∗ — a
categorial version of DSR+ — or to DSR++. In the light of the parsimony
objection and the failure to rebut it by appealing to the faithfulness of the
semantics provided, we now drop SSR+ and DSR++ in favour of STS. We
are thus left with DSR∗ and STS.
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7 The access problem

Which of these two positions should we favour, DSR∗ or STS? In their cur-
rent guises, neither. However, as we will see, STS can be amended so that it
provides a satisfactory ontology for mathematics and a satisfactory seman-
tics for mathematical language. DSR∗ can be amended in the same way.
But we will argue that, so amended, it isn’t as satisfactory as an account of
mathematics.

The problem with both STS and DSR∗ is the perennial access problem
(Benacerraf, 1973; Field, 1989). STS includes sets in its ontology. It includes
the everyday sets, such as the set of rabbits in Gloucestershire or the set of
foxes in Somerset. These are sets of urelements, i.e., sets whose members
are not themselves sets. Sets of urelements and in general sets with urele-
ments in their transitive closure are known as impure sets. But STS must
include more than just these. It must also include the so-called pure sets,
i.e., sets whose transitive closure includes no urelements. If it does not,
then the truth of various existential claims and the falsity of certain univer-
sal statements becomes contingent. In a universe with no urelements, there
can be no impure sets. Thus, if there are no pure sets either, there are no
sets at all, and no existential claims about sets can be true and no universal
claims about sets can be false. Thus, STS posits pure sets as well as impure
sets. But if the truths of mathematics are to be known, and if they are con-
cerned with sets, as STS claims, we must know facts about those pure and
impure sets. But, as we will see, we don’t.

Similarly for DSR∗. It does not include pure or impure sets in its on-
tology (though it does include Lawvere’s sets of “lauter Einsen”). It does,
however, posit a vast array of incomplete systems — systems whose ele-
ments have no internal nature. But if the truths of mathematics are to be
known, and if they are concerned with these incomplete systems, as DSR∗

claims, we must know facts about them. But, again, as we will see, we
don’t.

In both cases — in the case of sets and in the case of the incomplete
entities that compose the systems posited by DSR∗ — the epistemic prob-
lem is the same. As Justin Clarke-Doane (2016, 21) puts it, such objects are
causally, counterfactually, and constitutively independent of us.4 And this,
the argument goes, prevents us from having any knowledge concerning
them.

4In fact, I won’t assume here that impure sets are independent of us in any of these ways.
After all, it’s plausible that the UK Government has a causal influence on my life, and we
may wish to identify the UK Government with the set of people it contains (Maddy, 1992).
Also, if the set of members of my immediate family had contained only three elements, I
would not have had a brother. So it doesn’t seem to be counterfactually independent of me
either. However, as we saw above, STS also posits pure sets, and they are independent of
us in these ways.
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The argument is given originally by Paul Benacerraf (1973), who as-
sumed a causal condition on knowledge:

Causal S knows p⇒ S believes p and S’s belief in p was (par-
tially) caused by p.

Since sets and incomplete systems are causally independent of us, no fact
about them can cause my belief in that fact; and so, on the causal theory of
knowledge, I cannot know that fact. But, the causal theory of knowledge is
false — amongst other failures, it entails that we cannot know the future.

In the light of this failure, Hartry Field (1989, 26) reformulated the objec-
tion using the following alternative necessary condition, which he hoped
was sufficiently weak that it would be acceptable to anyone, regardless of
their favoured analysis of knowledge:

Explicable Reliability S knows p ⇒ it is in principle possible
to explain the reliability of S’s beliefs in propositions similar to
p.

Now, if p is a proposition about the colour of a particular apple in front of
me, it is clear that this condition is satisfied. My beliefs about the colour of
fruit are reliable, and their reliability is explained by the way that my visual
system interacts with light reflected from the surface of objects. However,
if p is a mathematical proposition — one concerning impure sets or incom-
plete systems — it is not so clear that Field’s condition is satisfied. How are
we to explain the reliability of my beliefs about such objects? Since these
objects are causally independent of me, there can be no causal explanation
of the sort I have in the case of the apple. Is there another sort of explana-
tion available?

Here’s an attempt, which draws on an observation by Øystein Linnebo
(2006, 559-562), though Linnebo ultimately rejects this approach. Each of
my mathematical beliefs is derived deductively from a handful of basic ax-
ioms. If you take a set-theoretic approach and favour STS over DSR∗, these
are the axioms of Zermelo-Fraenkel set theory (ZFC). If you take a category-
theoretic approach and favour DSR∗ over STS, these will be the axioms
of some category-theoretic analogue to ZFC, such as the axioms of Law-
vere’s Category of Categories as a Foundation for Mathematics (CCAF),
suitably fixed up to deal with the well-known problems (Lawvere, 1966;
Isbell, 1967). Whichever you choose, these axioms tell you which systems
there are and what basic properties they have. Thus, I explain the reliability
of the vast set of mathematical beliefs I hold like this: I believe some basic
axioms (those of ZFC or CCAF), and these axioms are true, so my beliefs
in them are reliable; and I derive all other mathematical beliefs from these
axioms using the method of deductive inference, which is conditionally re-
liable — given true inputs, it gives true outputs.
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Is this explanation satisfactory? You might think that Field’s demand
for explanation simply re-emerges as a demand to explain the reliability of
your beliefs in the basic axioms. But those axioms are few: on standard
presentations, there are no more than ten axioms of ZFC or of CCAF. If my
beliefs in these axioms are all true, it seems that their reliability — namely,
the correlation between the truth of those axioms and my beliefs in those
axioms — does not really call for explanation. What’s more, the pressure
to explain their reliability is reduced even further if, in fact, I derive my
belief in the basic axioms from my belief in one single global axiom that
entails them all, such as a reflection principle or other limitation of size
principle in set theory. If I do this, then I explain the reliability of my math-
ematical beliefs by noting that I have a single true belief in the reflection
principle in question, and I derive all my other mathematical beliefs from
that. And this is a satisfactory explanation for the phenomenon for which
Field’s condition on knowledge, Explicable Reliability, demanded an expla-
nation, namely, the reliability of my beliefs, or the correlation between what
I believe about mathematical objects and what is true about those objects.
To see this, consider an analogous situation. I notice that two quantities
always match: the size of the US economy (presented in some unit) and
the number of bacteria in the petri dish in my laboratory. This is a cor-
relation that calls for explanation. And here is a satisfactory explanation:
they started out matching at some earlier time, and they have grown at ex-
actly the same rate ever since. In the explanation, I note that they matched
at one point, and then note that the principle that determines the size of
the US economy on the basis of its size at earlier times is the same princi-
ple that determines the number of bacteria in the dish at a given time on
the basis of the number at earlier times — it is a particular growth func-
tion. Similarly, in my explanation of the correlation between what I believe
about mathematics and what is true, I note two things: (i) they match at
one point — I believe the single basic axiom and it is true; (ii) the principle
that determines the truth of a proposition about mathematical objects is the
same as the principle that determines whether I believe a given proposition
about those objects — a mathematical proposition is true only if it follows
from the single basic axiom, and I believe a mathematical proposition only
if I can derive it from that single basic axiom. Now, though he formulates
a similar response to Field’s objection, Linnebo (2006, 562) argues that it
fails, because the putative explanation doesn’t explain the connection be-
tween the mathematical truths and the mathematical beliefs. But that is
not what Field’s objection demands. It demands only an explanation of
the correlation of between those truths and those beliefs. And that we can
provide.

So Field’s version of the epistemological objection to mathematical re-
alism fails. But there is an alternative, simpler version, and it succeeds.
Benacerraf was right to think that a belief in p counts as knowledge only
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if there is some connection between p and the belief in p. He was wrong
only in thinking that the connection must be causal. Instead, the connec-
tion must be counterfactual. A belief in p counts as knowledge only if it is
counterfactually related to p in the correct way. The two standard ways to
spell out this counterfactual dependence are these:

Sensitivity S knows p only if, S formed her belief in p using
method M, and if p were false, S would not believe p using
method M (Nozick, 1981).

Safety S knows p only if, in nearby situations, S does not falsely
believe p (Sosa, 1999).

Now, it seems to me that, while our mathematical beliefs may well we safe,
they are not sensitive. That is, in nearby situations where we hold the same
mathematical beliefs that we in fact hold, they are true; but in the nearest
situations in which our actual mathematical beliefs are false, we would still
have those beliefs.

The standard objection to this claim is that mathematical beliefs, if true,
are necessarily true (Clarke-Doane, 2016, 26). If sets exists, they necessarily
exist; and they have the same set-theoretic properties at every world. And
similarly for the incomplete systems posited by DSR∗. If that is right, then
there are no nearby cases in which our actually true mathematical beliefs
are false, and thus those beliefs are automatically sensitive. However, I see
no reason to think that sets, if they exist, exist necessarily. And so I think
that there is a genuine question whether our beliefs about the existence
and nature of sets are sensitive — what’s more, I will argue that the answer
to that genuine question is that they are not, and thus do not constitute
knowledge.

Why might we think that sets, if they exist at one world and have cer-
tain properties there, also exist at every other world and have those same
properties there? (And a similar question for the incomplete systems of
DSR∗; I will focus here on STS and sets, but everything I say will hold,
mutatis mutandis, for the ontology of DSR∗.) Here is one argument: Sup-
pose sets exist at the actual world with certain properties. Now consider
another possible world. What could possibly be different about that other
world that would make it the case that sets don’t exist there, or exist but
have different properties? What could be responsible for that difference
between worlds? When we consider a concrete object, such as the Eiffel
Tower, which exists at one world but not at another, there is usually some
difference between the two worlds that is responsible for this existential
difference. If the Eiffel Tower does not exist at some non-actual world,
there will be some difference between that world and the actual world that
explains the difference: perhaps in that other world, Gustave Eiffel, having
graduated from the École Centrale des Arts et Manufactures, went to work
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for his uncle in Dijon, rather than remaining in Paris. And even when we
consider putative contingent abstract objects — such as the sort of fictional
entities posited by creationists, or singular propositions concerning contin-
gent concreta — there is again always some difference between a world in
which the abstract object exists and a world in which it doesn’t that is re-
sponsible for the difference: in the creationist case, it would be the fact that
the author did not write the fiction in the latter world; in the case of singu-
lar propositions, it is just that the subject of the proposition does not exist at
the latter world. But what could be responsible for the difference between
a world at which sets exists and a world at which they don’t? Or between
a world at which they exist with one set of properties and a world at which
they exist with another set of properties? There is nothing that could play
that role, or so the argument runs. But I think this is mistaken. Here is one
difference that play that role: at the first world, the sets exist; at the second,
they don’t! The point is that there is no reason why an existential difference
cannot be a brute fact. When an object is at the centre of a causal nexus in-
volving other objects and a variety of causal influences, then it makes sense
to ask what is responsible for it failing to exist in another possible world.
But sets are not part of such a causal nexus. So there is no reason to think
that their existence or non-existence at a possible world cannot be simply a
brute fact.

Here’s another argument for the necessity of sets. (Again, similar points
can be made about incomplete systems.) Mathematical truths are neces-
sarily true; mathematical propositions are about sets; therefore, sets exist
necessarily.5 Or this variation: Mathematical truths are necessarily true;
so the truth-makers of mathematical truths are necessary existents; sets are
constituents of the truth-makers of mathematical truths; the constituents
of necessary existents are themselves necessary; therefore, sets exist neces-
sarily.6 In each case, the problem lies with the first premise: mathematical
truths are necessarily true. The problem is not that the premise is false —
I will end up agreeing that it is true. The problem is that the mathematical
realist — the proponent of STS or DSR∗ — cannot appeal to this premise
at this point in the argument. To see this, consider why we think the first
premise is true. Our intuition is driven by the following thought: a math-
ematical truth makes no demands on the world; there is no way that it re-
quires the world to be; so there is no way the world could be that would fail
to make it true. So a mathematical proposition, if true, is necessarily true.
The problem is that, while these claims may seem plausible in advance of
a precise account of the semantics of these mathematical truths, once we
propose a semantics that makes these truths depends on some heavy-duty
ontology, such as impure sets (or incomplete systems), we cannot know

5Thanks to Ralph Wedgwood for raising this possibility.
6Thanks to Daniel Rubio and Trent Dougherty for raising this possibility.
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that they are necessary unless we can know facts about the existence and
nature of these mathematical entities. But that is precisely what is currently
in doubt. The problem is that, as soon as we make mathematical truths de-
pend on this heavy-duty ontology, it becomes much less plausible that they
are vacuous and make no demands on the world.

We have no reason, then, to think that sets, if they exist at all, exist nec-
essarily. So suppose they don’t. Suppose they exist at the actual world, but
not at some other worlds. It then becomes a non-trivial question whether
our beliefs about sets are sensitive. What’s more, the answer to that ques-
tion is that they aren’t. Suppose I believe some propositions about sets; and
suppose that they are true. I form these beliefs using some method: per-
haps I deduce them from a single basic axiom, such as a reflection principle
or a limitation of size principle; perhaps I look to mathematical practice,
and I see what basic principles are required by that, and deduce my math-
ematical beliefs from the principles I thereby formulate, as Dedekind did;
perhaps I form them on the basis of mathematical intuition. Now take the
nearest worlds where these beliefs are false — the sets don’t exist at these
other worlds, perhaps, or they don’t have the properties they actually have.
In that situation, would I still believe them on the basis of the method I
used? The answer, it seems, is that I would. None of the methods I use,
nor indeed any method that is actually available to me as a concrete physi-
cal entity, take as their input anything that will be different at these nearby
worlds. Thus, they will give the same output.

It seems, then, that, if STS or DSR∗ is true, and if the entities they posit
are not necessary contingents, then we cannot know the truths of math-
ematics because our mathematical beliefs are not sensitive in the way re-
quired for knowledge. Without reason to rule out this possibility, it seems
that we should then abandon STS and DSR∗. But what should we put in
their place?

8 A modal version of set-theoretic structuralism

STS says that there are sets, and it says that they have certain properties;
and it says that mathematics studies the systems built out of these sets, so
that, for instance, a proposition in number theory concerns all set-theoretic
systems that satisfy the Dedekind-Peano axioms for a simply infinite sys-
tem. But problems arise because we cannot know that there are such en-
tities nor that they have the properties that we ascribe to them. A natural
alternative is to say: we don’t know whether there are sets and we don’t
know that they have the properties we take them to have, but we know
that they might exist and that they might have those properties and we
know what is true of them at worlds at which they do exist and do have
those properties, and mathematics studies that, so that a proposition in
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number theory concerns what is true in all set-theoretic systems that sat-
isfy the Dedekind-Peano axioms at those worlds at which they exist and have
the properties we take them to have.

Thus, we have a modal version of STS that takes a sentence Φ(N, 0, s)
of number theory, for instance, and interprets it as the conjunction of the
following two propositions:

(i) Necessarily, for all set-theoretic systems (N, 0, s), if (N, 0, s) is a sim-
ply infinite system, then Φ(N, 0, s).

(ii) Possibly, there is a set-theoretic system (N, 0, s) that is a simply infi-
nite system.

The theory, which we might call modal set-theoretic structuralism or MSTS,
is therefore reminiscent of Geoffrey Hellman’s modal structuralism, but
with sets taking the place of Hellman’s second-order entities (Hellman,
1993), or logical structuralism, the version of structuralism that Audrey Yap
(2009a,b) extracts from Dedekind. Is this a satisfactory account of mathe-
matics? It is close, I think, but not quite there. The problem arises when we
ask how mathematics is applied to the physical world.

One of the main attractions of STS is that it gives a straightforward ac-
count of the application of mathematics to the physical world. There are
three ways in which mathematics is applied in the physical sciences. On
the first, the scientist identifies a physical system and notes that, as it occurs
in the physical world, this system simply is a certain sort of mathematical
system, such as a group. The theorems that apply to that sort of system
therefore apply straightforwardly to the physical system in question and
we can deduce facts about the physical system. This is the standard way
in which group theory is applied in chemistry, for instance: the symme-
tries of the normal mode of a molecule form a group; having identified
that group, the chemist then applies the results of group theory to discover
further facts about that molecule. On the second way of applying math-
ematics to the physical world, the scientist identifies a physical system in
another possible world — perhaps a perfectly flat plane — that closely but
not perfectly resembles some physical system in the actual world — per-
haps a very but not completely flat plane. They note that the former simply
is a particular sort of mathematical system — perhaps a Euclidean space
— and they use a theorem about that sort of mathematical system to de-
duce a fact about the physical system in the other world. They then infer
that something very similar will be true of the physical system in the ac-
tual world, since this system closely but imperfectly resembles the system
in the other world. In these sorts of applications, we reason about an ide-
alised version of the actual world for the sake of simplicity and because
we know the mathematics that applies to those versions; and we infer that
the actual world will approximate that idealised version to some extent.
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Thirdly, the scientist might identify a physical system, but instead of argu-
ing that it is itself a mathematical system of a particular sort or that there
is an idealised version in another world that is a mathematical system of a
particular sort, they say that it is related to such a system, perhaps by being
embedded into that system in some way. They then use theorems about
the mathematical system in question to derive facts about the physical sys-
tem in question. Thus, for instance, a system of rods of different lengths
might be mapped into a complete ordered field in a particular way; and
we might appeal to theorems in real analysis to derive facts about that sys-
tem. In each of these cases, STS gives a straightforward account of how the
application works. In the first case, the only ontology that is required con-
sists of the impure sets in the actual world that make up the actual physical
system in question, and STS posits those; in the second case, the required
ontology consists of the impure sets in the actual world that make up the
actual physical system as well as the impure sets in the other possible world
that make up the idealised system, and STS posits all of those; and in the
third case, the required ontology consists of the impure sets that make up
the physical system in question, along with the pure sets that make up the
mathematical system or systems to which it is related, and again STS posits
all of that. Problems arise, however, when we move to MSTS, the modal
version of STS. After all, in all cases, the application relies on the physical
phenomena, or some idealised phenomena that closely resembles it, inhab-
iting the same world as the sets. But the physical system inhabits the actual
world; and MSTS is premised precisely on the observation that we might
not be able to know whether the actual world contains sets. Thus, in the
light of this observation, the straightforward account of the applicability
of mathematics that STS offers is lost when we move to MSTS. How, then,
might we respond?

9 Instrumental nominalism about set-theoretic struc-
turalism

At this point, we appeal to instrumental nominalism (Melia, 1995, 2000; Rosen,
2001; Pettigrew, 2012). Instrumental nominalism is usually deployed as a
response to the indispenability arguments in the philosophy of mathemat-
ics. According to these arguments, since we use mathematics in our best
scientific theories, and since we are justified in believing our best scien-
tific theories, we are justified in believing in the existence of certain math-
ematical objects. According to the instrumental nominalist, our best scien-
tific theories do not in fact appeal to mathematical objects, even though it
seems that they do. Rather, our best scientific theories use mathematical
language to make claims about the physical world, but without commit-
ting to the entities to which that mathematical language seems to commit
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them. Now, other forms of nominalism agree on these point. But those
other versions hold that the mathematical language in our scientific the-
ories is really just a shorthand that we use to express something that we
might express at greater length without ever mentioning a mathematical
object (Field, 1980). Instrumental nominalism, on the other hand, concedes
that this might not always be possible. But it holds that it is possible to say
what the non-mathematical content of a scientific theory is without effect-
ing such a translation. The idea is that, when I use mathematical language
in the statement of a scientific theory, I really say only that the physical
world is as it would be if the mathematical objects I speak of were to exist
and the statement I made that referred to or quantified over those mathe-
matical objects were then true. Suppose, for instance, that my best scientific
theory says:

The average star has 2.4 planets.

Some nominalists might try to translate this as follows:

There are 12 planets and 5 stars ∨ There are 24 planets and 10
stars ∨ There are 36 planets and 15 stars ∨ . . . .

But this nominalising translation involves an infinite disjunction, and it is
unclear how to specify all of the disjuncts without appealing to mathemat-
ical language, e.g.,∨∞

n=1 There are 12n planets and 5n stars.

The instrumental nominalist, in contrast, concedes that there is no good
nominalising translation that removes all reference to mathematical objects,
and instead translates it as follows:

There is a possible world w such that: (i) the physical part of
w is qualitatively identical with the physical part of the actual
world @, (ii) numbers exist at w, and (iii) at w, the average star
has 2.4 planets.

As I said above, instrumental nominalism is usually introduced in re-
sponse to the indispensability argument. But the semantics that it offers
for mathematical statements has other appealing features. Consider, for
instance, an instrumental nominalist version of set-theoretic structuralism,
which I will call INSTS. It says this: Suppose there is a mathematical sen-
tence that would be translated, according to STS, as p; then INSTS trans-
lates that sentence as follows:7

7Pettigrew (2012) explores how to formulate instrumental nominalism without reference
to possible worlds.
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There is a possible world w such that: (i) the physical part of
w is qualitatively identical with the physical part of the actual
world @, (ii) sets exist at w, and (iii) at w, p holds.

Like MSTS, INSTS does not rely on the actual existence of mathematical
entities. Thus, it avoids the access problem. But, unlike MSTS, it recovers
the virtues of the STS account of the application of mathematics in science.
Above, we saw that it is not straightforward to give an account of the appli-
cation of mathematics on MSTS because the physical phenomena to which
we apply mathematics exist at the actual world while the mathematical ob-
jects involved in the application may well exist only at other worlds. Now
this is true also on INSTS. However, on INSTS, we can take the account
of the applicability of mathematics from STS and apply it to the world w
posited by INSTS at which the physical world is exactly as it is in the actual
world, but where there are also sets. Thus, INSTS retains the advantages
of MSTS, but adds to them the straightforward account of the applicability
of mathematics enjoyed by STS. It is INSTS that I wish to propose as my
favoured version of structuralism.

But what about DSR∗? In the previous two sections, I have focussed
on exploring and developing modal versions of STS, i.e., MSTS and INSTS.
But surely it is also possible to create a modal version of DSR∗ (MDSR∗) and
an instrumental nominalist version of DSR∗ (INDSR∗). And, if we can do
that, why favour INSTS over INDSR∗? The reason is this: a crucial compo-
nent of the translation that instrumental nominalism suggests asserts that
there is a possible world at which the mathematical objects in question ex-
ist. Thus, while we need not know that sets exist at the actual world in
order to know the truths of mathematics that INSTS posits, we do need to
know that they exist at some possible world — that is, that they are meta-
physically possible. And similarly for INDSR∗: we need not know that
the incomplete systems that it posits exist at the actual world; but we do
need to know that they exist at some possible world — that is, that they
are metaphysically possible. How do we come to know this? I will argue
that there is a satisfactory answer in the case of INSTS, but not in the case
of INDSR∗. Or, more precisely, I will argue that any satisfactory answer in
the case of INDSR∗ must go via an answer for the case of INSTS — and, in
that case, we would do as well to stick with INSTS. I will adapt the argu-
ments given by Linnebo & Pettigrew (2011), which are intended to show
that no category-theoretic foundation for mathematics, such as Lawvere’s
Elementary Theory of the Category of Sets or Category of Categories as a
Foundation for Mathematics, can be epistemically autonomous — it must
rely for its justification on a set-theoretic foundation.

Linnebo and Pettigrew argue that, while such a category-theoretic foun-
dation might be formulated independently of set-theoretic notions, our jus-
tification for believing the axioms must go via our justification for believing
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the axioms of set theory. Now, as we saw above, I don’t think that we can
know the axioms that constitute a set-theoretic foundation for mathemat-
ics, nor any category-theoretic foundation. However, I do think that we
can know that there is a possible world at which the set-theoretic axioms
are true; we can know that those axioms are metaphysically possible. And
our access to this modal fact is exactly as Linnebo and Pettigrew describe it:
it goes via the iterative conception of set (Linnebo & Pettigrew, 2011, §5.1).

The iterative conception of set consists of two claims: a claim about
the structure of the set-theoretic universe, and a claim about the sets that
occupy it. According to the structure claim: the universe of sets is divided
into a well-ordered collection of levels; a set exists at one level only if its
members all exist at lower levels, and if there is no lower level such that all
of its members exist at levels below that. According to the claim about the
sets that occupy it:

the iterative conception of set amounts to the following claim
of set-theoretic plenitude: relative to the constraints on the hi-
erarchy just stated, whenever a set could occupy a level of the
hierarchy, it does. (Linnebo & Pettigrew, 2011, 245)

It is then straightforward to derive the usual axioms of set theory from this
conception. Linnebo and Pettigrew claim that this allows us to know the
axioms of set theory; it gives us knowledge of the actual universe of sets.
As we saw in section 7 above, I disagree. But I do think that this concep-
tion allows us to know that the axioms are metaphysically possible; they
describe a possible universe of sets. Most importantly, it convinces us that
there are no contradictions lurking in the axioms. There is a conceivable
structure to the universe in which they are true, and this gives us our route
to modal knowledge. But of course it is just this modal knowledge that we
require to know the mathematical truths, given INSTS. Thus, the iterative
conception of set delivers us the modal knowledge required by INSTS.

The problem with INDSR∗ is that there is no analogous route to the
modal knowledge that is required by that account of mathematical truth.
There is nothing that plays the role of the iterative conception of set for the
incomplete systems posited by DSR∗. Now, of course, we might note that
the axioms of any existing category-theoretic foundation have a model in
the set-theoretic universe; and we might then leverage our modal knowl-
edge of the possibility that those set-theoretic axioms are true to obtain
knowledge of the possibility that the category-theoretic axioms are true;
and from there we might infer that it is not only possible that there is a
set-theoretic model of those axioms, but also possible that there are incom-
plete systems of the sort posited by DSR∗ that also satisfy those axioms.
But clearly such an argument already relies upon, and goes beyond, our
argument for the possibility of the set-theoretic universe that we obtained
from the iterative conception. And, in that case, it would be safer to stick
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with INSTS and the modal knowledge we obtain directly from the iterative
conception of set.

10 Conclusion

So, it is INSTS that I wish to propose as my favoured version of structural-
ism. It makes no claim of incompleteness, and thus avoids Burgess’ ob-
jection (section 3). It accommodates Hellman’s objection because it counts
within the subject matter of number theory, for instance, any set-theoretic
simply infinite system, and so includes one of Hellman’s permuted systems
whenever it includes the system from which it was obtained (section 4).
The systems it posits as the subject matter of mathematics have exactly the
internal natures that mathematicians sometimes care about and investigate
in their representation theorems, and so INSTS avoids Weaver’s objection,
though it can also account for the indifference that mathematicians exhibit
at other times towards the internal nature of their objects by saying that,
at those times, they quantify over all objects in a given isomorphism class,
thereby ignoring their internal natures (section 5). It renders mathematical
knowledge possible — it is just modal knowledge — and thereby avoids
the access problem (section 7). And finally it preserves a straightforward
account of the applicability of mathematics in science (sections 8 and 9).
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