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ABSTRACT 
 

In a recent paper, Erasmus et al. (2021) defend the idea that the ambiguity of the 

term “explanation” in explainable AI (XAI) can be solved by adopting any of four 

different extant accounts of explanation in the philosophy of science: the Deductive 

Nomological, Inductive Statistical, Causal Mechanical, and New Mechanist 

models. In this chapter, I show that the authors’ claim that these accounts can be 

applied to deep neural networks as they would to any natural phenomenon is 

mistaken. I also provide a more general argument as to why the notion of 

explainability as it is currently used in the XAI literature bears little resemblance to 

the traditional concept of scientific explanation. It would be more fruitful to use the 

label “understandable AI” to avoid the confusion that surrounds the goal and 

purposes of XAI. In the second half of the chapter, I argue for a pragmatic 

conception of understanding that is better suited to play the central role attributed 

to explanation in XAI. Following De Regt (2017) and Kuorikoski and Ylikoski 

(2015), the conditions of satisfaction for understanding an ML system are fleshed 

out in terms of an agent’s success in using the system. 
 
Keywords: Explainable AI; Scientific explanation; Scientific understanding; Deep 

neural networks; Factivity in XAI; Inferential conception of understanding 

 

1. Introduction 

The concept of explanation has a long and variegated history in the philosophy of science. 

Starting with Hempel and Oppenheimer’s (1948) logic-based approach, at least a dozen 
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different analyses of the concept have been proposed.1 Given this rich theoretical 

repository, some philosophers have argued that the solution to the problem of specifying 

a meaning for “explanation” in the context of artificial intelligence (AI) is to adapt an 

extant account of scientific explanation to machine learning (ML) in general, and to deep 

neural networks (DNNs) in particular. Erasmus, Brunet, and Fisher (2021) offer the most 

developed account of this strategy. They examine four different accounts of explanation 

in the philosophy of science: the Deductive Nomological, Inductive Statistical, Causal 

Mechanical, and New Mechanist models. Their claim is that any of them is applicable to 

DNNs as it would to any scientific phenomenon. This claim derives from a more general 

principle that they call “the indefeasibility thesis” about explanation (2021, 840). The 

thesis states that explanations are invariant with respect to the complexity of both the 

explanans and the explanandum. There is no threshold of complexity beyond which a 

phenomenon becomes unexplainable. Therefore, despite their complexity, DNNs are 

scientifically explainable. 

In this chapter, I argue that the thesis that opaque ML systems are scientifically 

explainable is either trivial or false, and that it misrepresents the goals of explainable AI 

(XAI). It is trivial if an explanation is simply understood as the set of causes, entities or 

states that physically or computationally produce a prediction; not the linguistic or 

mathematical description of the known elements in the set, but the elements themselves, 

known or unknown. It is false if the claim is that it is always possible to offer an 

“explanatory text,” a truthful description of the source of the prediction, thereby satisfying 

the factivity condition on scientific explanations (Páez 2009, 2019). Most of the first half 

of this chapter will be devoted to justifying the second claim. Now, if there are 

explanatory gaps in machine learning, and more specifically, if the predictions of DNNs 

cannot be scientifically explained, then the goal of explainable AI thus formulated will 

be unattainable. We should not insist on using a concept that cannot perform its desired 

function. Instead, I will advocate for the use of labels such as “interpretable machine 

learning” (Watson and Floridi 2021) or “understandable AI” to avoid the confusion that 

surrounds the goal and purposes of XAI methods. In the second part of the chapter, I 

argue that understanding is a success concept that is better suited to play the role often 

 
1. See Woodward and Ross (2021) for a survey of the earliest models of explanation, roughly 
until 1990, and Ross and Woodward (2023) for more recent causal approaches. 
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attributed to explanation in XAI. Following De Regt (2017) and Kuorikoski and Ylikoski 

(2015), the conditions of satisfaction for understanding an ML system are fleshed out in 

terms of an agent’s success in using the system. 

 
2. Clarifying the Explanandum 

Before we can tackle the question of explanation in the context of machine learning, it is 

essential to clarify what it is that we are trying to explain, that is, to clarify the 

explanandum. There are two possible explananda in ML. From the point of view of local 

post-hoc interpretability methods, the explanandum is some specific prediction churned 

out by a trained model. These methods usually try to pinpoint input features that make a 

difference in the prediction. Local interpretations include counterfactual probes (Mothilal 

Sharma, and Tan 2020; Wachter, Mittelstadt, and Russell 2018), and different types of 

perturbation-based methods such as LIME (Ribeiro, Singh, and Guestrin 2016;), Grad-

CAM (Ancona et al. 2019; Selvaraju et al. 2017), SHAP (Lundberg and Lee 2017), TCAV 

(Kim et al. 2018), among many others (see Ivanovs, Kadikis, and Ozols 2021 for a 

survey). 

From the point of view of global interpretation methods, the explanandum is the 

entire model, more specifically, the non-linear function performed by the trained model. 

Global interpretations generally take the form of surrogate models. The most widely used 

classes of surrogate models are linear or gradient-based approximations, decision rules, 

and decision trees (Frosst and Hinton 2017; Wu et al. 2018). Some surrogate models are 

generated through knowledge distillation techniques (Bastani, Kim, and Bastani 2017; 

Jung et al. 2017; Kim, Jeong, and Ko 2022; Tan et al. 2018). Given a model f, the goal is 

to generate an interpretable model M such that M(x) ≈ f(x). A different approach is to use 

example-based methods. The idea is to select subsets of the dataset to explain the behavior 

of ML models or to make explicit the underlying data distribution. This approach only 

works when the data is structured and can be represented in a human understandable way. 

They include similar examples or factuals (Schoenborn et al. 2021), influential instances 

(Koh and Liang 2017; Koh et al. 2019) and prototypes (Kim, Khanna, and Koyejo 2016), 

among others. These methods yield results that are more easily understood. 

Most theories of explanation in the philosophy of science have taken individual 

facts or particulars, such as things or events, as their explanandum. Thus, the 

explanandum of a scientific explanation is a true statement that expresses a fact or that 
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states that the things or events to be explained exist or occur. In that respect, they resemble 

post hoc local interpretability methods. Kitcher’s (1989) unificationist model of 

explanation uses a different approach. Scientific explanation is a matter of providing a 

unified account of a range of different phenomena. Erasmus and Brunet (2022) discuss 

Kitcher’s unificationist model in the context of ML, but their argument is parasitic on 

their defense of the applicability of Deductive-Nomological explanations to DNNs. I will 

therefore skip the specifics of that discussion to focus on the four theories of explanation 

that seem more readily applicable in the context of ML. 

Notice that if we restrict the discussion to these four models of scientific 

explanation, whose explananda are always individual facts or events, global explanations 

will be excluded because the target of any global interpretation method in ML is the 

original model itself, not one of its predictions. As a result, ML models will be 

scientifically unexplainable. ML models are complex mathematical structures that admit 

of infinitely many input-output pairs; their abstract nature makes them akin to a law of 

nature, not to a singular fact or event. This means that the account provided by Erasmus 

et al. (2021) is incomplete at best because it cannot account for global explanations. The 

authors could try to amend this shortcoming by adding a model of explanation of laws to 

the mix, but this approach faces the problem that there is no agreed upon account of the 

laws of nature in the philosophical literature, let alone an account of the explanation of 

laws.2 

It could be argued that although surrogate models do not explain singular 

predictions, they can be seen as explanatory schemata. Plugging in the missing values in 

a surrogate decision tree, for example, will provide an explanation of a singular 

prediction.3 However, the price of taking this way out of the problem is that factivity will 

have to be sacrificed at the outset because surrogate models are always false, as Cynthia 

Rudin explains: 
 

 
2. In “Studies in the logic of explanation,” Hempel and Oppenheimer famously state that the 
explanation of laws “presents peculiar problems for which we can offer no solution at present” 
(1948, 165n33). These problems force them to limit their theory to the explanation of particular 
events. The situation is no better today than in 1948. I’m grateful to Juan M. Durán for reminding 
me of this telling passage. 
3. I am grateful to Stefan Buijsman for suggesting this possibility. 
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Explanations must be wrong. They cannot have perfect fidelity with respect 
to the original model. If the explanation was completely faithful to what the 
original model computes, the explanation would equal the original model, and 
one would not need the original model in the first place, only the explanation. 
(2019, 207) 
 

Since Erasmus and colleagues want to defend the factivity of explanation (see below), 

surrogate models, even when regarded as explanatory schemata, would not qualify as 

bona fide explanations.4 The remaining question is whether their account is successful in 

the explanation of singular predictions. 

 
3. Scientific explanation of ML systems? 

In this section, I will examine whether the four theories of explanation discussed by 

Erasmus et al. (2021) can play the role attributed to them. I will focus mostly on the way 

they use Hempel’s Deductive-Nomological (D-N) model because discussion of that 

model will bring out the main elements in play.5 Once the stakes have been made clear, 

it will be much easier to dismiss the use of the other three models.  

 
3.1 Deductive-Nomological Explanations 

I will begin by examining the idea that Hempel’s Deductive-Nomological model of 

scientific explanation can be used to explain the output of a DNN. Hempel’s model can 

be represented by the well-known schema that deduces the explanandum from laws and 

initial conditions, which jointly constitute the explanans (1965, 336): 

 
 L1, L2, …, Ln 

 C1, C2, …, Cn 

 E 

 
Here L1, L2, …, Ln are general laws, C1, C2, …, Cn are sentences describing the particular 

facts involved, and E is a sentence describing the explanandum phenomenon. As Hempel 

 
4. Following Elgin (2017) and Potochnik (2017), in section 4, I argue that the factivity condition 
on scientific explanation can be replaced by a more pragmatic approach in which surrogate 
models only need to be “true enough” of their target models. 
5. For the purpose of this chapter, I will ignore the fact that Hempel’s D-N and I-S models are 
nowadays considered museum pieces due to the well-known objections that have been raised 
against them. Salmon (1989) offers the best discussion of these objections and counterexamples. 
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is well aware, general laws in science take many forms and even nowadays there is no 

agreed-upon definition of what a law of nature is. However, to have an explanatory 

character, Hempel argues, laws should not make reference to particulars. We must require 

them to be of “essentially general form” (1965, 343). Finally, all the elements in the 

explanation must be true. This is generally known as the factivity condition on scientific 

explanation. 

Before we move on to examine whether D-N explanations can explain the output 

of a DNN, it is important to understand the theoretical claim that undergirds the very 

possibility of attempting such a move. As we saw in the Introduction, Erasmus and 

collaborators argue, essentially, that everything is explainable because the possibility of 

devising an explanation does not depend on the complexity of the phenomenon: 
 

The features that make something an explanation turn out to be invariant with 
respect to the complexity of both the explanans and the explanandum. … 
Adding complexity to the explanation of the phenomenon does not entail that 
the phenomenon is any less explainable. This is not a claim about the quality, 
superiority, or goodness of a given explanation. Our concern is whether 
increasing the complexity of a given explanation makes it no longer an 
explanation. (2021, 840) 
 

Let us examine how the thesis applies to D-N explanations. We will only consider an 

increase in the complexity of the explanans because in supervised ML the explanandum 

always remains simple, viz. a prediction or a classification.  

How could more information be added to the explanans of a D-N explanation? 

Erasmus et al. argue that one could, for example, replace one of the law-like statements 

and substitute it for a set of n laws jointly entailing it (here E is a set of empirical 

conditions): 
 
This may make the explanans less manageable or more difficult to 
understand, but we still have a DN explanation. That is, if x follows 
deductively from L + E, then it also follows from L* = {L1+L2+...+Ln} + E, 
where L1...n are (complexity-increasing) laws which, taken together, entail L. 
The expansion of the explanans does not make its laws any less law-like nor 
its conclusion any less deductively valid. Put another way, the explanandum 
is no less explainable, since the connection to the explanans, no matter [its] 
complexity, is still deduction. (2021, 841) 
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In the context of a DNN, this argument requires that we identify law-like statements 

of any degree of complexity to set up the explanans of a D-N explanation. Here we will 

focus on two points, the relata of the laws and the factivity condition. Regardless of the 

form of a lawlike statement in science, laws create (mostly mathematical) relationships 

between predicates. Such predicates might refer to natural classes such as the electric 

charge of a particle or the volume of a gas, and they are applied to the state of a system: 
 

The state of such a system at any given time is characterized by the values 
assumed at that time by certain quantitative characteristics of the system, the 
so-called variables of state; and the laws specified by such a theory for the 
changes of state are deterministic in the sense that, given the state of the 
system at any one time, they determine its state at any other, earlier or later, 
time. (Hempel, 1965, 351) 

 
The first question that arises, if one wants to adapt Hempel’s D-N model to DNNs, regards 

the relata of the lawlike statements that will be deployed. Are they relationships between 

classes of inputs and outputs? Between features of the input space and outputs? Between 

the weights and biases in the neural net and an output? If we think of a functional 

explanation based solely on the inputs and outputs of the system, it is impossible to think 

of deterministic laws in DNNs. No class of inputs will inevitably produce the correct 

decision every time, and sometimes even repeating the sampling might produce a 

different decision (Kindermans et al. 2017; Molnar 2020).6 Something similar occurs if 

we think of a lawlike relation between types of features and decisions. Simply choosing 

some set of features from the input space to train the system will not guarantee a 

deterministic relation between the chosen features and the decision. For example, if a 

bank uses features such as income, age, credit history, number of family members, and 

so on to train a fairly accurate ML system, there is still no guarantee that those particular 

features will generate the same predictions when provided with the same inputs. The only 

viable alternative is to look at the model itself as composed of deterministic lawlike 

relationships. This seems to be what Erasmus et al. (2021) have in mind. The example 

they use is of a DNN trained for image classification. They explain how to apply a D-N 

 
6. To be sure, there are functionally deterministic models in ML, but they have many limitations 
that make them unsuitable in most real-world applications. 
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explanation of why the DNN classified an input image in one of the output classes in the 

following way: 

 
A DN explanation of how the [DNN] assesses an input image involves listing 
the weights attached to each and every node and the informational routes 
indicated by each and every edge at every convolution stage, and the weights 
of the fully connected network along with the assigned numerical values 
being fed into the input layer and the network architecture. Once we have 
that, we can list the values for the classifications the [DNN] learned in the 
training and testing phases of development, and see that its classification of 
the image is based on comparing the ranges of these classifications with the 
output value of the image. In doing so, we are explaining the explanandum—
here, the [DNN] classifying of image I as classification c—using an 
explanans consisting of a law-like premises—in this case, how the weights of 
all relevant nodes and edges produced the output value, along with the law 
that an output is assigned to the most probable class—and additional 
information about I—which includes the set of input values assigned to I, and 
the output value c. (2021, 844) 

 
In more simple terms, the D-N explanation of the explanandum value c consists of an 

exact description of the model, which would take the place of the lawlike sentences L1, 

…, Ln in Hempel’s model, and a list of the features of the input image I, which would 

correspond to the sentences C1, …, Cn that describe the particular facts involved. 

Together, they explain why the model generated the output value c. 

There are two problems with this idea. Firstly, the connection between the features 

of the input space and the parameters learned by the model cannot be made sense of in an 

opaque model. Secondly, since there is no direct access to the hidden layers of the model, 

the values of the weights and biases cannot be verified; therefore, there is no way to 

determine whether any given explanatory text is true. Let us examine each problem in 

turn. 

Neural networks are designed to identify patterns and make predictions based on 

these patterns. Inputs pass through multiple layers of interconnected nodes, or “neurons,” 

each of which transforms them in some way before passing them along to the next layer. 

These transformations often involve nonlinear operations, such as ReLU (Rectified 

Linear Unit), sigmoid, or tanh functions. These nonlinear transformations, combined with 

the interactions between the neurons across different layers, allow the neural network to 
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model complex, high-dimensional decision boundaries. Even if we could see all the 

weights and biases in the network (the parameters that the model learned during training), 

it is not clear how to interpret them in the context of the original input features. Each input 

of the network goes through a series of complex, intertwined transformations that make 

it difficult to understand how the inputs relate to the output. The nonlinear nature of the 

activation functions compounds this complexity. In a linear system, the effect of each 

input can be considered independently of the others: if you double an input, the output 

will also double. But in a nonlinear system, the effect of changing an input depends on 

the values of all the other inputs. This makes it much more difficult to understand how 

each input influences the output, and in any case the relationship cannot be expressed 

using a single lawlike statement. In a neural network, there is no clear sequence of 

“decisions” to follow ¾the output is the result of a complex, interconnected web of 

influences that do not lend themselves to an explanation. 

The second problem is that there is no way to verify which parameters are being 

used in the hidden layers of the neural net. Deep models often have an extremely large 

number of optima of similar predictive accuracy. This is known as the model 

identifiability problem: “A model is said to be identifiable if a sufficiently large training 

set can rule out all but one setting of the model’s parameters. Models with latent variables 

are often not identifiable because we can obtain equivalent models by exchanging latent 

variables with each other” (Goodfellow, Bengio, and Courville, 2016, 284). It is therefore 

impossible to verify which of many possible equivalent models is the one that generated 

the output in this case. Without identifying which model is being used, there is no way to 

create a true explanatory text of the model’s prediction. Therefore, the factivity condition 

on explanation cannot be fulfilled. There is, of course, a true description of the model, 

but it lives in Popper’s World 3, forever inaccessible to human subjects. 

Independently of these two unsolvable problems, there is something amiss in saying 

that a ML model is a set of lawlike statements. It is true that the model is a function and 

most laws in science are mathematical functions, but that is as far as the resemblance 

goes. As mentioned above, Hempel insisted once and again that laws must have an 

essentially general form. They cannot be a conjunction of descriptions of particular facts: 
 

A statement which is logically equivalent to a finite conjunction of singular 
sentences, and which in this sense makes a claim concerning only a finite 
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class of cases, does not qualify as a law and lacks the explanatory force of a 
nomological statement. Lawlike sentences, whether true or false, are not just 
conveniently telescoped summaries of finite sets of data concerning particular 
instances. (1965, 377) 
 

This statement alone is a rebuttal of Erasmus and colleagues. There is nothing general in 

a trained ML model. A description of the model is exactly what Hempel describes: a 

conjunction of singular sentences about the weights and biases of the model. Its 

parameters obey the nature of the class of things in the training dataset and cannot be used 

for other ends. It is a custom-made predictive artifact that serves one and only one 

purpose. Furthermore, the features used to train the model do not necessarily correspond 

to natural kinds or to properties that belong to anything outside of the input space. Its 

limited scope in many cases is another reason why it lacks the generality of laws. It all 

depends on the data used. In the case of a model like AlphaFold, the features most 

probably correspond to natural kinds, but in most cases, the features can only be defined 

within a very specific context of use. ML just seems the wrong context to speak of laws, 

at least in the Hempelian sense, and a fortiori of covering law models of scientific 

explanation. 

 
3.2 Inductive-Statistical Explanations 

The second type of explanation discussed by Erasmus et al. (2021) is Hempel’s inductive-

statistical model (I-S). Unlike the D-N model, the I-S model uses statistical laws instead 

of deterministic ones. It preserves, however, the argument form of D-N explanations, but 

naturally in inductive form. The general schema is: 
 

L1, L2, …, Ln 

C1, C2, …, Cn 

[r] 
E 

 
L1, L2, …, Ln are general laws, but of statistical nature. They have the form p(P|Q) = r and 

they must also lack any reference to particular instances. As before, C1, C2, …, Cn are 

sentences describing the particular facts involved, and E is a sentence describing the 

explanandum phenomenon. The explanans provides inductive support to the truth of the 

explanandum-statement. The strength of the support is indicated by the number in square 



 11 

brackets. According to Hempel, r must be very high for the explanandum to be expected 

in light of the premises. As with D-N explanations, both the statistical laws and the 

empirical conditions must be true. 

An I-S explanation of a prediction of a DNN model cannot be based on the model’s 

parameters, as in the case of D-N explanations, because the trained model does not behave 

stochastically. The only options are to establish a statistical correlation between the input 

and output classes, or between the features of the input space and the output classes. 

Describing the first correlation in terms of a statistical law with a very high r is the same 

as saying that the model is reliable, a claim that has no explanatory value regarding how 

a particular prediction was reached. For example, saying that the probability that a reliable 

cat-identifying model will identify a cat when presented with an image of a cat is very 

high adds nothing to our previous knowledge of the model’s reliability. To be sure, the 

model’s reliability leads to the expectation that the prediction is correct, but if most 

predictions were not correct, the model would not have been deployed in the first place. 

Therefore, the expectability of the output is the result of a correct validation procedure 

using the test set, and not of a post hoc inductive argument that offers no independent 

reason to expect the output. 

Essentially, the same argument applies in the second case, viz. when the statistical 

lawlike correlation is established between a set of features and the output classes. The 

particular features selected in the training stage of a reliable DNN model are strongly 

correlated with its true predictions, but only because the model has been correctly 

validated. This option runs into an additional problem, that of identifying the features that 

are strongly correlated with the correct output. In a computer vision task, the features are 

largely detected by the learning algorithm and not preselected, as in the previous example 

of the bank loan model. Since the statistical law must be true, one must be able to identify 

those features. Local post hoc interpretability methods like LIME pinpoint the features 

responsible for an output for any given image, but the results cannot be generalized to 

other similar images, and they even differ when the sampling process is repeated. Without 

identifying such features, no true lawlike description of the correlation can be established. 

Simply saying that there is an epistemically inaccessible set of features responsible for 

raising the probability of a correct outcome is trivially saying that the process is not 

random (or magical). Finally, Hempel’s point about laws not being a conjunction of 



 12 

singular sentences about specific facts, explained in the previous section, is just as valid 

in both of these cases. 

So, how do Erasmus et al. (2021) apply I-S explanations to DNNs? First, they argue 

that the explanation will not be of individual predictions, but rather of the accuracy rate 

of the model. This runs counter to Hempel’s original intention of explaining the high 

predictability of individual facts; their version of I-S explanations have an entirely 

different explanandum. An I-S explanation of the output class, in their terms, amounts to 

“details about the training process as statistical laws and the nature of the training data 

used as empirical information. If these, taken together, inductively entail a probability 

that the ANN’s outputs are accurate, then we have successfully explained the accuracy of 

the ANN’s outputs” (844-45). It is not clear at all how details about the training process 

can become statistical laws. No further details are provided. If what they have in mind 

are correlations between features and true predictions, their strategy has already been 

examined and refuted in the previous paragraphs. In any case, the authors have given up 

the game of using Hempel’s original I-S model, so it is difficult to see what logical 

structure such an explanation would have. Presumably, it would still be a covering-law 

model because the use of statistical laws is retained. 

 

3.3 Mechanical Explanations and the New Mechanistic View 

The last two models of scientific explanation I will discuss are causal in nature. Talk 

about causation in ML can be seen from two different perspectives. On the one hand, one 

might want to understand the cause of a specific prediction in a pre-trained model, 

regardless of whether there is any real causal connection in the world between the 

identified features and the prediction. On the other hand, one might want to use ML to 

look for some of the causes of a real-world phenomenon, in which case the features picked 

up by the ML model must reflect the causal structure of the world. In the present 

discussion, we will only be concerned with the first use of causal connections. 

In Scientific explanation and the causal structure of the world, Salmon (1984) 

proposes a causal mechanical model of explanation based on the idea of a causal process. 

A causal process is characterized by its ability to transmit a mark or the ability to transmit 

its own structure, in a spatio-temporally continuous way. The local transfer of energy and 

momentum, for example, constitutes a causal process, while the successive positions 
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occupied by a shadow cast by a moving object do not. Causal interactions occur when 

one causal process spatio-temporally intersects another and produces a modification in 

its structure following conservation laws. A typical example is a collision of two particles. 

The sum of all causal processes and interactions forms the causal structure of the world 

mentioned in the title of the book. To explain a particular occurrence of a phenomenon is 

to show how it fits into the causal structure of the world. Salmon’s original idea was later 

refined by Dowe (2000) in the conserved quantity model of causation. 

How would Salmon’s causal mechanical (CM) model be used to explain a 

prediction of an artificial neural network (ANN)? Erasmus et al. explain: 
 

For CM explanations of ANNs, we would cite the causal processes and causal 
interactions involved. This would entail describing the ANN using oft-used 
terms of art, drawing on biological analogies. ANNs are constituted by 
connected nodes, sometimes referred to as artificial neurons that, like 
biological neurons, receive and send information, or signals, via connections 
resembling biological synapses, termed edges. (2021, 845) 
 

Causal talk in this case is purely analogical. The model is not a causal structure because 

the entire process is mathematical in nature. The “marks” that are transmitted are not 

physical quantities but approximations of real numbers that are processed at each node 

using some non-linear function of their weighted sum.7 These are not CM explanations 

at all because no genuine causal interaction is involved in the exchange of information. 

This is not to say that causal analogies are useless in understanding a natural or artificial 

process. As several authors have argued, analogies are a pathway towards understanding 

complex phenomena (Bartha 2010; Hesse, 1966). But analogies are not truthful 

representations of their target phenomena, and therefore fail the factivity condition for 

scientific explanation. 

Now, DNNs are grounded on genuine causal processes, namely, the electronic 

interactions in the hardware circuitry involved in computation. But even if there were a 

feasible way to access and comprehend these physical interactions, that would only add 

a new layer of uncertainty and complexity to the explanation since there would be no way 

to establish correlations between the genuine causal processes that take place in the 

 
7. See Stefan Buijsman’s contribution to this volume (chapter 6) for further discussion of the 
mathematical nature of ML models and the need to think of ML explanations in non-causal terms. 
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hardware and the mathematical operations that take place in the hidden lawyers of the 

DNN. Furthermore, Durán (2018) has argued that computational results are 

underdetermined by physical interactions in the computer because each run of the 

algorithm instantiates a different set of physical elements in the computer. Erasmus et al. 

(2021, 846) seem to acknowledge that hardware processes must be treated as elementary, 

focusing instead on the DNN’s architecture. 

A similar analysis applies to the New Mechanistic view defended by Machamer, 

Darden, and Craver (2000). According to the New Mechanistic view, providing an 

explanation involves showing how some phenomena regularly arise from a collection of 

entities and activities. Both entities and activities are individuated through their 

spatiotemporally located physical properties, and causal processes are an essential 

component of any mechanism. Their approach is not far from Salmon’s mechanical 

model: “Our emphasis on mechanisms is compatible, in some ways, with Salmon’s 

mechanical philosophy, since mechanisms lie at the heart of the mechanical philosophy” 

(2000, 7). Functional descriptions of a phenomenon, on the other hand, require an 

understanding of the underlying mechanism, since “functions are the roles played by 

entities and activities in a mechanism … [they] should be understood in terms of the 

activities by virtue of which entities contribute to the workings of a mechanism” (2000, 

6). Therefore, functional analyses have to be causally grounded. 

Applying the New Mechanistic view to ML models yields descriptions at three 

different levels of abstraction: as a description of the functional correlation between 

inputs and outputs, as a “mechanical” description of the model’s network architecture, 

and as a description of the hardware circuitry. The last two options were already discussed 

and dismissed in previous paragraphs. A functional analysis of the ML system would 

require appealing to the underlying mechanism, but that is impossible because there is no 

genuine mechanism to speak of. Therefore, the New Mechanistic view seems inapplicable 

in the context of DNNs. 

Given the obvious objections to the application of a physical or mechanistic theory 

of causation to DNNs, one wonders why Erasmus et al. (2021) did not adopt a different 

causal approach, one more amenable to the context at hand. In particular, it would seem 

more natural to use a counterfactual theory of causal dependence such as Lewis’s (1973), 

and a theory of counterfactual explanation, such as Woodward’s (2003). Some recent 
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approaches to XAI have used precisely this approach (Buijsman 2022; Wachter, 

Mittelstadt, and Russell 2018; Watson and Floridi 2021; see Durán, forthcoming, for an 

overview). The reason they offer is that counterfactual approaches to explanation are 

highly pragmatic and therefore incompatible with the indefeasibility thesis about 

explanation (Erasmus et al. 2021, 839). But if the indefeasibility thesis is false, at least in 

the context of DNNs, then it ceases to be a reason to reject this approach. The 

counterfactual approach to explanation in ML has its own problems, which I will discuss 

in the final section of the chapter, but at least it does not depend on the existence of 

physical laws, mechanisms, or processes, which seem completely foreign in the context 

of machine learning. 

 
4. A Plea for Understanding 

If the attempt to adapt an extant account of scientific explanation to ML is a hopeless 

endeavor, there are three remaining options: (i) either to adopt a consensual or stipulative 

definition of “explanation” in ML; (ii) to abandon the factivity condition for explanation; 

or (iii) to abandon the idea that there is a unique way of understanding what an 

explanation is in the context of ML. The first option seems entirely unworkable and 

arbitrary. The second one is mostly associated with pragmatic theories of explanation 

(Achinstein, 1983; van Fraassen, 1980). These theories have been fruitfully used to clarify 

the pragmatic context in which explanations are sought in AI (Miller 2019, 2021). 

However, there is a tendency to analyze the concept in terms of its empirical usage, 

without much normative concern.8 In previous work (Páez 2019), I have defended the 

third option. I have argued that XAI ought to take a turn towards a more pragmatic 

approach in which the focus of attention shifts from the explanation to the understanding 

of ML systems. If we focus on the cognitive and practical needs of the different 

stakeholders involved in designing, implementing, and using a ML model, there will be 

a wide variety of options available to make the model and its outputs understandable. 

Whether one calls these paths to understanding “explanations” becomes largely 

irrelevant. In a well-known survey of XAI methods, Guidotti et al. conclude that one of 

the most important open problems in XAI is that there is no agreement on what an 

explanation is: 

 
8. I offer a critique of purely pragmatic theories of scientific explanation in Páez (2006). 
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Indeed, some works provide as explanation a set of rules, others a decision 
tree, others a prototype (especially in the context of images). It is evident that 
the research activity in this field is not providing yet a sufficient level of 
importance in the study of a general and common formalism for defining an 
explanation, identifying which are the properties that an explanation should 
guarantee, e.g., soundness, completeness, compactness and 
comprehensibility. (2018, p. 36) 

 
I am highly skeptical that a formal definition of explanation in terms of necessary and 

sufficient conditions or properties can be found. Instead of trying to define “explanation” 

in ML, it would be more fruitful to think of the provision of understanding as the common 

element that “defines,” in a sense, what all XAI methods have in common. This allows a 

plurality of explanatory methods to flourish as long as they provide understanding to the 

system’s users. A robust account of understanding in ML should provide an adequate 

grounding for all such methods. In this final section, I want to further develop the account 

of understanding in ML that I offered in my 2019 paper by adding the idea that 

understanding is a success concept in the sense explained below. 

 
4.1 Understanding as a Success Concept 

In epistemology, understanding is often distinguished from knowledge.9 There are two 

main differences between these concepts. First, understanding is seen as a higher 

epistemic achievement than knowledge (Kvanvig 2003; Pritchard 2010). I can come to 

know that my coffee is cold just by sipping from the cup, while understanding why my 

coffee is cold involves relating the coffee’s temperature to the laws of thermodynamics. 

Secondly, the objects of understanding are generally more complex and structured than 

the objects of knowledge (Zagzebski 2019). We want to understand the stock market, the 

theory of relativity, or the New York subway system. Even when we try to understand 

something simple like my coffee getting cold, the fact must be inserted into a broader, 

more complex theoretical context. 

 
9. Needless to say, this opinion is not unanimous among philosophers. I cannot discuss all the 
arguments for and against this view in this chapter, but if my claim that there are non-factive paths 
to understanding in ML is correct, the absence of truth will prevent these cases of understanding 
from being reduced to some species of knowledge. 
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Some philosophers have argued that understanding is simply knowledge of causes: 

if I know the cause of p, I understand why p (Lipton 2004). Similarly, Khalifa (2017) 

argues that understanding is knowledge of explanations. De Regt offers the following 

example to show that knowing why p is not equivalent to understanding why p: 
 

Merely knowing that global warming is caused by the increase of CO2 in the 
atmosphere does not yet amount to understanding it. A student may be able 
to answer the question “Why does global warming happen”? correctly by 
answering “Because of the increase of CO2 in the atmosphere”. But this does 
not imply that she understands why global warming occurs ––she merely 
knows what its cause is. … The student understands why global warming 
happens if she not only knows that it is caused by the increase of CO2, but 
also “grasps” the causal, explanatory relation between cause and effect. In 
this case, she needs a theory or model of the climate system that includes the 
greenhouse effect. (2023, 19-20) 
 

Understanding thus requires connecting different pieces of knowledge. Kvanvig explains: 

“Understanding requires the grasping of explanatory and other coherence-making 

relationships in a large and comprehensive body of information. One can know many 

unrelated pieces of information, but understanding is achieved only when informational 

items are pieced together by the subject in question” (2003, 192). In a similar vein, 

Zagzebski argues that understanding “involves grasping relations of parts to other parts 

and perhaps the relation of parts to a whole” (2009, 144). The kinds of relations she has 

in mind can be spatial, temporal, or causal. “It seems to me that one’s mental 

representation of the relations one grasps can be mediated by maps, graphs, diagrams, 

and three-dimensional models in addition to, or even in place of, the acceptance of a series 

of propositions” (2009, 145). For Grimm, understanding a complex object such as the 

New York subway system implies an apprehension of how a thing works, “how the 

various elements of the thing relate to, and depend upon, one another” (2011, 86). 

Now, what are the conditions of satisfaction of the “grasping” often mentioned in 

these characterizations of understanding? Traditional opponents of understanding as an 

interesting philosophical notion, from Hempel (1965) to Trout (2002), often dismissed 

understanding as a psychological, subjective state that cannot be rigorously analyzed. 

This attitude is less common today, but there is still no agreement on what the grasping 

entails. A useful way of thinking about the conditions of satisfaction for grasping the 
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interconnectedness of different facts is in terms of an agent’s success in using the 

information. This idea has been defended in different guises by philosophers of science 

like Ylikoski (2009), De Regt (2017), and Kuorikoski (2011, 2023). In the inferential 

conception of understanding defended by Kuorikoski and Ylikoski, for example, 

understanding “is not only about learning and memorizing true propositions, but about 

the capability to put one’s knowledge to use. To understand is to be able to tell what 

would have happened if things had been different, what would happen if certain things 

were changed, and what ways there are to bring about a desired change in the outcome” 

(2015, 3819). More specifically, understanding can be equated “with the ability to draw 

correct counterfactual what-if inferences about the object of understanding. … To 

understand a phenomenon is to be able to correctly situate it within a space of 

possibilities” (Kuorikoski, 2023, 218). De Regt also argues that genuine understanding 

manifests itself as a skill: an agent must have the ability to use his knowledge.10 Among 

the most important uses of knowledge is the construction of simple, idealized models of 

some complex phenomenon, which serve as mediators between abstract theories and 

empirical data. The construction of a successful model with the right idealizing 

assumptions requires an understanding of the interconnectedness of the data and of the 

way in which the theory can be applied to the model. Successfully putting one’s 

knowledge to use is not limited to reasoning counterfactually and building models. Being 

able to fix or improve a system, to profit from it, or to game it, are examples of the many 

possible ways in which usage is a sign of understanding.11 

An additional pragmatic aspect of this approach is that there is no unique way of 

measuring success in using a body of knowledge. There is no unique benchmark for 

understanding. In De Regt’s view, understanding is contextual. Criteria for understanding 

and intelligibility depend on the historical and disciplinary context: 
 

In the seventeenth century, for example, the generally accepted view was that 
only a mechanics based on contact action is intelligible, whereas in the 
eighteenth century (as a result of the success of Newton’s theory of 

 
10. But see Sullivan (2018) for an argument against this claim 
11. It is worth noting that Wachter, Mittelstadt and Russell, the proponents of one of the most 
influential counterfactual methods in XAI, drive a wedge between understanding and use. They 
argue that explanations in ML should be “a means to help a data-subject act rather than merely 
understand” (2018, 843). 
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gravitation) action-at-a-distance was regarded as the paradigm of 
intelligibility ... Of course, one might claim that only one of these positions 
is the correct one, but that would not do justice to the history of science. 
(2023, 19) 
 

Kuorikoski defends a similar idea: “Historical ruptures in foundational metaphysics, such 

as the shift from Aristotelian species-essences to Darwinian population thinking or from 

the classical mechanical conception of the physical reality to the quantum field theory 

have also constituted fundamental changes in the very criteria of understandability” 

(2023, 217-18). Furthermore, new sub-fields of science, such as machine learning, “are 

often built on specific conceptions of scientific understanding” (2023, 217). As we will 

see in the next section, the contextual aspects of understanding in ML cut even deeper. 

Despite their acceptance of different conceptions of understandability, Kuorikoski 

and Ylikoski are fully committed to a factive conception of understanding: drawing 

incorrect counterfactual inferences would presumably be a sign of a lack of 

understanding. However, it is difficult to see how a modal approach based on 

counterfactuals can preserve the factivity condition. Many counterfactual statements are 

empirically unverifiable and can only be accepted as possible consequences of a scientific 

theory, or at least of a causal model, which itself can never be absolutely confirmed. De 

Regt also uses the ability to infer counterfactuals as a criterion for understanding, but 

correctly rejects the factivity condition. In his approach, theories used to reason 

counterfactually have to be intelligible and the inferences drawn from them must conform 

to the basic epistemic values of empirical adequacy and internal consistency. But both 

intelligibility and empirical adequacy fall short of truth. Naturally, the discussion of 

whether understanding is factive is not limited to the nature of counterfactual inferences, 

and the issue has been extensively discussed in epistemology and the philosophy of 

science. I cannot do justice to the problem here, but this much is clear: an approach to 

understanding based on pragmatic success need not be subject to the strict alethic 

standards of knowledge. 

Finally, this approach also has the advantage that a person’s understanding of a 

phenomenon or of a subject matter is empirically verifiable. Ylikoski puts the matter thus: 
 

When we evaluate somebody’s understanding, we are not making guesses 
about his or her internal representations, but about the person’s ability to 
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perform according to set standards. The concept of understanding allows that 
the ability can be grounded in various alternative ways, as long as the 
performance is correct. Furthermore, the correctness of the internal model is 
judged by the external displays of understanding, not the other way around. 
This makes understanding a behavioral concept. (2009, 102) 

 
Having intersubjective criteria for a person’s understanding has the advantage of 

providing ways to test the effectiveness of different models, methods, and devices that 

aid with understanding a phenomenon. Since these criteria are contextual, this approach 

also allows for the design of tools that aid comprehension with different users and 

populations in mind (Lage et al. 2019). This will prove to be essential when we think of 

the different stakeholders involved in the use of machine learning systems. 

 

4.2 Pragmatic Understanding in ML 

According to the account provided in the previous section, understanding a complex 

object requires being able to identify its various parts and their interdependence to a 

degree that enables the agent to use that knowledge in different ways. This is precisely 

what surrogate models in ML help bring about. Algorithms such as rule lists, sparse 

decision trees or linear models provide a simplified version of the original model by 

identifying its main features, the possible interactions between them, and their combined 

effect on the output. Knowledge of these individual elements without grasping their 

interconnectedness will not provide understanding of the original model. Furthermore, 

decision trees are structures that allow counterfactual reasoning. A user can think 

counterfactually simply by following paths in the tree that do not lead to the original 

output. Rule lists can also cover counterfactual cases, although this requires a much less 

intuitive combination of rules.12 Both designing a surrogate model and using it correctly 

are evidence that the person understands the target model. A person’s understanding of 

the target model admits of degrees, depending on the person’s grasp of the connections 

displayed in the surrogate model. 

Consider an example. Letham et al. (2015) introduced interpretable prediction 

models that take the form of sparse decision lists. Each list consists of a series of 

 
12. Lakkaraju, Bach, and Leskovec (2016) have shown that decision trees in general are easier 
to understand than rule lists. 
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association rules in the form of if-then statements. The rules are pre-mined from the input 

space using the FP-Growth algorithm (Borgelt 2005). The resulting models have the same 

level of complexity as medical scoring systems, thus making them easy to use for clinical 

practitioners. In terms of performance in a stroke risk classification task, the decision lists 

were comparable to that of support vector machines (SVMs), and not substantially worse 

than L1 logistic regression and random forests trained on the same data. Other examples 

of simple surrogate models are the decision trees for diabetes risk prediction introduced 

by Bastani, Kim, and Bastani (2017) and the checklists proposed by Jung et al. (2017). 

Like most models in the social and natural sciences, surrogate models in ML are 

not factive. They are “true enough” of their target, to use Elgin’s (2017) suggestive 

phrase. Potochnik (2017) argues that in many cases the commonality between 

representations and what they represent can be understood in terms of functional 

similarities. Following Potochnik, I think that the relation between surrogate models and 

their ML targets should be seen in functional terms as well. Functional representation is 

a pragmatic concept that depends on the specific functions of interest to the modeler or 

user. Understanding function means being able to build or use the model and manipulate 

its features to obtain the desired result. We can think of surrogate models as epistemic 

tools (Currie 2017, Knuuttila 2011) designed to capture functional similarities of interest. 

A correct use of the tool will reveal that the user understands the function of the parts and 

their overall fit with the target. 

In the previous section, we saw that drawing counterfactual inferences is often seen 

as a sign of understanding. So, why not use local counterfactual XAI methods directly 

instead of global surrogate models to achieve understanding of the target model? There 

are several reasons. The first one is that counterfactual methods suffer from a lack of 

robustness. Like perturbation-based methods, local counterfactual methods can be easily 

manipulated and may converge toward drastically different explanations under small 

perturbations (Slack et al. 2021). Counterfactual probes also critically depend on 

closeness metrics but there is no principled way to decide which metric to use in any 

given case, especially since most variables are not causally independent. And like 

saliency-based methods, the lack of causal grounding can deliver sub-optimal or even 

erroneous explanations to decision-makers (Chou et al. 2022; Karimi, Schölkopf, and 

Valera 2021). 
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To complicate things, there seems to be a lack of interest in the AI community to 

test whether the counterfactual methods they employ are actually understood by non-

experts. A recent survey shows that only 36 out of 117 (31%) research papers evaluating 

counterfactual explanations included user studies (Keane et al. 2021). As the authors state 

in the beginning of the paper, “the XAI community is busily developing technical 

solutions that may have no practical benefits to people in real-life” (2021, 1). 

The third reason is epistemologically deeper. Genuine counterfactuals are theory or 

model dependent. Counterfactuals need a possibility space that can only be defined using 

lawlike statements and background conditions, or by means of a fully specified causal 

model. Otherwise, there will be no basis to answer what-if-things-had-been-different 

questions. Furthermore, as Beckers (2022) points out, understanding the space of 

possibilities also requires understanding which factors cannot be changed or manipulated 

in a counterfactual situation. Current counterfactual methods in XAI make simplifying 

assumptions that land them far from the required conditions to qualify as based on bona 

fide counterfactuals. In particular, many methods assume that the input variables are 

causally independent. The strategy is to keep all variables at a fixed value except one and 

see how a change in that variable produces a different output.13 Wachter, Mittelstadt, and 

Russell, for example, define an explanation of the output of an algorithm as having the 

following format: “Score p was returned because variables V had values (v1, v2, ...) 

associated with them. If V instead had values (v1¢, v2¢, ...), and all other variables had 

remained constant, score p would have been returned” (2018, 848). The method tells you 

how to change the output, but not why the output changes. It does not provide an 

understanding of the process because there is no grasp of the logical and causal 

connections between the features, and between the features and the prediction. Again, 

knowing why p changed is not the same as understanding why p changed.  

A similar argument can be used against local saliency and perturbation methods: 

they tell users which features are relevant to an individual prediction but not why they are 

relevant, that is, users know what caused the output, but they do not understand why. The 

lack of understanding is demonstrated by the difficulties users have in predicting the 

“explanation” for new, similar input-output pairs. In an empirical study of saliency maps 

 
13. Karimi, Schölkopf, and Valera (2021) suggest that “it is perhaps more appropriate to refer to 
these approaches as contrastive, rather than counterfactual explanations” (2021, 360). 
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generated by a layer-wise relevance propagation (LRP) algorithm (Bach et al. 2015) on 

an image classification task using a convolutional neural network, Alqaraawi et al. found 

that “the maps seem to provide very limited help for participants to anticipate the 

network’s output for new images” (2020, 275). Post hoc local interpretability methods 

are useful for developers trying to adjust the parameters of a model, but they seem of 

limited use for other stakeholders. 

What is missing from all of these local methods is a grasp of the causal and logical 

relationships in the input space. Users must build a mental model of the relevant features 

and the possible outcomes before they can make inferences about the target model. In an 

experiment designed to measure the effectiveness of different global XAI methods, van 

der Waa et al. (2021) used two behavioral measures of a participant’s understanding of 

the model: 
 

The first behavioral measurement assessed the participant’s capacity to 
correctly identify the decisive factor of the situations in the system’s advice. 
This measured to what extent the participant recalled what factor the system 
believed to be important for a specific advice and situation. Second, we 
measured the participant’s ability to accurately predict the advice in novel 
situations. This tested whether the participant obtained a mental model of the 
system that was sufficiently accurate enough to predict its behavior in novel 
situations. (2021, 16-17) 
 

The authors found that presenting participants only with counterfactuals about the 

system’s advice did not improve their identification or predictive abilities when compared 

to no explanations at all. When presented with rule-based explanations without 

counterfactuals, the first behavioral measure of understanding improved, but not the 

second. Lim, Dey, and Avrahami (2009) also present empirical evidence that suggests 

that offering users of ML systems decision rules encoded in decision trees yields superior 

results in terms of both understanding and trust when compared to counterfactual 

explanations. Buijsman uses this evidence to conclude that “a counterfactual is only 

helpful when it suggests a reasonable generalization. … A pure case-by-case approach, 

where counterfactuals are presented but without overarching generalizations, doesn’t 

truly explain the functioning of an algorithm” (2022, 569). 

In the context of algorithmic recourse, Karimi, Schölkopf, and Valera (2021) also 

argue that the possibility of changing an unfavorable outcome requires causal knowledge. 
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The authors attribute the shortcomings of existing XAI counterfactual approaches “to 

their lack of consideration for real-world properties, specifically the causal relationships 

governing the world in which actions will be performed” (2021, 354). The question is, in 

what form should causal relations be displayed to be understandable to lay users, and how 

precise and comprehensive should those causal relationships be? It is well-known that is 

extremely difficult to specify a full causal model. Despite requiring real-world causal 

relationships, the authors admit that “in practice, the underlying causal model is rarely 

known” (360). Since it is extremely difficult to build a factual causal model, algorithmic 

recourse also needs the understanding provided by non-factual, simpler surrogate 

models.14 

As I see it, a surrogate model needs to be “causal enough”¾to paraphrase Elgin’s 

phrase¾ for a user to understand how the parts are interconnected and interdependent, 

but context will determine the depth of the causal knowledge that needs to be displayed 

in the model. In scientific contexts, one should expect a highly detailed map of the causal 

relationships, based on solid background scientific knowledge (Sullivan 2022), but other 

contexts might only require sparse decision trees with very few variables and a higher 

tolerance for spurious correlations. The complexity of the model will be determined by 

the explanatory requirements of the stakeholders involved (Zednik 2021). Even the 

normative standards for transparency that have been proposed recently, such as IEEE 

P7001 (Winfield et al. 2021), recognize that transparency depends entirely on the 

background knowledge of the stakeholders trying to understand the model. Specifying 

the exact shape that these causal surrogate models should take is a very difficult challenge 

that falls beyond the scope of this chapter, but causal machine learning is a very active 

field of research that might provide better paths toward understandable AI. 

 

5. Conclusion 

The use of the term “explanation” in AI is a conceptual jumble. I believe no amount of 

conceptual analysis will result in a clear definition or in a more widely accepted set of 

usage rules. In this chapter, I have shown that the attempt to ground the term in the way 

 
14. Sullivan and Kasirzadeh (chapter 8 in this volume) go even further and argue that providing 
users with explanations that aim at understanding AI decisions is ethically preferable than 
providing them with recourse explanations. 
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it is used in the philosophy of science is unsuccessful and wrongheaded. Explanations in 

AI are neither logical nor physical nor mechanical nor nomological. They are not even 

factual. A much better option is to abandon the definitional enterprise and focus instead 

on the result of what “explanations” are supposed to achieve: understanding of opaque 

machine learning systems. I have argued for a pragmatic notion of understanding that is 

empirically testable and broad enough to allow many different approaches and methods. 
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