
Non-constructive procedural theory
of propositional problems and the

equivalence of solutions
IVO PEZLAR1

Abstract: We approach the topic of solution equivalence of propositional
problems from the perspective of non-constructive procedural theory of
problems based on Transparent Intensional Logic (TIL). The answer we put
forward is that two solutions are equivalent if and only if they have equiv-
alent solution concepts. Solution concepts can be understood as a general-
ization of the notion of proof objects from the Curry-Howard isomorphism.

Keywords: Transparent Intensional Logic, procedural semantics, logic of
problems, procedural isomorphism

1 Introduction and motivation

There can be many different solutions to a single problem. For example,
consider the problem whether

√
2 is an irrational number or not: we have

geometric solutions, algebraic solutions, constructive solutions, etc.2 But
are all these solutions really different? In some cases, it seems easy to de-
cide, but in other cases, it is not so obvious. Interestingly, these difficulties
are not exclusive to relatively advanced mathematical problems and they ap-
pear at the level of the simplest logical problems as well.3 Consider e.g., the
following two solutions to the problem A → ((A → B) → B) carried out
in a natural deduction system for propositional logic:

1Work on this paper was supported by Grant No. 17-18344Y from the Czech Science
Foundation, GA ČR.

2See e.g., (Harris, 1971).
3In the case of propositional problems, solutions can be understood simply as proofs and

problems as propositions. However, since this relation does not generally hold for all problems
and solutions (e.g., it seems reasonable to say that 12 is a solution to the problem expressed by
5 + 7, it makes less sense to say that 12 is a proof of 5 + 7), we keep this terminology.

1

Ivo Pezlar
Typewriter
Published in Igor Sedlár and Martin Blicha (eds.). The Logica Yearbook 2018. London: College Publications, 2019, pp. 197-210. ISBN 978-1-84890-307-4.

Ivo Pezlar

A→ B A →E
B →I

(A→ B)→ B
Solution A →I

A→ ((A→ B)→ B)

A→ B A →E
B →I

A→ B A →E
B →I

(A→ B)→ B
Solution B →I

A→ ((A→ B)→ B)

Are these two solutions equivalent? At first glance we would proba-
bly say yes. After all, they start with the same premises and end with the
same conclusion. But on the other hand, they are also clearly syntactically
distinct: one has more steps than the other.

The received view would tell us that these two solutions are equivalent
because they can be converted into each other. More specifically, the so-
lution B can be reduced to A by removing all the ‘unnecessary detours’
(so-called normalization procedure). In this case, it is the first application
of the implication introduction rule immediately followed by the application
of the corresponding implication elimination rule. If we cut it away from B,
we get A.4 This approach is also corroborated by the propositions as types
principle.5 If we decorate the above derivations with the corresponding λ-
terms (also called proof objects), we obtain:

x : A→ B y : A
→E

x(y) : B
→I

λx.x(y) : (A→ B)→ B
Solution A1 →I

λy.λx.x(y) : A→ ((A→ B)→ B)

x : A→ B y : A
→E

x(y) : B
→I

λy.x(y) : A→ B y : A
→E

(λy.x(y))(y) : B
→I

λx.(λy.x(y))(y) : (A→ B)→ B
Solution B1 →I

λy.λx.(λy.x(y))(y) : A→ ((A→ B)→ B)

The concluding term λy.λx.(λy.x(y))(y) of the second solution can be
rewritten into the concluding term λy.λx.x(y) of the first one. More specifi-
cally, λy.λx.(λy.x(y))(y) is reducible to λy.λx.x(y) via β-reduction. Hence,
these two terms are considered to be equivalent and, consequently, so are the
corresponding solutions.6

4See e.g., (Prawitz, 2006).
5Also known as the Curry-Howard isomorphism or correspondence, see (Howard, 1980),

(Curry & Feys, 1958).
6The equivalence of λ-terms has been thoroughly studied, most notably by Church himself.

See e.g., (Church, 1954), (Church, 1993), (Anderson, 1998).

2

Non-constructive procedural theory of propositional problems

Our approach to solution equivalence based on Transparent Intensional
Logic will also utilize λ-calculus, however, it will allow for partial func-
tions and have a much more semantic flavor. For us, two solutions will
be considered equivalent if and only if they have equivalent solution con-
cepts. Intuitively, solution concepts can be understood as reified methods
or procedures for solving problems. From a technical standpoint, they can
be regarded as abstract generalizations of proof objects that need not be ef-
fective, i.e., constructive in the intuitionistic sense. This will enable us to
analyze even incorrect solutions.7

2 TIL: the basics

Transparent Intensional Logic (TIL)8 is a many-sorted type theory with
hyperintensional semantics initially devised for natural language analysis.
Similarly to Montague semantics, it utilizes λ-calculus but makes room for
partial functions. The central notion of TIL is a construction, which can be
understood as a reified abstract algorithm.9 Constructions are assigned to
linguistic expressions as meanings and encode procedures for determining
their denotations. For example, propositions are understood as procedures
for computing truth values (see also e.g., Jespersen, 2017, Muskens, 2005,
Moschovakis, 2006).10

TIL typically relies on six fundamental kinds of constructions, however,
we will use a generalized presentation requiring only four constructions:

constructions := xα | [CαCβ1

1 . . . Cβm
m] | [λxβ1

1 . . . xβm
m Cα] | nXα

where x is a variable, Ci is any construction, X is either a construction or a
non-construction (i.e., an object that is not a construction, e.g., truth value,
individual, number, etc.), and α, βi are type metavariables.11 The first three
constructions are called variable, composition, and closure and they roughly

7We will leave the notion of incorrect solutions intentionally vague to not limit ourselves to
some specific conception of solution correctness.

8See (Tichý, 1988), (Duží, Jespersen, & Materna, 2010), (Raclavský, Kuchyňka, & Pezlar,
2015).

9Not to confuse with intuitionistic constructions, which are essentially effective proofs.
10We will not go through the specifics of TIL-based analysis of natural language here, since it

has been well covered in many other places already. See e.g., see (Duží et al., 2010), (Raclavský
et al., 2015).

11The notationXα means thatX is an object of type α ifX is a non-construction, otherwise
it means thatX is a construction typed to v-construct an object of type α. We will omit the type
letters ‘α’, ‘β’, . . . to simplify the notation. For a proper specification of constructions, see

3

Ivo Pezlar

correspond to variable, function application, and function abstraction from
λ-calculus.12 The last one, called n-execution (alternatively, n-stage execu-
tion or multiple execution), is a distinctive feature of TIL: given the proce-
dural nature of constructions, this construction allows us to either execute
them (possibly more than once) to find out what they construct, i.e., what is
their output (if n > 1), or leave them as they are, i.e., don’t execute them (if
n = 0). What particular objects constructions construct may depend on a
valuation v, i.e., an assignment of values to free variables. If that is the case,
we say that they v-construct those objects.13 For example, let us have some
variable construction x and some valuation v that assigns to it some object
X , then we can say that the construction x v-constructs X . If a construction
C v-constructs nothing at all, we will say that it is a v-improper construc-
tion. Otherwise, we say that C is a v-proper construction. If we have two
constructions C1 and C2 that v-construct the same object X , or they are
both v-improper, we will say that C1 and C2 are v-congruent constructions,
denoted as C1

∼= C2. If they are v-congruent for all valuations v, we will
say that C1 and C2 are equivalent, denoted as C1 = C2.

For example, the 0-execution construction 012 yields the number 12.
Intuitively, ‘012’ can be read as ‘do not execute 12, just refer to it’. And
we don’t want to execute 12, because it is not a construction but a num-
ber, i.e., a non-construction.14 By definition, the 1-execution construction
112 constructs nothing, i.e., it is an improper construction (we cannot exe-
cute non-constructions, only constructions). Analogously, the composition
construction [0+ 05 07] constructs 12 and so does e.g., the 1-execution
1[0+ 05 07]. Hence, we can say that they are congruent, and even equiv-
alent constructions. On the other hand, the 0-execution 0[0+ 05 07] con-
structs [0+ 05 07], but e.g., 2-execution 2[0+ 05 07] is again an improper
construction (2-execution is essentially a two stage execution: the first stage
gives us 12 and the second stage consists of its 1-execution 112. However,

(Tichý, 1988), (Duží et al., 2010) or (Raclavský et al., 2015). For a specification of n-execution,
see (Pezlar, 2018).

12Although in many situations λ-terms and constructions can behave in similar fashion (e.g.,
both are open to α-, β-, η-conversions – this will be important later in Section 3.1), there are
non-trivial conceptual as well as technical distinctions. Most importantly, constructions are not
terms but abstract objects that can be executed to yield some other objects.

13To be more precise, constructions always construct with respect to some valuation v. In
some cases, however, valuation does not affect on the overall result of the construction. If that
is the case, we will simply speak of constructing instead of v-constructing.

14Note that 0-execution can play roughly the same role as do constants in impure/applied
λ-calculus.

4

Non-constructive procedural theory of propositional problems

as we already know, this is an improper construction, hence the whole con-
struction is improper).

To simplify the notation, we will denote 0-execution by boldface font,
with the exception of standard connectives and operators such as +, =, ∀,
→, etc. that will be kept in normal font with 0-execution implicitly assumed.
Also we will use infix notation whenever anticipated. For example, we will
write [5 + 7] instead of [0+ 05 07] and [A ⊃ B] instead of [0⊃ A B].

All objects including constructions receive a type. If α and β1, . . . , βm
are types, then (αβ1 . . . βm) is also a type. Specifically, a type of func-
tion from the elements of type β1, . . . , βm to the elements of type α. For
example, the construction [0+ 05 07] has type ∗1 (so-called 1st-order con-
struction),15 while 0[0+ 05 07] has type ∗2 (2nd-order construction). On
the other hand, non-constructions +, 5, and 7 have types (ννν), ν and ν,
respectively, where ν is the type of natural numbers.

2.1 Solution assignment

In (Pezlar, 2017) it was shown that the previous TIL-based non-constructive
procedural approach to analysis of logical problems (see e.g., Materna, 2004,
Materna, 2008) is too coarse-grained because it renders every solution to
every logical problem as equivalent. The same paper tries to alleviate this
issue by introducing a new notion called solution constructor that helps us
to track the process of solution construction in a similar way as we would
do with the Curry-Howard correspondence (free variables corresponding to
assumptions, etc.).16 The solution constructor can be used to analyze cor-
rect solutions, however, here we generalize it further into so-called solution
assignment that can analyze any solution, both correct and incorrect. Our
rationale is the following: dealing with incorrect solutions—or more pre-
cisely, with solutions that are believed to be correct, but later are shown to
be incorrect—is a natural aspect of problem-solving (similarly as is e.g.,
debugging in programming) and by limiting our framework to correct solu-
tions only we are unnecessarily restricting its expressive power.

15More specifically, the construction [0+ 05 07] has type ∗1 as its lowest possible order of
type. Due to TIL’s cumulative hierarchy of types, it is also of type ∗2, ∗3, . . . , etc. To put it
simply, any construction of type ∗n is also a construction of type ∗n+1. For more about the
ramified hierarchy of types in TIL, see (Tichý, 1988).

16Conceptually, the main change is that instead of λ-terms and propositions (as their types)
we work with higher- and lower-order constructions, hence proof objects are considered as
higher-order objects than the things they are proving. Technically, there are some slight differ-
ences induced by TIL idiosyncrasies. More on this below.

5

Ivo Pezlar

Definition 1 (Solution assignment) A solution assignment is a couple c ::
C where C is a propositional construction (a problem to be solved) and c
is any construction v-constructing a construction of the same type as C (if
any). A solution assignment c :: C is said to be satisfied if c v-constructs C.
Otherwise, we say that it is unsatisfied.

Note that if c in c :: C is an improper construction, then the whole so-
lution assignment is unsatisfied (follows from Def. 1 and the definition of
improper constructions). Also note that a solution assignment c :: C can
be satisfied even though C itself is an improper construction. Conveniently,
this gives us a way to analyze situations when an agent tries to solve nonsen-
sical, or more precisely, truth-valueless problems such as e.g., ‘the largest
prime number ends with the number 7’, ‘3 divided by 0 equals 2’, etc. Fur-
thermore, solution assignments allow even ‘bad’ solutions such as solving
C by considering some trivial construction ofC (e.g., the 0-execution ofC).
Informally, this sort of degenerate solutions can be liken to the colloquial ‘it
is solved because I said so’ method. Shortly put, with solution assignments
we just check if c yields C, not whether c is also a good solution of C.
Hence, c :: C should not be read as ‘c solves C’ or ‘c is a solution to C’ but
rather as ‘c is an assumed solution of C’, ‘c is considered as a solution to
C’ or ‘c solves C, allegedly’ and similarly with the option that it might be
false.17 The separation of the good solutions from the bad ones will be dealt
with at the level of solutions concepts.18

Definition 2 (Solution concept) Let us have a solution assignment c :: C,
then we will say that c is a solution concept of the problem C. If c solves
C,19 then we will say that c is a suitable solution concept. Otherwise, we
will say that c is an unsuitable solution concept.

At first glance, the notion of solution concept might seem enigmatic.
There is, however, a simple idea behind it: it is a procedure, not necessarily

17We could restrict this condition and require that for every solution assignment c :: C holds
that c solves C. For example, Constructive Type Theory (see Martin-Löf, 1984) can be seen as
a system where this restriction holds, i.e., every solution must be effective.

18At the LOGICA 2018 conference, prof. Duží posed the following question (my para-
phrase): Cannot we avoid the necessity for the solution assignment, and thus for the use of
higher-order constructions, simply by invoking the notion of refinement of constructions as
defined in Duží et al. (2010), Chapter 5? Unfortunately, the answer is no. Although we could
refine the logical connectives used, it would not help us to track the actual solution construction,
which is our main objective.

19Or maybe more precisely, if c can be recognized as a solution ofC. See e.g., (Wittgenstein,
1922), 6.2321 or (Wittgenstein, 1978), II-42.

6

Non-constructive procedural theory of propositional problems

effective, that represents solution construction – recall the dictum proofs-
as-programs from the Curry-Howard isomorphism. To put it differently,
we can think of solution concepts as abstract generalizations of proof ob-
jects from general proof theory. In contrast to them, solution concepts can
be applied even to non-logical problems (although in this paper, we focus
only on the logical ones) and can be defective. From this point of view,
proof objects can be understood as a special case of solution concepts that
are always effective.20 Compare this with e.g., Constructive Type Theory
(CTT), where every proof object must be effective, i.e., terminate in a finite
amount of steps, which is not the case for solution concepts. On the other
hand, similarly to proof objects in CTT, solution concepts are proper objects
of TIL: they receive types, we can use them as arguments for higher-order
functions, etc. (this will be important later in Section 3.1, where we discuss
equivalence of solution concepts).

Note that the adoption of solution concepts helps us to explain why can
we ‘comprehend’ even incorrect solutions, i.e., follow them, find mistakes
in them, etc. From our perspective, they are not meaningless or nonsensical.
They have an idea—some solution concept—behind them, it just happens
to be an ineffective one that does not do the required job, i.e., a solution
concept that does not solve the problem at hand.

As we already mentioned, solution assignments are used to emulate in
TIL the solution tracking behaviour of the Curry-Howard isomorphism. We
demonstrate this by formulating rules for implication, conjunction, disjunc-
tion, and negation capable of recording the solution forming process. We
start with the implication introduction rule. Suppose that A and B represent
any propositional constructions (i.e., constructions v-constructing the truth
values true or false of type o), x and y are variables ranging over the ob-
jects of type ∗n (i.e., variables for constructions), and let ⊃ be implication
of type (ooo). Next, we establish premises for our implication introduction
rule. Suppose that we have some solution assignment x :: A such that x
is of type ∗n+1 and that it v-constructs A of type ∗n. Further, assume we
derive from it another solution assignment y :: B such that y is of type
∗n+1 and that it v-constructs B of type ∗n (thus, both are satisfied solution
assignments). So we have:

20Historically, solution concepts can be loosely regarded as an explication of Wittgenstein’s
approach: ‘The idea that proof creates a new concept might be also roughly put as follows:
a proof is not its foundations plus the rules of inference, but a new building [= our solution
concepts]. . . ’ (Wittgenstein, 1978), II-41.

7

Ivo Pezlar

(x :: A)
...

y :: B

Now, we introduce the function ii of type (∗n(∗n∗n)) that will imitate the be-
haviour of the implication introduction rule. More concretely, ii is a higher-
order function that takes a function—representing an inference from A to
B—v-constructed by [λx y] and outputs a construction representing a con-
clusion of this derivation, otherwise it is undefined. If we put it together, we
get the construction [ii [λx y]] that v-constructs [A ⊃ B]. The corresponding
rule ⊃I then looks as follows:21

(x :: A)
...

y :: B
⊃I

[ii λx y] :: [A ⊃ B]

Now, we move to the implication elimination rule. We start again by
establishing the premises. Suppose we have two solution assignments x ::
[A ⊃ B] and y :: A such that x and y are of type ∗n+1 and that they
v-construct [A ⊃ B] and A, both of types ∗n, respectively (i.e., they are
satisfied solution assignments). Thus we have:

x :: [A ⊃ B] y :: A

Next, we introduce a higher-order function that will mimic the behaviour
the implication elimination rule. Concretely, we introduce the function ie of
type (∗n ∗n ∗n) that takes two constructions of the form [A ⊃ B] and A as
arguments and outputs another construction of the form B, otherwise it is
undefined. The resulting construction [ie x y] then v-constructs B. As the
corresponding rule ⊃E we get:22

x :: [A ⊃ B] y :: A
⊃E

[ie x y] :: B
21We omit the outer brackets of the closure construction when in composition with ii or other

constant to get a cleaner notation.
22Why do we need to work with constructions of the form [ie x y] instead of the more tradi-

tional form [x y] as known from the Curry-Howard correspondence? From a TIL perspective,
[x y] is a composition construction, which means that its first component (x in this case) has
to v-construct a function, otherwise it would be improper. Since in our rule ⊃E the variable x
v-constructs [A ⊃ B], which is not a function, we have to introduce the auxiliary function ie
to circumvent this issue. Similarly in the case of ii.

8

Non-constructive procedural theory of propositional problems

To recapitulate, the ii and ie are higher-order functions that capture the
behaviour of the corresponding rules. More specifically, ii is a function of
type (∗n(∗n∗n)) that takes a function (representing the inference of B from
A) as an argument and returns a new construction of the form [A ⊃ B].
Analogously, ie is a function of type (∗n ∗n ∗n) that takes two arguments of
the form [A ⊃ B] and A and returns a new construction of the form B.

The rules for conjunction, disjunction and negation will be presented
more succinctly since they follow the same ideas as the rules above and
share the general form with their counterparts from the Curry-Howard iso-
morphism. We start with conjunction:

x :: A y :: B
∧I

[ci x y] :: [A ∧B]

z :: [A ∧B]
∧El

[prl z] :: A
z :: [A ∧B]

∧Er
[prr z] :: B

The ci constructs the ‘conjunction introduction rule’ function in a similar
way as did ii previously for implication introduction rule. The components
prl and prr construct the familiar left and right projection functions. Types
of all these functions can be easily inferred: ci has type ∗n+1 and constructs
a higher-order function of type (∗n ∗n ∗n) and prl and prr are also of type
∗n+1 and construct higher-order functions of type (∗n∗n). Next, we intro-
duce the rules for disjunction:

x :: A ∨Il
[j x] :: [A ∨B]

y :: B
∨Ir

[k y] :: [A ∨B]

c :: [A ∨B]

(x :: A)
...

d :: C

(y :: B)
...

e :: C
∨E

[de c λx d λy e] :: C

The j and k are constants that tell us from which higher-order construction
was the disjunction constructed, the de then constructs the ‘generalized dis-
junction elimination rule’ function of type (∗n ∗n (∗n∗n)(∗n∗n)). Finally,
the rules for negation are analogous to the rules for implication:

(x :: A)
...

y :: ⊥
¬I

[ii λx y] :: [¬A]

y :: [¬A] x :: A
¬E

[ie y x] :: B

9

Ivo Pezlar

The construction [¬A] is equivalent to [A ⊃ ⊥] and ⊥ is to be understood
as a construction of a proposition that is always false.

With inference rules ready, we can now define solutions in a more pre-
cise way:

Definition 3 (Solution) A solution (or a solution tree) is a finite sequence
of solution assignments 〈c1 :: C1, . . . , cn :: Cn, c :: C〉 each of which
solution assignment is either an axiom, or an assumption, or follows from
the preceding solution assignments in the sequence by some inference rule
of the system. The last solution assignment will be also called conclusion.

A solution tree can be also written vertically as c1 :: C1 . . . cn :: Cn
c :: C

.

For example, the solution A can be analyzed in TIL in the following
way:

x :: [A ⊃ B] y :: A
⊃E

[ie x y] :: B
⊃I

[ii λx [ie x y]] :: [[A ⊃ B] ⊃ B]
Solution A’ ⊃I

[ii λy [ii λx [ie x y]]] :: [A ⊃ [[A ⊃ B] ⊃ B]]

Note that each solution assignment is satisfied and every corresponding so-
lution concept is suitable.

To incorporate even incorrect solutions, we have to appropriately mod-
ify the definition of solution trees. Specifically, by allowing to add to the
sequence solution assignments that are neither axioms, assumptions, or fol-
low from the inference rules. As an example of an incorrect solution, or
more specifically, of an incorrect solution step, consider the following:

A...
B

[A ∧B]

where the conjunction [A∧B] is incorrectly inferred instead of the implica-
tion [A ⊃ B]. In TIL, we can analyze it as follows:

x :: A...
y :: B

[ci λx y] :: [A ∧B]

10

Non-constructive procedural theory of propositional problems

Notice that the concluding solution concept is unsuitable and the solution
assignment is unsatisfied: the function constructed by ci expects two argu-
ments but receives only one. In other words, the solution concept [ci λx y]
is an improper construction. However, it does not mean that [ci λx y] as
such becomes nonsensical in TIL. It is still a construction in its own right,
even though improper, i.e., we can use it as an object of predication. For
example, we can introduce a higher-order unary function Improper of type
(o∗n) for checking properness of constructions. If we feed it the construc-
tion [ci λx y], i.e., form the composition [Improper 0[ci λx y]], we get the
value true.

3 Solution equivalence

When do we generally consider two solutions as equivalent? Arguably, we
would say that two solutions are equivalent when they follow the same gen-
eral method. As mentioned above, we code this method via higher-order
TIL constructions called solution concepts. Thus the issue of solution equiv-
alence is reduced to the question of solution concept equivalence.

Definition 4 (Solution equivalence) Solutions S1 and S2 are equivalent
if and only if the solution concepts appearing in their conclusions are equiv-
alent.

Observe that the initial question ‘When are two solutions equivalent?’ is
thus transformed into ‘When are two solution concepts used by two different
solution trees equivalent?’ which will be the focus of the following section.

3.1 Fine-tuning the solution equivalence threshold

Let us return to the solutions A and B. Applying the approach discussed
above, we learn that their respective solution concepts are:

[ii λy [ii λx [ie [ii λy [ie x y]] y]]] and [ii λy [ii λx [ie x y]]]

Solution concepts were designed to emulate proof objects based on λ-terms.
Naturally, we can reuse the criteria for equivalence of λ-terms as well with
appropriate changes where necessary. The standard conception is to regard
λ-terms as equivalent if they are λ-convertible, i.e., α-, η and β-convertible.
We can carry over this general approach to TIL as well. However, increased
caution is necessary due to the fact that β-conversions and η-conversions

11

Ivo Pezlar

are generally not equivalent transformations in TIL.23 For these reasons we
exploit here the variant of construction equivalence put forward by Duží
and Jespersen (2012) called procedural isomorphism alternative (34) with
the difference that we drop η-reduction.24

Definition 5 (Procedural isomorphism) Let C and D be constructions.
ThenC andD are procedurally isomorphic if and only if eitherC andD are
identical (i.e., the same construction) or there are constructionsC1, . . . , Cn (n >
1) such that 0C = 0C1, 0D = 0Cn, and for each Ci, Ci+1(1 ≤ i < n) it
holds that Ci, Ci+1 are either α-equivalent (i.e., they differ only by having
different λ-bound variables) or βr-equivalent (i.e., equivalent via restricted
β-conversion by name).

We prefer this variant of procedural isomorphism to the later one pro-
posed in (Duží & Jespersen, 2015) and dubbed alternative (A1”). Even
though it also omits η-conversion, it relies on β-conversion by value which
is not a best fit for us – we are not really interested in what the solution
concepts construct (i.e., what are their ‘values’), but rather in the solution
concepts themselves (i.e., in their ‘names’). For that reason we choose βr-
conversion, which is essentially just a tool for a formal simplification of
constructions (see Duží & Kosterec, 2017) guaranteeing that all the result-
ing transformations of constructions will be equivalent even in the presence
of partial functions and potentially improper constructions and that is all we
need for analyzing propositional logical proofs.

We write the fact that two constructions C and D are α-, βr-equivalent
as C =α D and C =βr

D, respectively.

Definition 6 (Equivalence of solution concepts) Solution concepts c1
and c2 are equivalent if and only if they are procedurally isomorphic. We
denote this as c1 ≡ c2.

It follows that when we say that two solutions are equivalent it means that
their respective solution concepts are procedurally isomorphic. Note that
if c is a suitable solution concept for C and c1 ≡ c2, then c2 is also a
suitable solution concept for C. Also note that if c1 and c2 are procedurally
isomorphic (c1 ≡ c2), then c1 and c2 are congruent (c1 ∼= c2), but not vice
versa.

23Or any other logic of partial functions, see e.g., Moggi (1988).
24In theory, other alternatives could be chosen as well. For a great survey of possible variants,

see (Duží, 2017). Our approach essentially corresponds to Duží’s variant C6, modulo meaning
postulates.

12

Non-constructive procedural theory of propositional problems

Let us now return to our initial question: are the solutions A and B equiv-
alent? From the perspective of TIL, they are equivalent because their corre-
sponding solution concepts are procedurally isomorphic.

4 Conclusion

In this paper we expanded upon the non-constructive procedural approach
to analysis of problems proposed in Pezlar (2017) by addressing the issue
of solution equivalence. In short, we take two solutions as equivalent if and
only if their solution concepts are equivalent, i.e., procedurally isomorphic.
Solution concepts can be understood as a generalization of the notion of
proof objects from the Curry-Howard isomorphism. The main difference is
that solution concepts need not be effective, which allows us to analyze even
cases involving incorrect solutions. Future work lies mainly in extending
our framework towards predicate logic, incorporating mathematical prob-
lems, and finally investigating the possibility of expanding our approach
towards empirical problems as well.

References

Anderson, C. A. (1998). Alonzo Church’s Contributions to Philosophy and
Intensional Logic. Bulletin of Symbolic Logic, 4(2), 129–171.

Church, A. (1954). Intensional Isomorphism and Identity of Belief. Philo-
sophical Studies, 5(5), 65–73.

Church, A. (1993). A Revised Formulation of the Logic of Sense
and Denotation. Alternative (1). Nous, 27(2), 141–157. doi:
https://doi.org/10.2307/2215752

Curry, H. B., & Feys, R. (1958). Combinatory Logic (Vol. 1). North-Holland
Publishing Company.

Duží, M. (2017). If structured propositions are logical procedures then
how are procedures individuated? Synthese, 196(4), 1249–1283. doi:
https://doi.org/10.1007/s11229-017-1595-5

Duží, M., & Jespersen, B. (2012). Transparent quantification into hyperin-
tensional contexts de re. Logique et Analyse, 55(220), 513–554.

Duží, M., & Jespersen, B. (2015). Transparent quantification into hy-
perintensional objectual attitudes. Synthese, 192(3), 635–677. doi:
https://doi.org/10.1007/s11229-014-0578-z

13

Ivo Pezlar

Duží, M., Jespersen, B., & Materna, P. (2010). Procedural Se-
mantics for Hyperintensional Logic: Foundations and Applications
of Transparent Intensional Logic. Dordrecht: Springer. doi:
https://doi.org/10.1007/978-90-481-8812-3

Duží, M., & Kosterec, M. (2017). A Valid Rule of β-conversion for the
Logic of Partial Functions. Organon F, 24(1), 10–36.

Harris, V. C. (1971). On Proofs of the Irrationality of the Square
Root of 2. The Mathematics Teacher, 64(1), 19–21. doi:
https://doi.org/10.2307/27958508

Howard, W. A. (1980). The formulae-as-types notion of construction. In
H.B., J. R. Hindley, & J. P. Seldin (Eds.), To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism. Academic
Press.

Jespersen, B. (2017). Anatomy of a Proposition. Synthese, 196(4), 1285–
1324. doi: https://doi.org/10.1007/s11229-017-1512-y

Martin-Löf, P. (1984). Intuitionistic type theory. Bibliopolis.
Materna, P. (2004). Conceptual systems. Logos.
Materna, P. (2008). The notion of problem, intuitionism and par-

tiality. Logic and Logical Philosophy, 17(4), 287–303. doi:
https://doi.org/10.12775/LLP.2008.016

Moggi, E. (1988). The Partial Lambda-Calculus (Unpublished doctoral
dissertation). Faculty of Mathematics and Informatics, University of
Edinburgh.

Moschovakis, Y. N. (2006). A Logical Calculus of Meaning and
Synonymy. Linguistics and Philosophy, 29(1), 27–89. doi:
https://doi.org/10.1007/s10988-005-6920-7

Muskens, R. (2005). Sense and the computation of refer-
ence. Linguistics and Philosophy, 28(4), 473–504. doi:
https://doi.org/10.1007/s10988-004-7684-1

Pezlar, I. (2017). Algorithmic Theories of Problems. A Constructive and
a Non-Constructive Approach. Logic and Logical Philosophy, 26(4),
473–508. doi: https://doi.org/10.12775/LLP.2017.010

Pezlar, I. (2018). On Two Notions of Computation in Trans-
parent Intensional Logic. Axiomathes, 29(2), 189–205. doi:
https://doi.org/10.1007/s10516-018-9401-7

Prawitz, D. (2006). Natural Deduction: A Proof-theoretical Study. Dover
Publications, Incorporated.

Raclavský, J., Kuchyňka, P., & Pezlar, I. (2015). Transparentní inten-
zionální logika jako characteristica universalis a calculus ratiocina-

14

Non-constructive procedural theory of propositional problems

tor. Brno: Masaryk University Press (Munipress).
Tichý, P. (1988). The Foundations of Frege’s Logic. Berlin: de Gruyter.
Wittgenstein, L. (1922). Tractatus Logico-Philosophicus. London: Kegan

Paul, Trench, Trubner & Co., Ltd.
Wittgenstein, L. (1978). Remarks on the Foundations of Mathematics (Re-

vised ed ed.). Oxford: Basil Blackwell.

Ivo Pezlar
Czech Academy of Sciences, Institute of Philosophy
The Czech Republic
E-mail: pezlar@flu.cas.cz

15

