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Cognitive neuroscientists explain cognitive capacities in terms of neural compu-

tations over neural representations (e.g., Bechtel 2008). By many measures, their

explanations are successful. They are so successful that mainstream cognitive

psychology and cognitive science are being absorbed within cognitive neuroscience

(Boone and Piccinini 2016). If successful scientific explanation is the measure of

what’s real, then cognition involves neural computation over neural representations.

Some philosophers beg to differ. On one hand, some insist that computational

and representational explanations—or, at any rate, computational and representa-

tional explanations of a non-neural sort—are distinct and autonomous from

neuroscientific ones (Fodor 1997; Burge 2010). Knoll (this issue) updates this

autonomist view for the era of cognitive neuroscience. He concedes that

neuroscientific evidence can inform psychological explanation. Nevertheless, he

defends the classic autonomist view that some representations and computations

have causal powers that their neural realizers lack.

On the other hand, antirealists about computation and representation promote

non-computational or non-representational explanations of cognition. According to

antirealism, computation and representation are at best helpful glosses and at worst

misleading metaphors. Cognition is best explained without positing computation

and representation.

The impetus for the papers collected here came from a session on Computation and Representation in

Cognitive Neuroscience that was held in Ferrara, Italy as part of IACAP 16, Meeting of the International

Association for Computing and Philosophy. All the papers in this special issue were submitted in

response to a public call for papers. Thanks to Vivian De La Cruz, Alex Morgan, and Eric Thomson for

comments on a previous draft. Many thanks to Mariarosaria Taddeo for inviting me to guest edit this

special issue and for arranging the blind refereeing of papers when I was a co-author.
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One of the most scientifically serious alternatives to computational and

representational approaches is ecological psychology (Gibson 1966). Ecological

psychologists argue that cognition is primarily explained in terms of dynamical

variables characterizing the interaction between agents and environments. Accord-

ing to them, uncovering inner mechanisms is unnecessary. In any case, if we were to

look at inner mechanisms, we should conclude that agents do not perform

computations over vehicles carrying information. Instead, agents ‘‘resonate’’ with

information in the environment.

What does this ‘‘resonance’’ amount to? Resonance has a precise sense in

physics, where it means that an external force, which vibrates at specific

frequencies, drives a system to increase its oscillatory amplitude. This is probably

too specific a notion of resonance for ecological psychology, despite their insistence

that psychology is akin to physics. So ecological psychologists owe us an account of

resonance.

Raja (this issue) provides an explicit account of resonance for ecological

psychology. He proposes that resonance amounts to the coupling of the dynamical

system internal to the agent—most relevantly, the central nervous system—to the

dynamical system formed by the agent and its environment. For any behavior,

ecological psychology posits dynamical variables that characterize the main

invariants involved in that behavior. Raja proposes that, for resonance to obtain, the

same dynamical variables must capture both external (agent-environment) and

internal (central nervous system) dynamics. Raja offers empirical evidence that this

coupling between external and internal variables actually occurs.

Raja considers whether resonance is compatible with computation over

representations.1 Yet in the end he, along with most ecological psychologists,

proposes resonance as an alternative to computation and representation. How is it

an alternative? What is non-computational or non-representational about resonance?

To answer this question, we need to explicate computation and representation. In

recent years, much progress has been made in this regard.

With respect to computation, the most recent and detailed account on offer is that

physical computation is a type of mechanistic process. Specifically, computation is

the processing of medium independent vehicles by a functional mechanism in

accordance with a rule. A vehicle is medium independent just in case it is defined

solely in terms of the manipulation of certain degrees of freedom.2

To illustrate, consider a computer programmed to alphabetize a list of words. The

computer takes a random list of words as input and produces a list of words in

alphabetical order; this input–output relation is the rule the computer follows. The

words are strings of states of finitely many types; these are the degrees of freedom

1 He writes: ‘‘there seems to be no reason, in principle, for an ecological explanation and a computational

explanation to be incompatible. Actually, they might be seen as two explanations of the same

phenomenon at two different scales: the ecological explanation accounts for the changes of the agent-

environment system at the agent-environment scale, while the computational explanation unveils the

mechanism that makes those changes possible.’’
2 This is my way of putting it (Piccinini 2007, 2015); I believe it captures the gist of mechanistic

accounts even though others might put it slightly differently (Kaplan 2011; Miłkowski 2013; Fresco 2014;

Duwell 2017).
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the computer processes. The processing is performed by the computer’s compo-

nents: processor, memory, input devices, and output devices. Thus, the computer is

a mechanism whose function is manipulating certain degrees of freedom in

accordance with a rule.

This mechanistic account has several advantages, two of which are most relevant

here. First, the mechanistic account has the right degree of generality to cover all

and only the kinds of system that are normally counted as computing. That includes

not only digital but also analog and other unconventional types of computation.

Second, the mechanistic account does not require that computational vehicles be

representations. This allows computation to explain cognition within both

representationalist and anti-representationalist frameworks (cf. Orlandi 2014;

Villalobos and Dewhurst 2017). Given the mechanistic account, whether neural

states are representations is a logically independent question from whether neural

processes are computations.

With respect to representation, there is an emerging consensus that the best way

to understand representation in the context of cognitive explanation is structural.3 In

the present context, structural representation includes four elements: (i) a homo-

morphism (partial isomorphism) between a system of internal states and their target,

(ii) a causal connection from the target to the internal states, (iii) the possibility for

the internal states to be decoupled from their target, and (iv) a role in action control.

In other words, in order to be a structural representation, a state must belong to a

system of states that bear a second-order similarity to their targets, the targets must

cause the states to occur but the states can also occur without their target being

present, and the states must guide action based on their similarity to their target.

When a system’s internal states satisfy these conditions, they qualify as

representations in a robust sense, which possess semantic content by the lights of

a naturalistic theory of semantic content (Neander 2017).

In light of this background, we can answer a question we posed earlier: there is

no conflict between resonance and computation over representation. On the

contrary, computation over representation provides a mechanistic explanation of

resonance. How does the central nervous system come to resonate with environ-

mental information? How is it that the same dynamical variable captures both

external (agent-environment) and internal (central nervous system) dynamics? A

plausible answer is that the central nervous system receives information from the

environment and, to solve the task at hand, processes such information to extract the

relevant invariant from it. This shows that resonance—and hence ecological

psychology minus its anti-computationalist and anti-representationalist dogma—is

compatible with a computational and representational framework (cf. Scarantino

2003). What remains to establish is whether neural processes are actually

computations over representations. According to mainstream neuroscience, they are.

In my opinion, there are two general reasons why neural processes are

computations (Piccinini and Bahar 2013). First, the variables that are functionally

most relevant to neural processing are spike frequency and timing; both appear to be

3 Here is a literature sample: Swoyer (1991), Grush (2004), O’Brien and Opie (2004), Ramsey (2007),

Isaac (2013), Shea (2014) and Gładziejewski and Miłkowski (2017).
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medium independent. That is to say, what matters most to neural processes is the

frequency and timing of neuronal signals rather than anything more specific about

spike biophysics. Therefore, the same sort of functional dependencies between

signals—the same sort of computation—could be produced by other physical

systems so long as such systems process the right sort of signals in the right sort of

ways. Second, neural processes respond to information transmitted from physically

different environmental sources. In order for information from these different

sources to be integrated and processed, it must be transduced into a system of

internal states that is neutral between physically different sources—that is, medium-

independent vehicles. Processing medium-independent vehicles (in accordance with

a rule) is what computation in the general sense amounts to. Therefore, neural

processes are computations.

As to representation, there are many reasons to conclude that neural states are

structural representations in the structural sense I sketched above. Shagrir (this

issue) points out that computational neuroscientists assume that neural states

constitute a model of the environment (which may include the body). That is, they

assume that neural states are homomorphic to external variables [condition (i)] and

are used by the nervous system to guide behavior [condition (iv)]. Shagrir argues

that this representational assumption helps computational neuroscientists discover

neural functions and explain why specific neural computations are appropriate to the

task.

Maley (this issue) defends a similar conclusion from a different angle. He points

out that the main variables involved in neural processes—especially spike frequency

and timing, but possibly other variables as well—vary monotonically as a function

of their external causes. This conforms to condition (ii) above and leads to a

homomorphism between the internal variables and their target [condition (i)], which

in turn allows these variables to guide behavior [condition (iv)]. Maley points out

that this monotonic variation of neural representations relative to their targets makes

them different from digital representations and similar to the kind of representation

employed by analog computers. He concludes that, therefore, brains are a kind of

analog computer.4

Plebe and De La Cruz (this issue) make a rigorous and thorough case that neural

states are structural representations. First, they formally define a homomorphism

between neural states and their target. Then they argue explicitly that such a

homomorphism is causally driven by its target, can be decoupled from its target, and

guides action. Therefore, neural states satisfy all four conditions for being structural

representations.

Morgan and Piccinini (this issue) situate neural representations, understood as

structural representations, within the debate about the nature of intentionality. They

address naturalistic theories of intentionality that hope to account for intentionality

in terms of mental representation. They argue that such theories should look at

neural representations as the underpinning of intentionality. Yet they also argue that

4 Appearances notwithstanding, Maley’s conclusion is consistent with Piccinini and Bahar’s (2013)

conclusion that neural computation is neither digital nor analog but sui generis. This is because Piccinini

and Bahar define analog computers independently of the kind of representation they typically employ.
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simply appealing to neural representations—structural as they may be—is not

enough to fully explain intentionality. To explain intentionality, a more specific

kind of neural representation needs to be identified.

A theoretical framework that has attracted a lot of attention in recent years posits

that the brain is a Bayesian inference machine. One way to spell this out is to posit

that brains perform Bayesian inferences by building generative models of their

environment’s causal structure and then striving to minimize such models’

prediction errors. This approach goes by the name of predictive processing.

Expanding on Clark (2015), Williams (this issue) argues that the kind of generative

models posited by predictive processing are structural representations in a robust

sense. Yet such structural representations are oriented towards the specific needs

and capacities of specific organisms in a way that makes them especially suited to

overcome some limitations of more traditional approaches to mental representation.

Anti-representationalists have their easiest cases with real-time sensorimotor

engagement with the world—when the action is right in front of you, it’s somewhat

plausible that you could explain what’s happening without invoking internal

representations. By contrast, anti-representationalists have their hardest cases when

there is mental activity without any direct sensorimotor engagement with the world.

Examples include dreaming, extreme paralysis such as locked-in syndrome, and

minimally conscious state (MCS).

Noh (this issue) takes a close look at the last of these examples. MCS is a neural

condition that predicts recovery of some cognitive function. MCS is most usefully

contrasted with the vegetative state, which predicts lack of recovery. The standard

clinical method for distinguishing between vegetative state and MCS is to observe

signs of intentional behavior such as the ability to follow commands. If such ability

is manifested, patients are diagnosed as MCS. Otherwise, patients are diagnosed as

vegetative. Recent advances in neuroimaging have shown that some patients that are

traditionally diagnosed as vegetative may warrant a MCS diagnosis instead. Noh

provides a detailed analysis of the reliability of the inference involved in attributing

patients intentional behavior or the ability to answer questions solely on the basis of

their neural activity, without any overt behavior. The methods employed by

neurologists rely on the representational content of the patients’ neural states. Noh

shows that such methods work.

The defenses of neural representation listed so far are primarily based on

inference, modeling, and other theoretical considerations. While they often appeal

to empirical evidence, they are at least consistent with the standard assumption that

representations are theoretical posits to be confirmed or disconfirmed based on their

role within a theory of cognition. Thomson and Piccinini (this issue) challenge that

assumption. They point out that since neuroscientists began to posit representations

in the nineteenth century—well before the beginning of the current representation

wars—representations have become observable. Experimental neuroscientists have

developed multiple techniques to observe and manipulate representations experi-

mentally. As a result, there is a great deal of direct empirical evidence for neural

representations—including structural representations in the sense defined above.
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