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Abstract.  Defending or attacking either functionalism or computationalism requires 

clarity on what they amount to and what evidence counts for or against them.  My 

goal here is not to evaluate their plausibility.  My goal is to formulate them and their 

relationship clearly enough that we can determine which type of evidence is relevant 

to them.  I aim to dispel some sources of confusion that surround functionalism and 

computationalism, recruit recent philosophical work on mechanisms and 

computation to shed light on them, and clarify how functionalism and 

computationalism may or may not legitimately come together. 
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1 Introduction 

Functionalism is forty years old, computationalism is over sixty, and philosophers often 

conjoin them.  Yet their relationship remains obscure.  With Jerry Fodor, I am struck by 

―the widespread failure to distinguish the computational program in psychology from the 

functionalist program in metaphysics‖ (Fodor 2000, 104).  A recent paper by Paul 

Churchland (2005) epitomizes such a failure.  Churchland argues that functionalism is 

false, because the brain is not a classical (i.e., more or less Turing-machine-like) 

computing system but a connectionist one.  His argument presupposes that functionalism 

entails classical computationalism.  But functionalism—properly understood—does not 

entail computationalism, whether classical or non-classical. 

 Assessing functionalism and computationalism requires clarity on what they 

amount to and what evidence counts for or against them.  My goal here is not to evaluate 

their plausibility.  My goal is to formulate them and their relationship clearly enough that 

we can determine which type of evidence is relevant to them.  I aim to dispel some 

sources of confusion that surround functionalism and computationalism, recruit recent 

philosophical work on mechanisms and computation to shed light on them, and clarify 

how functionalism and computationalism may or may not legitimately come together.   

 I will frame the discussion in terms of functionalism, because functionalism is the 

metaphysical doctrine most closely associated (and conflated) with computationalism.  

But one upshot of this paper is that functionalism and computationalism need not go 

together.  Functionalism may be combined with a non-computational theory of mind, and 

computationalism may be combined with a non-functionalist metaphysics.  Once we 

understand how functionalism and computationalism mesh, we can generalize our picture 
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and see how metaphysical doctrines other than functionalism may be combined with 

computationalism as well as how theories other than computationalism may be combined 

with functionalism. 

To a first approximation, functionalism is the view that the mind is the ―functional 

organization‖ of the brain, or any other system that is functionally equivalent to the brain 

(cf. Putnam 1960, 149; 1967a, 200; 1967b, 32).  Another formulation of functionalism is 

that mental states are ―functional states‖ (Putnam 1967b, 30).
2
  Putnam‘s main example 

of a description of functional organization is the machine table of a Turing machine.  For 

him, a functional organization is a set of functional states with their functional relations, 

where a functional state is defined by its causal relations to inputs, outputs, and other 

functional states (under normal conditions).  Thus, under Putnam‘s notion of functional 

organization, our two formulations of functionalism are equivalent.   

Under the broader notion of functional organization that I will defend, there is 

more to functional organization than individual functional states and their relations.  

There are also aggregates of states, components bearing the states, functional properties 

of the components, and relations between the components and their properties.  Since the 

first formulation of functionalism is more general than the second, I prefer the first, but 

nothing in what follows hinges on the difference between the two. 

Stronger or weaker versions of functionalism may be formulated depending on 

how much of the mind is taken to be functional—how many mental states, or which 

                                                 
2
 In the cited references, Putnam writes ―functional organization of organisms‖ or ―functional organization 

of the human being‖ rather than ―functional organization of the brain,‖ as I wrote.  Since much of the 

functional organization of human beings—or organisms, for that matter—is irrelevant to the mind, I 

replaced ‗organism‘ and ‗human being‘ with ‗brain‘.  Even so, I doubt that the brain fixes the exact 

boundaries of the mind‘s realization.  For present purposes, it will be convenient to understand ‗brain‘, 

whenever appropriate, as referring to whatever aspects of the functional organization of organisms realize 

the mind according to functionalism. 
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aspects thereof, are functional.  Are all mental states functional, or only some?  Are all 

aspects of mental states functional, or only, say, their non-phenomenal aspects?  How 

these questions are answered makes no difference here, because I‘m not concerned with 

the plausibility and scope of functionalism.  I‘m concerned with what functionalism 

amounts to.  One question I will address is, what is functional organization?  In due 

course, I will examine different notions of functional organization and search for the 

pertinent one. 

 Computationalism, for present purposes, is the view that the functional 

organization of the brain (or any other functionally equivalent system) is computational, 

or that neural states are computational states.  Again, stronger or weaker versions of 

computationalism may be formulated depending on how much of the functional 

organization of the brain is taken to be computational.  But again, I will not assess the 

plausibility and scope of computationalism here.   

Functionalism plus computationalism equals computational functionalism.  In a 

well-known slogan, computational functionalism says that the mind is the software of the 

brain (or any functionally equivalent system; I will omit this qualification from now on).  

Taken at face value, this slogan draws an analogy between the mind and the software of 

ordinary, program-controlled computers.  But the same slogan is often understood to 

suggest, more modestly, that the mind is the computational organization of the brain—or 

that mental states are computational states—without the implication that such a 

computational organization is that of a program-controlled computer.  As we shall see, 

the ambiguity between the strong and the weak reading is one source of confusion in this 

area. 
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Computational functionalism has been popular among functionalists who are 

sympathetic to computationalist research programs in artificial intelligence, psychology, 

and neuroscience.  It has also encountered ferocious resistance.
3
  The present goal, 

however, is not to determine whether the mind is the software of the brain.  It is to 

understand what this means and what counts as evidence for or against it. 

An important caveat.  The functionalism I am concerned with descends from 

some early writings of Hilary Putnam and Jerry Fodor (Putnam 1960, 1964, 1967a, 

1967b; Fodor 1965, 1968a, 1968b).  It is a metaphysics of mind—the main alternatives 

being dualism, behaviorism, and the type-identity theory.  It accounts for minds as they 

are described by scientific theories and explanations.  It is also known as 

psychofunctionalism (Block 1980).
4
 

 

                                                 
3
 The critical literature is vast.  Representative examples include Block 1978, Putnam 1988, Searle 1992, 

and Lucas 1996. 
4
 Thus, I am not directly concerned with functionalism about folk psychological theories (Lewis 1966, 

1972, 1980; Armstrong 1970), analytical or conceptual truths about the mental (Shoemaker 2003b), or the 

content of mental states (e.g., Sellars 1954; Harman 1973, 1999; Block 1986). 

 I avoid formulating functionalism in terms of Ramsey sentences (Lewis 1972, Block 2007) 

because such formulations obscure the issues addressed here (cf. Gillett 2007).  I will not address several 

other topics related to functionalism:  to what extent functionalism is consistent with reductionism and the 

identity theory (e.g., Lewis 1969, Fodor 1975, 1997, Boyd 1980, Churchland and Churchland 1982, Lycan 

1982, Enç 1983, Wilson 1984, 1993, Kim 1989, 1992, Pereboom and Kornblith 1991, Bickle 1998, Shagrir 

1998, Sober 1999, Bechtel and Mundale 1999, Keeley 2000, Bechtel 2001, Prinz 2001, Pereboom 2002), 

whether functionalism is consistent with mental causation (Block 2003, Kim 2003, Rupert 2006), whether 

functionalism should be formulated in terms of roles or realizers, whether functionalism should be 

formulated in terms of higher level properties, higher order properties, or similarities between fundamental 

properties (Heil 2003, 2004), whether the mind extends into the environment (Harman 1999, Shapiro 1994, 

Adams and Aizawa 2001, Wilson 2004, Rupert 2004), and the correct metaphysics of realization (Kim 

1998, Shapiro 2000, Shoemaker 2001, 2003a, Gillett 2002, 2003, Polger 2004, 2007, Wilson 2004). 
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2 The Analogy between Minds and Computers 

At the origin of computational functionalism are analogies between some features of 

minds and some features of computers.  Different analogies pull towards different 

versions of the view. 

 Putnam, the chief founder of computational functionalism, drew an analogy 

between the individuation conditions of mental states and those of Turing machine states 

(Putnam 1960, 1967a, 1967b).
5
  Putnam noticed that the states of Turing machines are 

individuated in terms of the way they affect and are affected by other Turing machine 

states, inputs, and outputs.  By the same token, he thought, mental states are individuated 

by the way they affect and are affected by other mental states, stimuli, and behavior.  At 

first, Putnam did not conclude that mental states are Turing machine states, because—he 

said—the mind might not be a causally closed system (Putnam 1960).  A bit later, 

though, Putnam reckoned that mental states can be characterized functionally, like those 

of Turing machines, though he added that the mind might be something ―quite different 

and more complicated‖ than a Turing machine (Putnam 1967a).  Finally, Putnam went all 

the way to computational functionalism:  mental states are (probabilistic) Turing machine 

states (Putnam 1967b). 

 As Putnam‘s trajectory illustrates, the analogy between the individuation of 

mental states and that of Turing machine states does not entail computational 

functionalism.  The latter conclusion was reached by Putnam some time after drawing his 

analogy, on independent grounds.  What grounds? 

                                                 
5
 For a more detailed reconstruction and discussion of Putnam‘s functionalism and computational 

functionalism, see Piccinini 2004b and Shagrir 2005. 



 7 

 It‘s hard to know for sure.  The relevant papers by Putnam contain references to 

the plausibility and success of computational models of mental phenomena, including 

Warren McCulloch and Walter Pitts‘s theory of the brain.  In 1943, McCulloch and Pitts 

proposed a mathematical theory of neurons and their signals, which theory was widely 

interpreted to claim that, in essence, the brain is a Turing machine (without tape).
6
  A few 

years later, John von Neumann interpreted McCulloch and Pitts‘s work as proof that 

―anything that can be exhaustively and unambiguously described, anything that can be 

exhaustively and unambiguously put into words, is ipso facto realizable by a suitable 

finite neural network‖ of the McCulloch and Pitts type (von Neumann 1951, 23). 

It is now clear that von Neumann‘s statement isn‘t true, at least under its most 

natural interpretation.  A fortiori, McCulloch and Pitts proved nothing of the sort.  For 

one thing, the nervous system described by their theory is a simplified and idealized 

version of the real thing.  More importantly, von Neumann‘s statement implicitly abuses 

the Church-Turing thesis.  The Church-Turing thesis says that anything that is 

computable in an informal sense, which is intuitively familiar to mathematicians, is 

computable by Turing machines.  From this, it doesn‘t follow that anything that can be 

exhaustively and unambiguously described is computable by Turing machines.  Nor does 

it follow, as many would soon conclude, that everything can be simulated by Turing 

machines or that everything is computational.  Alas, neither von Neumann nor his early 

readers were especially careful about these matters.  After von Neumann, fallacious 

arguments from the Church-Turing thesis—sometimes in conjunction with McCulloch 

                                                 
6
 As McCulloch put it, ―What we thought we were doing (and I think we succeeded pretty well) was 

treating the brain as a Turing machine‖ (quoted in von Neumann 1951, 33).  For a detailed study of 

McCulloch and Pitts‘s theory, see Piccinini 2004a. 
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and Pitts‘s actual or purported results—to the conclusion that the mind is computational 

began to proliferate.
7
 

Since McCulloch and Pitts‘s networks can be simulated by digital computers, von 

Neumann‘s (unwarranted) statement entails that anything that can be exhaustively and 

unambiguously described can be simulated by a digital computer.  If you add to this a 

dose of faith in scientists‘ ability to describe phenomena—―exhaustively and 

unambiguously‖—you obtain pancomputationalism:  at a suitable level of description, 

everything is computational.  Thus, pancomputationalism made its way into the literature.  

As Putnam put it, ―everything is a Probabilistic Automaton [i.e., a kind of Turing 

machine] under some Description‖ (Putnam 1967b, 31).  Together with Putnam‘s 

analogy between mental states and Turing machine states and the alleged plausibility of 

computational psychology, pancomputationalism is the most likely ground for Putnam‘s 

endorsement of computational functionalism. 

 For present purposes, the most important thing to notice is that the resulting 

version of computational functionalism is quite a weak thesis.  This remains true if 

computational functionalism is disengaged from Putnam‘s appeal to Turing machine 

states in favor of the thesis that mental states are, more generally, computational states 

(Block and Fodor 1972).  If mental states are computational simply because at some 

level, everything is computational, then computational functionalism tells us nothing 

specific about the mind.  It is a trivial consequence of the purported general applicability 

of computational descriptions to the natural world.  This version of computational 

functionalism does not tell us how the mind works or what is special about it.  Such a 

                                                 
7
 Examples of such arguments may be found in Dennett 1978, Webb 1980, Nelson 1987, Chalmers 1996b, 

Simon 1996, and Baum 2004.  For their refutation, see Copeland 2000 and Piccinini 2007c. 
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weak thesis stands in sharp contrast with others, which derive from different analogies 

between features of minds and features of computers.
8
 

 Both minds and many kinds of computing systems manipulate complex 

combinatorial structures.  Minds produce natural language sentences and other complex 

sequences of actions.  Computing systems manipulate complex strings of digits.
9
  The 

structures and processes in question are complex in the sense that in the interesting cases, 

there are recursive rules describing the structure of the inputs and outputs as well as 

recursive rules describing the relationship between inputs and outputs.  Furthermore, for 

any (universal) formalism for specifying computations (e.g., Turing machines) and any 

recursive function, there is a program describing a way to compute that function within 

that formalism.  Finally, whether a program computes a function correctly (e.g., whether 

                                                 
8
 David Chalmers has pointed out to me that the weak thesis may be strengthened by arguing that while 

computation is insufficient for the instantiation of most properties, computation is sufficient for the 

instantiation of mental properties.  Unlike most properties, mental properties might be such that they are 

instantiated ―in virtue of the implementation of computations‖ (Chalmers, personal correspondence).  This 

is a fair point, but it makes a difference only insofar as we have good evidence that computation is 

sufficient for mentation. 

Chalmers defends a thesis of computational sufficiency along these lines as follows.  He defines a 

notion of abstract causal organization, which involves ―the patterns of interaction among the parts of the 

system, abstracted away from the make-up of individual parts and from the way the causal connections are 

implemented,‖ and yet includes ―a level fine enough to determine the causation of behavior‖ (Chalmers 

unpublished).  He then argues that unlike most non-mental properties, all there is to mental properties is 

abstract causal organization, and abstract causal organization can be fully and explanatorily captured 

computationally.  If Chalmers is right, then (the right kind of) computation is sufficient for mentation while 

being insufficient for most other properties. 

Lacking space for a detailed discussion of Chalmers‘s argument, let me make the following brief 

comment.  I don‘t see that Chalmers‘s argument establishes computational sufficiency for mental properties 

in a way that makes a difference for present purposes.  Chalmers faces a dilemma.  If abstract causal 

organization is truly fine grained enough to determine the causation of a system‘s behavior, then—contrary 

to Chalmers‘s intent—abstract causal organization will capture (the causal aspects of) any property 

whatsoever (including digestion, combustion, etc.).  If, instead, abstract causal organization excludes 

enough information about a system to rule out at least certain properties (such as digestion and 

combustion), then—again, contrary to Chalmers‘s intent—there is no reason to accept that abstract causal 

organization will capture every aspect of mental properties.  Either way, the specific connection between 

mentation and computation is not strengthened.  Thus, Chalmers‘s argument does not affect our main 

discussion. 
9
 I am using ‗digit‘ to refer to the physical entities or states manipulated by computers, regardless of 

whether they represent numbers. 
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it computes square roots correctly) is an open question—it‘s ―open to rational criticism‖ 

(Putnam 1960, 149), as it were. 

 Thanks in part to the complexity of their structure and the sensitivity of 

computing systems to such a structure, strings of digits may be systematically interpreted.  

So computers‘ activities are usually characterized by semantic descriptions.  For 

example, we say that computers do arithmetic calculations, which is an activity 

individuated in terms of operations on numbers, which are possible referents of digits.  

This interpretability of the digits manipulated by computers has often been seen as part of 

the analogy between mental states and computational states, because mental states are 

also typically seen as endowed with semantic content.  This, in turn, has contributed to 

the attractiveness of computational theories of mind.
10

  But matters of mental content are 

controversial, and without agreement on mental content, the putative semantic analogy 

between mental states and computational states gives us no firm ground on which to 

explicate computational functionalism.  In the next section, I will argue that the semantic 

properties of computing mechanisms make no difference for our purposes.  Setting 

semantic properties aside, let‘s go back to the complexity of the structures being 

manipulated. 

 The analogy between the structures manipulated by minds and by computing 

mechanisms is stronger than the previous one:  prima facie, most things cannot 

manipulate combinatorial structures of arbitrary recursive complexity according to 

arbitrary recursive rules.  This stronger analogy is a likely source of some versions of 

                                                 
10

 According to Smith, ―The only compelling reason to suppose that we (or minds or intelligence) might be 

computers stems from the fact that we, too, deal with representations, symbols, meanings, and the like‖ 

(1996, 11).  Smith is exaggerating in calling this the only reason.  But the semantic analogy between minds 

and computers does have a long and influential history.  For a more detailed discussion, see Piccinini 

2004c. 
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computationalism, and derivatively, of computational functionalism.  But this analogy is 

still insufficient to underwrite the slogan ―the mind is the software of the brain.‖  The 

reason is that the analogy holds between minds and computing mechanisms in general, 

and many computing mechanisms (e.g., ordinary Turing machines) don‘t possess any 

software in the relevant sense.  For the relevant notion of software, we need yet another 

analogy, which holds between certain mental capacities and certain capacities of 

program-controlled computers. 

 Program-controlled computers (―computers‖ from now on), unlike other 

computing systems, have an endless versatility in manipulating strings of digits.  If they 

are universal, they embody in a single entity the universality of whole programming 

systems.  Computers are versatile because they can store, manipulate, and execute 

programs.
11

  To a first approximation, a program is a list of instructions for executing a 

task defined over strings of digits.  An instruction is also a string of digits, which affects a 

computer in a special way.  Most computers can execute many different (appropriately 

written) programs—typically, within certain limits of time and memory, they can execute 

any program.  Because of this, computers can acquire any number of new capacities 

simply by acquiring and switching between programs.  They can also refine their 

capacities by altering their programs.  Just as minds can learn to execute a seemingly 

endless number of tasks, computers can execute any task, defined over strings of digits, 

for which they are given an appropriate program. 

 This special property of computers—their capacity to store and execute 

programs—gives rise to the special form of explanation that we employ for their 

behavior.  How is my desktop computer letting me write this paper?  By executing a 

                                                 
11

 For a detailed and systematic discussion of computers and their properties, see Piccinini 2008a. 
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word-processing program.  How does it allow me to search the web?  By executing an 

Internet browsing program.  And so on for the myriad capacities of my computer.  These 

are explanations by program execution: 

 

An explanation by program execution of a capacity C possessed by a system S is 

a program P for C such that S possesses C because S executes P. 

 

Explanation by program execution applies only to systems, such as computers, that have 

the capacity to execute programs.  Other relevant systems include certain automatic 

looms.  Even though computers are not the only class of systems subject to explanation 

by program execution, computers have other interesting properties that they do not share 

with other program-controlled mechanisms.  The main difference is that the processes 

generated by computer programs depend on the precise configuration of the input data 

(viz., the input strings of digits) for their application:  to each string of input data there 

corresponds a different computation.  Furthermore, typical computers have an internal 

memory in which they can store and manipulate their own data and programs, and they 

can compute any recursive function for as long as they have time and memory space. 

 These remarkable capacities of computers—to manipulate strings of digits and to 

store and execute programs—suggest a bold hypothesis.  Perhaps brains are computers, 

and perhaps minds are nothing but the programs running on neural computers.  If so, then 

we can explain the multiple capacities minds exhibit by postulating specific programs for 

those capacities.  The versatility of minds would then be explained by assuming that 

brains have the same special power that computers have:  the power to compute by 
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storing and executing programs.
12

  This is the true source of the computational 

functionalist slogan:  the mind is the software of the brain. 

 Compare this version of computational functionalism to the first one.  Here we 

have a putative explanation of human behavior, based on an analogy with what explains 

computers‘ behavior.  This version tells us how the mind works and what‘s special about 

it:  the brain has the capacity of storing and executing different programs, and the brain‘s 

switching between programs explains its versatility.  It is a strong thesis:  of all the things 

we observe, only brains and computers exhibit such seemingly endless ability to switch 

between tasks and acquire new skills.  Presumably, there are few if any other systems 

whose behavior is explained in terms of (this type of) program execution. 

 If we take this formulation of computational functionalism seriously, we ought to 

find an adequate explication of program execution.  We ought to make explicit what 

differentiates systems that compute by executing programs from other kinds of system.  

For if minds are to be interestingly analogous to some aspect of computers, there must be 

something that minds and computers share and other systems lack—something that 

accounts for the versatility of minds and computers as well as the explanation of this 

versatility by program execution.  Unfortunately, the received view of software 

implementation, which is behind the standard view of program execution, does not satisfy 

this condition of adequacy. 

 

                                                 
12

 An argument to this effect is in Fodor 1968b, which is one of the founding documents of computational 

functionalism and which Fodor 2000 singles out as conflating functionalism and computationalism.  An 

argument along similar lines is in Newell 1990, 113ff.  Other influential authors offered similar 

considerations.  For the role played by program execution in Alan Turing‘s thinking about intelligence, see 

Turing 1950 and Piccinini 2003a.  For the role played by program execution in von Neumann‘s thinking 

about brains, see von Neumann 1958 and Piccinini 2003b. 
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3 Troubles with Program Execution 

Ever since Putnam (1967b) formulated computational functionalism, the received view of 

software implementation has been as follows.  If there are two descriptions of a system, a 

physical description and a computational description, and if the computational 

description maps onto the physical description, then the system is a physical 

implementation of the computational description and the computational description is the 

system‘s software.
13

 

The problem with this view is that it turns everything into a computer.  As was 

mentioned in the previous section, everything can be given computational descriptions.  

For instance, some cosmologists study the evolution of galaxies using cellular automata.  

According to the received view of software implementation, this turns galaxies into 

hardware running the relevant cellular automata programs.  If satisfying computational 

descriptions is sufficient for implementing them in the sense in which ordinary computers 

                                                 
13

 Here is a case in point: 

[A] programming language can be thought of as establishing a mapping of the physical states of a 

machine onto sentences of English such that the English sentence assigned to a given state 

expresses the instruction the machine is said to be executing when it is in that state (Fodor 1968b, 

638). 

Beginning in the 1970s, some authors attempted to go beyond the mapping view by imposing further 

constraints on implementation.  Most prominently, Bill Lycan (1987) imposed a teleological constraint.  

Although this was a step in the right direction (more on this later), Lycan and others used 

‗software/hardware‘ and ‗role/realizer‘ interchangeably.   They offered no account specific to software 

implementation as opposed to role realization, so the conflation between functionalism and 

computationalism remained unaffected.  When talking specifically about computation, philosophers 

continued to appeal to versions of the mapping view: 

[A] physical system is a computational system just in case there is an appropriate (revealing) 

mapping between the system’s physical states and the elements of the function computed 

(Churchland and Sejnowski 1992, p. 62; emphasis added). 

 

[C]omputational theories construe cognitive processes as formal operations defined over symbol 

structures…  Symbols are just functionally characterized objects whose individuation conditions 

are specified by a realization function fg which maps equivalence classes of physical features of a 

system to what we might call “symbolic” features.  Formal operations are just those physical 

operations that are differentially sensitive to the aspects of symbolic expressions that under the 

realization function fg are specified as symbolic features.  The mapping fg allows a causal sequence 

of physical state transitions to be interpreted as a computation (Egan 1992, p. 446; first emphasis 

added). 
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execute their programs, then everything is a computer executing its computational 

descriptions.  This is not only counterintuitive—it also trivializes the notion of computer 

as well as the analogy at the origin of computational functionalism.  If the mind is the 

software of the brain in the sense in which certain cellular automata are the software of 

galaxies, then the analogy between minds and computers becomes an analogy between 

minds and everything else.  As a consequence, the strong version of computational 

functionalism collapses into something very much like the weak one. 

 To make matters worse, the same system satisfies many computational 

descriptions.  An indefinite number of cellular automata—using different state transition 

rules, different time steps, or cells that represent regions of different sizes—map onto the 

same physical dynamics.  Furthermore, an indefinite number of formalisms different 

from cellular automata, such as Turing machines or C++ programs, can be used to 

compute the same functions computed by cellular automata.  Given the received view of 

software implementation, it follows that galaxies are running all these programs at once.
14

 

By the same token, brains implement all their indefinitely many computational 

descriptions.  If the mind is the software of the brain, as computational functionalism 

maintains, then given the standard view of software implementation, we obtain either 

indeterminacy as to what the mind is, or that the mind is a collection of indefinitely many 

                                                 
14

 Matthias Scheutz has suggested an amendment to the standard explication of software implementation, 

according to which for a computational description to be considered relevant to software implementation, 

all its states and all its computational steps must map onto the system that is being described (Scheutz 

2004).  This proposal rules out many computational descriptions, such as computational models that 

employ C++ programs, as irrelevant to what software is being implemented by a system, and hence it 

improves on the standard view.  But this proposal still leaves in place indefinitely many computational 

descriptions of any given system, so it doesn‘t solve the present problem. 
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pieces of software.  This is not a promising metaphysics of mind, nor is it a way of 

explaining mental capacities in terms of program execution.
15

 

 The problem under discussion should not be confused with a superficially similar 

problem described by Putnam (1988) and Searle (1992).  They argue that any physical 

system implements a large number of computations, or perhaps every computation, 

because a large number of (or perhaps all) state transitions between computational states 

can be freely mapped onto the state transitions between the physical states of a system.  

For example, I can take the state transitions my web browser is going through and map 

them onto the state transitions my desk is going through.  As a result, my desk 

implements my web browser.  I can establish the same mapping relation between a large 

number of (or perhaps all) computations and physical systems.  From this, Putnam and 

Searle conclude that the notion of computation is observer-relative in a way that makes it 

useless to the philosophy of mind.  Their argument is based on the received view of 

software implementation, and we might avoid its conclusion by abandoning the received 

view. 

But even under the received view of software implementation, Putnam and 

Searle‘s problem is not very serious.  As many authors have noted (e.g., Chrisley 1995, 

Copeland 1996, Chalmers 1996a, Bontly 1998, Scheutz 2001), the computational 

descriptions employed by Putnam and Searle are anomalous.  In the case of kosher 

                                                 
15

 The thesis that everything has computational descriptions is more problematic than it may appear, in a 

way that adds a further difficulty for the standard view of software implementation.  For ordinary 

computational descriptions are only approximate descriptions rather than exact ones, and hence a further 

undesirable consequence of the standard view is that programs can only approximate the behavior of the 

systems that are supposed to be implementing them.  A full treatment of this further difficulty would take 

up more space than is available in this paper, so I will set it aside.  For a detailed discussion of the 

relevance of approximation to pancomputationalism and the way pancomputationalism trivializes 

computationalism, see Piccinini 2007a. 
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computational descriptions—the kind normally used in scientific modeling
16

—the work 

of generating successive descriptions of a system‘s behavior is done by a computer 

running an appropriate program (e.g., a weather forecasting program), not by the 

mapping relation.  In the sort of descriptions employed in Putnam and Searle‘s argument, 

instead, the descriptive work is done by the mapping relation. 

In our example, my web browser does not generate successive descriptions of the 

state of my desk.  If I want a genuine computational description of my desk, I have to 

identify states and state transitions of the desk, represent them by a computational 

description (thereby fixing the mapping relation between the computational description 

and the desk), and then use a computer to generate subsequent representations of the state 

of the desk, while the mapping relation stays fixed.  So, Putnam and Searle‘s alleged 

problem is irrelevant to genuine computational descriptions.  Still, the problem under 

discussion remains:  everything can be given an indefinite number of bona fide 

computational descriptions. 

To solve this problem, we must conclude that being described computationally is 

insufficient for implementing software, which is to say, we must go beyond the received 

view of software implementation.  The same point is supported by independent 

considerations.  The word ‗software‘ was coined to characterize specific systems called 

‗computers‘.  Computers perform different activities from those performed by other 

systems such as drills or valves—let alone galaxies.  We consider the invention of 

computers in the 1940s a major intellectual breakthrough—the discovery of something 

new.  We have specific disciplines—computer science and computer engineering—that 

study the peculiar activities and characteristics of computers and only computers.  For all 
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For a systematic treatment of computational modeling in science, see Humphreys 2004. 
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these reasons, a good account of software implementation must draw a principled 

distinction between computers and other systems. 

Philosophers have largely ignored this problem, and the charitable reader may 

legitimately wonder why.  A first part of the answer is that philosophers interested in 

computationalism have devoted most of their attention to explaining mental phenomena, 

leaving computation per se largely unanalyzed.   

A second part of the answer is that computationalist philosophers typically 

endorse the semantic view of computation, according to which computational states are 

individuated, at least in part, by their content (for a recent example, see Shagrir 2001, 

2006).  The semantic view appears to offer protection to the received view of software 

implementation, because independently of the semantic view, it is plausible that only 

some things, such as mental states, are individuated by their content.  If computational 

states are individuated by their content and content is present only in few things, then 

explanation by program execution will apply at most to things that have content, and the 

trivialization of the notion of software is thereby avoided.  Unfortunately, the protection 

offered by the semantic view is illusory.  Here, there is no room for the in-depth 

treatment the semantic view of computation deserves.  I have given such a treatment 

elsewhere (Piccinini 2004c, 2008b); I will only reiterate its results. 

First, even the conjunction of the received view of software implementation and 

the semantic view of computation does not capture the notion of program execution that 

applies to ordinary computers.  Computers (and some automatic looms, for that matter) 

execute programs whether or not the digits they manipulate have content, and there are 

mechanisms that perform computations defined over interpreted strings of digits just like 
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those manipulated by computers but do so without executing programs (e.g., many 

calculators).  Second, there are computationalists who maintain that content plays no 

explanatory or individuative role in a computational theory of mind (Stich 1983, Egan 

1992, 2003).  Conjoining computationalism with the semantic view of computation begs 

the question of whether computational states are individuated by their content.  Finally, 

and most seriously, the semantic view of computational states is incorrect, because 

computability theorists and computer designers—i.e., those to whom we should defer in 

individuating computational states—individuate computational states without appealing 

to their semantic properties.  For these reasons, the semantic view of computation needs 

to be rejected, and cannot restore to health the received view of software implementation. 

To a first approximation, the distinction between computers and other systems can 

be drawn in terms of program execution, where program execution is understood 

informally as a special kind of activity pertaining to special mechanisms (cf. Fodor 

1968b, 1975; Pylyshyn 1984).  Computers are among the few systems whose behavior 

we normally explain by invoking the programs they execute.
17

  When we do so, we 

explain each activity of a computer by appealing to the unique program being executed.  

A program may be described in many different ways:  instructions, subroutines, whole 

program in machine language, assembly language, or higher level programming 

language.  But modulo the compositional and functional relations between programs and 

their components at different levels of description, a computer runs one and only one 

program at any given time.  An expert can actually retrieve the unique program run by a 

computer and write it down, instruction by instruction. 

                                                 
17

 In the relevant sense of ―program execution‖.  Another notion is that of developmental ―program,‖ which 

is employed in biology.  That is an independent notion of program, which would require a separate account. 
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True, modern computers can run more than one program ―at once,‖ but this has 

nothing to do with applying different computational descriptions to them at the same 

time.  It has to do with computers‘ capacity to devote some time to running one program, 

quickly switch to another program, quickly switch back, and so forth, creating the 

impression that they are running several programs at the same time.  (Some so-called 

supercomputers can execute many programs in parallel.  This is because they have many 

different processors, i.e., program-executing components.  Each processor executes one 

and only one program at any given time.)
18

  All of this is in need of non-circular 

explication.  A good account of software implementation must say why computers 

execute programs while most other systems don‘t, and hence what minds need to be like 

in order to be the putative software of brains.  To prepare for that, it‘s time to clarify the 

relationship between functionalism and computationalism. 

 

4 Mechanistic Functionalism 

According to functionalism, the mind is the functional organization of the brain.  

According to computationalism, the functional organization of the brain is computational.  

These theses are prima facie logically independent—it should be possible to accept one 

while rejecting the other.  But according to one construal, functional organizations are 

specified by computational descriptions connecting a system‘s inputs, internal states, and 

outputs (Putnam 1967b, Block and Fodor 1972).  Under this construal, functional 

organizations are ipso facto computational, and hence functionalism entails 
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 It‘s also true that indefinitely many programs can produce the same behavior.  But in any given computer 

processor, at any given time, there is a fact of the matter as to which program is generating the behavior in 

question:  it‘s the one that the processor is executing. 
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computationalism.  This consequence makes it impossible to reject computationalism 

without also rejecting functionalism, which may explain why attempts at refuting 

functionalism often address explicitly only its computational variety (e.g., Block 1978, 

Churchland 2005).  The same consequence has led to Fodor‘s recent admission that he 

and others conflated functionalism and computationalism (2000, 104). 

 To avoid conflating functionalism and computationalism, we need a notion of 

functional organization that doesn‘t beg the question of computationalism.  The broadest 

notion of functional organization is the purely causal one, according to which functional 

organization includes all causal relations between a system‘s internal states, inputs, and 

outputs.  Given this notion, functionalism amounts to the thesis that the mind is the causal 

organization of the brain, or that mental states are individuated by their causal properties.  

Indeed, this is how functionalism is often formulated.  The good news is, this version of 

functionalism is not obviously committed to computationalism, because prima facie, 

causal properties are not ipso facto computational.  The bad news is, this version of 

functionalism is too weak to underwrite a theory of mind. 

The causal notion of functional organization applies to all systems with inputs, 

outputs, and internal states.  A liberal notion of input and output generates an especially 

broad causal notion of functional organization, which applies to all physical systems.  For 

instance, every physical system may be said to take its state at time t0 as input, go through 

a series of internal states between t0 and tn, and yield its state at tn as output.  A more 

restrictive notion of input and output generates more interesting notions of functional 

organization.  For instance, opaque bodies may be said to take light of all wavelengths as 

input and yield light of only some wavelengths plus thermal radiation as output.  Still, the 
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purely causal notion of functional organization is too vague and broad to do useful work 

in the philosophy of mind (and computation, for that matter).  How should the notions of 

input and output be applied?  Which of the many causal properties of a system are 

relevant to explaining its capacities?  Does this purely causal version of functionalism 

entail computationalism?  To answer these questions, we need to restrict our attention to 

the causal properties of organisms and artifacts that are relevant to explaining their 

specific capacities. 

To fulfill this purpose, we turn to the notion of functional analysis.  Functional 

analysis was introduced in modern philosophy of mind by Fodor (1965, 1968a).  He used 

examples like the camshaft, whose function is to lift an engine‘s valve so as to let fuel 

into the piston.  The camshaft has many causal properties, but only some of them, such as 

its capacity to lift valves, are functionally relevant—relevant to explaining an engine‘s 

capacity to generate motive power.  Fodor argued that psychological theories are 

functional analyses, like our analysis of the engine‘s capacity in terms of the functions of 

its components. 

When Fodor defined psychological functional analysis in general, however, he 

departed from his examples and assimilated psychological functional analyses to 

computational descriptions.
19

  Several other authors developed a similar notion of 

functional analysis, retaining Fodor‘s assimilation of functional analyses to 

computational descriptions (Cummins 1975, 1983, 2000, Dennett 1978, Haugeland 1978, 

Block 1995).  If functional organizations are specified by functional analyses and 

functional analyses are computational descriptions, then functional organizations are ipso 
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 Cf.: ―the paradigmatic psychological theory is a list of instructions for producing behavior‖ (Fodor 

1968b, 630).  For a more extended discussion, see Piccinini 2004b. 
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facto computational.  The mongrel of functional analysis and computational description is 

another source of the conflation between functionalism and computationalism. 

To avoid this conflation, we need a notion of functional organization that has the 

relevant explanatory power—like Fodor et al.‘s—but does not commit us to the view that 

every functionally organized system is computational.  The recent revival of mechanisms 

in the philosophy of science offers us what we need.  Not only do mechanisms satisfy our 

need; a formulation of functionalism in terms of mechanisms is also independently 

motivated.  For an important lesson of recent philosophy of science is that (the relevant 

kind of) explanation in the special sciences, such as psychology and neuroscience, takes a 

mechanistic form
20

: 

A mechanism M with capacities C is a set of spatiotemporal components A1, …, 

An, their functions F, and F‘s relevant causal and spatiotemporal relations R, such 

that M possesses C because (i) M contains A1, …, An, (ii) A1, …, An have functions 

F organized in way R, and (iii) F, when organized in way R, constitute C. 

 

A mechanism in the present sense exhibits its capacities thanks to its components, their 

functions, and their organization.  Biologists ascribe functions to types of biological traits 

(e.g., the digestive function of stomachs) and engineers ascribe them to types of artifacts 

and their components (e.g., the cooling function of refrigerators).  The functions ascribed 

to traits and artifacts are distinct from their accidental effects (e.g., making noise or 

breaking under pressure), and hence are only a subset of their causal powers.  As a 
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 E.g., see Bechtel and Richardson 1993, Machamer, Darden and Craver 2000, Bechtel 2001, 2006, 2007, 

Craver 2001, 2005, 2006, 2007, Glennan 2002, 2005, Thagard 2003, Machamer 2004, Tabery 2004, Bogen 

2005, Bechtel and Abrahamsen 2005, Darden 2006. 
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consequence, tokens of organs and artifacts that do not perform their functions may be 

said to malfunction or be defective. 

As I will use the term, a mechanism‘s functional organization includes the states 

and activities of components, the spatial relations between components, the temporal 

relations between the components‘ activities, and the specific ways the components‘ 

activities affect one another.  For example, the heart pumps blood into the arteries.  This 

simple mechanistic description can begin to be unpacked as follows:  (i) the mechanism 

includes a heart (component), arteries (components), and blood (input/output), (ii) the 

heart pumps the blood (activity of the heart), (iii) the heart is attached to the arteries in a 

certain way (spatial relation), (iv) the blood enters the arteries after it leaves the heart 

(temporal relation), (v) the heart‘s pumping causes the blood to enter the arteries (active 

relation).  The relevant spatial relations between components may continue to hold even 

when the mechanism is not functioning.  Not so for most temporal and active relations.  

Much more could be said about functional organization.  The important point is that the 

functional organization of a mechanism is a necessary condition for the mechanism to do 

what it does. 

Different notions of mechanism may be generated by employing different notions 

of function.
21

  Drawing from William Wimsatt‘s helpful taxonomy, we find three 

especially pertinent notions (Wimsatt 1972, 4-5).  Perspectival functions are causal 

powers that are relevant according to a view or perspective of what the system is doing.  

Evaluative functions are causal powers that contribute to a system‘s proper functioning.  
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 Polger 2004 follows a similar strategy in distinguishing different versions of functionalism based on 

which notion of function they employ.  Unfortunately, in doing so he draws a false contrast between 

functions in the present sense and mathematical functions (cf. also Polger 2007, p. 252, for the same false 

contrast). 
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Teleological functions are causal powers that contribute to fulfilling the goal(s) of the 

system or its users. 

These three notions are related.  Fulfilling goals is one way of functioning 

properly, especially if proper functioning is defined as fulfilling one‘s goals, though in a 

more general sense, something may function properly without fulfilling its goals.  

Functioning properly may be all that is needed to fulfill one‘s goals, especially if one‘s 

goal is to function properly, though something may fulfill its goals without functioning 

properly.  So evaluative and teleological functions may or may not go together.  

Furthermore, goals and standards of proper functioning define perspectives that we may 

take towards a system.  Thus, as Wimsatt points out, evaluative and teleological functions 

are special cases of perspectival functions.  But the notion of perspectival function is 

broader than the others:  there are perspectives towards a system that have nothing to do 

with proper functioning or goals. 

The above notions of function (as well as goals, proper functioning, and 

perspectives) need naturalistic explications.  There is no shortage of literature devoted to 

that, and I cannot hope to resolve the debate on functions here.
22

  For present purposes, 

I‘ll limit myself to the following caveats. 

First, different authors offer slightly different accounts of mechanisms, and not all 

of them employ the word ‗function‘.  But those differences are irrelevant here.  All 

accounts of mechanisms may be subsumed under the above template by using the broad 

notion of perspectival function. 
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 The main competing accounts of functions in biology and engineering may be found in Allen, Bekoff, 

and Lauder 1998; Preston 1998; Schlosser 1998; Buller 1999; Ariew, Cummins, and Perlman 2002, 

Christensen and Bickhard 2002.  Other contributions include Perlman 2004, Hourkes and Vermaas 2004, 

Cameron 2004, Johansson 2004, Schroeder 2004, Vermaas and Houkes 2006, Scheele 2006, Franssen 

2006, Vermaas 2006, Houkes 2006, Houkes and Meijers 2006, Kroes 2006. 
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Second, there may be several legitimate notions of mechanisms, corresponding to 

different notions of function.  Any notion of function that aspires to be relevant here, 

however, must be naturalistic.  Which of the more precise notions of mechanism is most 

adequate to account for the explanatory practices that are relevant to the science and 

metaphysics of mind is a question that need not be resolved here. 

Third, any further explication of the notion of function or mechanism cannot rely 

on the notion of computation in such a way as to turn all mechanisms into computing 

mechanisms, on pain of begging the question of computationalism again.  Fortunately, 

computation plays no such role in current explications of these notions.  As a result, 

appealing to mechanisms does not beg the question of computationalism. 

This shows that we need not fasten together functions and computations the way 

Fodor and his followers did.  When we appeal to the function of camshafts to explain the 

capacities of engines, our function ascription is part of a mechanistic explanation of the 

engine‘s capacities in terms of its components, their functions, and their organization.  

We do not appeal to programs executed by engines, nor do we attribute any computation 

to engines.  In fact, most people would consider engines good examples of systems that 

do not work by executing programs (or more generally, by performing computations).  

The same point applies to the vast majority of mechanisms, with the notable exception of 

computers and other computing mechanisms (including, perhaps, brains). 

Fourth and finally, we should not confuse the teleological notion of function with 

the etiological account of teleology.  The etiological account of teleology in terms of 

evolutionary history is perhaps the most popular one, but it might not suit our present 
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purposes.
23

  What matters here is that teleological functions ground a robust notion of 

functional organization without relying on the notion of computation.  The question of 

how teleological functions ought to be explicated is surely important, but I can remain 

neutral about it.
24

 

The systems studied by most special sciences—including neuroscience, 

psychology, and computer science—are mechanisms.  Investigators in these disciplines 

analyze systems (e.g., trees) by breaking them down into component parts (e.g., roots) 

and discovering (or in engineering, designing) the functions of those parts (e.g., 

supporting the tree and absorbing water from the soil).  Neuroscientists and psychologists 

elaborate their theories in the same way:  they partition the brain or mind into 

components (e.g., the suprachiasmatic nuclei or episodic memory) and they ascribe them 

functions (respectively, regulating circadian rhythms and storing records of events).  

Mutatis mutandis, computer scientists do the same thing:  they partition a computer into 

components (e.g., the memory and the processor) and ascribe them functions 

(respectively, storing data as well as instructions and executing instructions on the data).   

Since mechanisms give us the notion of functional organization that is relevant to 

understanding theories in psychology, neuroscience, and computer science, we should 

adopt this notion of functional organization in our formulation of functionalism.  We can 
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 Why not?  First, the evolutionary account of functions does not immediately apply to artifacts, such as 

computers, which are not the product of evolution by natural selection.  Because of this, it‘s unclear 

whether and how computational functionalism, which is based on an analogy between features of minds 

and features of computers, can be formulated in terms of a notion of function that relies on evolution.  (This 

is not to say that there can‘t be a broader notion of selection that applies to both organisms and artifacts; cf. 

Wright 1973, Preston 2003.)  Second, and more importantly, the evolutionary account of functions grounds 

any resulting theory of mind on the notions and practices of evolutionary biology rather than the empirical 

disciplines relevant to explaining the capacities of minds and computers—namely, psychology, 

neuroscience, and perhaps computer science. 
24

 For example, non-etiological accounts of teleology are given by Schlosser 1998, Boorse 2002, and 

Wimsatt 2002. 
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now give a novel and improved formulation of functionalism, which does justice to the 

original motivations of functionalism without begging the question of computationalism.  

Functionalism about a system S should be construed as the thesis that S is the functional 

organization of the mechanism that exhibits S‘s capacities.  We can now explicate the 

claim that the mind is the functional organization of the brain:  the brain is the relevant 

mechanism, and the mind is its functional organization.  This mechanistic functionalism 

preserves functionalism‘s insight while doing justice to the relevant scientific practices. 

Under this mechanistic version of functionalism, a system is individuated by its 

component parts, their functions, and their relevant causal and spatiotemporal relations.  

The functional states of the system are individuated by their role within the mechanistic 

explanation of the system.  The states of the system are not only individuated by their 

relevant causal relations to other states, inputs, and outputs, but also by the component to 

which they belong and the function performed by that component when it is in that state.  

This applies to all mechanisms, including computing mechanisms.  For example, pace 

Putnam, ordinary Turing machine states are individuated not only as having the function 

of generating certain outputs and other internal states on the basis of certain inputs and 

states, but also as being states of the active device (as opposed to the tape), which is a 

component of the Turing machine and has the functions of moving along the tape, 

reading the tape, and writing on it.
25
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 Carl Gillett (2007) has independently developed a proposal similar to what I‘m calling ‗mechanistic 

functionalism‘, with which he addresses other aspects of functionalism. 

When mechanistic functionalism is further specified by employing teleological functions, the 

resulting doctrine is a close relative of teleological functionalism (Lycan 1981, 1987, Wilkes 1982, 

Millikan 1984, Sober 1990, Shapiro 1994, Rupert 2006).  According to teleological functionalism, the mind 

is the teleological organization of the brain, or mental states are individuated by their teleological function.  

A teleological version of mechanistic functionalism adds to traditional teleological functionalism a 

mechanistic framework within which to specify the functional organization of the brain.  Furthermore, the 

following two caveats apply.  First, teleological functionalism is often offered as an alternative to 
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 Mechanistic functionalism has a further great advantage, which is especially 

relevant to the concerns of this paper:  it is based on a notion of mechanism that offers us 

the materials for explicating the notion of program execution, and more generally, 

computation. 

 

5 Mechanisms, Computation, and Program Execution 

A mechanism may or may not perform computations, and a mechanism that performs 

computations—a computing mechanism—may or may not do so by executing programs.  

To illustrate the latter distinction, consider Turing machines.  Turing machines are made 

out of a tape of unbounded length, an active device that can take a finite number of states, 

letters from a finite alphabet, and functional relations (specified by a machine table) 

between tape, active device, states, and letters.  Of course, Turing machines are usually 

thought of as abstract, in the same sense in which mathematically-defined triangles and 

circles are abstract.  Like triangles and circles, Turing machines can be physically 

implemented.  Physically implemented Turing machines and other concrete computing 

mechanisms operate on concrete counterparts of strings of letters, which I call ‗strings of 

digits‘.  Whether abstract or concrete, Turing machines are mechanisms, subject to 

mechanistic explanation no more and no less than other mechanisms.
26

 

                                                                                                                                                 
computational functionalism (e.g., Lycan 1981, Millikan 1984, Sober 1990).  But I will soon argue that 

mechanisms are the most adequate framework within which to explicate computation.  As a consequence, 

computational functionalism turns out to be a special version of mechanistic functionalism.  Second, many 

supporters of teleological functionalism endorse an etiological account of teleology.  But as I already 

pointed out, this may not be the most suitable account of teleology for present purposes. 
26

 The distinction between the abstract and the concrete easily leads to confusion on these matters.  Here I 

have no room for a full treatment of all the relevant issues, so the following brief points will have to 

suffice. 

Thomas Polger argues that abstract computations, being abstract, are not causally individuated 

(2007, 239-244).  (He also expresses some second thoughts; cf. fn. 18.)  Polger slides between talk of 
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Some Turing machines compute only one function.  Other Turing machines, 

called ‗universal‘, can compute any computable functions.  This difference in 

computation power has a mechanistic explanation.  Universal Turing machines, unlike 

non-universal ones, treat some digits on their tape as programs; they manipulate their data 

by appropriately responding to the programs.  Because of this, universal Turing 

machines—unlike non-universal ones—may be said to execute the programs written on 

their tape.  The behavior of all Turing machines is explained by the computations they 

perform on their data, but only the behavior of universal Turing machines is explained by 

the execution of programs.  Besides Turing machines, many other mechanisms compute:  

finite state automata, pushdown automata, RAM machines, etc.  Of these, some compute 

by executing programs and some don‘t.  Of those that do, some are universal and some 

aren‘t. 

Like Turing machines, the capacities of most biological systems and artifacts are 

mechanistically explained in terms of their components and functions (Bechtel and 

Richardson 1993, Craver and Darden 2001).  Unlike Turing machines, the capacities of 

                                                                                                                                                 
abstract functions, computations, machines, states, algorithms, and programs, as if the same considerations 

applied to all.  I take issue with that.  Abstract functions are not realized in the same sense in which 

machines are.  Functions are computed by machines—they are relations holding between the inputs and 

outputs of machines.  Machines compute functions by following algorithms or programs.  As we shall see, 

some special machines not only follow, but execute programs.  Algorithms may be seen as sequences of 

statements or as relations holding between machine states and actions; programs may be seen as sequences 

of strings, sequences of statements, or relations holding between machine states and actions.  Abstract 

functions are not causally individuated, but machines as well as their states and computations are—at least 

insofar as they are physically realizable.  Algorithms and programs may or may not be, depending on how 

they are conceived of. 

On a different note, it is common to see references to different levels of description of computing 

mechanisms, some of which are said to be more abstract than others (e.g., Newell 1980, Marr 1982).  In 

this sense, a description is more or less abstract depending on whether it includes less or more details about 

a system.  In this paper, I am not questioning the distinction between more abstract and more concrete 

levels of description and I am not focusing on the ―implementation‖ or ―physical‖ level at the expense of 

more ―abstract‖ computational levels.  Rather, I am offering a new way of understanding computational 

levels, in light of the fact that insofar as levels of description are relevant to the explanation of a system‘s 

capacities, they are all describing aspects of a mechanism—they are all part of a complete mechanistic 

explanation of the system, regardless of how abstract they are.  For a detailed account of mechanistic 

levels, see Craver 2007.  
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most biological systems are not explained by appealing to putative computations they 

perform, let alone programs that they execute (except, of course, in the case of brains and 

other putative computing mechanisms). 

 So, explaining a capacity by program execution is not the same as explaining it 

computationally, which is not the same as explaining it mechanistically.  Rather, 

explaining a (computational) capacity by program execution is a special kind of 

computational explanation, which is a special kind of mechanistic explanation.  

Computing mechanisms are subject to explanation by program execution because of their 

peculiar mechanistic properties.  More specifically, computers are subject to 

computational explanation because of their peculiar mechanistic properties, some of 

which (though not all) they share with other computing mechanisms. 

 The rest of this section is devoted to explicating the above distinctions.  First, I 

will identify the subclass of mechanisms that perform computations and whose (relevant) 

capacities are explained by the computations they perform.
27

  Second, I will identify the 

subclass of computing mechanisms that execute programs and whose (relevant) activities 

are explained by the programs they execute.  Once we have an account of these 

distinctions, we will have the resources to explicate computational functionalism. 

Most mechanisms are partially individuated by their capacities.  For instance, 

stomachs are things whose function is to digest food, and refrigerators are things whose 

function is to lower the temperature of certain regions of space.  Capacities, in turn, may 

be analyzed in terms of inputs received from the environment and outputs delivered to the 

environment.  Stomachs take undigested food as input and yield digested food as output; 

refrigerators take their inside at a certain temperature as input and deliver the same region 
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at a lower temperature as output.  Inputs and outputs may be taxonomized in many ways, 

which are relevant to the capacities to be explained.  In our examples, foods and 

temperatures are taxonomized, respectively, in terms of whether and how they can be 

processed by stomachs and refrigerators in the relevant ways.  Being a specific kind of 

mechanism, computing mechanisms are individuated by inputs and outputs of a specific 

kind and by a specific way of processing those inputs and outputs. 

The inputs and outputs that are relevant to computing mechanisms are what 

computability theorists call strings of letters, or symbols.
28

  A string of digits, as I‘m 

using the term, is a concrete counterpart of a string of letters.  What does it take for a 

concrete entity to be a string of digits?  I will now sketch an answer in mechanistic terms.  

A digit is a state of a particular that belongs to one and only one of a finite number of 

relevant types.  The digits‘ types are unambiguously distinguishable (and hence 

individuated) by the effects they have on the mechanism that manipulates them.  That is, 

every digit of the same type affects a mechanism in the same way relative to generating 

the mechanism‘s output, and each type of digit affects the mechanism in a different way 

relative to generating the mechanism‘s output. 

In other words, ceteris paribus, if Digit1 and Digit2 are of the same type, then 

substituting Digit1 for Digit2 results in the exact same computation (type) with the same 

output string (type), whereas if Digit1 and Digit2 are of different types, then substituting 

Digit1 for Digit2 results in a different computation, which may generate a different output 

string.
29

  This property of digits differentiates them from many other classes of 

particulars, such as temperatures and bites of food, which belong to indefinitely many 
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 For the mathematical theory of strings, see Corcoran, Frank, and Maloney 1974. 
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 It is possible for two different computations to generate the same output from the same input.  This 

simply shows that computations are individuated more finely than input-output mappings. 
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relevant types.  (There is no well-defined functional classification of temperatures or 

foods such that every temperature or bite of food belongs to one among a finite number 

of relevant types). 

 A string is a list of permutable digits individuated by the digits‘ types, their 

number, and their order within the string.  Every finite string has a first and a last digit 

member, and each digit that belongs in a string (except for the last member) has a unique 

successor.  A digit within a string can be substituted by another digit without affecting the 

other digits‘ types, number, or position within the string.  In particular, when an input 

string is processed by a mechanism, ceteris paribus, the digits‘ types, their number, and 

their order within the string make a difference to what output string is generated.   

The fact that digits are organized into strings further differentiates strings of digits 

from the inputs and outputs of other functionally analyzable systems.  Neither 

temperatures nor bites of food are organized into strings in the relevant sense.  The 

comparison is unfair, because neither bites of food nor temperatures are digits to begin 

with.  But let us suppose, for the sake of the argument, that we could find a way to 

unambiguously taxonomize bites of food into finitely many (functionally relevant) types.  

For instance, we could taxonomize bites of food into protein bites, fat bites, etc.  If such a 

taxonomy were viable, it would turn bites of food into digits.  Still, sequences of bites of 

food would not constitute strings of digits, because digestion—unlike computation—is 

not precisely sensitive to the order in which an organism bites its food. 

 Among systems that manipulate strings of digits, some do so in a special way:  

under normal conditions, they produce output strings of digits from input strings of digits 

in accordance with a general rule, which applies to all relevant strings and depends on the 
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inputs (and perhaps the internal states) for its application.
30

  The rule in question specifies 

the function computed by the system.  Some systems manipulate strings without 

performing computations over them.  For instance, a genuine random number generator 

yields strings of digits as outputs, but not on the basis of a general rule defined over 

strings.  (If it did, its output would not be genuinely random.)  Systems that manipulate 

strings of digits in accordance with the relevant kind of rule deserve to be called 

computing mechanisms. 

 The activities of computing mechanisms are explained by the computations they 

perform.  For example, if you press the buttons marked ‗21‘, ‗:‘, ‗7‘, and ‗=‘, of a (well-

functioning) calculator, after a short delay it will display ‗3‘.  The explanation of this 

behavior includes the facts that 3 is 21 divided by 7, ‗21‘ represents 21, ‗:‘ represents 

division, ‗7‘ represents 7, ‗=‘ represents equality, and ‗3‘ represents 3.  But most 

crucially, the explanation involves the fact that under those conditions, the calculator 

performs a specific calculation:  to divide its first input datum by the second.  The 

capacity to calculate is explained, in turn, by an appropriate mechanistic explanation.  

Calculators have input devices, processing units, and output devices.  The function of the 

input devices is to deliver input data and commands from the environment to the 

processing units, the function of the processing units is to perform the relevant operations 

on the data, and the function of the output devices is to deliver the results to the 

environment.  By iterating this explanatory strategy, we can explain the capacities of a 

calculator‘s components in terms of its components‘ functions and their organization. 

                                                 
30

 Which strings are relevant?  All the strings from the relevant alphabet.  For each computing mechanism, 

there is a relevant finite alphabet.  Notice that the rule need not define an output for all input strings (and 

perhaps internal states) from the relevant alphabet.  If some outputs are left undefined, then under those 

conditions the mechanism should produce no output strings of the relevant type. 
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 Until now, I‘ve sketched an account of computing mechanisms in general:  

computing mechanisms are mechanisms whose function is manipulating strings of digits 

according to appropriate rules; their behaviors are explained by the computations they 

perform.  There remains to explicate the more interesting notion of a (program-

controlled) computer—a mechanism that computes by executing programs. 

Computers have special processing units, usually called processors.  Processors 

are capable of performing a finite number of primitive operations on input strings (of 

fixed length) called ‗data‘.  Which operation a processor performs on its data is 

determined by further strings of digits, called ‗instructions‘.  Different instructions cause 

different operations to be performed by a processor.  The performance of the relevant 

operation in response to an instruction is what constitutes the execution of that 

instruction.  A list of instructions constitutes a program.  The execution of a program‘s 

instructions in the relevant order constitutes the execution of the program.  So, by 

executing a program‘s instructions in the relevant order, a computer processor executes 

the program.  This is a brief mechanistic explanation of (program-controlled) computers 

and their capacity to execute programs in terms of their components, functions, and 

organization.  The capacity of a processor to execute instructions can be further explained 

by a mechanistic explanation of the processor in terms of its components, their functions, 

and their organization.
31

 

Only computing mechanisms of a specific kind, namely computers, have 

processors capable of executing programs (and memories for storing programs, data, and 

results).  This is why only the capacities of computers, as opposed to the capacities of 

other computing mechanisms—let alone mechanisms that do not perform 
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 Cf. any standard textbook on computer organization and design, such as Patterson and Hennessy 1998. 



 36 

computations—are explained by program execution.  Computational explanation by 

program execution says that there are strings of digits whose function is to determine a 

sequence of operations to be performed by a processor on its data. 

In other words, program execution requires that some states of some components 

of the computer function as a program; in an explanation by program execution, 

‗program‘ is used as a function term.  The way a program determines what the computer 

does is cashed out in terms of the computer‘s mechanistic properties.  A program-

controlled computer is a very special kind of computing mechanism, which has the 

capacity to execute programs.  This is why the appeal to program execution is 

explanatory for computers—because it postulates programs and processors inside 

computers. 

 As a consequence, when the behavior of ordinary computers is explained by 

program execution, the program is not just a description.  The program is also a (stable 

state of a) physical component of the computer, whose function is to generate the relevant 

capacity of the computer.  Programs are physically present within computers, where they 

have a function to perform.  Somehow, this simple and straightforward point seems to 

have been almost entirely missed in the philosophical literature.
32

 

                                                 
32

 For an exception, see Moor 1978, 215.  Robert Cummins, one of the few people to discuss this issue 

explicitly, maintained that ―programs aren‘t causes but abstract objects or play-by-play accounts‖ 

(Cummins 1983, p. 34; see also Cummins 1977).  Cummins‘s weaker notion of program execution is quite 

popular among philosophers, and is yet another side of the fuzziness surrounding functionalism and 

computationalism.  This is because the weaker notion is not the one used in computer science and does not 

underwrite the strong analogy between mental capacities and computers‘ capacities that is behind the 

slogan ―the mind is the software of the brain,‖ and yet the weaker notion is often used in explicating 

computationalism or even functionalism.  The main reason for Cummins‘s view of program execution 

seems to be the way he mixes functional analysis and computational description.  Roughly, Cummins 

thinks that explaining a capacity by program execution is the same as giving a functional analysis of it, and 

therefore the program is not a part of the computer but a description of it (see Section 4 above).  This leads 

Cummins and his followers to the paradoxical conclusion that connectionist networks compute by 

executing algorithms or programs (Cummins and Schwarz 1991, Roth 2005).  But it should be obvious that 

connectionist networks do not store and execute programs in the sense I explicated in the main text, which 
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6 Computational Functionalism 

We now have the means to explicate computational functionalism:  

 

Computational functionalism:  the mind is the software of the brain.   

 

In the broadest sense, this may be interpreted to say that the mind is (an aspect of) the 

computational organization of the brain, where computational organization is the 

functional organization of a computing mechanism and the brain is assumed to be a 

computing mechanism.  In other words, systems that realize minds are mechanisms that 

manipulate strings of digits according to general rules; the mind is the collection of 

functional states and properties such that the mechanism manipulates those strings in 

accordance with those rules. 

 This broad interpretation cashes out the general analogy between minds and many 

computing mechanisms, according to which both minds and computing mechanisms 

manipulate complex combinatorial structures in accordance with appropriate rules.  This 

version of computational functionalism is compatible with any nontrivial version of 

computationalism, including connectionist computationalism.  But as I pointed out in 

Section 2, this analogy is neither as strong nor as explanatory as the analogy between 

minds and (program-controlled) computers.  The more general analogy is not based on 

the notion of software used in computer science, which is the notion that explains the 

                                                                                                                                                 
is why their behavior is not as flexible as that of digital computers.  For a detailed account of connectionist 

computationalism, including a distinction between connectionist systems that compute and those that don‘t, 

see Piccinini 2008c.  I should point out that Cummins has recently agreed that ―stored programs are 

certainly causes‖ (personal correspondence). 
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capacities of (program-controlled) computers and inspires the slogan ―the mind is the 

software of the brain.‖  Accordingly, in explicating computational functionalism we 

should give precedence to the literal notion of software.  (I‘ll come back to this more 

general formulation later.) 

 In its strong and literal form, computational functionalism says that (i) the brain 

contributes to the production of behavior by storing and executing programs, in the sense 

sketched in the previous section, and (ii) the mind is constituted by the programs stored 

and executed by the brain, plus, perhaps, the states and processes generated by executing 

those programs.  As in the broader version of computational functionalism, the mind is an 

aspect of the computational organization of a computing mechanism; in addition, the 

computing mechanism is a program-controlled computer and the mind is its programs 

(plus, perhaps, the states and processes generated by executing the programs).  This 

doctrine has some interesting consequences for the study of minds and brains. 

Computational functionalism licenses explanations of mental capacities by 

program execution.  This is a kind of mechanistic explanation, which explains mental 

capacities by postulating a specific kind of mechanism with specific functional 

properties.  Briefly, the postulated mechanism includes memory components, which store 

programs, and at least one processor, which manipulates and executes them.  Together, 

the interaction between memories and processors determines how the system processes 

its data and produces its outputs.  The capacities of the system are explained as the result 

of the processing of data performed by the processor(s) in response to the program(s). 

Computational functionalism entails that minds are multiply realizable, in the 

sense in which different tokens of the same type of computer program can run on 
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different kinds of hardware.  So if computational functionalism is correct, then—pace 

Bechtel and Mundale 1999, Shapiro 2000, Churchland 2005 and other foes of multiple 

realizability—mental programs can also be specified and studied independently of how 

they are implemented in the brain, in the same way in which one can investigate what 

programs are (or should be) run by digital computers without worrying about how they 

are physically implemented.  Under the computational functionalist hypothesis, this is the 

task of psychological theorizing.  Psychologists may speculate on which programs are 

executed by brains when exhibiting certain mental capacities.  The programs thus 

postulated are part of a mechanistic explanation for those capacities. 

The biggest surprise is that when interpreted literally, computational 

functionalism entails that the mind is a (stable state of) a component of the brain, in the 

same sense in which computer program tokens are (stable states of) components of 

computers.  As a consequence, even a brain that is not processing any data—analogously 

to an idle computer, or even a computer that is turned off—might still have a mind, 

provided that its programs are still physically present.  This consequence seems to offend 

some people‘s intuitions about what it means to have a mind, but it‘s independently 

plausible.  It corresponds to the sense in which people who are asleep or otherwise 

unconscious still have minds.  Their minds are ―causally quiescent,‖ as David Armstrong 

puts it (1981). 

Computational functionalism describes the mind as a program, which means that 

the function of the mind is to determine which sequences of operations the brain has to 

perform.  This presupposes a certain mechanistic explanation of the brain as a program-

controlled computer, i.e., a mechanism with certain components that have certain 
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functions and a certain organization.  Whether a system is a particular kind of mechanism 

is an empirical question.  In this important respect, computational functionalism turns out 

to incorporate a strong empirical hypothesis. 

Philosophers of mind have usually recognized that computationalism is an 

empirical hypothesis in two respects.  On the one hand, there is the empirical question of 

whether a computer can be programmed to exhibit all of the capacities that are peculiar to 

minds.  This is one traditional domain of artificial intelligence.  On the other hand, there 

is the empirical question of whether all mental capacities can be explained by program 

execution.  This is one traditional domain of cognitive psychology.  As to neuroscience, 

computationalists have traditionally considered it irrelevant to testing their hypothesis, on 

the grounds that the same software can be implemented by different kinds of hardware.  

This attitude is unsatisfactory in two respects. 

First, as we have seen, at least two important construals of functionalism are such 

that they entail computationalism.  But if computationalism is a logical consequence of 

the metaphysical doctrine of functionalism, then the empirical status of computationalism 

is tied to that of functionalism:  if functionalism is a priori true (as some philosophers 

believe), then computationalism should need no empirical testing; conversely, any 

empirical disconfirmation of computationalism should disconfirm functionalism too.  An 

important advantage of my proposed reformulation of functionalism is that it does not 

entail computationalism.  This leaves computationalism free to be an empirical 

hypothesis about the specific functional organization of the brain, which—when 

conjoined with functionalism—gives rise to computational functionalism.   
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But second, if computationalism is an empirical hypothesis to the effect that 

mental capacities are the result of program execution, it isn‘t enough to test it by 

programming computers and attempting to explain mental capacities by program 

execution.  Indeed, to assume that this is enough for testing it begs the question of 

whether the brain is the sort of mechanism that could run mental programs at all—

whether it is a (program-controlled) computer.  Assuming that the mind is the software of 

the brain presupposes that the brain has components of the relevant kinds, with the 

relevant functional and organizational properties. 

Whether the brain is a kind of program-controlled computer is itself an empirical 

question, and if the brain were not functionally organized in the right way, computational 

functionalism about the mind would turn out to be false.  This shows computational 

functionalism to incorporate an empirical hypothesis that can be effectively tested only 

by neuroscience.  Whether brains are one kind of mechanism or another can only be 

determined by studying brains.   

This sense in which computational functionalism embodies an empirical 

hypothesis is more fundamental than the other two.  If the brain is a (program-controlled) 

computer, then both classical artificial intelligence and classical cognitive psychology 

have a fair chance of succeeding.  But if the brain is not a computer, then classical 

artificial intelligence and cognitive psychology may or may not succeed in ways that 

depend on the extent to which it is possible to reproduce the capacities of systems that are 

not computers by executing programs.  It may be possible to reproduce all or many 

mental capacities by computational means even though the brain is not a computer, the 
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mind is something other than the programs running on the brain, or both.  The extent to 

which this is possible is a difficult question, which there is no room to address here.   

I have formulated and discussed computational functionalism primarily using the 

notion of program execution, because the analogy between minds and program-controlled 

computers is the motivation behind the strong version of computational functionalism.  

There is no question that many of those who felt the pull of the analogy between some 

features of minds and some features of computers—such as Alan Turing, John von 

Neumann, Jerry Fodor, Allen Newell, and Herbert Simon—did so in part because of the 

explanatory power of program execution. 

But as I noticed at the beginning of this essay, computational functionalism is 

ambiguous between a strong and a weak reading.  It is equally obvious that many other 

authors, who are (or were at one point) sympathetic to the analogy between some features 

of minds and some features of computers, such as Hilary Putnam, Robert Cummins, Paul 

and Patricia Churchland, Michael Devitt and Kim Sterelny (1999), and even Warren 

McCulloch and Walter Pitts (at least in 1943), would resist the conclusion that the brain 

stores and executes programs.  Is there a way to cash out their view without falling into 

the trivial conclusion that the mind can be described computationally in the sense in 

which anything else can?  Indeed there is.  Their view is captured by the more general 

formulation of computational functionalism mentioned at the beginning of this section. 

The account of computational explanation I sketched in Section 5 applies to all 

computing mechanisms, regardless of whether they are controlled by programs.  In fact, 

computation by program execution is explicated in terms of the more general notion of 

computation tout court.  Roughly, computation is the manipulation of data and (possibly) 
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internal states according to an appropriate rule.  (Computation by program execution, 

then, is computation performed in response to instructions that encode the relevant rule.)  

The digital computers we use every day compute by executing programs, but non-

universal Turing machines, finite state automata, and many connectionist networks 

perform computations without executing programs. 

To cover theories that don‘t appeal to program execution, all we need to do is 

interpret computational functionalism in terms of computation tout court, without 

appealing to program execution.  According to this generalized computational 

functionalism, the mind is (some aspect of) the computational organization of a 

(computing) mechanism, regardless of whether that mechanism is a program-controlled 

computer, a connectionist computing mechanism, or any other kind of computing 

mechanism (e.g., a finite state automaton).  Given the generalized formulation, 

psychological explanations need not invoke the execution of programs—they can invoke 

either program execution or some other kind of computation (connectionist or otherwise) 

that is presumed to generate the behavior to be explained.  This kind of explanation is 

still a mechanistic explanation that appeals to the manipulation of strings of digits in 

accordance with an appropriate rule by appropriate components with appropriate 

functions.  Hence, this generalized formulation of computational functionalism still 

presupposes that the brain has the relevant mechanistic properties, which can be studied 

empirically by neuroscience.  Given this generalization, computational functionalism is 

compatible with any computational theory of mind, including connectionist 

computationalism. 



 44 

Abandoning the strong analogy between minds and computers (based on program 

execution), as the generalized version of computational functionalism does, produces a 

loss of explanatory power.  The generalized version of computational functionalism still 

appeals to computation in explaining mental capacities, but it can no longer appeal to the 

flexibility that comes with the ability to acquire, store, modify, and execute different 

programs.  Which computing mechanisms are powerful enough to explain mental 

capacities?  We do not have room here to enter this complex debate (Macdonald and 

Macdonald 1995, Aizawa 2003).  But by drawing attention to all functional and 

organizational aspects of computing mechanisms at all relevant levels, the account here 

proposed promises to push this debate forward. 

The present account sheds light on some other old disputes too.  Two mental 

capacities that are especially contentious are intentionality and consciousness.  Several 

thought experiments have been proposed to show that either intentionality or 

consciousness cannot be explained computationally (e.g., Block 1978, Searle 1980, 

Maudlin 1989).  The putative failure of computational explanation is then assumed to 

affect functionalism, presumably due to the assumption that functionalism entails 

computationalism.  But now we have seen that properly construed, functionalism does 

not entail computationalism. 

The only legitimate conclusion that may be drawn from these thought 

experiments is that computationalism is insufficient to explain intentionality or 

consciousness.  This does not entail that computationalism explains no mental capacities, 

nor does it entail that intentionality and consciousness cannot be explained functionally 

by some process other than computation.  In other words, if the intuitions behind those 
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thought experiments are accepted, then computationalism might still explain many 

mental capacities, and functionalism might still be true of the whole mind.  Of course, the 

intuitions behind the thought experiments are themselves in dispute.  They remain an 

uncertain basis for reaching consensus on these matters. 

 

7 Functionalism, Computationalism, and Computational Functionalism  

I have discussed three theses: 

 

Functionalism:  The mind is the functional organization of the brain. 

Computationalism:  The functional organization of the brain is computational.   

Computational Functionalism (generalized):  The mind is the computational 

organization of the brain. 

 

Computational functionalism is the conjunction of functionalism and computationalism.  

I have offered a mechanistic framework within which to make sense of these doctrines 

and exhibit some of their mutual relations. 

 Functionalism does not entail computationalism, and by now it should be easy to 

see why.  There are plenty of functional organizations that do not involve program 

execution or any other computational process.  That the mind is functionally constituted 

is consistent with any non-computational mechanistic explanation applying to the mind.  

Thus, it is a fallacy to attack functionalism by impugning some computationalist 

hypothesis or another (as done, e.g., by Churchland 2005). 
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 Computationalism does not entail functionalism either.  Computationalism is 

compatible with the mind being the computational organization of the brain, but also with 

the mind being some non-computational but still functional property of the brain, or even 

some non-functional property of the brain, such as its physical composition, the speed of 

its action, its color, or more plausibly, the intentional content or phenomenal qualities of 

its states.  In short, one may be a computationalist while opposing or being neutral about 

functionalism, at least with respect to some aspects of the mind. 

Computationalism is an empirical, mechanistic hypothesis about the brain.  Even 

if the brain is a computing mechanism, the mind may or may not be the brain‘s 

computational organization—perhaps there are aspects of the mind that have to do with 

other properties, e.g., the phenomenal qualities of mental states.  But if brains turn out not 

to be computing mechanisms, then computationalism (and hence computational 

functionalism) is false.  So, regardless of whether one agrees with computational 

functionalism, one can still focus on whether the brain is a computing mechanism and 

investigate computationalism.  This, of course, cannot be done by examining intuitions 

about imaginary scenarios (Block 1978, Searle 1980, Maudlin 1989)—it can only be 

done by studying the functional organization of the brain empirically.
33

 

The standard formulations of computational functionalism in philosophy of mind 

have made it difficult to discuss computationalism as productively as it can be.  They 

have convinced many philosophers that computationalism is an a priori thesis, to be 

discussed by philosophical arguments and thought experiments and assessed by the 

extent to which it solves philosophical problems such as the mind-body problem.  This 

has led philosophers to ignore the fact that, in so far as it has empirical content, 
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 For some hints on the likely outcome, cf. Piccinini 2007b and 2008c. 
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computationalism embodies an empirical scientific hypothesis about the functional 

organization of the brain, which comes in several varieties that ought to be assessed by 

neuroscience. 
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