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Forest biomass has gained increasing interest in the recent years as a renewable source of energy in the context of climate changes
and continuous rising of fossil fuels prices. However, due to its characteristics such as seasonality, low density, and high cost, the
biomass supply chain needs further optimization to become more competitive in the current energetic market. In this sense and
taking into consideration the fact that the transportation is the process that accounts for the higher parcel in the biomass supply
chain costs, this work proposes a multilayer model predictive control based strategy to improve the performance of this process
at the operational level. The proposed strategy aims to improve the overall supply chain performance by forecasting the system
evolution using behavioural dynamic models. In this way, it is possible to react beforehand and avoid expensive impacts in the
tasks execution. The methodology is composed of two interconnected levels that closely monitor the system state update, in the
operational level, and delineate a new routing and scheduling plan in case of an expected deviation from the original one. By
applying this approach to an experimental case study, the concept of the proposed methodology was proven. This novel strategy
enables the online scheduling of the supply chain transport operation using a predictive approach.

1. Introduction

The use of renewable energy sources has been promoted as a
way to avoid the increase of carbon dioxide concentration in
the atmosphere. Legislative guidelines such as the Kyoto Pro-
tocol were created with this purpose [1]. Also, the continuous
rising of fossil fuels prices has triggered the interest in these
sources of energy [2, 3]. Among the available options, forest
biomass has gained interest in the last years [1, 4–6].

The biomass supply chain involves several stakeholders,
like raw material suppliers, transportation companies, and
production facilities, among others, which work together
in order to bring the materials from their source to the
consumers [7]. Regarding the processes, this supply chain
encompasses the harvesting and collection, chipping, trans-
portation, storage, and final conversion. Biomass can be

used to provide heat, electricity, and biofuels [8–11]. Also,
compared to other renewable sources of energy, biomass
has the possibility of storage and, consequently, producing
energy on demand [12]. In the renewable energy context, the
biomass is considered as a “carbon neutral” source having a
neutral balance in the carbon cycle [13]. In this sense and
when compared to fossil fuels, forest biomass can contribute
to decreasing carbon emissions [12] and the dependence on
imported energy [2].

The transportation is the operation that requires the high-
est parcel of costs, being responsible for 25–40% of the total
value [14]. Besides the economic aspect, this drive intensive
characteristic emphasizes the energetic and environmental
impact of transportation [15, 16]. As such, this work will focus
on the transportation process.
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Forest biomass has also some drawbacks: it is a seasonal
energy source, has low energy density, is usually spread
over large areas, and is composed of a set of interconnected
stakeholders, making the decision process more difficult [2,
7, 12, 17, 18]. Associated with this, forest biomass supply
chains present a variability and uncertainty that turns the
planning of their operationsmore complex.Themanagement
procedure in a supply chain is usually differentiated into three
levels, namely, strategic, tactical, and operational [19]. In this
work, only the operational level is focused on. It must be
noted that the processes dynamics are stochastic in nature.
During operation, several adverse situations may occur such
as natural phenomena, equipment breakdown, and low qual-
ity of material, which disturb the system performance and,
consequently, invalidate the original delineated plan [12, 15,
20].

As such, the sustainable and robust management of these
supply chains at a cost-effective manner is essential to the
expansion and growth of these systems [21]. Thus, it is
important to efficiently use the resources at the minimum
cost possible [22] trying also to reduce the impacts and
a continuous feedstock supply [7]. This is also the main
challenge of supply chains [9, 15], where complex decision-
making processes are needed to achieve short-,medium-, and
long-term goals [23].

There are several planning tools available in the literature
to optimize the operational performance of biomass supply
chains. In [24], a flow-shop approach to handle operations
scheduling problems is proposed. The strategy was tested
and demonstrated through a small real example and verified
improvements compared to the traditional decision-making
process. Also regarding schedule optimization, [25] proposed
an approach for planning of sequential tasks scheduling in
the harvesting and handling operations in geographically dis-
persed fields. In [26], the authors applied the classical vehicle
routing problem to the biomass collection problem in order
to determine the routes with minimal costs to the vehicle
fleets involved in the biomass supply chain. In [27], three
mixed integer programming formulations were presented
to solve the truck scheduling problem. For more detailed
information, [28] presented a survey on the models devel-
oped for biomass supply chains from an operations research
perspective, and [18] presented the modelling approaches
to optimize economic, social, and environmental criteria
in these supply chains. Furthermore, other optimization
procedures have been described in the literature for not only
the operational but also tactical and strategic levels [29–31].

Despite the available planning tools, the management
of these supply chains continues to be executed based on
the empirical knowledge and experience of the decision-
maker [24]. In case of deviation from the plan and due to
these supply chains interlaced nature, such as synchronized
schedules and time windows constraints, it becomes very
complex to assess the repercussions of the deviation and to
replan based on the current conditions.

In this work, a methodology that allows following the
biomass supply chain’s operational level during a working
day, regarding the transportation process and continuously

predicting if the initially proposed schedule will be attained,
is proposed. In case of deviation from that goal, the proposed
framework makes use of the model predictive control (MPC)
approach to automatically update the plan to a viable solution
that aims to satisfy the demand within the proposed time
frame at the lowest cost possible. With this proposal, it is
intended to make the decision-making problem automatic
and reactive to possible disturbances that might occur in
the system with repercussions in the different levels. This
contrasts with the static approach commonly found in the
literature.

The paper is organized as follows: Section 2 presents
the biomass supply chain, describing its processes and the
decisions taken in the different management levels; Section 3
details the operational model based on the developed multi-
layer model predictive control strategy; Section 4 illustrates
the proposed methodology through a simple example; and,
finally, Section 5 presents the main conclusions and insights
into future work.

2. Problem Statement

Forest-based supply chains are complex systems with several
processes and stakeholders involved. Although some pro-
cesses are common to all these chains, the biomass supply
chain has specific requirements and phases not present in
the remaining ones. The biomass supply chain starts in the
forest area, within the forest stands, where the trees and
branches are harvested and forwarded into piles disposed at
the roadside. These wood sources are then transformed into
small wood chips by the chipping process. Those wood chips
are loaded into a truck which will transport them to a mill.
In the case of a biomass for bioenergy supply chain, the wood
chips arriving to the power plant are converted into energy
to the energy market. It should be noted that the chipping
process occurs simultaneously to the truck loading process
as the chipper machine is itself assembled to the truck. Also,
intermediate storage stages can be considered.

Periodically, the power plant demands a certain amount
of energy to be delivered at the end of the week. Based
on that, the management team has to define the amount of
wood that needs to flow inside the supply chain to comply
with the demand. This management is divided into several
levels, mostly differentiated by the time scale. The tactical
level, usually concerning decisions with times from weeks
to months, addresses issues of resources dimensioning, that
is, the number of resources to be used and the amount of
material that flows inside the system. On the other hand, the
operational level, as the name indicates, addresses decisions
related to routing and scheduling of operations at smaller
time scales. At a higher time scale, from months to years,
there is also the strategic management level. However, this
level is more related to forest management issues. In the
present work, only decisions regarding the operational level
during a working day will be considered. In this sense, deci-
sions related to material flow and pile-client association are
already provided as a result of the tactical level optimization.
The operational level, here considered, will deal with the
trucks’ fleet routing and scheduling questions.
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Figure 1: Multilayer operational level proposed methodology.

The management of the operational level is usually
performed in a static way, using planning tools to generate
an initial plan at the beginning of the day. However, no mon-
itoring of the processes’ evolution is verified. Consequently, if
there are deviations from the plan, no corrective actions are
applied during that day and will accumulate for the following
day, possibly leading to an unfeasible solution to the weekly
goal.

In this work, a tool that considers the online replanning of
the biomass supply chain transportation process is proposed,
inspired by the model predictive control technique. The
objective is to create a framework that deals with the system
evolution during the day, with the possibility of taking
the advantages of the MPC technique to forecast possible
deviations from the plan and in an automatic and efficient
way reacting beforehand and replanning all the involved
decisions.

3. Proposed Methodology

Due to its complexity, the overall architecture of signifi-
cant size supply chains should be described by means of
multilayer hierarchical connection between the most funda-
mental elements. This is true in all its different dimensions:
corporative, economical, and logistic. Regarding the latter,
strategic, tactical, and operational levels are stacked one after
the other, where the operational level is the ground level.

Those three levels are highly intertwined and information
flows among them. The tactical level is based on the long-
term business vision provided by the strategic component
and the operational level behaviour defined in a shorter time
scale as a function of the tactical level decisions.

The current work addresses uniquely the biomass supply
chain operational level, particularly the transportation logis-
tic problem. The overall supply chain regulation paradigm
here proposed, with the information flowbetween the tactical
and operational levels, is revealed at Figure 1.

In the current supply chain control methodology, it is
assumed that the tactical level provides the information that
will steer the decision-making process that will take place in
the operational level.This information regards the number of
trips between piles and clients and the number of trucks and
chippers available.

The tactical level operates at a daily time frame, where
the control actions are planned according to the current
system states. The planning process is many times carried
out aiming to minimize the costs regarding the raw material
transportation and both the chipping machines and trucks
usage [32–34]. All these variables are defined, per day, along
a time horizon of oneweek. At the beginning of each day, new
tactical actions are planned according to the current system
states. This information is then conveyed to the operational
level whose main objective is to establish the set of working
schedules and deliver them to the field working teams.



4 Complexity

Depot Wood 
pile

Power
plant

Figure 2: Example of geographic dispersion of nodes.

In order to define both the routing and scheduling of the
trucks fleet, the operational level must have a deep insight
about the supply chain structure and its timing requirements.
Conceptually, the actual supply chain problem is composed
of nodes scattered along a given geographical area. All the
trucks depart, at the beginning of the day, from the same
node, designated by depot. Moreover, they should also arrive
to this same node when their working schedule ends. Besides
the depot, the supply chain network is composed of a set of
nodes, denoted by working nodes, which should be visited
during the daily schedule. Eachworking node in the networks
can be further decomposed into a lower level structure
constituted by one wood pile, one client, and a job. This
concept is illustrated in Figure 2, where two distinct routes
are considered. Both depart and arrive to the depot, while
traversing two working nodes.

Also in Figure 2, one of the nodes is expanded in order to
show its internal activity. This activity assumes the following
steps: the truckmoves to thewoodpile, where it is loadedwith
wood chips. After the loading process, it carries on toward
the client for the unloading process. After this task has been
accomplished, the truck leaves the working node toward the
next one. Notice that the pairing between wood piles and
clients has already been performed, in an optimal context, by
the tactical level [34].

Delivering a proper working plan to the field operatives is
the responsibility of the operational level. As can be seen from
Figure 1, the operational level is divided into two distinct
layers: a higher layer and a lower layer. The higher layer
operational level component is committed to making sched-
ules and routes taking into consideration some important
operational constraints. First, and for each working node, the
loading and unloading timewindowsmust be known.That is,
each network working node has an admissible time interval,
where it is expected to be visited by a truck. For example,
the chipping machines are scheduled to be in a particular
wood pile during some time window and the clients are only
able to process unloading tasks in an alternative time span.
For this reason, a truck must arrive at a node at the time
instant that permits concluding its intrinsic job. It should
be noted that the expected loading, driving, and unloading
times for a given working node are known. Moreover, during
the present work, it is considered that, after entering the node,
the situation is deterministic. That is, the exit time is equal to
the arrival time plus the time expended during the loading,
driving, and unloading tasks.

Theworking plan is delivered, at the beginning of the day,
to each field operative element. Each schedule sheet provides
information to the truck driver regarding the nodes to be
visited, their order of appearance, and an estimation of the
arrival time. The routing problem faced by the higher layer
operational level boils down to a classical travelling salesman
problem (TSP) with variable number of salespersons. In this
case, each truck can be viewed as a different salesman and
the set of cities to be visited are the network nodes. It is well
known that those classes of problems are NP-hard and the
complexity in finding a solution increases quickly with the
number of nodes in the network. In fact, if there are𝑁 nodes
in the network, then the number of possible paths is equal to
the factorial of (𝑁−1). For this reason, the performance of any
search algorithm will be severely degraded by the addition of
new working nodes in the network.

The lower layer operational level controller will be
responsible for closely monitoring the process evolution by
means of measuring the relevant state variables such as the
position and state of each vehicle and the nodes visited. The
trucks’ geographical positions are assumed to be provided by
a global positioning system (GPS). It is also assumed that the
nodes’ geographical locations are equal to the one of thewood
piles. Hence, the positions of all the nodes in the network are
known.

From the available field data, the lower layer operational
controller will be able to forecast possible unaccomplished
jobs due to truck delays. It is then possible to define a feedback
control strategy aiming to maintain the initial target set of
jobs even in the presence of disturbances.Those disturbances
can span from simple delays in the delivery to a particular
machine breakdown or adverse weather conditions, among
others. This type of anticipative reaction from a closed loop
system is highly desired, since it prevents large deviations
in the system state variables. In control theory, this type of
paradigm is known by model predictive control (MPC) and,
as will be seen in Section 3.2, it is embedded in the lower
layer of the operational level controller. If the lower layer
predicts that the job is impossible to be accomplished, a new
routing and scheduling plan is requested to the higher layer
of operational level. Section 3.1 will be devoted to describing
and analysing this higher layer by presenting itsmathematical
formulation.

Before ending, it is worth noticing that if no solution can
be achieved by the operational level, then, at the end of the
working day, a report is provided to the tactical level with
information regarding the jobs that were unaccomplished.
The tactical level will use this information to correct the
setpoints delivered to the next days, hence avoiding cumu-
lative deviations at the end of the week. However, this tactical
replanning is out of the scope of the current work.

3.1. Operational Level: Higher Layer Control. Daily, the tac-
tical level delivers both the wood pile/client pairs and the
available resources to the operational level. The former will
become the nodes in the operational network and the latter
regards the maximum number of available machines that can
be used during the tasks execution. The operational level is
decomposed into two hierarchical sublevels: a higher layer,
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which is responsible for defining the trucks fleet routing
and scheduling, and a lower level, which keeps track of the
generated schedule and predicts the impact of truck delays
in the supply chain. This section is devoted to describing the
higher layer of the operational level control.

The routing and scheduling result from an optimization
process that takes place at this level, particularly by solving
a minimization mixed integer programming problem that
describes the behaviour of the supply chain at this level. For
this reason, the higher layer operational level model will be
presented as an optimization problem.

Let 𝑞 ∈ N∗ be the number of working nodes and let 𝑞 + 1
be the total number of network nodes including the depot. As
previously referred, the depot is a very special node, since all
the vehicles are supposed to depart from it and are expected
to return to it after the last task takes place. Let this node take
the index 0. The set Q = {0, . . . , 𝑞} contains the reference to
each network node beginning with the depot. Also, let 𝑚 be
the number of trucks available in a given working day and let
K = {1, . . . , 𝑚} be the set of those machines.

Each working node can be in one of three possible states:
unvisited, partially visited, or fully visited. The first state is
achieved when no vehicle has arrived to it or departed from
it, and the second state is achieved when a truck has entered
the node but has not left it yet. Finally, the node is said to be
fully visited when a previously arrived truck leaves toward a
new node. In other words, it is considered that a node is fully
visited when a particular truck enters it and departs from it.
It is worth noticing that each node is supposed to be visited
only once and that the depot is the only node that remains
partially visited from the beginning of the truck tours up to
the end. Moreover, it will be assumed that the depot can only
change its state to “fully visited” when the number of trucks
arriving at it will be equal to the number of vehicles that have
departed from it. That is, the net flow of trucks in this node
must be equal to zero.

When a given node 𝑖 ∈ Q\{0} is traversed by one of the𝑚
trucks, it will become a fully visited point and will be added
to the set P. According to what has been previously stated,
the last node to be included in P will always be the depot.
Moreover, let J be the set of the “partially visited nodes”
and let L be the set of “unvisited nodes.” In this context,
Q = P ∪J ∪L. Moreover, define the setR = L ∪J as the
set of nodes that remain to be “fully visited,” that is, the nodes
that are in the state of being “partially visited” or “unvisited.”
The higher layer operational supervisor will be filled with the
actual network status, at an asynchronous rate𝑇, triggered by
demand of the lower layer operational supervisor whenever
collapse in one of the jobs is expected. If this is the case, the
higher operational supervisor will compute and submit an
alternative working plan considering the new system state.
For this reason, the content of the above defined sets can
be changed. If the system state sampling occurs at 𝑛𝑇, with𝑛 ∈ N, then the setsP(𝑛),J(𝑛), andL(𝑛) contain the “fully
visited,” “partially visited,” and “unvisited” notes at that time
instant.

Whenever a particular vehicle arrives at a node, this point
will become a partially visited node and will be the new
starting point for this truck. Let 𝑠𝑘 ∈ R(𝑛) be this new

starting node for truck 𝑘 ∈ K. Then, S(𝑛) = {𝑠1, . . . , 𝑠𝑚}
represents the set of the starting nodes associated with each
truck. Due to the node’s number of visits constraint, 𝑠𝑖 = 𝑠𝑗 if
and only if 𝑖 = 𝑗.

For the current problem formulation, it is supposed that,
at a given time instant, one is able to locate all the resources
in the network. That is, the nodes position, their relative
distances, and the trucks’ positions are known. Moreover, the
absolute time is known with a resolution of one minute. Let𝑡 ∈ [0, 1439] be this time where 0 regards 0 h 00m and
1493 regards 23 h 59m. Also, let us assume that the distance𝑑𝑖𝑗 between two distinct nodes in the graph, 𝑖, 𝑗 ∈ Q, is
known and that the average time, required to perform the
trip between those two points, is constant and equal to 𝛾𝑖𝑗. In
order to perform the required task in node 𝑖, the truck must
spend some time on it. Let the required working time at node𝑖 ∈ Q \ {0} be constant and equal to 𝛼𝑖.

In this frame of reference, the current decision variables
are 𝑥𝑘𝑖𝑗(𝑛) ∈ {0, 1}, which take the value of 1 if, from the
present time instant 𝑛 up to the end of the working day, it
is expected from vehicle 𝑘 to visit node 𝑗 ∈ L(𝑛) ∪ {0} after
finishing the task at node 𝑖 ∈ P(𝑛). The value of zero will
be used to denote otherwise. Moreover, the expected time at
which the activity performed by truck 𝑘 starts at node 𝑖 ∈
L ∪ {0}, from the present time instant 𝑛 upwards, is denoted
by 𝑡𝑘𝑖 (𝑛) and is also a decision variable. For the depot node,
this starting activity concerns the truck’s departure time.
However, for the remaining nodes, this variable indicates the
truck’s arrival time. Due to imposed time window constraints
at the working nodes, this 𝑡𝑘𝑖 (𝑛) must be within the time
interval that spans from 𝜂𝑖 ∈ [0, 1439] up to ̌𝜂𝑖 ∈ [0, 1439]
with 𝜂𝑖 < ̌𝜂𝑖. These lower and upper time intervals depend on
the chipping machine schedule for that node and on the last
available unloading time slot at the client.

An important aspect of the schedule plan is to derive
the time at which each of the vehicles is expected to arrive
at the depot. Thus, an additional decision variable 𝜏𝑘(𝑛) is
associated with each truck and denotes the time at which it
arrives at the depot. This variable has to be less or equal to
the maximum working hours per day of truck 𝑘. Let 𝑤𝑘 be
that value.

In order to find the best working plan, at a given time
instant 𝑛𝑇, the system model is formulated as a linear pro-
gramming problem, where the cost function is described in
(1). This cost function has two terms: the leftmost represents
the total distances travelled by the set of all vehicles and the
rightmost is the total time required to perform the full set of
operations.

min( ∑
𝑖∈R(𝑛)

∑
𝑗∈R(𝑛)

∑
𝑘∈K

𝑑𝑖𝑗 ⋅ 𝑥𝑘𝑖𝑗 (𝑛) + ∑
𝑖∈R(𝑛)

∑
𝑘∈K

𝑡𝑘𝑖 (𝑛)) . (1)

Aiming to model the supply chain operational behaviour,
a set of constraints are added to the above linear program-
ming problem. For example, the following equation addresses
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the case where it is required that all trucks, belonging to K,
must always leave the actual entering working node.

∑
𝑖∈L(𝑛)∪{𝑠𝑘}

𝑥𝑘𝑖𝑗 (𝑛) = ∑
𝑖∈L(𝑛)∪{0}

𝑥𝑘𝑗𝑖 (𝑛)
∀𝑗 ∈ L (𝑛) , ∀𝑘 ∈ K.

(2)

That is, for each node 𝑗, in the set of nodes that remain to
be fully visited, if a truck is entering this node from any node
not fully visited, excluding the depot, then itmust leave to any
of the remaining nodes.

Moreover, each node can only be visited one time during
the working day. This condition is imposed by the following
expression:

∑
𝑗∈L(𝑛)∪{0}

∑
𝑘∈K

𝑥𝑘𝑖𝑗 (𝑛) = 1 ∀𝑖 ∈ L (𝑛) . (3)

The next pair of constraints implies that the already
visited nodes cannot be visited again; that is, none of the
trucks can leave from those nodes to another and cannot go
from another to those nodes.

∑
𝑗∈Q

∑
𝑘∈K

𝑥𝑘𝑖𝑗 (𝑛) = 0 ∀𝑖 ∈ P (𝑛) ,
∑
𝑖∈Q

∑
𝑘∈K

𝑥𝑘𝑖𝑗 (𝑛) = 0 ∀𝑗 ∈ P (𝑛) . (4)

The following inequality refers to the start condition of the
trucks. This forces each truck to leave from its starting point.

∑
𝑗∈L(𝑛)∪{0}

𝑥𝑘𝑠𝑘𝑗 (𝑛) ≤ 1 ∀𝑘 ∈ K. (5)

Furthermore, since all the trucks must end at the depot,

∑
𝑖∈L(𝑛)∪{𝑠𝑘}

𝑥𝑘𝑖0 (𝑛) ≤ 1 ∀𝑘 ∈ K. (6)

An additional decision variable associated with node 𝑖 ∈
Q and denoted as 𝑢𝑖(𝑛) is also added in order to prevent
trajectory loops. Those cycles are avoided by means of the
following constraint:

𝑢𝑖 (𝑛) − 𝑢𝑗 (𝑛) + 𝑙 ⋅ ∑
𝑘∈K

𝑥𝑘𝑖𝑗 (𝑛) ≤ 𝑙 − 1 ∀𝑖, 𝑗 ∈ L (𝑛) , (7)

where 𝑙 represents the number of nodes present in set L(𝑛)
at sampling time 𝑛.

In order to define the time at which each task takes place𝑡𝑘𝑖 (𝑛), it is necessary to attend the travel time between nodes𝑖 and 𝑗, 𝛾𝑖𝑗, the time spent in node 𝑖, 𝛼𝑖, and the upper time
window associated with that node, ̌𝜂𝑖. That is,

𝑡𝑘𝑖 (𝑛) + (𝛾𝑖𝑗 + 𝛼𝑖) − 𝑡𝑘𝑗 (𝑛)
≤ ( ̌𝜂𝑖 + 𝛾𝑖𝑗 + 𝛼𝑖) ⋅ (1 − 𝑥𝑘𝑖𝑗 (𝑛))

∀𝑖 ∈ L (𝑛) ∪ S (𝑛) , 𝑗 ∈ L \ {0} , 𝑘 ∈ K.
(8)

The following constraints indicate the nature of decision
variables:

𝜂𝑖 ≤ 𝑡𝑘𝑖 (𝑛) ≤ ̌𝜂𝑖 ∀𝑖 ∈ Q,
𝑢𝑖 (𝑛) ≥ 0 ∀𝑖 ∈ Q,
𝑥𝑘𝑖𝑗 (𝑛) ∈ {0, 1} ∀𝑖, 𝑗 ∈ Q, ∀𝑘 ∈ K.

(9)

Finally, the time at which the truck returns to the depot
must be constrained to be within the interval:

𝑡𝑘𝑖 (𝑛) + (𝛾𝑖0 + 𝛼𝑖) ⋅ 𝑥𝑘𝑖0 (𝑛) ≤ 𝜏𝑘 (𝑛) ≤ 𝑤𝑘
∀𝑖 ∈ L (𝑛) , 𝑘 ∈ K. (10)

The above-defined problem will be solved once at the
beginning of the working day and whenever there is a
demand for a new plan from the lower layer operational con-
troller. The following section will describe, in further detail,
the operation of this lower level operational component.

3.2. Operational Level: Lower Layer Control. During the
working day, the position of each truck is checked by means
of a GPS tracking system. Thus, the truck’s relative position
regarding the nodes is known. It will be assumed that this
information is regularly sampled with a period 𝑇𝑠 equal to 10
minutes. This time period was chosen based on the dynamic
systemcharacteristics. At each sampling time, 𝑛𝑇𝑠 for 𝑛 ∈ N, it
is considered to have full information concerning the current
system state.

The purpose of the lower layer operational control is to
keep track of the vehicles and to provide information to the
driver regarding the expected average speed he is expected to
follow. By forecasting each truck position in the network, this
layer is able to provide speed estimates in order to accomplish
the working plan. Those predictions are generated according
to a model of the truck’s position.

This philosophy is in line with the concept of model
predictive control (MPC). In particular, the aim of this work
is to provide an alternative formulation of theMPC paradigm
in the context of supply chains regulation. The MPC unveils
its full power if a sufficient accurate system process model is
available. This model is used to perform system predictions,
leading to an anticipative controller reaction if relevant
system state deviations are likely to occur. Classically, the
MPC is formulated as a quadratic optimization problem
subject to actuators constraints, where the decision variables
are the sequence of possible actuation which minimizes the
prediction error.The objective function usually encompasses
a term that penalizes any setpoint deviations and a second
term that leads to control effort minimization. According to
the MPC strategy, only the first computed control action is
placed into the actuators. When the system status is updated,
a new set of control actions is calculated based on this new
information.

The MPC model can be translated into the current
supply chain control problem. First, according to the current
position and time of a particular truck and by resorting to the
truck’s position model, it will be possible to predict if it will
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Table 1: Geographical distance (km) between the considered nodes.

Vila Real Mirandela Bragança Chaves Braga
Vila Real 0 59.4 118 66.6 105
Mirandela 59.4 0 61.3 51.5 159
Bragança 118 61.3 0 110 217
Chaves 66.6 51.5 110 0 128
Braga 105 159 217 128 0

arrive to the next node at the time defined by the higher layer
operational plan. The desired truck speed, which will be sent
to the truck driver, will be computed during this step, taking
into consideration the route speeds limits. If the lower layer
controller predicts that the time provided by theworking plan
will not be attained, an alert will follow to the upper level to
generate a new scheduling plan. Information regarding the
predicted delay in the task accomplishment will be provided.

Following the MPC concept, the objective function to
minimize in the lower level takes two terms into considera-
tion: a first term that aims tominimize the remaining distance
to the destination node (the quadratic formulation is used to
avoid the overpassage of the destination node) and a second
term that penalizes the control effort, that is, penalizes abrupt
changes in the velocity. The objective function considered in
this level is presented in the following equation:

min [𝑑𝑘𝑗𝑝 (𝑛 + ℎ | 𝑛)]2
+ ℎ∑
𝑖=1

[V𝑘 (𝑛 + 𝑖) − V𝑘 (𝑛 + 𝑖 − 1)]2 , (11)

where V𝑘 refers to the velocity of truck 𝑘, ℎ refers to the control
horizon, and 𝑛 is the current time sample. Note that the num-
ber of available trucks is not a decision variable of this level,
being provided by the tactical level as depicted in Figure 1. In
this formulation, the control horizon is considered as equal
to the prediction horizon. This allows better distributing the
control actions along the horizon and avoiding future deep
changes. In this work, ℎ is assumed to be variable regarding
each truck and task and is computed by

ℎ = ⌈𝑡𝑘𝑖 (𝑛) − 𝑛𝑇𝑠𝑇𝑠 ⌉ . (12)

The predictive component is incorporated into the objec-
tive function by means of the remaining distance to travel
regarding the next node 𝑗 based on the current position 𝑝
of a truck 𝑘, 𝑑𝑘𝑗𝑝(𝑛). This distance is computed according
to the remaining distance to node 𝑗, at the previous time
instant, plus the distance travelled in that time interval.
Mathematically, this can be formulated as

𝑑𝑘𝑗𝑝 (𝑛 + ℎ | 𝑛) = 𝑑𝑘𝑗𝑝 (𝑛) − 𝑇𝑠 ⋅ ℎ∑
𝑖=1

V𝑘 (𝑛 + 𝑖) . (13)

Note that V𝑘 has to be a positive value; that is,

V𝑘 ≥ 0 ∀𝑘 ∈ K. (14)

In order to provide a proof of concept of the proposed
control methodology, a case study will be considered in the
next section.

4. Illustrative Example

In this section, a biomass supply chain example is considered
to demonstrate the applicability and advantages of the pro-
posed methodology. It should be noted that the dimension of
the problem can be easily scalable, and a small scale example
is here presented for simplicity of analysis. A total of 5 nodes
including the depot are considered, representing a set of
cities in the North of Portugal: Vila Real (depot), Mirandela,
Bragança, Chaves, and Braga. The distances between each
pair of network nodes are presented in Table 1.

Two trucks will be considered during a working day, and
each truck spent approximately 45 minutes within the node
to complete the defined job (loading the wood chips, drive
toward the power plant, and unload).The initial travel time is
considered as equal to the time needed to travel the presented
distance assuming a constant mean speed of 60 km/h.

The schedule definition process has two stages: a setup
stage, where the initial plan is established, and a track-
ing stage, where the above plan is followed in terms of
completion. The former is handled by the higher layer,
described in the previous section, and the latter by the lower
layer of the operational level control. The setup stage can
occur in any time period before the instant at which the
lower layer takes charge. For example, considering the above
problem definition and assuming that the lower layer should
start at 8:00, the initial plan produced by the higher layer
optimization problem must be generated at any time instant
prior to 8:00. For example, let us assume that, at 7:00, the
higher layerwas executed andwas able to generate the routing
and scheduling plan for the two trucks as depicted in Figure 3.
Each coloured triangle represents a particular truck route.
The time tags added to eachnode indicate the expected truck’s
arrival time to the respective node. This is true for all nodes
with the exception of the depot, where the time schedule,
printed in white background, is the departure time and the
remaining coloured tags represent the depot arrival time for
the respective truck.

From Figure 3, it is possible to conclude that the higher
layer initial schedule assumes that one of the trucks performs
the route that visits the nodes 1-4-5-1 and the other executes
the sequence 1-2-3-1. Both trucks depart from the depot at
the same time, in this case 8:00, but will arrive at the depot
at different time instants. The first will be ending its work
schedule at 14:29 and the second around one hour earlier.
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Table 2: Control of the average speed (km/h) and the expected delay (min) according to systems states update.

Sample 𝑛 Computed speed (km/h) Delay (min)𝑛 + 1 | 𝑛 𝑛 + 2 | 𝑛 𝑛 + 3 | 𝑛 𝑛 + 4 | 𝑛 𝑛 + 5 | 𝑛 𝑛 + 6 | 𝑛 𝑛 + 7 | 𝑛
0 58 58 57 57 57 57 57 0
1 57 57 57 57 56 56 0
2 62 62 62 62 62 0
3 76 76 76 76 0
4 80 80 80 8
5 80 80 18

5

1

4
3

2

11:59

08:00
14:29
13:28

09:06

08:59

10:45

Figure 3: Routing and scheduling solution provided at the begin-
ning of the day. Each coloured triangle represents a truck’s route.

Exactly at 8:00, the lower level operational layer controller
will be activated. This layer will sample the trucks’ positions,
with a sampling period of 10 minutes. Based on this data
and resorting to the trucks movement dynamic model, a set
of desired truck velocities are computed in order to attain
the target nodes at the time instants closest possible to the
ones delivered by the initial schedule. The predicted delay at
a particular node will be the difference between the expected
time of arrival to that node and the time initially scheduled.
If this delay is above a predefined threshold, then the lower
layer is resumed and the higher layer is asked to provide an
alternative schedule plan in order to mitigate further impacts
of this delay in the supply chain tasks.

In order to illustrate the behaviour of the lower layer
and its connection to the higher layer, consider the situation
where both trucks depart from the depot at 8:00. The lower
layer will be tracking the position of the trucks at regular
time intervals and will be providing suggestions to each
truck driver regarding the actual expected speed for the
rig. Figure 4 depicts the evolution of both trucks’ positions
during the first six samples. As can be observed, the truck
whose route is represented with the dashed line has a position
progress that consistently provides confidence on the accom-
plishment of its task. However, regarding the other truck,
somethingwent wrong after 20minutes of its departure, since
the estimated arrival time at node 4 is constantly postponed.
This increasing delay can be due to several situations such as
a truck’s mechanical malfunction, route problems, and traffic
jams. In this case study, let us consider that a malfunction has
occurred.

3

2
5

4

11:59

08:00
14:29
13:28

08:59

09:06
10:45

Figure 4: Trucks’ position evolution during the working schedule
(the blue crosses indicate the trucks’ expected position and the black
dots the trucks’ actual position).

3

2

4

5

1

08:59

10:45
13:20

16:13

17:44

Figure 5: Routing and scheduling solution provided by the higher
operational layer due to a predicted delay greater than the threshold.

Table 2 presents the predicted speeds computed by the
lower layer operational controller for the truck that presents
problems, namely, the truck represented by the solid line.The
one-step-ahead speed prediction will be the one delivered
to the truck driver. Moreover, the expected time delay,
considering the system states update at each sampling time,
is also presented.

As can be observed from the table, at sample time 𝑛 =5, the accumulation of expected delays is near 20 minutes.
Assume, for the sake of simplicity, that 10 minutes is the
threshold level limit from which a new schedule should
be generated. In this context and assuming that the faulty
truck cannot carry on due to some malfunction, the higher
operational layer control is triggered and the schedule plan
presented in Figure 5 is delineated. It is worth noticing that
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this new plan is generated assuming that the operational
trucks will finish their current tasks.

Moreover, the truck’s driver is only informed about the
next job at the end of the previous job. This allows changing
the plan internally without the knowledge of the driver. This
will avoid constant changes in the overall schedule.

With the presented approach, the operations occurring
during the day are closely monitored and corrective actions
are automatically applied beforehand to avoid deviations in
the tasks accomplishment and, consequently, their propa-
gation. Thus, the proposed methodology has been proven
to be advantageous when compared to the traditional used
strategies.

5. Conclusions

Biomass supply chains are complex systems, where their
interconnected character hinders the disturbance propaga-
tion analysis along the processes. This task is even more
complicated when no decision support tool is available.
In this work, a methodology based on model predictive
control was proposed to control the operational level of a
biomass supply chain regarding the transportation operation.
The proposed approach allows following the system state
during the working day. At each time step, it predicts if
the planned schedules and, consequently, the final goal of
client satisfaction will be achieved. At each iteration and
considering the current status of the system, if necessary, an
alternative control sequence is generated to overcome possi-
ble deviations from the previous plan.With this approach, the
system is automatically controlled reacting to disturbances
in the plan accomplishment, avoiding errors accumulation.
In order to test the feasibility of the proposed method, an
application example was presented. The simulation results
show that the system is able to react to delays, replanning the
operations in order to comply with the daily goal. Due to the
nature of these systems and their discrete event behaviour, in
future work, it is intended to propose a hybrid event driven
MPC approach.
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