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Abstract—Journal bearings play an important role on many 
rotating machines placed on industrial environments, especially 
in steam turbines of thermoelectric power plants. Babbitt 
damage (BD) and excessive clearance (C) are usual faults of 
steam turbine journal bearings. This paper is focused on 
achieving an effective identification of these faults through an 
intelligent recognition approach. The work was carried out 
through the processing of real data obtained from an industrial 
environment. In this work, a feature selection procedure was 
applied in order to choose the features more suitable to identify 
the faults. This feature selection procedure was performed 
through the computation of typical testors, which allows working 
with both quantitative and qualitative features. The classification 
tasks were carried out by using Nearest Neighbors, Voting 
Algorithm, Naïve Associative Classifier and Assisted 
Classification for Imbalance Data techniques. Several 
performance measures were computed and used in order to 
assess the classification effectiveness. The achieved results (e.g., 
six performance measures were above 0.998) showed the 
convenience of applying pattern recognition techniques to the 
automatic identification of BD and C. 
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I. INTRODUCTION 
Many rotating machine failures are related to bearing faults 

[1-5]. Journal bearings (JB) are usually found in heavy 
industries that include large rotating machines, whose early 
fault identification can yield a favorable impact on plant 
availability [6-9]. The stable operation of JB requires the 
clearance not to exceed the operating boundaries. If the 
clearance is out of bounds, mechanical instabilities in the shaft 
rotation, such as oil whirl, oil whip, looseness, or journal-to-
bearing contact can arise [10, 11]. Mechanical stress due to 
these instabilities can also cause damage on the bearing babbitt 
surface, particularity, the oil whip is an unsafe operation that 
may cause severe damage on the machine [9-11]. Journal 
bearings are inspected during the maintenance process by a 
clearance measuring procedure, as well as an accurate 
examination of the babbitt surface; if a high-level damage 
occurs then a re-babbitting procedure will be necessary. 
Babbitt damage (BD) and excessive clearance (C) have been 
widely addressed in several researches [9-13]. 

Several classification methods have been applied on the 
automatic diagnosis of JB faults [14-33]. However, no research 
work addressing the automatic detection of BD and C in 
cylindrical journal bearings, through data gathered from real 
industrial environments, have been found by the authors of this 
paper, despite cylindrical journal bearings (CJB) are among the 
most common types of hydrodynamic journal bearings used by 
the turbomachinery [34, 35]. 

Even though the staff specialized in the diagnostic of JB 
faults evaluates a wide range of features expressed by 
numerical, ordinal and nominal variables (mixed features) [36-
38], most research works addressing JB faults use only 
numerical variables, which are mainly vibration features 
extracted from both time and frequency domains [14-33]. 
Expert knowledge was previously considered in [38], but such 
a work only addressed the feature selection task. 

This paper is focused on the automatic identification of BD 
and C in CJB by means of the processing of mixed features 
extracted from data gathered at a real industrial environment. 
The proposed methodology involves a feature selection 
procedure as a primary step, and then, the application of 
several classifiers. The mixed features processing is provided 
by the application of the Logical Combinatorial Pattern 
Recognition approach (LCPR) [39]. 

This paper is organized as follows: Section II provides a 
brief summary of previous works on the automatic fault 
diagnosis of JB. Section III presents some concepts and tools 
of the LCPR approach. The main features of the JB vibration 
spectrum that are traditionally used for diagnostics purposes 
are presented in Section IV. Section V presents the features and 
datasets used in this work. Section VI describes the proposed 
methodology. Section VII shows the main results and related 
discussions, and Section VIII presents the conclusions and 
future works. 

II. REVIEW OF PREVIOUS WORKS ON AUTOMATIC FAULT 
DIAGNOSIS OF JOURNAL BEARINGS 

Both supervised and unsupervised classification methods 
have been applied on the automatic diagnosis of JB faults [14-
33]. While most of such works have used either data collected 
from a testbench [16-31] or data obtained from numerical 
models of faults [32, 33], just a few has used data gathered 
from a real life environment [14, 15]. For example, in [32, 33], 
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different conditions of ovalization and wear were simulated by 
using numerical models. The classification methods used in 
these works were based on Convolutional Neural Networks 
(CNN) and resulted in a good accuracy. In [16-18], several 
faults (related to oil supply, looseness and bearing surface 
damages), induced in a journal bearing testbench, were 
diagnosed by means of Artificial Neural Networks (ANN) and 
Deep Neural Networks (DNN); a high effectiveness was 
achieved. Different friction and wear conditions were 
diagnosed in [24-26]. In these works, two test rigs were used 
and both Random Forest Classifier (RFC) and Support Vector 
Machines (SVM) were successfully applied. In [19-23], the 
effective diagnostic of unbalance, misalignment, rubbing and 
oil whirl was performed by applying Fisher Discriminant 
Analysis (FDA), Multilayer Perceptron (MLP), CNN and 
SVM. The data was gathered from a Bently-Nevada RK4 rotor 
kit and a feature selection procedure was implemented through 
the application of the Fisher Discriminant Ratio (FDR), Deep 
Belief Network (DBN), Kullback-Leibler Divergence (KLD) 
and Probability of Separation (PoS). In [27], a CNN classifier 
was applied on contact rubbing, block looseness, rotor 
unbalance and misalignment diagnostics. The results were 
compared with those obtained by SVM and a Probabilistic 
Neural Network (PNN). In that work, two testbenches were 
used. In [28], Genetic algorithms (GA) and ANN were used in 
order to identify three different lubrication conditions induced 
in a journal bearing test bed. The inadequate lubrication, oil 
starvation, corrosion, metal-to-metal contact, and extreme wear 
in the main journal bearing of an internal combustion engine 
were the faults addressed in [29-31]. In these works, k-Nearest 
Neighbor (kNN), Fisher Linear Discriminant (FLD), ANN and 
SVN classifiers were satisfactory applied. In [15], DBN, MLP, 
FDA and Self-Organizing Map (SOM) were the techniques 
used in order to diagnose the misalignment, the rubbing and the 
oil whirl produced in both a Bently-Nevada RK4 rotor kit and 
the journal bearings of a 500 MW steam turbine in a power 
plant. Several malfunctions like friction, abnormal lubrication 
and C were accurately diagnosed by means of Linear 
Discriminant Analysis (LDA), FDA and SVM techniques [14]. 
Such work was performed on induction motors and generators 
under full load conditions. 

However, none of the previously mentioned paper address 
the automatic detection of BD and C in CJB, through data 
gathered from real industrial environments. 

III. BRIEF INTRODUCTION TO LCPR APPROACH 
LCPR constitutes an approach suitable to deal with mixed 

data (i.e., both quantitative and qualitative features) in feature 
selection and pattern classification applications. This approach 
provides several useful tools for processing mixed and 
incomplete data [39]. LCPR involves multiples comparison 
criteria to establish comparisons between the values of a 
feature. A comparison criterion (CC) is a mathematical 
formulation that allows for computing the similarity or 
dissimilarity between the values taken by a feature for two 
different objects. The following CCs are two examples that 
allow for determining the dissimilarity between either nominal 
or numerical features, respectively: 

( )1

1      
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if Xs(Oi) Xs(Oj)
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where Xs(Oi) and Xs(Oj) are the values of the feature s for 
the objects Oi and Oj, respectively, and σѕ is the standard 
deviation of the values taken by the feature s, in case of being a 
numerical feature. The output takes values ‘0’ or ‘1’ indicating 
that the comparison results are similar or dissimilar, 
respectively. For example, Table 1 presents three objects 
described by two features: the feature 1 (a nominal feature) and 
the feature 2 (a numerical feature). 

Then, CC1 can be used in order to compare the values 
taken by feature 1 and CC2 can be used for the values taken by 
feature 2. Assuming that the standard deviation of feature 2 is 
σ2=0.28, the comparison (Cr) between the three objects results 
yields: 
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where the row 1 is the result of comparing O1 and O2: 

“dissimilar” for both features. The row 2 is the result of 
comparing O1 and O3: “similar” for feature 1 and “dissimilar” 
for feature 2. And the row 3 is the result of comparing O2 and 
O3: “dissimilar” for feature 1 and “similar” for feature 2. 

The feature selection can be accomplished by means of a 
useful tool: The Typical Testor (TT) computation. A testor (T) 
is defined as a subset of features that allows for differentiating 
between any two objects that belong to different classes; CCs 
defined for the comparison of such features are used. A TT is 
an irreducible T; that is, if any feature of a TT is removed, then 
the TT stops being a T [39]. Therefore, a TT is the most 
compact form in which a testor can appear. In a pattern 
recognition problem, the set of all TTs contains all the 
minimum-length subsets of features that allow for class 
differentiation. The TTs make contribution to both the 
classification process and the selection of only the more 
significant features. 

Sometimes, the computation of the whole set of TTs can 
take long times. This is due to the algorithms need to check 
several features subsets, bounded by the exponential of the 
number of features. Undoubtedly, this is a non-polynomial 
problem that could incur in a high computational cost. Several 
algorithms or methods have been developed for the 
minimization the TT searching time [40]. In this work, the TTs 
were computed by means of one of the most powerful 
algorithms: the fast-BR algorithm [41]. 

TABLE I. EXAMPLE OF OBJECT DESCRIPTION 

Object Feature 1 Feature 2 
O1 1Xh 3.07 

O2 2Xv 1.78 
O3 1Xh 2.03 
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According to the pattern classification task, testors bring 
out an idea about which features are more significant or which 
features provide more information. Accordingly, the 
importance of a feature can be assessed by the number of TTs 
that include such a feature [39]. That is, 

ω(x)P(x)
ω

=
              (3) 

where ω is the number of TTs and ω(x) is the number of 
TTs that include the feature x. According to equation (3), the 
higher the number of TTs that include a feature, the higher the 
importance of such a feature. In addition, the feature 
importance can be assessed through the dimensions of the TTs 
that include such a feature [39]. That is, 

1
t ψ(x) tL(x)

(x)ψ
∈=
∑

              (4) 

where t is the number of features of each TT including the 
feature x, and ψ(x) is the number of TTs that include the feature 
x. According to equation (4), a feature is more important as it is 
found in shorter TTs. Finally, the feature importance can be 
expressed as follows [39]: 

 (x) P(x) L(x)ρ α β= +              (5) 

where α and β are weighting coefficients of P(x) and L(x), 
respectively. Then, the features selection is completed by 
removing the resulting features with importance values below 
thresholds empirically established. 

IV. FEATURES OF THE JOURNAL BEARING VIBRATION 
SPECTRUM 

Vibration analysis is essential for the condition evaluation 
of journal bearings [37]. Frequency domain representations of 
vibration signals bring out features very significant to JB fault 
diagnosis [21]. The spectrum of the journal bearing vibration 
signals usually exhibits several harmonics. If X is the value of 
the rotational speed in Hz, then some features of the vibration 
spectrum that are usually inspected for diagnostics purposes 
are [21, 37]: the synchronous spectral component (the 
amplitude of the spectral component at frequency 1X), its 
harmonics (the amplitudes of the spectral components at 
frequencies corresponding to integer multiples of 1X, e.g., 2X, 
3X, …), its inter-harmonics (the amplitudes of the spectral 
components between successive harmonics, e.g., 1.5X), and its 
sub-synchronous (the amplitudes of the spectral components 
under frequency 1X, e.g., 0.4X). 

Figure 1 shows an example of a real JB velocity vibration 
spectrum, where some of the aforementioned features can be 
seen. Taking into account that the rotational speed is 3600 
revolutions per minute (60 Hz), the more predominant spectral 
components are the harmonics 1X, 2X, 3X, 4X, 6X and 8X. 
These features could be used for automatic JB fault diagnosis 
[20, 21, 33]; however, in several cases many of them could 
either appear at very low amplitudes or be not visible in the 
spectrum (e.g., the sub-synchronous, inter-harmonics or some 
harmonics components do not appear in the spectrum shown in 

Figure 1). In such cases, these features will not be contributing 
with meaningful information to the diagnosis process. 

 
Fig. 1. Velocity Vibration Spectrum of a Real JB. 

Other features, such as ratios between the aforementioned 
features, as well as different statistical measures, can also be 
extracted from the vibration spectrum [20, 31]. 

V. FEATURES AND DATASETS SUPPORTING THE 
CLASSIFICATION TASKS 

From the set of features of the velocity vibration spectrum, 
presented in Section 3, this work addressed the use of the 
features that provided the information more useful to the 
diagnosis procedure. In this work, a new approach of feature 
arrangement was applied: while a small number of features is 
well defined, another group of features is undetermined and 
will be defined by the spectral components reaching the largest 
amplitudes. In this work, 35 mixed features were used for the 
pattern classification task; a brief description of them is 
presented in Table 2. 

The feature 1 was the synchronous spectral component of 
the horizontal vibration; features from 2 to 6 were the highest-
amplitude spectral components of the horizontal vibration, 
regardless the frequencies at which they were given rise; 
feature 7 was the synchronous spectral component of the 
vertical vibration; features from 8 to 12 were the highest-
amplitude spectral components of the vertical vibration, 
regardless the frequencies at which they were given rise; 
features from 13 to 17 were the ratios of the highest-amplitude 
spectral components of the horizontal vibration (features from 
2 to 6) to the synchronous spectral component of the horizontal 
vibration (feature 1); features from 18 to 22 were the ratios of 
the highest-amplitude spectral components of the vertical 
vibration (features from 8 to 12) to the synchronous spectral 
component of the vertical vibration (feature 7); feature 23 was 
the ratio of the synchronous spectral component of the 
horizontal vibration (feature 1) to the synchronous spectral 
component of the vertical vibration (feature 7); and features 
from 24 to 35 were the names (nominal features) of the spectral 
components denoted by features from 1 to 12 arranged in 
descendent order according to their values. The nominal 
features allow for the identification of the spectral components 
selected as the first 12 features and supply information about 
their amplitude order. Two examples of the set of features can 
be found in Table 3. 
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TABLE II. FEATURE DESCRIPTION 

No. 
Value description 
(H: Horizontal Vibration; V: Vertical 
Vibration) 

Frequency 
Domain 
(R: Real; N: 
Nominal) 

1 amplitude of the synchronous component 
(H), 1Xh  Rotational  R 

2 highest amplitude of a spectral component 
(H) different to 1Xh  ? R 

3 second highest amplitude of a spectral 
component (H) different to 1Xh ? R 

⁞ ⁞ ⁞ ⁞ 

6 fifth highest amplitude of a spectral 
component (H) different to 1Xh ? R 

7 amplitude of the synchronous component 
(V), 1Xv Rotational R 

8 highest amplitude of a spectral component 
(V) different to 1Xv ? R 

9 second highest amplitude of a spectral 
component (V) different to 1Xv ? R 

⁞ ⁞ ⁞ ⁞ 

12 fifth highest amplitude of a spectral 
component (V) different to 1Xv ? R 

13 rate of value of feature 2 to the value of 
feature 1 -- R 

14 rate of value of feature 3 to the value of 
feature 1 -- R 

⁞ ⁞ ⁞ ⁞ 

17 rate of value of feature 6 to the value of 
feature 1 -- R 

18 rate of value of feature 8 to the value of 
feature 7 -- R 

19 rate of value of feature 9 to the value of 
feature 7 -- R 

⁞ ⁞ ⁞ ⁞ 

22 rate of value of feature 12 to the value of 
feature 7 -- R 

23 rate of value of feature 1 to the value of 
feature 7 -- R 

24 name of the feature from 1 to 12 with the 
highest amplitude ? N 

25 name of the feature from 1 to 12 with the 
second highest amplitude ? N 

⁞ ⁞ ⁞ ⁞ 

35 name of the feature from 1 to 12 with the 
twelfth highest amplitude ? N 

TABLE III. TWO EXAMPLES OF SET OF FEATURES 

Objects Features Values 

object 1 
5.03, 1.61, 1.04, 1.04, 0.92, 0.76, 1.43, 1.84, 1.45, 1.24, 1.15, 0.78, 
0.32, 0.21, 0.21, 0.18, 0.15, 1.29, 1.02, 0.87, 0.81, 0.55, 3.52, 1Xh, 
3Xv, 2Xh, 2Xv, 1Xv, 4Xv, 5Xv, 6Xh, 3Xh, 4Xh, 6Xv 

object 2 
3.13, 0.51, 0.39, 0.32, 0.16, 0.12, 3.27, 1.71, 1.52, 1.27, 0.53, 0.53, 
0.16, 0.13, 0.1, 0.05, 0.04, 0.52, 0.46, 0.39, 0.16, 0.16, 0.96, 1Xv, 
1Xh, 2Xv, 4Xv, 3Xv, 6Xv, 5Xv, 6Xh, 2Xh, 3Xh, 5Xh, 4Xh 

The dataset supporting this research were taken from 
diagnostics and maintenance reports of a 100 MW steam 
turbine running for three years in an active thermoelectric 

power plant. We cannot disclose the name of the 
thermoelectric plant due to confidentiality issues. Data was 
collected from four journal bearings that were affected by five 
different fault conditions: C, BD in the bottom half of the 
journal bearing (B), BD in the top half of the journal bearing 
(T), faults B and C occurring simultaneously (BC), and faults 
B, C and T occurring simultaneously (BCT). Data 
corresponding to healthy condition of operation was not 
available. The total number of measurements (objects) to work 
with was 3314. 

Each object description is expressed by the set of 35 
features proposed and described in previous section. These 
features were extracted from the JB absolute vibration 
measurements taken at both horizontal and vertical directions, 
at a sampling frequency equal to 1 kHz. Such measurements 
were performed and stored by means of the online monitoring 
system installed at the thermoelectric power plant. The online 
monitoring system and the velocity sensor installed for the 
vibration acquisition were the VIBROCONTROL 4000 and 
BK VIBRO VS-079, respectively. Each measurement 
consisted of an 800-lines spectrum. 

The object distribution is shown in Table 4. This table 
reveals that the object quantities were imbalanced for the five 
classes of faults, with an Imbalance Ratio IR=6.61. 

TABLE IV. OBJECT DISTRIBUTION 

Fault Conditions Objects Numbers 

B 431 

C 708 

T 213 

BC 1409 

BCT 553 

VI. METHODOLOGY 
The aim of this research is to identify automatically the BD 

and C in CJB through data taken from real industrial 
environments. Figure 2 shows a scheme of the methodology 
developed in order to accomplish this goal; this methodology is 
described as follows. 

Firstly, a feature selection process addressing the 
determination of the TTs from the set of 35 features presented 
in the section 4, was implemented. The algorithm used in order 
to search the TTs was the fast-BR [41]. The feature importance 
was computed by applying the equation (5) for both parameters 
α and β being equal to 0.5. After the implementation of several 
tests, the threshold for feature selection was chosen to be the 
difference between the mean and the half of the standard 
deviation of the computed importance records. 

Afterwards, a classification strategy was implemented: on 
one hand, the classification procedure was carried out by using 
only the important (selected) features and, on the other hand, 
the classification procedure was performed by using the whole 
set features. This strategy will reveal how effective the 
implemented feature selection procedure was. 
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Fig. 2. Methodology. 

Four classification techniques were applied: kNN [42], 
Voting Algorithm (ALVOT) [39], Naïve Associative Classifier 
(NAC) [43] and Assisted Classification for Imbalance Data 
(ACID) [44]. These methods are very suitable to be applied 
when mixed-data processing is required and they have 
exhibited high effectiveness in different scenarios. The 
initialization parameters and dissimilarity function of the 
ALVOT and NAC algorithms were the same as those 
presented in [43]. For the kNN and ACID classifiers the 
dissimilarity function used was HEOM [45]. Table 5 
summarizes the parameters used for the compared classifiers. 

The classification tests were carried out on the 
Experimental Platform for Intelligent Computing (EPIC) [46]. 
Although this platform is not among the most popular tools for 
intelligent computing experiments (such as WEKA [47] and 
KEEL [48]), it allows for processing mixed and incomplete 
data and it provides the classifiers proposed to be applied on 
this research. 

Cross-validation methodology, specifically, the k-fold 
cross-validation procedure with k equal to 10, was applied in 
order to warrant the reliability of the results. This procedure 
has been widely employed in the context of pattern 
recognition, machine learning and data mining, and the most 
common scheme has been the 10-fold cross-validation [49]. 
Although the available dataset is imbalanced, the class with the 
lowest number of objects admits 10-fold cross-validation. 

The performance measures applied for the evaluation of the 
classification results, given the imbalance of the dataset 
presented in Table 2, were: the balanced accuracy 
(BalancedAcc) [50], the geometric mean of the recall measure 
(Gmean) [51], the macro precision (PrecisionM) [52], the 
macro geometric mean of the precision and recall measures 
(GmeasureM) [53] , the macro F-measure (FScoreM) [52] and 
the kappa (Kappa) statistic [54]. These indexes are good 
measures of the classifiers’ performance and they are 
recommended to be used in multiclass and imbalanced 
problems [54]. 

TABLE V. CLASSIFIER PARAMETERS 

Classifier Parameter values 

ACID 𝑁𝑝=25, 𝑖𝑡 = 100, 𝜀 = 0.1, Dissimilarity: HEOM 

ALVOT 

SSS: Typical testors, Decision rule: class with maximum 𝛤𝑗(𝑜), 
Similarity: 1/HEOM 

𝛤𝑗(𝑜) =
∑ 𝛤𝛺𝑖

𝑗 (𝑜,𝑦)𝛺𝑖∈𝑆

|𝑆|
, 𝛤𝛺𝑖

𝑗 (𝑜) =
∑ 𝛤𝛺𝑖(𝑜,𝑦)𝑦∈𝑇𝑗

�𝐾𝑗�
, 𝛤𝛺𝑖(𝑜, 𝑦) = 𝜌𝑦 ∗ 𝜌𝑦 ∗

𝛽(𝑜, 𝑦,𝛺𝑖) 

kNN 𝑘 = 1, Dissimilarity: HEOM 

NAC 𝑤𝑗 = 1 for all features 

The comparison criteria given by equations (1) and (2) 
were used in order to compare both nominal and numerical 
features, respectively, during the feature selection and 
classification procedures. 

VII. RESULTS AND DISCUSSION 
The number of TTs obtained from the set of 35 features 

presented in the section 4 was 31218. The feature importance 
results are shown in Figure 3. In this figure, selected and 
removed features are shown through colors green and red, 
respectively. The decision threshold used in order to select the 
features is the red horizontal line shown in Figure 3. The 
number of selected and removed features was 23 (65.71%) and 
12 (34.29%), respectively. There were no features with 
importance values equal to zero (each feature was found at 
least in one TT). These 23 selected features formed a set of 
features used in order to perform one of the two implemented 
fault classification procedures. Another fault classification 
procedure was carried out by using the set of features given by 
all of features. 

The results obtained by the application of the four selected 
classifiers on the identification of the faults are shown in 
Figures 4 to 7 (gray color for the results obtained when the 
whole set of features was used; green color for the results 
obtained when the selected features were used). 

The results obtained from the application of ALVOT 
classifier are shown in Figure 4. In general, the best 
performance was obtained when the set of selected features 
was used, except for the PrecisionM measure, which reached a 
value slightly higher for the set of all features. With regard to 
the six performance measures, the application of the ALVOT 
classifier yielded values higher than 82 % and according to the 
BalancedAcc and Gmean measures the values were higher than 
90 %. 

The results obtained by means of the NAC classifier are 
shown in Figure 5. According to the six performance measures, 
the best results were obtained when the set of selected features 
was used. The six performance measures show values higher 
than 92%, which proves that NAC is a good classifier for 
automatic identification of BD and C in CJB. 

Figure 6 shows the results obtained by means of the kNN 
classifier. In this case, the best performance was obtained when 
the set of all features was used. kNN was an effective classifier 
for the automatic fault identification, since the six performance 
measures yielded values higher than 95%. 
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Fig. 3. Feature Importance for the Identification of B, C, T, BC and BCT 

Faults. 

 
Fig. 4. Results obtained by ALVOT Classifier. 

 
Fig. 5. Results obtained by NAC Classifier. 

 
Fig. 6. Results obtained by kNN Classifier. 

Figure 7 shows the results obtained when the ACID 
classifier was applied. In this case, as the six performance 
measures reveal, the best results were obtained when the set of 
selected features was used; every computed measure yielded 
values higher than 99.8%. This classifier also proved to be 
suitable for the automatic fault identification in CJB. 

Summarizing, the values achieved by the computed 
performance measures proved that the four classifiers are 
suitable to be applied on fault diagnostics of CJB when the 
features proposed in this paper are used. It should be noticed 
that the kNN and ACID classifiers yielded the best 
performances. 

These results validate the methodology proposed for the 
automatic identification of BD and C in CJB. This 
methodology involves the use of TTs for feature selection and 
the classifiers ALVOT, NAC, kNN and ACID for fault 
diagnosis. 

These results are highly relevant since they constitute a first 
report on the automatic identification of BD and C in CJB 
through data collected at a real industrial environment. Besides, 
the importance of using mixed features for such purpose was 
also validated for first time. 

 
Fig. 7. Results obtained by ACID Classifier. 

531 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 4, 2021 

VIII. CONCLUSIONS 
This paper presents the results of a study about the 

identification of BD and C in journal bearing through the use 
of features extracted from the vibration spectrum. In this work, 
the faults and data processed have come from four journal 
bearings of a 100 MW steam turbine placed in an active 
thermoelectric power plant. 

To the best of our knowledge, this work constitutes the first 
study addressing the automatic classification of BD and C in 
CJB placed in a real industrial environment. Besides, the use of 
only the more useful features that could be extracted from the 
vibration spectrum, as well as the use of both numerical and 
nominal features (all representing the expert’s knowledge) for 
JB fault identification is proposed as a new methodological 
approach that led to remarkable results. 

The classification process, which consisted in using four 
different classifiers and working with both selected features 
and the whole set of features, was very successful, since the 
effectiveness obtained was very high. In particular, the highest 
performance (99.8%) was achieved by ACID algorithm. This 
algorithm and kNN are the classifiers recommended to be used 
for the identification of BD and C in journals bearings. The 
search of typical testors is recommended for performing 
feature selection. 

Several significant novelties were presented in this paper: 
the use of real-world dataset for CJB fault identification; the 
use of a new set of features, involving both numerical and 
nominal features for fault identification; the implementation of 
a feature selection procedure for improving the classification 
tasks; and the application of two effective classifiers (NAC and 
ACID) on the automatic fault diagnosis of machinery. 

As future work we want to address other feature selection 
techniques, as well as other strategies for computing feature 
importance. 

ACKNOWLEDGMENT 
The authors would like to thank the support given by the 

EPIC research team, from IPN, Mexico, as well as the 
contributions of the diagnostic and maintenance experts: Julio 
González Martínez, Yuritza Cruz Guzmán, Jorge C. Arce 
Miranda and María Antonia Téllez. The authors thank the 
management of the thermoelectric power plant for providing 
access to the data used in accordance with the confidentiality 
agreement signed. The authors also thank the Instituto 
Politécnico Nacional (Secretaría Académica, COFAA, SIP, 
ESIME and CIDETEC), the CONACyT, and SNI for their 
economical support to develop this work. 

REFERENCES 
[1] L. Ruonan, Y. Boyuan, Z. Enrico, and C. Xuefeng, "Artificial intelligence 

for fault diagnosis of rotating machinery: A review," Mechanical Systems 
and Signal Processing, vol. 108, pp. 33-47, 2018. 

[2] G. Królczyk, Z. Li, and J. A. Antonino Daviu, "Fault Diagnosis of 
Rotating Machine," Applied Sciences, vol. 10, no. 6, p. 4, 2020. 

[3] T. Qiang, P. Flores, and H. M. Lankarani, "A comprehensive survey of 
the analytical, numerical and experimental methodologies for dynamics 
systems with clearance or imperfect joints," Mechanism and Machine 
Theory vol. 122, pp. 1-57, 2018. 

[4] S. Schmidt, P. S. Heyns, and K. C. Gryllias, "A pre-processing 
methodology to enhance novel information for rotating machine 
diagnostics," Mechanical Systems and Signal Processing, vol. 124, pp. 
541-561, 2019. 

[5] Y. Wei, Y. Li, M. Xu, and W. Huang, "A review of early fault diagnosis 
approaches and their applications in rotating machinery," Entropy, vol. 
21, no. 4, p. 26, 2019. 

[6] J. Pino Gómez et al., "Maintenance importance of mechanical elements 
and faults in steam turbines. Data history analysis," Ingeniería Energética, 
vol. 38, no. 2, pp. 106-114, 2017. 

[7] N. Ding, H. Li, Z. Yin, and F. Jiang, "A novel method for journal bearing 
degradation evaluation and remaining useful life prediction under 
different working conditions," Measurement, vol. 177, 2021. 

[8] H. Al-Mosawy, H. Jamali, and M. Tolephih, "Effects of linear 
modification on the performance of finite length journal bearings," in IOP 
Conference Series: Materials Science and Engineering, 2021. 

[9] L. Zhang, H. Xu, S. Zhang, and S. Pei, "A radial clearance adjustable 
bearing reduces the vibration response of the rotor system during 
acceleration," Tribology International, vol. 144, p. 15, 2020. 

[10] J. Junyeong et al., "Monitoring Journal-Bearing Faults: Making Use of 
Motor Current Signature Analysis for Induction Motors," IEEE Industry 
Applications Magazine, vol. 23, no. 4, pp. 12-21, 2017. 

[11] L. B. Visnadi and H. F. de Castro, "Influence of bearing clearance and oil 
temperature uncertainties on the stability threshold of cylindrical journal 
bearings," Mechanism and Machine Theory, vol. 134, pp. 57-73, 2019. 

[12] K. K. Yadav et al., "Studies and Analysis of Effect of Foreign Particles 
on the Parts of Steam Turbine," International Journal of Applied 
Engineering Research, vol. 13, no. 6, pp. 386-395, 2018. 

[13] R. Ranjan, S. K. Ghosh, and M. Kumar, "Fault diagnosis of journal 
bearing in a hydropower plant using wear debris, vibration and 
temperature analysis: A case study," Journal of Process Mechanical 
Engineering, vol. 234, no. 3, pp. 235–242, 2020. 

[14] Y. Elyassami, K. Benjelloun, and M. E. Aroussi, "Sleeve Bearing Fault 
Diagnosis and Classification," WSEAS Transactions On Signal 
Processing, vol. 12, pp. 2224-3488, 2016. 

[15] H. Oh, J. H. Jung, B. C. Jeon, and B. D. Youn, "Scalable and 
Unsupervised Feature Engineering Using Vibration-Imaging and Deep 
Learning for Rotor System Diagnosis," IEEE Transactions on Industrial 
Electronics, vol. 65, no. 4, pp. 3539-3549, 2017. 

[16] T. Narendiranath Babu, H. S. Himamshu, K. N. Prabin, P. D. Rama, and 
C. Nishant, "Journal Bearing Fault Detection Based on Daubechies 
Wavelet," Archives of Acoustics, vol. 42, no. 3, pp. 401- 414, 2017. 

[17] T. Narendiranath Babu, T. Manvel Raj, and T. Lakshmanan, "Application 
of Butterworth filter for fault diagnosis on journal bearing," Journal of 
VibroEngineering, vol. 16, no. 3, pp. 1602-1617, 2014. 

[18] T. Narendiranath Babu, A. Aravind, A. Rakesh, M. Jahzan, D. Rama 
Prabha, and M. R. Viswanathan, "Automatic Fault Classification for 
Journal Bearings Using ANN and DNN," Archives of Acoustics, vol. 43, 
no. 4, pp. 727–738, 2018. 

[19] B. C. Jeon, "Statistical Approach to Diagnostic Rules for Various 
Malfunctions of Journal Bearing System Using Fisher Discriminant 
Analysis," in European Conference of the prognostics and health 
management society, 2014. 

[20] J. H. J. Byung Chul Jeon, Byeng Dong Youn, Yeon-Whan Kim, and 
Yong-Chae Bae, "Datum Unit Optimization for Robustness of a Journal 
Bearing Diagnosis System," International Journal of Precision 
Engineering and Manufacturing, vol. 16, no. 11, pp. 2411-2425, 2015. 

[21] J. Joon Ha, J. Byung Chul, Y. D. Byeng , K. Myungyon, K. Donghwan, 
and K. Yeonwhan, "Omnidirectional regeneration (ODR) of proximity 
sensor signals for robust diagnosis of journal bearing systems," 
Mechanical Systems and Signal Processing, vol. 90, pp. 189-207, 2017. 

[22] H. Oh, B. C. Jeon, J. H. Jung, and B. D. Youn, "Smart diagnosis of 
journal bearing rotor systems: Unsupervised feature extraction scheme by 
deep learning," in Annual Conference of the Prognostics and Health 
Management Society, 2016. 

[23] B. C. Jeon, J. H. Jung, M. Kim, K. H. Sun, and B. D. Youn, "Optimal 
vibration image size determination for convolutional neural network 

532 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 12, No. 4, 2021 

based fluid-film rotor-bearing system diagnosis," Journal of Mechanical 
Science and Technology, vol. 34, no. 4, pp. 1467-1474, 2020. 

[24] N. Mokhtari and C. Gühmann, "Classification of journal bearing friction 
states based on acoustic emission signals," tm-Technisches Messen, vol. 
85, no. 6, pp. 434–442, 2018. 

[25] N. Mokhtari, J. G. Pelham, S. Nowoisky, J.-L. Bote-Garcia, and C. 
Gühmann, "Friction and Wear Monitoring Methods for Journal Bearings 
of Geared Turbofans Based on Acoustic Emission Signals and Machine 
Learning," Lubricants, vol. 8, no. 3, p. 27, 2020. 

[26] J.-L. Bote-Garcia, N. Mokhtari, and C. Gühmann, "Wear monitoring of 
journal bearings with acoustic emission under different operating 
conditions," in PHM Society European Conference, 2020. 

[27] S. Guo, T. Yang, W. Gao, and C. Zhang, "A Novel Fault Diagnosis 
Method for Rotating Machinery Based on a Convolutional Neural 
Network," Sensors, vol. 18, no. 5, pp. 1429-1444, 2018. 

[28] S. Hosseini, M. Ahmadi Najafabadi, and M. Akhlaghi, "Classification of 
acoustic emission signals generated from journal bearing at different 
lubrication conditions based on wavelet analysis in combination with 
artificial neural network and genetic algorithm," Tribology International, 
vol. 95, pp. 426- 434, 2016. 

[29] A. Moosavian, H. Ahmadi, and A. Tabatabaeefar "Fault Diagnosis of 
main engine journal bearing based on vibration analysis using Fisher 
linear discriminant, K-nearest neighbor and support vector machine," 
Journal of Vibroengineering vol. 14, no. 2, pp. 894-906, 2012. 

[30] A. Moosavian, H. Ahmadi, A. Tabatabaeefar, and B. Sakhaei, "An 
Appropriate Procedure for Detection of Journal-Bearing Fault Using 
Power Spectral Density, K-Nearest Neighbor and Support Vector 
Machine," International Journal on Smart Sensing and Intelligent 
Systems, vol. 5, no. 3, pp. 685-700, 2012. 

[31] A. Moosavian, "Comparison of two classifiers; K-nearest neighbor and 
artificial neural network, for fault diagnosis on a main engine journal-
bearing," Shock and Vibration, vol. 20, no. 2, pp. 263–272, 2013. 

[32] D. Stuani Alves et al., "Uncertainty quantification in deep convolutional 
neural network diagnostics of journal bearingss with ovalization fault," 
Mechanism and Machine Theory, vol. 149, 2020. 

[33] O. Gecgel et al., "Simulation-Driven Deep Learning Approach for Wear 
Diagnostics in Hydrodynamic Journal Bearings," Journal of Tribology, 
vol. 143, no. 8, p. 9, 2020. 

[34] S. M. DeCamilo, A. Dadouche, and M. Fillon, "Journal Bearings in 
Power Generation," in Encyclopedia of Tribology: Springer, 2013. 

[35] S. Chatterton, P. Vinh Dang, P. Pennacchi, A. De Luca, and F. Flumian, 
"Experimental evidence of a two-axial groove hydrodynamic journal 
bearing under severe operation conditions," Tribology International, vol. 
109, pp. 416–427, 2017. 

[36] A. Muszynska, "Vibrational Diagnostics of Rotating Machinery 
Malfunctions," International Journal of Rotating Machinery, vol. 1, no. 3-
4, pp. 237-266, 1995. 

[37] A. Bilošová and J. Biloš, Vibrations Diagnostics. Ostrava: VSB - 
Technical University of Ostrava, 2012. 

[38] J. Pino Gómez, F. E. Hernández Montero, and J. C. Gómez Mancilla, 
"Variable Selection for Journal Bearing Faults Diagnostic Through 
Logical Combinatorial Pattern Recognition," in Lecture Notes in 
Computer Science: Springer, 2018. 

[39] J. Ruiz-Shulcloper, "Pattern Recognition with Mixed and Incomplete 
Data," Pattern Recognition and Image Analysis, vol. 18, no. 4, pp. 563–
576, 2008. 

[40] V. Rodríguez-Diez, J. F. Martínez-Trinidad, M. S. Lazo-Cortés, and J. A. 
Carrasco-Ochoa, "The Impact of Basic Matrix Dimension on the 
Performance of Algorithms for Computing Typical Testors," in Lecture 
Notes in Computer Science: Springer, 2018. 

[41] V. Rodríguez-Diez, J. F. Martínez-Trinidad, M. S. Lazo-Cortés, and J. A. 
Carrasco-Ochoa, "A new algorithm for reduct computation based on gap 
elimination and attribute contribution," Information Sciences, vol. 435, 
pp. 111-123, 2018. 

[42] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE 
Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967. 

[43] Y. Villuendas-Rey, C. F. Rey-Benguría, Á. Ferreira-Santiago, O. 
Camacho-Nieto, and C. Yáñez-Márquez, "The Naïve Associative 
Classifier (NAC): A novel, simple, transparent, and accurate 
classification model evaluated on financial data," Neurocomputing vol. 
265, pp. 105-115, 2017. 

[44] Y. Villuendas-Rey, M.-D. Alanis-Tamez, C.-F. Rey Benguría, C. Yáñez-
Márquez, and O. Camacho-Nieto, "Medical Diagnosis of Chronic 
Diseases Based on a Novel Computational Intelligence Algorithm," 
Journal of Universal Computer Science, vol. 24, no. 6, pp. 775-796, 2018. 

[45] D. R. Wilson and T. R. Martinez, "Improved heterogeneous distance 
functions," Journal of Artificial Intelligence Research, vol. 6, pp. 1-34, 
1997. 

[46] J. A. Hernández-Castaño, O. Camacho-Nieto, Y. Villuendas-Rey, and C. 
Yáñez Márquez, "Experimental Platform for Intelligent Computing 
(EPIC)," Computación y Sistemas, vol. 22, no. 1, pp. 245-253, 2018. 

[47] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. 
Witten, "The WEKA Data Mining Software: An Update," ACM 
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009. 

[48] J. Alcalá-Fdez et al., "KEEL Data-Mining Software Tool: Data Set 
Repository, Integration of Algorithms and Experimental Analysis 
Framework," Journal of Multiple-Valued Logic & Soft Computing, vol. 
17, pp. 255–287, 2011.P. Refaeilzadeh, L. Tang, and H. Liu, "Cross-
Validation," in Encyclopedia of Database Systems: Springer, 2009. 

[49] M. Sokolova, N. Japkowicz, and S. Szpakowicz, "Beyond Accuracy, F-
Score and ROC: A Family of Discriminant Measures for Performance 
Evaluation," in Lecture Notes in Computer Science: Springer, 2006. 

[50] M. Kubat, R. Holte, and S. Matwin, "Learning when negative examples 
abound," in European Conference on Machine Learning, 1997. 

[51] M. Sokolova and G. Lapalme, "A systematic analysis of performance 
measures for classification tasks," Information Processing & 
Management, vol. 45, no. 4, pp. 427-437, 2009. 

[52] M. Kubat and S. Matwin, "Addressing the curse of imbalanced training 
sets: one-sided selection," in International Conference on Machine 
Learning, 1997. 

[53] D. Ballabio, F. Grisoni, and R. Todeschini, "Multivariate comparison of 
classification performance measures," Chemometrics and Intelligent 
Laboratory Systems, vol. 174, pp. 33-44, 2018. 

533 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Review of Previous Works on Automatic Fault Diagnosis of Journal Bearings
	III. Brief Introduction to LCPR Approach
	IV. Features of the Journal Bearing Vibration Spectrum
	V. Features and Datasets Supporting the Classification Tasks
	VI. Methodology
	VII. Results and Discussion
	VIII. Conclusions

