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Abstract 

The attentional blink (AB) represents a cognitive deficit in reporting the second of two targets 

(T2), when that second target appears 200-600msec after the first (T1). However, it is unclear 

how this paradigm impacts the subjective visibility (that is, the conscious perception) of T2, 

and whether the temporal profile of T2 report accuracy matches the temporal profile of 

subjective visibility. In order to compare report accuracy and subjective visibility, we asked 

participants to identify T1 and T2, and to rate the subjective visibility of T2 across two 

experiments. Event-related potentials were also measured. The results revealed different 

profiles for the report of T2 versus the subjective visibility of T2, particularly when T1 and 

T2 appeared within 200msec of one another. Specifically, T2 report accuracy was high but 

T2 visibility was low when the two targets appeared in close temporal succession, suggesting 

what we call the Experiential Blink is different from the classic AB. Electrophysiologically, 

at lag-1, the P3 component was modulated more by subjective visibility than by report 

accuracy. Collectively, the data indicate that the deficit in accurately reporting T2 is not the 

same as the deficit in subjectively experiencing T2. This suggests that traditional 

understandings of the AB may require adjustment and that, consistent with other findings, 

working memory encoding and conscious perception may not be synonymous. 

 

 

 

Key words: Attention, consciousness, electroencephalography, P300, subjective visibility.
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Introduction 

 

A key objective in the study of mind and brain is to characterise the temporal 

dynamics of cognitive and perceptual functions. For example, researchers have sought to 

answer questions concerning how long attention has to be engaged on an item in order to be 

reported (Duncan, Ward, & Shapiro, 1994; Ward, Duncan, & Shapiro, 1996), and what the 

temporal profile of working memory (WM) encoding is. One phenomenon that has been 

frequently employed to study the temporal dynamics of cognition is the Attentional Blink 

(AB) (Raymond, Shapiro, & Arnell, 1992). The AB refers to a deficit in correctly reporting 

the second of two targets when that second target (T2) appears 200-600msec after the first 

(T1). Most major theories of the AB maintain that it indexes the temporal cost of encoding a 

stimulus into working memory (Bowman & Wyble, 2007; Chun & Potter, 1995; Olivers & 

Meeter, 2008). However, it is unclear whether the cost associated with encoding T1 is 

specific to encoding T2 into working memory, or whether it impacts other functions, such as 

the conscious perception of T2. The current study was designed to examine this. 

This topic is particularly pertinent because it has the potential to throw light on 

whether WM encoding and conscious perception are synonymous. Within the AB domain, 

many researchers (including ourselves) have previously assumed that the correct report of T2 

(which requires WM encoding) suggests that T2 was consciously perceived (Bowman & 

Wyble, 2007; Kranczioch, Debener, Maye, & Engel, 2007; Pincham & Szucs, 2012). The 

assumption that T2 is consciously perceived when (and, indeed, only when) it is correctly 

reported therefore implies that WM encoding and conscious perception are synonymous: 

what is consciously perceived enters WM, and everything that enters WM is consciously 

perceived. In other words, this position suggests that conscious perception is necessary and 

sufficient for entry into WM. Even though it might be intuitively plausible to view conscious 
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perception and report accuracy as synonymous, the current study provides evidence to the 

contrary.  

Only a small number of AB studies have distinguished between WM encoding and 

the conscious perception of T2. In those studies, the conscious perception of T2 has been 

operationalized using subjective visibility measures, and WM encoding of T2 has been 

operationalized using T2 identity (report) accuracy (Nieuwenhuis & de Kleijn, 2011; Sergent 

& Dehaene, 2004). For example, Sergent and Dehaene (2004) collected subjective visibility 

measures of T2 and suggested that the distribution from non-conscious to conscious 

perception is bimodal. In that study, it appeared that T2 was either ‘seen’ (high subjective 

visibility rating) or ‘not seen’ (low subjective visibility rating). By contrast, Nieuwenhuis and 

de Kleijn (2011) collected subjective visibility and report accuracy measures for T2 and 

revealed that the conscious perception of T2 could be a more gradual distribution between 

low and high subjective visibility ratings. Importantly, neither of these existing studies asked 

whether conscious perception and accuracy are synonymous in the AB. Further empirical 

work is needed to uncover the relationship between WM encoding and subjective visibility in 

the AB.  

Outside of the AB, the relationship between conscious perception and WM encoding 

has been frequently debated in terms of the notion of phenomenological awareness (Block, 

2007). This debate really considers whether conscious perception is sufficient to ensure WM 

encoding, and the existence of phenomenological awareness would suggest it is not. 

Although the current investigation is related to Block’s work, it is distinct from that body of 

literature because we focus on the dual concept – whether conscious perception is necessary 

for WM encoding, and we will argue our findings suggest it is not.  

To examine the relationship between WM encoding and conscious perception in the 

AB, we presented two targets in a Rapid Serial Visual Presentation (RSVP) stream, and asked 
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participants to report the identities of T1 and T2. Participants were also asked to provide a 

subjective visibility rating for T2. Across lags, these data can generate two temporal profile 

curves: report accuracy across lags versus subjective visibility across lags. The accuracy 

profile represents the (classic) AB curve. We argue that if WM encoding and conscious 

perception are equivalent in the AB, then the report accuracy curve and the subjective 

visibility curve would have the same shape. 

In addition to examining behavioural data, the current study employed the temporal 

resolution of electroencephalography (EEG) to help contrast the temporal profiles of WM 

encoding and conscious perception in the AB. The P3 event-related potential component has 

been frequently viewed as an electrophysiological correlate of WM encoding (Polich, 2007; 

Vogel, Luck, & Shapiro, 1998). Studies have consistently found that P3 amplitude is reduced 

or even absent altogether on trials where T2 is reported incorrectly or not at all (Craston, 

Wyble, Chennu, & Bowman, 2009; Kranczioch, Debener, & Engel, 2003; Kranczioch, et al., 

2007; Martens, Elmallah, London, & Johnson, 2006; Pincham & Szucs, 2012; Robitaille, 

Jolicoeur, Dell'Acqua, & Sessa, 2007; Vogel, et al., 1998). More importantly, the timing of 

the P3 component has been taken to be the temporal profile of the AB deficit. A 

demonstration of this was provided by McArthur, Budd and Michie (1999), who matched the 

temporal profile of the T2-P3 to the temporal profile of the T2 report accuracy deficit 

observed in the AB.  

Given that previous AB work has rarely separated subjective visibility from report 

accuracy, it is not clear whether, in this context, the P3 indexes conscious perception, WM 

encoding or both. To that end, we examined how the amplitude and topography of the P3 is 

modulated by subjective visibility versus report accuracy. In a related study, Lamy, Salti and 

Bar-Haim (2008) measured ERPs in the context of a backwards masking paradigm to 

investigate the role of consciousness in online responding. To examine the neural correlate of 
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awareness, Lamy et al. contrasted P3 amplitudes across high subjective visibility and low 

subjective visibility trials, while holding report accuracy constant. To examine the neural 

correlate of unconscious perception, P3 amplitude was contrasted across accurate and 

inaccurate trials, while holding subjective awareness constant (low visibility). In that study, 

both report accuracy and subjective visibility were shown to modulate P3 amplitude, but the 

impact of subjective visibility on the P3 was larger and topographically more widespread. 

Whereas Lamy et al. examined online responding, our study was designed to uncover the 

relationship between conscious perception and WM encoding (where responding is later and 

offline). 

To summarise, the current study contrasted the temporal profile of WM encoding and 

conscious perception in the AB. To achieve this, two experiments were conducted. In 

Experiment 1, we aimed to sample the entire AB curve. Behavioural data were collected 

while T2 appeared at lags 1, 2, 3, 4, 6 or 8. In Experiment 2, behavioural and EEG data were 

collected, while T2 predominantly appeared at lags 1 and 3 (only two lags were used to 

enhance EEG signal strength). Following Lamy et al. (2008), we hypothesised that both 

report accuracy and subjective visibility would contribute to P3 amplitudes, although with 

subjective visibility possibly more so. Given that the current study is the first to compare 

report accuracy curves and subjective visibility curves in the AB, we did not make specific 

predictions about whether the shapes of those curves would be similar or dissimilar. 

 

Materials & Methods 

 

Participants 

Initially, twenty-one young adults took part in the study. One participant was removed 

due to an inability to achieve 50% accuracy for T1. Two more participants were removed 
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because more than 50% of the epochs extracted from their EEG data were rejected through 

the artifact detection criteria. Data from 18 participants (15 females) were therefore analysed. 

Participants were 19-28 years old (mean age: 21.67 years, SD = 2.93 years). Participants 

provided informed, written consent, had normal or corrected-to-normal vision and were 

fluent in English. The study was approved by the Psychology Research Ethics Committee at 

the University of Cambridge, UK. 

 

Stimuli and Procedure 

Stimuli were presented on a Sony Graphics Display CRT monitor with a 100Hz 

refresh rate. Targets were the uppercase letters excluding I, M, O, Q, W. These letters were 

excluded because of their physical similarity to digits (I, O and Q) or because their physical 

size meant that they were not adequately masked by digits (M and W). Each trial contained 

one or two targets – T1 occurred on every trial and was always presented in red, and T2 (if it 

occurred) was presented in white. Distractors were single digits excluding 0 and 1, presented 

in white. The rationale for presenting T1 in red and all other items in white was so that the 

visibility question (that is, “How visible was the white letter?”) would clearly refer to T2 and 

not T1. All alphanumeric stimuli appeared on a black screen. Stimuli subtended visual angles 

of 3.8˚ vertically and 2.9˚ horizontally, assuming a viewing distance of 57cm. On each trial, a 

fixation cue (a cross shape subtending 2˚×2˚) was presented in the centre of the monitor for 

200msec. The RSVP stream began 1000msec after the onset of the fixation cross. Each RSVP 

stream contained 15 items that were presented one after the other in the centre of the monitor 

(see Figure 1). The identities of the target letters and the digit distractors were randomly 

assigned on each trial with the restriction that successive items were not the same. Distractors 

were presented for 90msec with no ISI. T1 randomly appeared as the fourth, fifth or sixth 

item in the RSVP stream. 
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At the end of each RSVP stream, participants were asked to rate the subjective 

visibility of T2 using a self-report scale: “On a scale of 1-6, please indicate how well you 

have seen the white letter.” This prompt appeared immediately after the RSVP stream 

finished, which corresponded to 540-900msec after the onset of T2 (depending on T2 lag, and 

the position of T1 in the stream: fourth, fifth or sixth item in the stream). The numbers 1 2 3 4 

5 6 were presented in a horizontal line on the screen, with the description “not seen” 

presented beneath the number 1 and the description “maximal visibility” presented beneath 

the number 6 (see Figure 1). Participants used the number keys (1-6) on the keyboard to 

indicate their subjective visibility ratings. Although participants were not time-restricted in 

their subjective visibility ratings, participants typically responded very rapidly to the visibility 

prompt, suggesting that they were not replying on a decayed episodic memory of T2’s 

subjective visibility. Participants then reported the identity of T1 and T2 (even if a second 

target did not occur) using the keyboard letter keys. Participants were required to guess if 

they were unsure of the target identities.” 

All participants completed two experiments, spaced at least one week apart. 

Experiment 1 exclusively collected behavioural data and Experiment 2 collected both 

behavioural and EEG data. Experiment 1 consisted of four blocks, each with a different 

target/mask duration combination. The mask, if it occurred, was always the hash (#) symbol. 

In Block 1, targets appeared for 90msec with no mask. In Blocks 2, 3 and 4, the target/mask 

durations were 70msec/20msec, 60msec/30msec and 50msec/40msec respectively. In 

Experiment 1, T2 appeared at lags 1, 2, 3, 4, 6 or 8 with equal frequency. Experiment 1 

deliberately sampled a large number of lags in order to examine the relationship between T2 

accuracy and subjective visibility across the entire AB curve. Trials that did not present a 

second target (no-T2 trials) were also included with equal frequency (hence, one in seven 
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trials did not contain a second target). The no-T2 trials provide an index of the T2 guessing 

rate. Experiment 1 contained 4 blocks of 49 trials, totalling 196 experimental trials. 

For each participant, data from Experiment 1 were analysed to determine which of the 

four target/mask durations resulted in T2 being correctly reported on approximately 50% of 

lag 3 trials. Each participant’s optimal target/mask duration was then employed in 

Experiment 2. As a result, 28% of participants received the 70msec/20msec target/mask 

duration in Experiment 2, 50% of participants received the 60msec/30msec duration and the 

remaining participants received the 50msec/40msec duration. Experiment 2 contained 5 

blocks of 100 trials, totalling 500 trials. To maximise ERP signal strength in Experiment 2, 

T2 appeared at lag 1 on 200 trials, at lag 3 on 200 trials, at lag 6 on 50 trials and was absent 

on 50 trials.  

In Experiments 1 and 2, a distractor appeared in the place of T2 on no-T2 trials. 

However, the experimental program still assigned a target identity to T2, and participants 

were asked to report the subjective visibility and identity of T2 – even when a second target 

did not appear. In this manner, T2 ‘accuracy’ on no-T2 trials (trials where T2 was correctly 

guessed by chance) could be calculated. The no-T2 trials were included for two reasons. 

First, subjective visibility for T2 could be determined for trials where the second target was 

not present (this is the guess rate). It was therefore possible to confirm that participants were 

accurately using the visibility scale, because subjective visibility should be very low on trials 

where T2 did not occur. Second, T2 report accuracy on no-T2 trials could be calculated and 

compared with theoretical (chance) levels of correct T2 report accuracy. 

The order of the trials within each block was randomised. Participants could take 

short breaks between blocks. Testing occurred individually in an acoustically and electrically 

shielded booth. 

[INSERT FIGURE 1 ABOUT HERE] 
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EEG Acquisition and Pre-processing 

EEG was recorded using the Electrical Geodesics Inc. system and a 129-channel 

hydrocel geodesic sensor net. The sampling rate was 500Hz. An anti-aliasing lowpass filter 

of 100Hz was applied during data acquisition. Offline, the data were bandpass filtered 

between 0.01–30Hz and recomputed to an average reference. The continuous EEG was 

segmented into epochs between -200 to 1000msec relative to the onset of T1. Spline 

interpolation was carried out on individual channels if required. The mean percentage of 

interpolated channels was 4.60% (range: 0–8.59%). Epoched data were smoothed using a 

50msec Gaussian filter. 

Epochs were excluded from analysis if they met any of the following artifact rejection 

criteria: voltage deviations exceeded ±100µV relative to baseline, the maximum gradient 

exceeded 50µV, or activity was lower than 0.5µV. Across participants, 78.02% of trials were 

retained after artifact rejection. 

 

Data Analysis 

The behavioural data were analysed using two different approaches. Note that T2 

report accuracy was conditional on T1 being correctly reported (T2|T1), such that trials where 

T1 was incorrectly reported were not included in calculation of T2 accuracy. Data were first 

analysed using the standard approach, which compares T1 report accuracy and T2 report 

accuracy in an omnibus ANOVA and then looks at lag effects for T1 and T2, where the latter 

of these is the classic way to demonstrate an attentional blink. This approach collapsed the 

data across the subjective visibility ratings. The second analysis considered the interaction 

between measure type (T2 accuracy and mean T2 subjective visibility rating) and lag (again, 

only for trials where T1 was correctly  reported).  
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The data were analysed in these two ways because the first analysis reflects the 

standard analysis conducted in the AB literature, enabling comparisons with extant research. 

The second analysis is a novel approach that allowed us to compare the AB accuracy curve 

with the subjective visibility curve. In Experiments 1 and 2, data from the no-T2 trials were 

not analysed. Tukey’s adjustment procedure was used to correct for multiple comparisons in 

all post-hoc contrast analyses.  

 

Behavioural Data: Experiment 1 

T1 vs. T2 Accuracy: Target accuracy for T1 and T2 were analysed using a block (1 

vs. 2 vs. 3 vs. 4) × target (T1 vs. T2) × lag (1 vs. 2 vs. 3 vs. 4 vs. 6 vs. 8) repeated measures 

ANOVA. We also burrowed into this ANOVA to analyse simple effects of T1 by lag and T2 

by lag separately. This was justified since the interaction of target and lag was significant. 

Indeed, one might argue for running planned comparisons across lags for T2, since the 

Attentional Blink is a well attested phenomenon. However, our effects were extremely 

strong, even without this.   

T2 Accuracy vs. T2 Visibility: To uncover the relationship between subjective 

visibility and report accuracy, mean T2 accuracy and mean subjective visibility ratings were 

calculated for each participant at each lag. For comparability across the two dependent 

measures, subjective visibility ratings were transformed into scores out of 100. Only trials 

where T1 was correctly identified were included. An ANOVA was employed with T2 

measurement type (T2 Accuracy vs. T2 visibility) and lag (1 vs. 2 vs. 3 vs. 4 vs. 6 vs. 8) as 

within-subjects factors. Although the main effect of T2 measurement type is not meaningful 

here (because two different dependent measures are being contrasted), a factorial ANOVA 

was included in order to examine the all-important interaction effect. An interaction between 

measurement type and lag would suggest that lag-related changes in T2 visibility differ from 
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lag-related changes in T2 accuracy. In other words, a significant interaction would suggest 

that the shapes of the report accuracy curve and subjective visibility curve differ, such that 

the AB paradigm does not equally impact T2 WM encoding and T2 subjective visibility. 

 

Behavioural Data: Experiment 2 

In Experiment 2, T2 appeared at lag 1 or lag 3 on the majority of trials. Behavioural 

and EEG analyses for Experiment 2 are therefore restricted to these lags. Behavioural data 

from lag 6 are included in the appropriate figures for illustrative purposes. 

T1 vs. T2 Accuracy: Target accuracy scores for T1 and T2 were compared using a 

target (T1 vs. T2) × lag (1 vs. 3) within-subjects ANOVA, and again, since the interactions 

were significant, we looked at the simple effect of lag for T1 and of lag for T2 separately. 

Again, a planned comparison was not performed, since the post hoc test was already highly 

significant. 

T2 Accuracy vs. T2 Visibility: A 2 × 2 ANOVA was employed with measurement 

type (T2 accuracy vs. T2 visibility) and lag (1 vs. 3) as within-subjects factors. Pearson’s 

correlations between T2 report accuracy (% correct) and T2 subjective visibility were also 

calculated separately for lag 1, lag 3, lag 6 and no-T2 trials. The correlations were employed 

to track the extent to which report accuracy and subjective visibility are linearly related at 

each lag. 

 

ERP Data: Experiment 2 

For every participant and every lag, the proportion of T2 visibility ratings falling into 

each of the six rating options was calculated. To pre-empt the empirical findings, 

participants’ subjective visibility responses suggested that they were reluctant to use the 

upper visibility ratings. More than 50% of trials were quite low in subjective visibility. It 
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therefore made statistical sense to create two visibility bins, creating – as far as possible – an 

approximate median split of the data (see Supplementary Material A). The two lowest 

visibility ratings formed the low visibility bin, and the remaining four visibility ratings 

formed the high visibility bin. The formation of two visibility bins therefore enhanced ERP 

signal strength (more epochs falling within each bin). The distribution of visibility ratings 

across the lags is shown in Supplementary Material A. 

Epochs were time-locked to T1-onset, so that the zero time point reflects T1-onset, 

90msec represents T2 onset at lag 1, and 270msec reflects T2 onset at lag 3. Post-stimulus P3 

effects were analysed at Pz (electrode 62 in the EGI net) because the P3 component is 

maximal at centro-parietal locations (Polich, 2007). Epochs were categorised according to lag 

(1 vs. 3), T2 report accuracy (T2-correct vs. T2-incorrect) and subjective visibility (low vs. 

high). 

Consecutive time windows of two-hundred millisecond durations were employed to 

capture activity associated with the T1-P3 and the T2-P3 components. Specifically, mean T1-

P3 amplitude was examined between 300-500msec after T1 onset, T2-P3 amplitude at lag 1 

was analysed 500-700msec after T1 onset (which corresponds to 410-610msec after T2 onset 

at lag 1) and mean T2-P3 amplitude at lag 3 was analysed 700-900msec after T1 onset (which 

corresponds to 340-540msec after T2 onset at lag 3). The choice of window placements is 

further justified in Supplementary Material B. Mean amplitudes were calculated rather than 

peak activity because previous work has shown that two distinct peaks (for T1 and for T2) are 

not apparent when T2 is presented at lag 1 (for example, Craston et al., 2009). Further, 

calculating mean amplitude is generally preferable because peaks are biased by uneven trial 

numbers across conditions (Luck, 2005). For all analyses, ERPs were only included if T1 was 

correctly reported. 
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T1 vs. T2 Accuracy and Visibility: A target (T1 vs. T2) × lag (1 vs. 3) × T2 

accuracy (T2-correct vs. T2-incorrect) repeated measures ANOVA was used to compare P3 

mean amplitudes. This analysis ignored subjective visibility ratings. Recall that T2 report 

accuracy was only calculated on trials where T1 was correctly detected. We re-analysed the 

ERP data based on subjective visibility rating, rather than report accuracy. Therefore, T2 

accuracy was ignored and a target (T1 vs. T2) × lag (1 vs. 3) × visibility (low vs. high) 

repeated measures ANOVA was employed. 

T2 Accuracy vs. T2 Visibility: Two ANOVAs were conducted to make comparisons 

between report accuracy and subjective visibility (see also Lamy et al. (2008) for similar 

statistical comparisons). In the first, only T2-correct trials were considered and compared 

across the two visibility ratings using a repeated-measures ANOVA with target (T1 vs. T2), 

lag (1 vs. 3) and visibility (low vs. high) as factors. The second only considered cases of low 

visibility, and compared across T2 accuracy: target (T1 vs. T2) × lag (1 vs. 3) × accuracy 

(T2-correct vs. T2-incorrect). 

 

Results 

Behavioural Data: Experiment 1 

T1 vs. T2 Accuracy: This analysis examined report accuracy according to block, 

target and lag. Across blocks, T2 report accuracy decreased with decreasing T2 duration 

(F(3,51)=55.482, p<.001, η
2
=.765). Apart from a main effect of block, the pattern of findings 

(as described below) was the same across the blocks. Data were therefore collapsed across 

the four blocks for ease of interpretation. As shown in Figure 2, T1 accuracy was 

significantly higher than T2 accuracy (F(1,17)=173.936, p<.001, η
2
=.911). Increased 

accuracy for T1 (even at lags 1 and 8) is likely due to the colour marking of T1, effectively 

rendering T1 a singleton. Consistent with the traditional AB deficit, accuracy differed across 
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lags (F(5,85)=4.703, p=.001, η
2
=.217). An interaction between target and lag also emerged 

(F(5,85)=7.120, p<.001, η
2
=.295), and accordingly we looked separately at T1 and T2 report 

accuracy across lags. In the T1 analysis, the main effect of lag was significant 

(F(1,17)=3.344, p=.008, η
2
=.164). Tukey corrected pairwise post-hoc contrasts indicated that 

this effect was due to reduced T1 accuracy at lag 1 versus lag 3 (p=.002). No other pairwise 

comparisons between lags were significant. In the T2 analysis, the main effect of lag was also 

significant, indicating that T2|T1 report accuracy differed according to lag (F(1,17)=6.042, 

p<.001, η
2
=.262), i.e. there was a clear attentional blink. On trials where T2 was not 

presented, T1 accuracy was 94.25% and the identity of T2 was correctly guessed on 8.57% of 

trials on which T1 was correctly reported. 

 

T2 Accuracy vs. T2 Visibility: Figure 2 displays data from the T2 measurement type 

× lag ANOVA. This analysis revealed a main effect of lag (F(5,85)=14.073, p<.001, 

η
2
=.453). Importantly, the main effects were modulated by an interaction between the type of 

measure and lag (F(5,85)=14.633, p<.001, η
2
=.463). As is clear in Figure 2, accuracy and 

subjective visibility appeared to track one another at most lags, but the absolute difference 

between T2 report accuracy and T2 visibility ratings was greatest at earlier lags and largest at 

lag 1. Post-hoc contrasts confirmed that the difference between T2 report accuracy and T2 

visibility was significantly larger at lag 1 than at other lags (lag 1 vs. lag 2: p=.072, lag 1 vs. 

lags 3, 4, 6, 8: all p<.002). The difference between T2 report accuracy and T2 visibility were 

not statistically different across all other lags. Further analyses (used to assess the robustness 

of these findings, especially the validity of comparing two different measures: report 

accuracy and subjective visibility) are included in Supplementary Material C.  

 

[INSERT FIGURE 2 ABOUT HERE] 
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Behavioural Data: Experiment 2 

T1 vs. T2 Accuracy: The target × lag ANOVA indicated that T1 report performance 

significantly exceeded T2 performance (F(1,17)=311.040, p<.001, η
2
=.948). As expected, 

target report accuracy was higher at lag 1 than at lag 3 (F(1,17)=18.446, p<.001, η
2
=.520). 

Report accuracy was also influenced by the interaction between target and lag, as the impact 

of lag differed for T2 accuracy versus T1 accuracy (F(1,17)=93.872, p<.001, η
2
=.847). We 

then looked inside this significant target  × lag interaction separately for T1 and T2 report 

accuracy across lags. In the T1 analysis, the main effect of lag was significant, as T1 report 

accuracy was reduced at lag 1 versus lag 3 (F(1,17)=32.200, p<.001, η
2
=.654). In the T2 

analysis, the main effect of lag was also significant, as T2|T1 report accuracy was higher at 

lag 1 than at lag 3 (F(1,17)=51.676, p<.001, η
2
=.752). 

Similarly to Experiment 1, on no-T2 trials, T1 accuracy was high (93.73%) and T2 

accuracy was at approximately the level expected due to chance (3.20%). Importantly, the 

calibration procedure used in Experiment 1 to equate the number of T2-correct and T2-

incorrect trials at lag 3 was successful here because T2 was correctly reported on 42.3% of 

trials at lag 3. These data are shown in Figure 3.  

 

T2 Accuracy vs. T2 Visibility: The comparison of T2 report accuracy and mean 

subjective visibility ratings is shown in Figure 3. This analysis revealed a main effect of lag 

(F(1,17)=29.266, p<.001, η
2
=.633). There was also an interaction between the type of 

measure and lag (F(1,17)=87.052, p<.001, η
2
=.837). Tukey post-hoc contrasts showed that 

while subjective visibility ratings did not differ across lags 1 and 3 (p=.423), target accuracy 

scores did (p<.001). 
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[INSERT FIGURE 3 ABOUT HERE] 

 

Confirming the results of the ANOVA, T2 report accuracy was significantly 

positively correlated with subjective visibility at lag 3 and at lag 6 suggesting that higher 

rates of T2 report accuracy tended to be associated with higher subjective visibility ratings at 

those lags (lag 3: r=.516, p=.028; lag 6: r=.759; p<.001). The correlation was not, though, 

significant at lag 1 (r=.460; p=.055), although there was a trend towards a significant effect. 

On no-T2 trials, there was no relationship between T2 report accuracy and subjective 

visibility (r=.021, p=.936). Figure 4 displays the data used in the correlational analyses. 

 

[INSERT FIGURE 4 ABOUT HERE] 

 

ERP Data: Experiment 2 

T1 vs. T2 Accuracy: In this analysis, a target × lag × T2 report accuracy ANOVA 

was used to examine P3 mean amplitudes. As shown in Figure 5A, mean T1-P3 amplitude 

(mean=2.003; SE=0.572) was larger than mean T2-P3 amplitude (mean=0.697; SE=0.699) 

(F(1,17)=11.125, p=.004, η
2
=.396). P3 amplitudes were larger on T2-correct trials 

(mean=1.693; SE=0.647) than on T2-incorrect trials (mean=1.007; SE=0.591) 

(F(1,17)=8.584, p=.009, η
2
=.336). A significant target × T2 report accuracy effect indicated 

that the difference between T2-correct and T2-incorrect trials was more pronounced for the 

T2-P3 than the T1-P3 (F(1,17)=6.988, p=.017, η
2
=.291). Tukey post-hoc pairwise 

comparisons confirmed that the T2-P3 was significantly larger on T2-correct trials 

(mean=1.324; SE=0.587) compared with T2-incorrect trials (mean=0.694; SE=0.634; 

p<.001). Mean T1-P3 amplitude did not differ significantly across T2-correct (mean=2.061; 

SE=0.778) and T2-incorrect trials (mean=1.320; SE=0.652; p=.269). The lag main effect 
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approached significance, suggesting that P3 mean amplitude on lag 1 trials (mean=1.691; 

SE=0.665) tended to be higher than P3 mean amplitude on lag 3 trials (mean=1.009; 

SE=0.600) (F(1,17)=3.741, p=.070, η
2
=.180). No other effects were statistically significant 

(largest F=1.718). Difference topographies (shown in Figures 5B – 5E) reveal that the post-

stimulus effects were strongest in parietal scalp locations, as expected. This was particularly 

the case for the T2-P3 difference topographies (Figures 5C and 5E). 

 

T1 vs. T2 Visibility: This analysis compared P3 amplitudes using a target × lag × 

visibility repeated measures ANOVA. As in the previous Analysis, mean T1-P3 amplitude 

(mean=2.067; SE=0.621) was larger than mean T2-P3 amplitude (mean=0.849; SE=0.708) 

(F(1,17)=9.641, p=.006, η
2
=.362; see Figure 5F). Further, P3 amplitude was significantly 

larger for trials rated as high in subjective visibility (mean=1.992; SE=0.743) than on trials 

rated as low visibility (mean=0.924; SE=0.578) (F(1,17)=7.525, p=.014, η
2
=.307). A target × 

lag interaction indicated that mean amplitude differences between lag 1 and lag 3 trials were 

more pronounced for the T2-P3 than the T1-P3 (F(1,17)=6.850, p=.018, η
2
=.287). Tukey 

post-hoc comparisons confirmed that there was no statistical difference between lag 1 and lag 

3 for the T1-P3 (Lag 1 Mean=2.219; SE=0.664 versus Lag 3 Mean=1.915; SE=0.655; 

p=.691). However, the lag 1 T2-P3 was significantly larger than the lag 3 T2-P3 (Lag 1 

Mean=1.511; SE=0.681 versus Lag 3 Mean=0.187; SE=0.842; p<.001). Difference 

topographies confirmed that the P3 effect was strongest around Pz. This was especially clear 

in the T2-P3 difference topographies (Figures 5H and 5J) and for the T1-P3 difference 

topography at lag 1 (Figure 5G). No other effects attained statistical significance (largest 

F=2.873). 

 

[INSERT FIGURE 5 ABOUT HERE] 
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T2 Accuracy vs. T2 Visibility: To further explore what the P3 is most representative 

of: encoding into WM or conscious perception, we sought to keep one variable fixed (e.g. 

visibility), and examine the extent to which the P3 varied with the other variable (e.g. report 

accuracy). The relevant ERPs are shown in Figure 6. Statistically, we first considered only 

T2-correct trials and examined P3 amplitudes using an ANOVA with target, lag and visibility 

as factors. Here, T1-P3 amplitude (mean=2.001; SE=0.591) was significantly larger than T2-

P3 amplitude (mean=0.829; SE=0.702) (F(1,17)=7.499, p=.014, η
2
=.306). Further, mean P3 

amplitudes were significantly higher under high visibility (mean=2.166; SE=0.670) than 

under low visibility (mean=0.664; SE=0.653) (F(1,17)=9.075, p=.008, η
2
=.348). Finally, the 

target × lag interaction was significant, indicating that the differences between lags 1 and 3 

were driven by the T2-P3 and not the T1-P3 (F(1,17)=5.323, p=.032, η
2
=.238).  

Next, we only considered cases of low visibility, and compared P3 amplitudes using a 

target × lag × accuracy ANOVA. This analysis confirmed that the T1-P3 (mean=1.632; 

SE=0.539) was larger than the T2-P3 (mean=0.036; SE=0.662) (F(1,17)=16.149, p=.001, 

η
2
=.487).  The target × lag interaction also approached significance (F(1,17)=3.511, p=.078, 

η
2
=.171). Importantly, the main effect of report accuracy was not significant (F<1), nor were 

any other interactions with report accuracy (largest F=1.798). The data from this analysis are 

shown in Figure 6. 

As seen in the analyses above, subjective visibility significantly impacted P3 

amplitudes, whereas T2 accuracy did not significantly impact P3 amplitudes. In order to 

confirm that visibility was a more powerful mediator of P3 amplitudes than accuracy, it was 

necessary to directly contrast accuracy and visibility, in terms of their effects on P3 

amplitude. We therefore calculated visibility difference scores (high visibility/T2-correct 

minus low visibility/T2-correct),) and accuracy difference scores (low visibility/T2-correct 
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minus low visibility/T2-incorrect) for each participant. Based on Lamy et al. (2008), we 

hypothesized that subjective visibility would be a more powerful determinant of P3 amplitude 

than accuracy. Paired samples one-tailed t-tests confirmed that visibility difference scores 

were larger (mean=1.892; SE=0.801) than accuracy difference scores at lag 1 (mean=-0.581; 

SE=0.904) (t(17)=1.756, p=.048, Cohen’s d=.647), but not at lag 3 (visibility difference score 

mean=1.114, SD=0.833 versus accuracy difference score mean=-0.101, SE=0.604) 

(t(17)=0.910, p=.188, Cohen’s d=.386). Collectively, these data suggest that subjective 

visibility plays a greater role than accuracy in determining P3 amplitudes, at least at lag 1
1
. 

 

[INSERT FIGURE 6 ABOUT HERE] 

 

 

Discussion 

 

The current study was designed to contrast T2 report accuracy and T2 subjective 

visibility in the AB. Critically, the behavioural findings indicate that, across lags, the shapes 

of the accuracy curve and the subjective visibility curve were not identical. Rather, the data 

suggest that the subjective visibility curve and the AB curve differ at early lags: a little at lag 

2 and a lot at lag 1. Despite high T2 report accuracy during early lags, subjective visibility of 

T2 was seen to be particularly low. Our behavioural results therefore suggest that WM 

encoding and conscious perception are not synonymous in the AB. Further, the data suggest 

that the classic AB deficit is distinct from, what we name, the ‘experiential blink’. The 

                                                           
1
 A more complete analysis would have involved a full two-by-two crossing of visibility and accuracy. However, 

this 2 X 2 ANOVA on P3 amplitude could not be formed with this data set, since the response T2-incorrect/ 

High Visibility was almost never made. This prevents us from being able to interrogate the visibility by report 

accuracy interaction, which would have been the most compelling demonstration of our thesis. 
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experiential blink is defined as a deficit in subjective visibility for T2 (as opposed to T2 

report accuracy), which results from the temporal proximity of T1 and T2. The EEG data also 

support a distinction between WM encoding and conscious perception. At lag-1, subjective 

visibility appeared to be a more powerful determinant of P3 amplitude than report accuracy 

(see especially Figure 6), suggesting that the conscious perception of T2 (as indexed by 

subjective visibility) is not synonymous with the encoding of T2 into WM (as indexed by 

report accuracy). 

 

Behavioural Data 

In Experiments 1 and 2, T2 report accuracy and subjective visibility tracked one 

another between lags 4 – 8. This pattern may have started to diverge at lag-3, but then 

certainly did at lag 2, with the greatest difference between T2 report accuracy and visibility 

observed at lag 1; see Figures 2 and 3. The increased difference between accuracy and 

subjective visibility at early lags suggests that WM encoding is more effective at these lags 

than would be expected by the relatively poor conscious perception of T2. These central 

findings were evident across both experiments, and were confirmed with supplementary 

analyses (see Supplementary Material C). If it is assumed that T2 must be encoded into WM 

in order to be correctly reported and that subjective visibility ratings reflect conscious 

perception, then the current data highlight a potential disparity between WM encoding and 

conscious perception. Additionally, we suggest that the traditional attentional blink be 

viewed as distinct from the experiential blink. At the very least, the data undermine the 

(albeit implicit) assumption common in the AB literature that the conscious perception of T2 

is synonymous with accurate report of T2.  

It is surely the case that, in most everyday contexts, conscious perception is 

synonymous with WM encoding. Indeed, under most lags employed here, conscious 
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perception closely tracked WM encoding. However, conscious perception has been 

dissociated from the visuomotor system in blindsight patients where accuracy can be above 

chance, despite poor subjective visibility (Weiskrantz, 1986). Our data may therefore be 

indicative of a form of WM ‘blindsight’ in non-patient (control) populations. Importantly, the 

current study should be distinguished from related phenomena such as implicit learning and 

subliminal priming. During implicit learning, the rule or relationship that is implicitly learned 

is, by definition, not reportable (Lovibond & Shanks, 2002). During subliminal priming, the 

prime’s identity is also inaccessible (Bar & Biederman, 1998; Cheesman & Merikle, 1984). 

Both of these situations are in contrast to what we have here, whereby T2’s identity was 

accurately reported at the earliest lag, despite no/low subjective visibility of that item. Thus, 

our difference is between conscious perception and explicit recall of identity, which must 

come from a stored and maintained representation (that is, a representation from WM). 

Indeed, one might call the behavioural phenomenon presented here sight-blink recall, since 

the item is not perceptually “seen”, but it is recalled. 

The correlational data presented in Experiment 2 support the idea that consciously 

perceiving a target is not necessary for that target to be encoded in WM. At lag 6, participants 

appeared to be most accurate in predicting (with subjective visibility) whether T2’s identity 

was correctly reported. However, WM encoding and conscious perception were most poorly 

related at lag 1. These data therefore additionally suggest that metacognitive (or 

introspective) capabilities monotonically increase with increases in target onset asynchrony 

between T1 and T2. This is in stark contrast to classic AB report accuracy, which robustly 

exhibits a U-shaped pattern, strictly formalised as an inverted gamma pattern across lags (Su, 

Bowman, & Barnard, 2011). 

Lau and Passingham (2006) present a related finding to ours. Specifically, using 

metacontrast masking they were able to compare two target-mask SOAs that exhibited the 



The Experiential Blink 
 

24 
 

same stimulus discrimination performance, but different Seen/Not-seen visibility judgements. 

This finding, and its temporal profile, in which participants reported lower visibility at shorter 

SOAs, is consistent with our observation that subjective visibility drops relative to report 

accuracy as the T1 and T2 become temporally closer, with lag-1 being the closest. This raises 

the interesting possibility that the same perceptual mechanism may underlie both findings, 

which is further discussed under Theoretical Interpretation later in this Section. 

However, a number of differences do exist between Lau and Passingham’s (2006) 

study and ours. For example, their study is more directly differentiating objective and 

subjective perception, while, as previously discussed, our findings are more about 

differentiating encoding into WM from subjective perceptual experience. This is reflected in 

our task requiring identification and encoding into WM amongst a large number of 

alternatives – most of the letters of the alphabet. Further, Lau and Passingham identify fMRI 

correlates of their finding, whereas our use of EEG enables us to consider a response time-

course, with a fine temporal resolution. 

The current behavioural findings also nicely complement those identifying WM 

maintenance without conscious awareness (Soto & Silvanto, 2014) and particularly with data 

reported by Bergstrom and Eriksson (2014) who demonstrated such an effect for the AB. Our 

finding might be considered as the identification of a WM encoding mechanism without 

awareness, from which extended pre-conscious WM maintenance traces could arise. 

 

ERP Data 

Confirming existing work, P3 amplitude was increased when T2 was correctly 

reported versus incorrectly reported (Craston, et al., 2009; Pincham & Szucs, 2012; Vogel, et 

al., 1998). P3 amplitude was also enhanced under high compared with low visibility (Del Cul, 

Baillet, & Dehaene, 2007; Sergent, Baillet, & Dehaene, 2005). The more interesting finding, 
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however, was that the P3 component was differentially affected by changes in report 

accuracy versus subjective visibility. When T2 report accuracy was held constant (that is, 

only T2-correct trials were analysed), P3 amplitude was more positive on high visibility trials 

and seemed to have been eliminated under low visibility (see Figure 6A). By contrast, when 

visibility was equalised (that is, only low visibility trials were analysed), there was no 

apparent difference between T2-corrrect and T2-incorrect trials (see Figure 6B). Moreover, 

these two differences, (1) between High and Low visibility (with report accuracy constant) 

and (2) between correct and incorrect (with visibility constant), were themselves statistically 

different. Subjective visibility of T2 therefore appeared to be a more powerful determinant of 

P3 size than T2 report accuracy. For example, the T2-correct/low visibility ERP was much 

more similar to the T2-incorrect/low visibility ERP than to the T2-correct/high visibility ERP 

(see Figure 6), suggesting that changes in subjective visibility are what most significantly 

modulate the P3 in our RSVP context. Additionally, if one views the P3 as likely to be 

generated by a fronto-parietal network, these ERP findings would be somewhat consistent 

with Frassle and colleagues’ (2014) association of such an fMRI network with introspection 

of subjective experience. 

Lamy et al. (2008) also found that subjective visibility more strongly impacted P3 

amplitudes than accuracy did. However, making this inference in Lamy et al.’s work was to 

some extent confounded by the fact that guesses might bias the correct/low visibility ERP. 

Lamy et al. estimated the form of that ERP with guessing corrected for, but acknowledged 

that this was only an estimate. Because our behavioral task required letter identification, the 

probability of guessing a correct response was negligible (one in twenty), and much smaller 

than that in the Lamy et al. study (where it was one in four). It is also important to emphasise 

that the task employed by Lamy et al. (2008) is very different to ours. Specifically, in their 

study, an online task was performed, for which the involvement of WM was unclear. Our task 



The Experiential Blink 
 

26 
 

explicitly engages WM. Thus, Lamy et al. explored the differentiation of subjective visibility 

and perceptual discrimination, while we explore the differentiation of subjective visibility and 

WM encoding. 

Within the AB literature, the P3 component has been primarily viewed as an index of 

WM encoding and cognitive resource allocation (for example, Pincham & Szucs, 2012; 

Shapiro, Schmitz, Martens, Hommel, & Schnitzler, 2006; Vogel, et al., 1998). However, 

outside of the AB, the P3 is linked to various cognitive mechanisms including task 

difficulty/demands (Courchesne, 1978), stimulus categorisation (Mecklinger & Ullsperger, 

1993), decision making (Nieuwenhuis, Aston-Jones, & Cohen, 2005) and even subjective 

visibility (Del Cul, et al., 2007; Melloni, Schwiedrzik, Müller, Rodriguez, & Singer, 2011; 

Sergent, et al., 2005). This variety of characterisations of the P3, seems to stand against the 

possibility that there is a single unifying cognitive characterisation of the component. Thus, it 

is important to consider the generality of our P3 findings.  

In this respect, we found little, if any, evidence of the P3 responding to report 

accuracy in our experiment. For example, the higher amplitudes for Correct conditions in 

Figure 5A, could be explained by the correlation between report accuracy and subjective 

visibility (compared with Figure 4). Further, Figure 6 (which is the clearest contrast for this 

question) gives very little evidence that the P3 is modulated by report accuracy in our 

experimental paradigm. 

Despite this, we are not in a position to definitively infer that the P3 does not respond 

to report accuracy in the attentional blink. In particular, due to a lack of trials in the T2-

incorrect/High Visibility condition, we were unable to consider whether T2-correct generates 

a larger P3 pattern than T2-incorrect, when subjective visibility is high,. Furthermore, it was 

not possible to analyse the P3 at lag-6, due to a limited number of trials. In addition, the AB 

conditions we have considered might be a special case, where the perceptual demands are so 
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hard that subjective experience and report accuracy decouple. Importantly, this would be 

sufficient to support the basic claim we are making, viz that conscious experience and 

encoding into WM are not exactly the same. Strictly, a single counterexample suffices to 

disprove an assertion, and we present that here. 

One inconsistent set of findings in the literature are a number of impressive studies that 

ascribe a post-perceptual locus for the P3 (Pitts, Padwal, Fennelly, Martínez, & Hillyard, 

2014; Shafto & Pitts, 2015; Squires, Hillyard, & Lindsay, 1973). Our experiment though has 

a number of differences to these previous studies, which presumably explain the difference in 

findings. We discuss these in turn. 

1) The stimuli that were being assessed for perceptual experience in these previous 

studies were typically drawn from a very small set, e.g. a detection task in Squires et 

al. and two shapes in Pitts et al.. Consequently, the perceptual judgement / encoding 

into WM processes were much more informationally-rich in our study (i.e. identify a 

letter). 

2) The elegant demonstration by Pitts and colleagues (Pitts, et al., 2014; Shafto & Pitts, 

2015) that the P3 in their experiment was modulated by task set, does not naturally 

carry over to our setting. This is because task set, certainly in respect of instruction, is 

constant throughout our experiment. What modulates the P3 in the current study is 

behaviour (specifically High vs Low visibility). 

3) Pitts et al. (2014) highlighted a number of confounds associated with studies of 

conscious experience that mean that post-perceptual processes are not equated across 

conditions. These confounds are, at least to a large extent, resolved in our experiment. 

In particular, our key P3 comparison contrasts subjective visibility levels, while report 

accuracy is controlled, i.e. the “same” identity report (although not, of course, the 
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same subjective visibility report) is made for both High and Low subjective 

visibilities (see Figure 6). 

Additionally, the P3 in RSVP may present differently to the P3 in paradigms without a rapid 

sequence of repeated onsets. Importantly, the key P3 finding in RSVP previous to this paper 

was that a P3 is present when an item breaks through into awareness, and is reported. But to 

all intents and purposes, the P3 is not present at all when it is not correctly reported in the 

current study. Our specific claim in this paper is about the P3 as it manifests in this “fringe of 

awareness” context. 

Furthermore, we do not definitively know whether the P3 is the earliest component 

that responds to either subjective visibility or report accuracy in RSVP. Indeed, it could be 

that there is an earlier process in the timecourse, which we do not see in our EEG 

experiments. Possibilities for such a component are the modulation of the P2 (Vogel, et al., 

1998) or the N2 (Sergent, et al., 2005), which might be related to the Visual Awareness 

Negativity (Shafto & Pitts, 2015). This said, we present empirical evidence that the P3 was 

modulated by subjective visibility in our experimental setting – this is our key finding. Thus, 

while it might be that the P3 is not the earliest component that responds to conscious 

experience in our paradigm, it would seem that, at the least, it is driven by such a component. 

 

Integration 

 In the current study, we seek to attribute the increased difference between report 

accuracy and subjective visibility that we observe at very early lags (and particularly lag-1) to 

a divergence between encoding into working memory and conscious perception. The case for 

this inference may be somewhat complicated by current theories of the lag-1 data point. 

Specifically, many have argued that lag-1 is a special case, in which the T1 and T2 are 

sometimes processed together, even as a single integrated percept (Akyürek et al., 2012; 
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Bowman & Wyble, 2007; Hommel & Akyürek, 2005; Wyble, Bowman, & Nieuwenstein, 

2009). 

 This then raises the possibility that the reduction in subjective visibility ratings at lag-

1 are not specifically a reduction in conscious experience, but more confusion about the 

conscious experience. That is, that conscious experience of T2 at lag-1 is not exactly reduced 

in strength, but rather yields an unfamiliar conscious experience leading participants to report 

a low subjective visibility because of what one may call a “loss of confidence” in their 

experience. Put in other terms, it could be that in some sense the perceptual image of T2 at 

lag-1 is in fact strong, but the co-presence of a T1 in that perceptual experience means one 

cannot accurately rate the T2’s perceptual strength. This is a subtle distinction, since our 

hypothesis is fundamentally about the subjective and confidence is part of that very 

subjectivity. However, even if we entertain the possibility that it would be a confound, there 

are a number of reasons to believe that this confusion due to order explanation cannot 

account for our findings. 

First, colour marking was incorporated in the experiment to ensure that T1 was 

coloured distinctly from the rest of the stream, and particularly from T2. One reason for 

doing this was to mitigate against the possibility of obtaining integrated percepts at lag-1, and 

there is evidence that this worked. Specifically, in letters-in-digits tasks, of which the 

experiment here is an example, the cardinal indicator of integrated percepts is order errors. 

That is, if T1 and T2 are encoded as a single undifferentiated whole, information about the 

order in which they occurred would be lost, and in fact, conjunction information between the 

T1, the T2 and the colour in which T2 occurred would be lost. Importantly though, order 

errors were very rare in our experiments: they were around 10% compared to 30% in classic, 

un-colour marked letters-in-digits tasks (e.g., Chun & Potter, 1995). This suggests that the 

percentage of trials in which no order information was present was no more than 2 x 10%, 
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since on such trials if participants would guess the order, 50% of the time they would get it 

right. This then implies that on at least 80% (100% minus 20%) of the trials, the T2 was 

successfully differentiated as the second target, i.e. the letter that was not colour-marked. 

This stands against the suggestion that T1-T2 integrations are prevalent at lag-1 and underlie 

the drop in relative subjective visibility at early lags in our experiments. 

Second, it is important to note that the reduction in relative subjective visibility can 

also be observed at lag-2, and perhaps also the beginning of the effect at lag-3, see Figure 2. 

The integration argument is though classically ascribed specifically to lag-1 and not later 

lags, in which there are intervening distractors.  

Third and most significantly, we have endeavoured to perform an analysis 

uncontaminated by integration trials. This is presented as the fourth analysis in 

supplementary material C. This has been performed by (1) excluding all order error trials, and 

(2) excluding an equivalent number of order correct trials, under a conservativeness 

assumption, which ignores the possibility of prior entry in an order error and assumes that on 

integration trials, participants will randomly guess the order of the targets. Thus, there will be 

an equal number of correct order as incorrect order trials arising from integration. We do not 

though know which of the correct order trials were the integration ones. So, we discard 

correct order trials that will make it hardest for us to demonstrate the effect we seek to show. 

If the effect is still significant after such a procedure, we know the effect is robust, although 

we are likely to have overestimated the p-value (i.e. underestimated the size of the effect). 

Under this analysis, the interaction effect between measure type (report accuracy and 

subjective visibility) and lag remained significant. This is strong evidence that our findings 

are not explainable by integrated percepts at lag-1. 

Further, the ERP findings do not obviously fit with the integrated percept explanation. 

In this context, the critical condition is T2 correct/ low visibility, since this is the disparity 
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case (T2 was correctly reported, but was poorly perceived consciously). The prevalence of 

these trials at lag-1 is what causes the relative reduction in subjective visibility at that serial 

position. If perceptual integration were characteristic of this phenomenon at lag-1, we would 

expect to see an ERP reflecting this integration. The obvious candidate pattern for this 

situation is a relatively short, but relatively high amplitude P3, and indeed, this is the pattern 

normally observed for T1 & T2 correct versus T1 & not T2 correct at lag-1 (see, for example 

Craston, et al., 2009, Figure 7). The slightly higher amplitude arises because T1 and T2 are 

being encoded at the same time, and the relatively short positive deflection (not much longer 

than for T1 & not T2) arises from the simultaneity of encoding, i.e. T2 does not have to wait 

for T1 to be encoded, which would generate a very long positive deflection. Importantly, the 

ERP we observe for T2-correct/ low visibility, see Figure 6, panel A, does not follow this 

classic integration pattern. In particular, the initial positive (P3) deflection for T2 correct/ low 

visibility is very low amplitude, and indeed, smaller than for the other conditions in Figure 6, 

panel A. This does not look like a characteristic integration pattern. Overall, this set of 

arguments would seem to counter the possibility that an integrated percept at lag-1 explains 

our findings. 

  

Subjective Visibility Measure 

In this paper, we are taking subjective visibility ratings as proxies for conscious 

experience. There is clearly an inferential step here, which we now seek to justify more fully. 

Importantly, in respect of subjective visibility, we are following what is now a large body of 

literature that probes the strength of conscious experience using such measures (e.g., Lamy, 

et al., 2008; Overgaard, Rote, Mouridsen, & Ramsoy, 2006; Sergent & Dehaene, 2004) 

including carefully considered comparisons of different scales (Sandberg, Timmermans, 

Overgaard, & Cleeremans, 2010). Of most significance, participants seem to use the scales 
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consistently, with little evidence of confusion on their part. In particular, uncertainty 

regarding the interpretation of subjective visibility would manifest as increased variability in 

the measure, which would reduce statistical power and effect sizes. However, the statistical 

power of our key behavioural effects was large. Specifically, the degrees of freedom in the 

two experiments were pretty standard for attentional blink studies. Nonetheless, the 

interactions we observed were highly significant. 

 In particular, the interaction between measure type and lag had an F-value of F(5,85) 

= 14.633 for Experiment 1 and of F(1,17) = 87.052 for Experiment 2, with p-values as small 

as possible within the normal reporting range, i.e. p < .001 in both cases. Furthermore, the 

inclusion of a replication in the same paper, which also proves very significant, is highly 

unlikely for a weak finding hampered by high error variability. Finally, if degrees of freedom 

are taken out of the equation and raw effect sizes are considered, the statistical power 

associated with this finding is further emphasized. Specifically, the interaction between 

measure type and lag generates an eta-squared of 0.463 for experiment one and 0.837 for 

experiment two. These are large effect sizes. 

 Overall, then, the treatment of the subjective visibility scale seems to be extremely 

consistent across participants and experiments. This stands against there being confusion 

amongst participants with regard to how to interpret this measure, suggesting that participants 

responded according to the strength of the visual experience, or in other words “how well 

[they] have seen the [T2]”, the terms in which the question was formulated. 

 On this issue, it should also be emphasized that the kind of uncertainty over measure 

employed is intrinsic to the question being considered. That is, we are endeavouring to 

characterise conscious experience; this is a fundamentally subjective phenomenon. Thus, 

there is no clear alternative to probing participants’ subjective experience, and within this 

context, the approach we have employed here seems close to as good as one can do. 



The Experiential Blink 
 

33 
 

 

Process Impurity 

 Additionally, it is important to note that there is no sense to which our two measures – 

report accuracy and subjective visibility – are process pure. In particular, they certainly do 

not reflect distinct classes of information, Report accuracy is surely not independent of 

subjective visibility, or in other words one would (normally) expect report accuracy to 

increase with the vividness of conscious experience, and this relationship is apparent in our 

data from lag 3 upwards, i.e. higher levels of report accuracy coincide with higher levels of 

subjective visibility. But, the critical point for us is that this relationship of strong dependence 

breaks at short lags. 

 Our argument could be explicitly framed as that the extent to which report accuracy 

indexes conscious experience specifically changes at early lags, as demonstrated by reduction 

in subjective visibility relative to report accuracy. This suggests that encoding into working 

memory (which report accuracy should index) becomes decoupled from conscious 

experience, at these lags. We would argue that it is only possible to arrive at such a 

decoupling, if working memory encoding and conscious experience are not synonymous. 

This is the essential line of argument of this paper. 

 It is also important to note that our key index of conscious experience – subjective 

visibility – is an indirect measure. Indeed, both report accuracy and subjective visibility are 

assessed at the end of the RSVP stream. Consequently, both measures depend upon memory 

to bridge the gap from perception to report. In this respect, for our argument, we need that 

this memory (which would also be expected to involve working memory) provides a 

relatively accurate storage and retrieval of the quality of a conscious experience. The points 

we have made above re. the reliability and precision of subjective visibility report would 
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seem to justify this claim. This enables us to use subjective visibility as an (offline) proxy for 

an (online) “in the moment” conscious experience.  

 To assess working memory encoding, we rely upon the broadly accepted perspective 

that the core AB deficit is at the point of encoding, suggesting that the level of T2|T1 reflects 

success at encoding into WM, with the necessity to discriminate amongst a large set of letter 

alternatives ensuring encoding is a demanding process. Moreover, it does not seem a concern 

that representations of subjective experience may be being simultaneously maintained in 

WM, with representations of letter identity. In particular, there is no sense to which the 

demand associated with holding such an experiential representation would change with lag. 

 To reiterate, the key point for us is that the memory of experiential quality diverges 

from the memory of identity at short lags. They are indeed both memories, but they are 

memories of different things. A stronger claim would be that WM encoding and conscious 

perception are dissociable, in the strict sense given to that term in cognitive psychology 

(Dunn & Kirsner, 1988). This would imply that, at some stage of processing, WM encoding 

and conscious perception are implemented by separate modules. Note that in the presence of 

nonlinearities, which are certainly there in the brain, it is possible to obtain different 

behavioural patterns for two measures even though they are implemented by a single module 

(Dunn & Kirsner, 1988). Thus, while we argue we have demonstrated that WM encoding and 

conscious perception are not synonymous, a further step is required to show that they are not 

just different “read-outs” from the same module. This question awaits further work. 

 

Theoretical Interpretation 

 Further to the question of the nature of the subjective visibility measure, it is 

important to note that interpretation of it as an index of conscious experience is supported by 

a clear and intuitive theoretical interpretation of our findings. In particular, lag-1 is exactly 
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the data point where simultaneity is most pronounced – the T1 and T2 are presented to the 

perceptual system almost concurrently. Accordingly, one could explain our findings in terms 

of a differential ability to simultaneously process; that is, we are, to a large extent, able to 

simultaneously encode two items, e.g. T1 and T2 here, but to a much lesser extent to 

simultaneously perceive multiple items consciously. In other words, there may be a sense to 

which we really can “only perceive one thing at a time”. 

 Clearly, more work is required before such a strong claim can be confirmed, but our 

results are suggestive in this respect, and particularly if a further striking pattern in our ERP 

data is considered. Specifically, if one compares the lag 1/T2 correct ERP in Figure 5, panel 

A, with the lag 1/T2 Correct/High visibility ERP in Figure 6, panel A, we see that the latter is 

extremely extended in time. 

This long lag 1/T2 Correct/High visibility ERP is suggestive of serial processing, 

whereby processing of T1 has to complete before T2 can start. In other words, when a short 

(combined) P3 is observed at lag-1, the T1 and T2 are encoded simultaneously, and this is 

sufficient to consolidate the T2 into working memory (the lag1/ T2 correct ERP), but not to 

obtain a strong conscious experience of the T2; that requires a serial process (the lag-1/T2 

Correct/High visibility ERP). 

Such seriality resonates with a recent proposal concerning the AB (Marti, Sigman, & 

Dehaene, 2012). Our position, though, is not exactly the same as Marti et al’s. Specifically, 

we ascribe to the basic explanation of the report-accuracy AB from the Simultaneous Type 

Serial Token (STST) model (Bowman & Wyble, 2007; Wyble, et al., 2009). This has 

similarities to Marti et al.’s serial processing explanation, but goes further, since, for 

example, a specific mechanism for generating the seriality is posited, viz unavailability of the 

attentional enhancement (STST’s blaster). This unavailability of attention during the blink 

would induce a subjective visibility blink similar to that for report-accuracy. However, the 
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basic STST model explains (report-accuracy) lag-1 sparing in terms of joint encoding of the 

T1 and T2, which arises because both items benefit from a single attentional enhancement. It 

is the subjective visibility analogue of this joint encoding that we are arguing does not obtain. 

That is, even though two items can be simultaneously encoded, our findings suggest that they 

may not be able to be simultaneously consciously perceived.  It is not clear what mechanism 

might induce this particular seriality of perception. In particular, we are not at this stage 

attributing this to the with-holding of attention, i.e. the same mechanism as that which 

generates the (report-accuracy) AB in STST. 

 

 

Conclusion 

Overall, Experiments 1 and 2 reveal that the process of encoding T1 differentially 

impacts the accuracy of reporting T2’s identity versus the conscious perception of having 

seen T2. Behaviourally, the AB accuracy curve differs from the subjective visibility curve – 

especially at early lags. Electrophysiologically, the P3 component we observe is most 

substantially modulated by subjective visibility. Collectively, these data suggest that the 

classic AB deficit is not the same as the experiential blink. As a result, conscious perception 

is not synonymous with WM encoding in the AB context. 
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Figure Captions 

Figure 1: The experimental design. (A) shows that T1 and T2 were letters presented between 

white digit distractors. T1 was always a red letter and T2 (if it appeared) was a white letter. 

All stimuli were presented on a black monitor. In this figure, T2 appears at lag 3. In 

Experiment 2, T2 appeared at lag 1 (45% of trials), lag 3 (45% of trials), lag 6 (5% of trials) 

or did not appear (5% of trials). On no-T2 trials, T2 was replaced by a digit distractor. 

Although the entire stream length is not shown, each stream contained 15 stimuli. Items 

appeared for 90msec duration, with no ISI. A hash (#) mask could appear in the interstimulus 

interval following target stimuli, with varying durations (as described above). This was used 

to adjust the visual strength of targets according to an individual’s perceptual threshold. (B) 

shows the phrasing and screen layout of the subjective visibility question. Importantly, the 

subjective visibility question asked about the white letter and therefore referred to T2 and not 

T1. 

 

Figure 2: T1 accuracy, T2|T1 accuracy and T2 mean subjective visibility ratings in 

Experiment 1 (note, only trials in which T1 was correctly reported are included in the T2 

subjective visibility rating). Mean ratings of subjective visibility appeared to track T2 

accuracy at the later lags, but not at lag 1 and probably also not at lag-2. 

 

Figure 3: T1 accuracy, T2|T1 accuracy and T2 mean subjective visibility rating in 

Experiment 2 (note, only trials in which T1 was correctly reported are included in the T2 

subjective visibility rating). Mean ratings of subjective visibility appeared to track T2 

accuracy at lags 3 and 6, but not at lag 1. Data for lag 6 is shown for illustrative purposes 

only, as these conditions were not included in the main statistical analyses (due to low trial 

counts). 

 

Figure 4: Correlations between T2 report accuracy and mean subjective visibility ratings. (A) 

shows the correlation between T2 report accuracy and subjective visibility at lag 1. Although 

a trend was present, this relationship was not statistically significant. (B) shows the 

correlation between T2 report accuracy and subjective visibility at lag 3. This positive linear 

relationship was statistically significant, indicating that an increase in T2 report accuracy was 

associated with an increase in subjective visibility. (C) shows the correlation between T2 

report accuracy and subjective visibility at lag 6. This positive linear relationship was 

statistically significant, indicating that an increase in T2 report accuracy was associated with 

an increase in subjective visibility. (D) shows the correlation between T2 “accuracy” and 

subjective visibility when T2 was not presented. This relationship was not statistically 

significant. 

 

Figure 5: Post-stimulus (P3) ERPs and difference topographies. Only trials where T1 was 

correctly reported are included. (A) through (E) show data classified by T2 accuracy 

(independent of visibility rating), and topographies show activity on T2-correct trials minus 

activity on T2-incorrect trials. (F) through (J) show data classified by subjective visibility of 

T2 (independent of T2 accuracy), and topographies show activity on high visibility trials 

minus activity on low visibility trials. (A) shows ERPs for T2-correct and T2-incorrect trials, 

time-locked to the onset of T1. T2 appeared at lag 1 (90msec after T1) or at lag 3 (270msec 

after T1). (B) shows the T1-P3 difference topography at lag 1 in the period 300-500msec 

after the onset of T1. (C) shows the T2-P3 difference topography at lag 1 in the period 500-

700msec after the onset of T1. (D) shows the T1-P3 difference topography at lag 3 in the 
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period 300-500msec after the onset of T1. (E) shows the T2-P3 difference topography at lag 3 

in the period 700-900msec after the onset of T1. (F) shows ERPs for high and low visibility 

trials, time-locked to the onset of T1. T2 appeared at lag 1 (90msec after T1) or at lag 3 

(270msec after T1). (G) shows the T1-P3 difference topography at lag 1 in the period 300-

500msec after the onset of T1. (H) shows the T2-P3 difference topography at lag 1 in the 

period 500-700msec after the onset of T1. (I) shows the T1-P3 difference topography at lag 3 

in the period 300-500msec after the onset of T1. (J) shows the T2-P3 difference topography 

at lag 3 in the period 700-900msec after the onset of T1. For all topographies, the black dot 

corresponds to the Pz electrode (electrode 62). All difference topographies are averaged 

across the relevant time window. 

 

Figure 6: Grand average ERPs at lag 1 and lag 3. Only trials where T1 was correctly reported 

are included. (A) shows ERPs for lag 1 trials. (B) shows ERPs for lag 3 trials. Mean activity 

was significantly larger on T2-correct/High trials. Mean activity did not differ between T2-

correct/low visibility trials and T2-incorrect/Low visibility trials. 
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Electronic Supplementary Material A 

 

As shown in the figures below, participants used the lower subjective visibility ratings more 

frequently than they used the higher subjective visibility ratings. For this reason, we created two 

clusters of subjective visibility, in an attempt to match the number of trials in each condition. To that 

end, the ‘Low’ subjective visibility cluster consisted of the two lowest subjective visibility ratings, 

whereas the ‘High’ subjective visibility cluster consisted of the four highest subjective visibility 

ratings. Two clusters of subjective visibility (Low vs High) were created rather than three clusters 

(Low vs Middle vs High) or more, to ensure that, for each participant, there were sufficient numbers 

of accepted trials in each cluster to calculate summary statistics.  

 

 

Supplementary Figure 1. Frequency of visibility ratings, as a function of lag in Experiment 1.  

 

 

Supplementary Figure 2. Frequency of visibility ratings, as a function of lag in Experiment 2.  
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Electronic Supplementary Material B 

 

Tailoring window placements to the grand average can bias statistical tests of ERPs 

and thereby inflate the Type I error (i.e. false positive) rate (Kilner, 2013). This practice has 

similarities to problems highlighted in the fMRI literature of double dipping (Kriegeskorte, 

Simmons, Bellgowan, & Baker, 2009) and failure to appropriately correct for multiple 

comparisons (Bennett, Miller, & Wolford, 2009). One way to guard against inflating the 

Type I error rate is to select window placements from prior literature. This makes window 

parameter settings a priori justified, and thus, not “fished for” a posteriori. Indeed, if selected 

in a disciplined fashion, such prior specification should guard against increase in the Type I 

error rate. Since these placements are tailored to previously collected and not the current data, 

such a priori selection is likely to inflate the Type II error rate (i.e. failures to reject the null 

hypothesis when it should be). This is because the window placements may not be optimal 

for the components (as they present) in the current data. Although this reduces statistical 

power, an identified significant effect can be relied upon. 

Type I errors can also be guarded against by setting window placement parameters in 

a regular stereotyped fashion, without any tuning of parameters, e.g. by always placing 

window boundaries at multiples of 100msec and restricting all windows to a fixed size. 

We employ both of these approaches to guard against the possibility of inflating the 

Type I error rate. Specifically, our windows are regular and stereotyped by placing window 

boundaries at multiples of 100msec, keeping all windows of width 200msec and making them 

abut one another. Accordingly, we divide a contiguous 600msec region (starting 300 and 

finishing 900msec post T1 onset) into three 200msec sub-regions – 300-500msec for the T1, 

500-700msec for the T2 at lag-1 and 700-900msec for the T2 at lag-3. 

Note, there is no “perfect” window placement in the context of a phenomenon such as 

the attentional blink in which the T1 and T2 responses, at least to some extent, sit on top of 

each other. However, as just advocated, the fact that the effects sought for obtain for windows 

placed using prior literature as a precedent, suggests that these placements are appropriate. 

Specifically, we considered the ERPs presented in Figure 6, Panel A and Figure 7, Panel A of 

Craston et al. (2009). These provide us with precedent ERP patterns for the T1, see, for 

example, the T1 P3 (which peaks around 450msec) when the T2 is at lag 8; the T2 at lag 1 

and the T2 at lag 3.  

So, to confirm, while the care we have taken and restriction thereby imposed on 

window placement, may reduce statistical power, they should guard against false positives. 

This in turn means that significant results found should (within the bounds of statistical 

significance) be true positives, i.e. valid rejections of the null hypothesis. 
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Electronic Supplementary Material C 

 

Follow-up statistical analyses were conducted to assess the robustness of the interaction 

between T2 measurement type (accuracy versus visibility) and lag in Experiment 1. These analyses 

were designed to confirm that the interaction between accuracy and subjective visibility represents a 

real cognitive effect and not a statistical artifact.  

First, we wanted to confirm that ceiling effects on accuracy or floor effects on subjective 

visibility were not driving the significant interaction between accuracy and subjective visibility. If 

floor/ceiling effects differentially impact accuracy and visibility measures, then statistically 

significant (but spurious) interactions may emerge that are not indicative of true cognitive effects. The 

first follow-up analysis therefore attempted to match the accuracy and subjective visibility curves as 

close to one another as possible, by minimizing the sum of squares of the residuals of a regression. 

Specifically, for each participant, accuracy was regressed onto visibility, and that participant’s 

visibility curve was re-scaled using the outputs of the regression model. This rescales the subjective 

visibility curve, by weighting (multiplying) each lag by the same constant. This can squeeze or stretch 

the curve vertically, but it cannot change the relationships across lags (horizontally). Since the sum of 

squares of the residuals is minimized, this cannot create a spurious interaction that did not already 

exist – as the curves are being made more similar. Thus, this procedure cannot increase the Type 1 

error rate but may increase the Type 2 error rate. That is, the rescaling is conservative. If an effect still 

remains after rescaling, it is real (in the sense that the accuracy and subjective visibility curves do 

have different shapes across lags) but some statistical power may be lost. Loss of statistical power is a 

necessary consequence of relating two dependent measures (accuracy and visibility), where the 

relationship between units in the two measures, and to ceiling and floor effects is unclear. 

After applying the rescaling measure, participant’s original accuracy and scaled subjective 

visibility data were entered into a Type x Lag ANOVA. Confirming our original findings, the 

interaction between measurement type and lag was significant (F(5,85)=7.275, p<.001, η
2
=.300). Post 

hoc contrasts confirmed that the magnitude of the difference between accuracy and scaled subjective 

visibility was most evident at lag 1. Specifically, the difference at lag 1 was larger than the difference 

at lag 4 (p=.011), lag 6 (p=.026) and lag 8 (p=.006). No comparisons between any other pairs of lags 

were statistically significant (smallest p=.167).  

The second follow-up analysis attempted to hold T2 accuracy constant. To that end, we 

included data from lags 1 and 8 only, because mean accuracy was equivalent across these two lags. A 

repeated measures ANOVA with measurement type (accuracy versus visibility) and lag (lag 1 versus 

lag 8) was employed. Original subjective visibility ratings (and not scaled subjective visibility) were 

used. The interaction effect was statistically robust (F(1,17)=36.836, p<.001, η
2
=.684). Pairwise post 

hoc contrasts confirmed that there were no accuracy differences between lag 1 and lag 8 (p=.384). 

Despite equivalent accuracy across lags 1 and 8, subjective visibility ratings were significantly 

reduced at lag 1 (p<.001).  

 The third analysis attempted to demonstrate that the interaction between accuracy and 

subjective visibility was driven by the early lags (especially lag 1). The ANOVA comparing 

accuracy and subjective visibility across lags was repeated, but data from the early lags were 

progressively dropped from the analysis. The ANOVA was first conducted without the lag 1 

data, then another ANOVA was run without lag 1 and lag 2 data, and so on. As a reminder, 
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when all lags were included, the interaction between accuracy and visibility was statistically 

robust (F(5,85)=13.355, p<.001, η
2
=.440). The interaction between accuracy and subjective 

visibility remained significant without lag 1 data, but the effect size was reduced 

(F(4,68)=5.332, p=.001, η
2
=.239). Without lag 1 and lag 2 data, this interaction was also 

significant, and effect size was further reduced (F(3,51)=3.009, p=.039, η
2
=.150). Without lags 

1, 2 and 3, there was no statistically robust interaction between accuracy and visibility, 

suggesting that this interaction was indeed driven by the earlier lags (F(2,34)=1.709, p=.196, 

η
2
=.091).  

Third, we considered whether an integrated percept of T1 and T2 could account for our 

findings. We reasoned that on integrated percept trials, information regarding the temporal 

order of T1 and T2 would be lost, so T1 and T2 would be reported in the correct order on half 

of the integrated percept trials and in an incorrect (swapped) order on the other half of 

integrated percept trials. Therefore, all trials where T1 and T2 were reported in a swapped 

order were considered to involve an integrated percept, and were removed from analysis. 

Given that there should be an equivalent number of integrated percept trials where T1 and T2 

are swapped, we removed an equivalent number of trials where T1 and T2 were correctly 

identified but not swapped. In order to run a conservative analysis (which weighs against 

finding a significant result) the additional to-be-removed trials were taken from the lowest 

subjectivity bins. This process of trial removal was conducted individually for each 

participant. The remaining trials were analysed using a Type x Lag ANOVA. Confirming our 

findings, and the interaction between measurement type and lag remained significant for both 

Experiment 1 (p<.001) and Experiment 2 (p<.001). 

Finally, we directly investigated T2|T1 accuracy at the lowest levels of subjective visibility. 

To that end, T2|T1 accuracy was calculated only on trials where participants selected a 

visibility rating of 1 (the lowest possible visibility rating, indicating ‘not seen’). For each lag, 

T2|T1 accuracy was compared with the degree of accuracy expected due to chance (4.76%), 

using one sample t-tests. In other words, we investigated whether T2|T1 accuracy was greater 

than 4.76%, at each lag. This analysis was conducted for lags 1 and 3 in Experiment 2, as that 

is where the trial counts were sufficiently large to examine a specific subjective visibility 

(200 trials for each of those lags). As expected, accuracy was significantly greater than 

chance, despite participants indicating that the subjective viability of the target was nil (lag 1: 

p<.001; lag 3: p=.003).  

 

 

 

 


