Skip to main content
Log in

Conceptual Frameworks on the Relationship Between Physics–Mathematics in the Newton Principia Geneva Edition (1822)

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The aim of this paper is twofold: (1) to show the principal aspects of the way in which Newton conceived his mathematical concepts and methods and applied them to rational mechanics in his Principia; (2) to explain how the editors of the Geneva Edition interpreted, clarified, and made accessible to a broader public Newton’s perfect but often elliptic proofs. Following this line of inquiry, we will explain the successes of Newton’s mechanics, but also the problematic aspects of his perfect geometrical methods, more elegant, but less malleable than analytical procedures, of which Newton himself was one of the inventors. Furthermore, we will also consider the way in which Newtonianism was spread before in England and afterwards on continental Europe. In this respect the Geneva Edition plays a fundamental role because of its complete apparatus of notes, and because it appeared only thirteen years after the publication of the third edition of the Principia (1726). Finally, we will also confront some problems connected to the metaphysics of calculus. Therefore, the case of Newton is one of those in which, starting from mathematics applied to physics, it is possible to connect an impressive series of fundamental arguments such as the role of mathematics in science; the comparison between Newton’s geometrical methods and analytical methods; the way in which Newtonianism was spread as well as the philosophical implications of Newton’s mathematical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: BnF Public Domain | https://gallica.bnf.fr

Fig. 2

Source: Google Books | Public Domain

Fig. 3

Source: Google Books | Public Domain

Fig. 4

Source: Google Books | Public Domain. a: Proposition VI. Theorem V. In a space void of resistance, if a body revolves in any orbit about an immoveable centre and in the least time describes any arch just then nascent; and the versed sine of that arch is supposed to be drawn, bisecting the chord, and produced passing through the centre of force: the centripetal force in the middle of the arc, will be as the versed sine directly [will be as the versed fine directly] and the square of the time inversely. (Newton, [17391742]1822, Prop. VI, Th. V, I, p. 79; Author's Italics; translation from [1726]1729, p. 68).) (Newton, [17391742]1822, Prop. VI, Th. V, I, p. 81 [pp. 79–82])

Fig. 5

Source: Google Books | Public Domain

Fig. 6

Source: Google Books | Public Domain

Fig. 7

Source: Google Books | Public Domain

Fig. 8

Source: Google Books | Public Domain.

Fig. 9

Source: Google Books | Public Domain

Fig. 10

Source: Google Books | Public Domain

Fig. 11

Source: Google Books | Public Domain

Fig. 12

Source: Google Books | Public Domain.

Fig. 13

Source: Google Books | Public Domain

Fig. 14

Source: Google Books | Public Domain

Fig. 15

Source: Google Books | Public Domain

Fig. 16

Source: Google Books | Public Domain

Fig. 17

Source: Google Books | Public Domain

Fig. 18

Source: Google Books | Public Domain.

Similar content being viewed by others

Notes

  1. Thomas Le Seur and François Jacquier were not Jesuits, but belonged to the Gallicana Minimorum Familia. They were Minim Friars (Cfr. Jacquier, 1755; Seur & Jacquier, 1768, Seur et al., 1743).

  2. He belonged to no congregation (Calandrini, 1722; Calandrini & Serres, 1727).

  3. Sometime spelled as ‘‘l’Hospital’’, and sometimes—because of French spelling—the silent ‘‘s’’ is removed and replaced with a circumflex. Even if the former spelling is still used in English where there is no circumflex accent, due historical methodological reasons, we prefer let his original name.

  4. Since 2014, for Oxford University Press, we have been engaged to provide a critical translation (into English) of this whole apparatus as expounded in the GE. No translation exists of the notes–commentaries of the GE. Besides the translation of the notes, the variants of the notes existing in the 1739–1742 and 1760 editions will be highlighted. Therefore, 5 volumes are expected within 2022. This will clarify the nature, purposes and structure of all the notes/commentaries (apparatus) added to Newton’s text by the commentators, so providing a useful guide to understand the relevance of Newton's mathematical methods within his physics.

  5. For sake of brevity, we have omitted detailing the methodological interchange between Huygens and Newton (Cfr. Huygens, 1673, 1690, 1897; Nauenberg, 1994a, b, 1996).

  6. With regard to Newton’s biography we only mention the fundamental: Westfall ([1983]1995). For sake of brevity and just to mention the following accredited secondary literatures on Newton, the Principia and Newtonianism: Westfall (1958), Koyré (1965), Westfall (1958, 1971), Cohen (1990), Newton (1972, 1999), Cohen and Smith (2002), Chandrasekhar (1969, 1995), Bertoloni Meli (1993, 2006), Brackenridge (1995), De Gandt (1995), Force and Hutton (2004), Force and Popkin (1999), Guerlac (1981), Guicciardini (1989, 1998, 1999, 2002, 2004a, b, 2015), King-Hele and Hall (1988), Pulte and Mandelbrot (2011), Purrington and Durham (1990), Hall (1978), Rupert Hall (1999), Châtelet (1759), Clarke ([1730]1972), Desaguilers (1717), Gregory (1702), Keill (1701), McLaurin ([1748]1971), Pemberton (1728), Rouse Ball ([1893]1972), Whiston (1707), Wright (1833), Hiscock (1937), Wightman (1957), Eagles (1977), Agassi (1978), Agostino (1988), Ahnert (2004), Allen (1998), Arthur (1995), Axtell (1965), Baillon (2004), Barber (1979), Barker (2006), Beaver (1987), Berggren and Goldsein (1987), Biagioli (1998, 1999), Boss (1972), Bourdieu ([1975]1999), Bricker and Hughes (1990), Briggs (1983), Brockliss (1992), Calinger (1968, 1969), Casini (1988), Champion (1999), Clark (1992, 1997), Clark et al. (1997), Craig (1963), Crasta (1989), Coudert (1999), Cunningham and Williams (1993), Dear (1987, 1995, 1998), Elliott (2000), Fellmann (1988), Ferrone (1982), Force (1985; 20041983), Friesen (2006), Gascoigne (1988), Gaukroger (1986), Goldish (1998, 1999), Golinski (1998), Guerlac (1981), Guerrini (1985), Hampson (1981), Hankins (1990), Harman (1988), Harrison (1995), Haycock (2004), Heidarzadeh (2006), Heimann and McGuire (1971), Henry (1992), Hessen (1931), Hutton (2004a, b), Iliffe (2004), Iltias (1977), Jackson (1994), Jacob (1976, 1977, 1978), Leshem (2003), Lord (2000), Lüthy (2000), Lynn (1997), Malet (1990), Mandelbrote (2004a, b), Marcialis (1989), Markley (1999), Mazzotti (2004), McMullin (1978), Montgomery (2000), Munby (1952), Osler (2004), Pagden (1988), Pater (1994), Phemister (1993), Phillipson (1981), Porter (1981), Porter and Teich (1992), Rattansi (1981), Rousseau and Porter (1980), Ruderman (1997), Schama (1981), Smolinski (1999), Snobelen (1997, 1998, 2004), Stewart (1992, 2004), Taylor (1981), Teich (1981), Thijssen (1992), Wall Van der (2004), Whaley (1981), Wigelsworth (2003), Yolton (1990, 1994), Young (2004), Zinsser (2001, 2003), Aiton (1964, 1965, 19721962), Harper (2001), Di Salle (2006); and our works listed below.

  7. ''L'un part de ce qu'il entend nettement pour trouver la cause de ce qu'il voir. L'autre part de ce qu'il voir pour en trouver la cause, soit claire, soit obscure'' (Fontenelle Le Bouvier, 1728b, p. 24; the French version is also enclosed in the end of Fontenelle Le Bouvier, 1728a, p. 11). See the quotation in another French edition (Fontenelle Le Bouvier, 1728c, p. 17).

  8. On the centre of gravity also related to the science of weights see: Pisano (2007, 2011, 2013b), Pisano and Capecchi (2016) and Pisano and Bussotti (2012).

  9. In the note 212 (Figs. 4, 5) because the time and the distance PQ tend to 0 Newton’s Proposition VI—and its related corollaries—introduces a mathematical expression of central force (centripetal) by means of a differential form (Ivi, pp. 81–82). We note that this form is presented as a relationship between the traced segments (Fig. 4). In the successive Scholium (Newton, [17391742]1822, notes 213–216, pp. 81–82) the commentators explain this relationship between this centripetal physical force and its applied mathematical interpretation; that is a differential form. Thus, they provide the right form of the centripetal force in order to make explicit its correlated (Ibidem, note 214). For additional details on this analysis see Bussotti and Pisano (2014a; see also 2014b).

  10. The works cited are: Daniel Bernoulli, Sur le Flux et Reflux de la Mer (1740), McLaurin: De causa physica fluxus et refluxus maris (1740) and Euler, Inquisitio physica in causam fluxus ac refluxus maris (1740). (Newton, [17391742]1822, I, pp. 101–341; Cfr. Euler, [1911, 1913, 1917]1941; Euler, 17521753, 17541755, 17561757, 17601761, 1765, 1770, 1773, 17321738).

  11. “[…] punctis P et Q coeuntibus […]” (Newton, [17391742]1822, I, p. 106; Newton, Id., 1729, p. 76).

  12. With respect to Newton's infinitesimal quantities, we also dealt with the interpretation of his lineola such as the quantity whose length is given and that Newton employs in his demonstration. In Motte's words it represents a very small line (Newton, [1726]1729, I, p. 165). The Latin expression is “lineola(m)” (Newton, [1726] [17391742]1822, I, p. 237).

  13. Leibniz (1684a, b), Bussotti and Pisano (2017), D’Alembert, Lazare Carnot, Lagrange, Mach, and Poincaré, critically perceived these ambiguous arguments, also mathematically described by Newton, as uncertainties (Pisano, 2013d, 2017, 2020; Pisano et al., 2020; Pisano & Capecchi, 2013).

  14. See also Lazare Carnot's the théorie de la compensation des erreurs so-called à la Berkeley: “[…] deux erreurs [two errors]” are made, which nevertheless are algebraically annulled in the end, and “[…] by a compensation of errors: which compensation, however, is a necessary and certain consequence of the operations of the calculus.” (Carnot, 1813, pp 12–15, pp 30–34, p. 189). For an historical account on the subject, see Gillispie and Pisano, 2014, Chaps 6 and 9; Pisano et al., 2020, 2021; see also Carnot, 1786, 1803a, b, 1813).

  15. We are conscious that the identification of fluxions with derivatives is not completely correct because in Newton’s time the concept of function was not yet completely clear, and derivatives are strictly connected to functions. However, for sake of brevity, and in modern terms, we expound the reasoning using the concept of function and derivative. In any case, the core of Berkeley’s methodological criticism is not modified.

  16. For the structure of the notes inserted in the GE, we refer to: Bussotti and Pisano (2014a, b), Guicciardini (2015) and Pisano and Bussotti (2016a, b, 2020).

  17. It is necessary to point out that ours is only an outline of a complicated history we are writing, only to pose Newton’s work in an historical perspective. As a matter of fact, the history of ellipsoid attraction is multi-faceted and many authors contributed to it. For a complete history up to the 1830s, we refer to Todhunter (Todhunter, 1873). We do not consider the problem of celestial bodies’ shapes and of the figure of equilibrium of a fluid mass. We refer to three fundamental publications on this subject: once again to Todhunter (Ibidem) which is a detailed text on the history of this topic from Newton to Laplace, but which, in fact, also includes Ivory’s (1809), Gauss’ and Poisson’s results, to Chandrasekhar (1969), where the reader can find all the mathematical details of these problems and which is also enriched by an historical introduction, and to Greenberg (1995). An interesting paper where many historical and conceptual observations are present is Poincaré (1892).

  18. Lagrange (1774, 1769, 1770, [1773]1755, 1777, 18671897), Pisano (2013a) and Pisano and Capecchi (2013).

  19. This memoire by Laplace was read in 1784 at the Académie Royale des Sciences. It appears in the issue 1782 (but published in 1785) of the Mémoires. To avoid confusion, we will refer to it as Laplace 1784 (Laplace, [1782, 1784]1785). A good paper on the contributions given by Legendre and Laplace to the theory of the ellipsoid attraction is Pecot (1993). See also Laplace (1799, [1782, 1784]1785).

  20. We mean it was not yet completely achieved from a conceptual point of view. It is well known that the modern notion of function was defined by Johann Peter Gustav Lejeune Dirichlet (1805–1859) in 1837, but a concept can be used and treated correctly before a formal definition. In this case, the editors of the GE, but more in general the mathematicians around the 1740s were close to the concept of function, but had not yet fully conceived it.

  21. There are several manners to show that \(y^{2} = \frac{{t^{2} }}{{s^{2} }} \times (2sp + 2sx - p^{2} - 2px - x^{2} )\) is the equation of an ellipse. We chose the following one. To simplify, be the abscissa x rather than p + x. Thence, the equation will be \(y^{2} = \frac{{t^{2} }}{{s^{2} }} \times (2sx - x^{2} )\). Now pose \(\frac{{t}^{2}}{{s}^{2}}=\frac{p}{d};2s=p\), so that the equation gets the form \({y}^{2}=2px-\frac{p}{d}{x}^{2}\) which is the equation of an ellipse referred to a diameter and to the tangent at the extremity of such a diameter.

  22. Newton's mathematical method applied to physics (Mechanics) raised as an integrated mathematics-physics, a sort of a new unique discipline which worked with geometry, mathematics and physics. After Newton’s mechanics, particularly in nineteenth century, for some analytical theories only, this integration was emphasised. The physics and mathematics worked as a unique discipline, not mathematical applications to physics and vice versa, but physics mathematics as a new approach to physical and mathematical integrated studies (and above all so different from successive and modern mathematical physics (Cfr. Pisano's works)). It was a structured discipline with its own hypotheses, methods of proofs, and with an internal coherent logic. New methodological approaches were conceived to solve physical problems (in their background) where an object can be both physical and mathematical quantity (1st novelty) and measurement is not a priority or a prerogative (2nd novelty). However, it is a coherent and valid physical science. One can think, for example, to reversibility in thermodynamics as interpreted by infinitesimal analyses: each point is a quasistatic point that is a quasistatic thermodynamic process that happens infinitely slowly. In effect, it is far from a measurable physics because it is not a real process, but such processes can be approximated by performing them very slowly. In other words, it is typical of intellectual dynamics of infinitesimal analysis applied to an idealistic physics; but the power of methods, application and results are formidable and undisputable.

  23. Any historiographic thesis had to be substantiated by evidences. In our previous papers (see References section below) we have offered many instances of historical and foundational analysis of the GE.

References

  • Agassi, J. (1978). The ideological import of Newton. Vistas in Astronomy, 22, 419–430.

    Article  Google Scholar 

  • Agostino, S. D. (1988). Boscovich’s reception of Newton’s legacy. In M. Bossi & P. Tucci (Eds.), Bicentennial commemoration of R. G. Boscovich (pp. 28–45). MIlano: Unicopli.

    Google Scholar 

  • Ahnert, T. (2004). Newtonianism in early Enlightenment Germany, c. 1720 to 1750: Metaphysics and the critique of dogmatic philosophy. Studies in History and Philosophy of Science, 35, 471–491.

    Article  Google Scholar 

  • Aiton, E. J. (1960). The celestial mechanics of Leibniz. Annals of Science, 16(2), 65–82.

    Article  Google Scholar 

  • Aiton, E. J. (1962). The celestial mechanics of Leibniz in the light of Newtonian criticism. Annals of Science, 18(1), 31–41.

    Article  Google Scholar 

  • Aiton, E. J. (1964). The celestial mechanics of Leibniz: A new interpretation. Annals of Science, 20(2), 111–123.

    Article  Google Scholar 

  • Aiton, E. J. (1965). An imaginary error in the celestial mechanics of Leibniz. Annals of Science, 21(3), 169–173.

    Article  Google Scholar 

  • Aiton, E. J. (1972). The vortex theory of planetary motions. New York: American Elsevier Publishing Company.

  • Allen, L. D. (1998). Physics, frivolity and “Madame Pompon-Newton”: The historical reception of the Marquise du Châtelet from 1750 to 1996. Doctoral Dissertation, University of Cincinnati, Cincinnati.

  • Apollonius of Perga (1896) Treatise on conic sections. Edited in modern notation with introductions including an essay on the earlier history of this subject by Heath TL. Sometime fellow of Trinity College. Cambridge: Cambridge University Press.

  • Arthur, R. T. W. (1995). Newton’s fluxions and equably flowing time. Studies in History and Philosophy of Science, 26, 323–351.

    Article  Google Scholar 

  • Assis, K. (1999). Arguments in favour of action at a distance. In A. E. Chaubykalo, V. Pope, & R. Smirnov-Rueda (Eds.), Instantaneous action at a distance in modern physics – “Pro” and “Contra.”. Commack: Nova Science Publishers.

  • Axtell, J. L. (1965). Locke’s review of the principia. Notes and Records of the Royal Society, 20, 152–161.

    Article  Google Scholar 

  • Baillon, J. F. (2004). Early eighteenth century Newtonianism: The Huguenot contribution. Studies in History and Philosophy of Science, 35, 533–548.

    Article  Google Scholar 

  • Barber, W. H. (1979). Voltaire et Newton. Studies on Voltaire and the Eighteenth Century, 179, 193–202.

    Google Scholar 

  • Barker, P. (2006). New work in early modern science. Centaurus, 48, 1–2.

    Article  Google Scholar 

  • Beaver, D. B. (1987). Textbooks of natural philosophy: The beautification of technology. In Berggren and Goldsein (pp. 203–213).

  • Berggren, J. L., & Goldsein, B. R. (1987). From ancient omens to statistical mechanics. Copenhagen: University Library.

  • Berkeley, G. ([1734]2002). The analyst. Retrieved from http://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst.

  • Berkeley, G. (1734). The analyst Dublin, Fuller S, Globe-in-Meath-Street, and J Leathly, Sect: XII–XIV.

  • Bertoloni Meli, D. (1993). Equivalence and priority: Newton versus Leibniz, Including Leibniz's Unpublished Manuscripts on the Principia. Oxford: Oxford University Press.

  • Bertoloni Meli, D. (2006). Thinking with objects: The Transformation of mechanics in the seventeenth century. Baltimore: The Johns Opkins University Press.

  • Biagioli, M. (1998). The scientific revolution is undead. Configurations, 6, 141–148.

    Article  Google Scholar 

  • Biagioli, M. (1999). The science studies reader. New York and London: Routledge.

  • Boss, V. I. (1972). Newton and Russia, the early influence 1698–1796. Cambridge–Mass: Harvard University Press.

  • Boucard, J. (2014). Joseph-Louis Lagrange e il teorema dei quattro quadrati. Lettera Matematica Pristem, 88–89, 59–69.

    Google Scholar 

  • Bourdieu, P. ([1975]1999). The specificity of the scientific field and the social conditions of the progress of reason. Social Science Information, 14, 19–47.

  • Brackenridge, B. J. (1995). The key to Newton’s dynamics. Berkeley–Los Angeles–London: Califormia University Press.

  • Bricker, P., & Hughes, R. I. G. (1990). Philosophical perspectives on Newtonian science. Cambridge–MA–London: The MIT Press.

  • Briggs, E. R. (1983). English socinianism around Newton and Whiston. Studies on Voltaire and the Eighteenth Century, 216, 48–50.

    Google Scholar 

  • Brockliss, L. W. B. (1992). The scientific revolution in France. In R. Porter & M. Teich (Eds.), The scientific revolution in France (pp. 55–89). Cambridge: Cambridge University Press.

  • Bussotti, P. (2015). The complex itinerary of Leibniz’s planetary theory: Physical convictions, metaphysical principles and Keplerian inspiration. Basel: Springer–Birkhäuser.

  • Bussotti, P. (2019). Michel Chasles’ foundational programme for geometry until the publication of his Aperçu historique. Archive for History of Exact Sciences, 73(3), 261–308.

    Article  Google Scholar 

  • Bussotti, P., & Pisano, R. (2013). On the conceptual frames in René Descartes’ physical works. Advances in Historical Studies, 2(3), 106–125.

    Article  Google Scholar 

  • Bussotti, P., & Pisano, R. (2014a). On the Jesuit Edition of Newton’s Principia. Science and advanced researches in the western civilization. Advances in Historical Studies, 3(1), 33–55.

    Article  Google Scholar 

  • Bussotti, P., & Pisano, R. (2014b). Newton’s Philosophiae Naturalis Principia Mathematica “Jesuit”: The Tenor of a Huge Work. Accademia Nazionale Lincei. Rendiconti Lincei. Matematica e Applicazioni, 25(4), 413–444.

    Article  Google Scholar 

  • Bussotti, P., & Pisano, R. (2017). Historical and philosophical details on Leibniz’s planetary movements as physical–structural model. In R. Pisano, M. Fichant, P. Bussotti, & A. R. E. Oliveira (Eds.), (pp. 49–92). London: College Publication.

  • Calandrini, J. L. (1722). Disquisitio physica de coloribus. Quam favente divina numinis aura, et sub praesidio d.d. Joh. Ant. Gautier publico doctorum examini subjiciet Joh. Ludovicus Calandrini Genevensis author & respondens. Genevae: Gabrielis de Tournes & filiorum.

  • Calandrini, J. L., & Serres, J. A. (1727). Theses physico-mathematicae de aere, quibus nonnullae de usibus aeris adnexae sunt in gratiam theologiae naturalis. Genevae: Fabri et Barrillot.

  • Calinger, R. S. (1968). The Newtonian Wolffian confrontation in the St. Petersburg Academy of Sciences (1725–1746). Journal of World History, 11, 417–435.

    Google Scholar 

  • Calinger, R. S. (1969). The Newtonian-Wolffian controversy: 1740–1759. Journal of the History of Ideas, 30, 319–330.

    Article  Google Scholar 

  • Carnot, L. (1786). Essai sur les machines en général. Dijon: Defay.

  • Carnot, L. (1803a). Principes fondamentaux de l’équilibre et du movement. Paris: Deterville.

  • Carnot, L. (1803b). Géométrie de position. Paris: Duprat.

  • Carnot, L. (1813). Réflexions sur la métaphysique du calcul infinitésimal. Paris: Courcier.

  • Casini, P. (1988). Newton’s principia and the philosophers of the enlightenment. Notes & Records of the Royal Society, 42, 35–52.

    Article  Google Scholar 

  • Champion, J. A. I. (1999). Acceptable to inquisitive men: Some Simonian contexts for Newton’s biblical criticism, 1680–1692. In J. Force & R. H. Popkin (Eds.), Newton and religion: Context, nature, and influence (pp. 77–96). Dordrecht: Kluwer Academic Publisher.

  • Chandrasekhar, S. (1969). Ellipsoids figures of equilibrium. New Haven and London: Yale University Press.

  • Chandrasekhar, S. (1995). Newton’s Principia for the common reader. In: I. B. Cohen, & A. Whitman (Ed.), Berkeley–Los Angeles–London: University of California Press.

  • Chasles, M. ([1837]1846). Mémoire sur l’attraction des Ellipsoïdes. Solution Synthétique pour le cas général d’un ellipsoïde hétérogène et d’un point extérieur. Paris: Imprimerie Royale.

  • Châtelet (du), É. (1759). Isaac Newton. Principes mathématiques de la philosophie naturelle par feu madame la Marquise du Châtelet. Paris: Desaint et Saillant.

  • Clark, W. (1992). The scientific revolution in the German nations. In R. Porter & M. Teich (Eds.), The scientific revolution in France (pp. 55–89). Cambridge: Cambridge University Press.

  • Clark, W. (1997). German physics textbooks in the Goethezeit. History of Science, 35, 219–239.

    Article  Google Scholar 

  • Clark, W., Golinski, J., & Schaffer, S. (1997). The sciences in Enlightened Europe. Chicago: The University of Chicago Press.

  • Clarke, J. ([1730]1972). Demonstration of some of the principal sections of Sir Isaac Newton’s principle of natural philosophy. New York: Johnson Reprint Corporation.

  • Cohen, I. B. (1990). Newton’s method and Newton’s style. In F. Durham & D. Purrington (Eds.), Some truer method (pp. 15–17). New York: Columbia University Press.

  • Cohen, I. B., & Smith, G. E. (2002). The Cambridge companion to Newton. Cambridge: The Cambridge University Press.

  • Coudert, A. P. (1999). Newton and the Rosicrucian enlightenment. In J. E. Force & R. H. Popkin (Eds.), Newton and religion: Context, nature, and influence (pp. 17–43). Dordrecht: Kluwer Academic.

  • Craig, J. (1963). Isaac Newton and the counterfeiters. Notes and Records of the Royal Society, 18, 136–145.

    Article  Google Scholar 

  • Crasta, F. M. (1989). Aspects of eighteenth-century cosmology. Memorie Della Società Astronomica Italiana, 60, 823–836.

    Google Scholar 

  • Cunningham, A., & Williams, P. (1993). Decentring the ‘big picture’: The Origins of Modern Science and the modern origins of science. British Journal for the History of Science, 26, 407–432.

    Article  Google Scholar 

  • De Gandt, F. (1995). Force and geometry in Newton’s Principia. Princeton, NJ: Princeton University Press.

  • Dear, P. (1987). Jesuit mathematical science and the reconstitution of experience in the early seventeenth century. Studies in the History and Philosophy of Science, 18, 133–175.

    Article  Google Scholar 

  • Dear, P. (1995). Discipline and experience: The mathematical way in the scientific revolution. Chicago: The University of Chicago Press.

  • Dear, P. (1998). The mathematical principles of natural philosophy: Toward a heuristic narrative for the scientific revolution. Configurations, 6, 173–193.

    Article  Google Scholar 

  • Desaguilers, T. (1717). Phisico-mechanical lectures [Printed for the Author and sold by him]. London: Richard Bridger and William Vream.

  • Descartes, R. (1897–1913). OEuvres de Descartes, 12 vols. In C. Adams, & P. Tannery (Eds.), Paris; Discours de la méthode et Essais, Specimina philosophiae. vol VI Principia philosophiae, Latin version vol VIII, Principia philosophiae French translation vol IX; Physico-mathematica vol X, Le Monde ou Traité de la lumière, vol XI (Id, 1964–1974 par Rochot B, Costabel P, Beaude J et Gabbery A, Paris).

  • Descartes, R. (1964–1974). Oeuvres. Adam J et Tannery A. Nouvelle présentation par Rochet E, et Costabel P, 11 vols. Paris: Vrin.

  • Di Salle, R. (2006). Understanding spacetime: The philosophical development of Physics from Newton to Einstein. Cambridge: The Cambridge University Press.

  • Durham, F., & Purrington, R. D. (1990). Some truer method. New York: Columbia University Press.

  • Eagles, C. E. (1997). David Gregory and Newtonian science. The British Journal for the History of Science, 10(36), 216–225.

    Google Scholar 

  • Elliott, P. (2000). The birth of public science in the English provinces: Natural philosophy in Derby, c. 1690–1760. Annals of Science, 57, 61–100.

    Article  Google Scholar 

  • Euler, L. (1732–1738). Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus, Commentarii academiae scientiarum Petropolitanae 6, pp. 103–107. In OO, Ser I, II, pp. 1–5.

  • Euler, L. (1752–1753). De numeris qui sunt aggregata duorum quadratorum, in Novi commentarii academiae scientiarum Petropolitanae, 4, pp. 3–40. In OO, Ser. 1, II, pp. 295–327.

  • Euler, L. (1754–1755). Demonstratio theorematis Fermatiani omnem numerum sive integrum sive fractum esse summam quatuor pauciorumve quadratorum, in Novi commentarii academiae scientiarum Petropolitanae 5, pp. 13–58. In OO, Ser. 1, II, pp. 338–372.

  • Euler, L. (1756–1757). Specimen de usu observationum in mathesi pura, in Novi commentarii academiae scientiarum Petropolitanae, 6, pp. 185–230. In OO, Ser. 1, II, pp. 459–492.

  • Euler, L. (1760–1761). Supplementum quorundam theorematum arithmeticorum quae in nonnullis demonstrationibus supponuntur, in Novi commentarii academiae scientiarum Petropolitanae, 8, pp. 105–128. In OO, Ser. 1, II, pp. 556–575.

  • Euler, L. (1765). De usu novi algorithmi in problemate Pelliano solvendo, in Novi commentarii academiae scientiarum Petropolitanae”, 11, pp. 28–66. In OO, Ser. 1, III, pp. 73–111.

  • Euler, L. (1770). Algebra. Petersburg. In OO, Ser. 1, I.

  • Euler, L. (1773). Novae demonstrationes circa resolutionem numerorum in quadrata, in Nova acta eruditorum, pp. 193–211. In OO, Ser. 1, III, pp. 218–239.

  • Fellmann, E. A. (1988). The Principia and continental mathematicians. Notes & Records of the Royal Society, 42, 13–34.

    Article  Google Scholar 

  • Ferrone, V. (1982). Scienza, natura, religione. Mondo newtoniano e cultura italiana nel primo Settecento. Napoli: Jovene.

  • Fontenelle Le Bouvier, B. (1728a). The life of Sir Isaac Newton with an account of his writings by M. Fontanelle of the Royal Academy of Sciences at Paris. Printed for James Woodman and David Lyon. Russel-Street Covent-Garden MDCCXXVIII. [see also Id. 1728. The Elogium of Sir Isaac Newton. Tonson in the Strand, and J. Osborn and T. Longman in Pater-Noster Row MDCCXXVIII. London].

  • Fontenelle Le Bouvier, B. (1728b). Éloge de M Neuton. Source: BnF-Gallica.

  • Fontenelle Le Bouvier, B. (1728c). Éloge de Monsieur le Chevalier Neuton par Mons. De Fontanelle. Secrétaire perpétuel de l'Académie royale des sciences de Paris. Source: The British Library.

  • Force, J. E. (1983). Some eminent Newtonians and providential geophysics at the turn of the 17th century. Earth Sciences History, 2, 4–10.

    Article  Google Scholar 

  • Force, J. E. (1985). William Whiston, honest Newtonian. Cambridge: Cambridge University Press.

  • Force, J. E. (2004). Providence and Newton’s Pantokrator: Natural law, miracles, and Newtonian science. In J. E. Force & S. Hutton (Eds.), Newton and Newtonianism: New studies (pp. 65–92). Dordrecht: Kluwer.

  • Force, J. E., & Hutton, S. (2004). Newton and Newtonianism: New studies. New York, Boston Dordrecht, London, Moscow: Kluwer Academic Publishers.

  • Force, J. E., & Popkin, R. H. (1999). Newton and religion: Context, nature and influence. New York, Boston Dordrecht, London, Moscow: Kluwer Academic Publishers.

  • Friesen, J. (2006). Hutchinsonianism and the Newtonian enlightenment. Centaurus, 48, 40–49.

    Article  Google Scholar 

  • Gascoigne, J. (1988). From Bentley to the Victorians: The rise and fall of British Newtonian natural theology. Science in Context, 2, 219–256.

    Article  Google Scholar 

  • Gaukroger, S. (1986). Philosophical responses to the New Science in Britain, 1644–1799. A survey of texts. Metascience: An International Review Journal for the History. Philosophy and Social Studies of Science, 4, 60–71.

    Google Scholar 

  • Gauss, C. F. (1801). Disquisitiones arithmeticae. Leipzig. In Gauss [1870]1876, I.

  • Gauss, C. F. (1813). Theoria Attractionis Corporum sphaeroidicorum ellipticorum homogeneorum methodo nova tractata. Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. Classis mathematicae II:355–378. (See also Gauss [1870]1876, I-22).

  • Gauss, C. F. ([1870]1876). Werke, volumes 1 and 2. Göttingen-Berlin, Gesellschaft der Naturwissenschaften zu Göttingen.

  • Gillispie, C. C., & Pisano, R. (2014). Lazare and Sadi Carnot: A scientific and filial relationship (2nd ed.). Dordrecht: Springer.

  • Goldish, M. (1998). Judaism in the theology of sir Isaac Newton. Dordrecht: Kluwer Academic Publishers.

  • Goldish, M. (1999). Newton’s of the church: Its contents and implication. In J. E. Force & R. H. Popkin (Eds.), Newton and religion: Context, nature, and influence (pp. 145–164). Dordrecht: Kluwer Academic Publishers.

  • Golinski, J. (1998). Making natural knowledge: Constructivism and the history of science. Cambridge: Cambridge University Press.

  • Greenberg, J. L. (1995). The problem of the Earth’s shape from Newton to Clairault. Cambridge: Cambridge University Press.

  • Gregory, D. (1702). Astronomiae physicae et geometricae elementa. Oxford: Theatre Sheldonian.

  • Guerlac, H. (1981). Newton on the continent. Ithaca–New York: Cornell University Press.

  • Guerrini, A. (1985). James Keill, George Cheyne, and Newtonian physiology, 1690–1740. Journal of the History of Biology, 18, 247–266.

    Article  Google Scholar 

  • Guicciardini, N. (1989). The developments of Newtonian Calculus in Britain, 1700–1800. Cambridge: Cambridge University Press.

  • Guicciardini, N. (1998). Did Newton use his calculus in the Principia? Centaurus, 40, 303–344.

    Article  Google Scholar 

  • Guicciardini, N. (1999). Reading the principia the debate on Newton’s mathematical methods for natural philosophy from 1687 to 1736. Cambridge: Cambridge University Press.

  • Guicciardini, N. (2002). Analysis and synthesis in Newton’s mathematical work. In I. B. Cohen & G. Smith (Eds.), Companion to Newton (pp. 308–328). Cambridge: Cambridge University Press.

  • Guicciardini, N. (2004a). Dot-age: Newton’s legacy in eighteenth century mathematics. Early Science and Medicine, 9, 218–256.

    Article  Google Scholar 

  • Guicciardini, N. (2004b). Isaac Newton, Philosophiae Naturalis Principia Mathematica. In I. Grattan-Guinness (Ed.), Landmark writings in western mathematics, case studies 1640–1940 (pp. 59–87). Amsterdam: Elsevier.

  • Guicciardini, N. (2015). Editing Newton in Geneva and Rome: The annotated edition of the principia by Calandrini, Le Seur and Jacquier. Annals of Science, 72(3), 337–380.

    Article  Google Scholar 

  • Hall, M. B. (1978). Newton and his theory of matter in the 18th century. Vistas in Astronomy, 22, 453–459.

    Article  Google Scholar 

  • Hampson, N. (1981). The enlightenment in France. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 41–53). Cambridge: Cambridge University Press.

  • Hankins, T. L. (1990). Newton’s mathematical way a century after the Principia. In F. Durham & D. Purrington (Eds.), Some truer method (pp. 89–112). New York: Columbia University Press.

  • Harman, P. M. (1988). Newton to Maxwell: The Principia and British physics. Notes & Records of the Royal Society of London, 42, 75–96.

    Article  Google Scholar 

  • Harper, W. L. (2001). Isaac Newton’s scientific method: Turning data into evidence about gravity and cosmology. Oxford: The Oxford University Press.

  • Harrison, P. (1995). Newtonian science, miracles and the laws of nature. Journal of the History of Ideas, 56, 531–553.

    Article  Google Scholar 

  • Haycock, D. B. (2004). The long-lost truth: Sir Isaac Newton and the Newtonian pursuit of ancient knowledge. Studies in History and Philosophy of Science Part A, 35, 605–623.

    Article  Google Scholar 

  • Heidarzadeh, T. (2006). The reception of Newton’s theory of cometary tail formation. Centaurus, 48, 50–65.

    Article  Google Scholar 

  • Heimann, P. M., & McGuire, J. E. (1971). Newtonian forces and Lockean powers: Concepts of matter in eighteenth century thought. Historical Studies in the Physical Sciences, 3, 233–306.

    Article  Google Scholar 

  • Henry, J. (1992). The scientific revolution in England. In R. Porter & M. Teich (Eds.), The scientific revolution in national context (pp. 178–209). New York–Cambridge: Cambridge University Press.

  • Hessen, B. (1931). The social and economic roots of Newton’s Principia. In N. I. Bukharin (Ed.), Science at the cross roads. Papers Presented to the International Congress of the History of Science and Technology. The Delegates of the U.S.S.R London. Retrieved from www.russelldale.com/phil-material/V1_Hessen.pdf.

  • Hiscock, W. G. (1937). David Gregory, Isaac Newton and their circle: Extracts from David Gregory’s Memoranda. Oxford: Oxford University Press.

  • Hutton, S. (2004a). Emilie du Châtelet’s Institutions de physique as a document in the history of French Newtonianism. Studies in History and Philosophy of Science Part A, 35, 515–531.

    Article  Google Scholar 

  • Hutton, S. (2004b). Women, science, and Newtonianism: Emilie du Châtelet versus Francesco Algarotti. In J. E. Force & S. Hutton (Eds.), Newton and Newtonianism: New studies (pp. 183–203). New York–Boston–Dordrecht–London–Moscow: Kluwer Academic Publishers.

  • Huygens, C. ([1690] 1944). Discours de la cause de la pesanteur. In Oeuvres complètes. Tome XXI. Cosmologie. Vollgraff (ed). Martinus Nijhoff (pp. 451–488). Den Haag.

  • Huygens, C. (1673). Christiani Hugenii Horologium Oscillatorum Muguet, Paris (English Translated by Richard J. Blackwell, 1986).

  • Huygens, C. (1690). Traité de la Lumière. Leyden: Vander.

  • Huygens, C. (1897). Oeuvres Completes de Christiaan Huygens (Vol. 7). La Haye: Martinus Nijhoff.

  • Huygens, C. (1905). Correspondence 1691–1695, Oeuvres complètes. Tome X. Edited by J Bosscha, Martinus Nijhoff. Den Haag.

  • Iliffe, R. (2004). Abstract considerations: Disciplines and the incoherence of Newton’s natural philosophy. Studies in History and Philosophy of Science Part A, 35, 427–454.

    Article  Google Scholar 

  • Iltis, C. (1977). Madame du Châtelet’s metaphysics and mechanics. Studies in History and Philosophy of Science Part A, 8, 29–48.

    Article  Google Scholar 

  • Ivory, J. (1809). On the attractions of homogeneous Ellipsoids. Philosophical Transactions of the Royal Society of London, 99, 345–372.

    Article  Google Scholar 

  • Jackson, M. W. (1994). A spectrum of belief: Goethe’s ‘Republic’ versus Newtonian ‘Despotism.’ Social Studies of Science, 24, 673–701.

    Article  Google Scholar 

  • Jacob, M. C. (1976). The Newtonians and the English revolution 1687–1720. Ithaca–New York: Cornell University Press.

  • Jacob, M. C. (1977). Newtonianism and the origins of the enlightenment: A reassessment. Eighteenth-Century Studies, 11, 1–25.

    Article  Google Scholar 

  • Jacob, M. C. (1978). Newtonian science and the radical enlightenment. Vistas in Astronomy, 22, 545–555.

    Article  Google Scholar 

  • Jacquier, F. (1755). Elementi di perspettiva, secondo i principii di Brook Taylor con varie aggiunte spettanti all’ottica e alla geometria. Roma: Per generoso Salomoni.

  • Keill, J. (1701). Introductio ad veram physicam. Oxford: Sheldonian Theathre.

  • King-Hele, D. G., & Hall, A. (1988). Newton’s Principia and its legacy. [Proceedings of a Royal Society Discussion Meeting, 30, June 1987. London: The Royal Society of London, London]. Special Issue of the Notes & Records of the Royal Society of London 42/1.

  • Koyré, A. (1965). Newtonian studies. Cambridge–MA: The Harvard University Press.

  • Lagrange, J. L. (1769). Sur la solution de problèmes indéterminés du second degré, in Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin, t. XXIII. In Fermat 1891–1922, 2 (pp. 375–535).

  • Lagrange, J. L. (1770). Démonstration d’un théorème d’arithmétique, in Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin. In Fermat 1891–1922, 3 (pp. 187–201).

  • Lagrange, J. L. ([1773]1775). (first and second part respectively), Recherches d’arithmétique, in Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin”. In Fermat 1891–1922, 3, pp. 693–758, 759–795 respectively.

  • Lagrange, J. L. (1774). Additions aux Eléments d’Algèbre d’Euler. In., 7, pp. 3–180 and in Euler, OO, 1, I, pp. 499–651 with the title Additions à l’analyse indéterminée.

  • Lagrange, J. L. (1777). Sur quelques problèmes de l’analyse de Diophante, in Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin. In Fermat 1891–1922, 4, pp. 375–398.

  • Lagrange, J. L. (1867–1897). Œuvres, 14 volumes. Paris: Gauthier-Villars.

  • Laplace, P. S. ([1782,1784]1785). Théorie des attractions des sphéroïdes et de la figure des planètes. Mémoires de l'Académie Royale des Sciences de Paris, pp. 113–196. See also Œuvres Complètes de Laplace, X, pp. 341–419.

  • Laplace, P. S. (1799). Traité de Mécanique Céleste, 3 tomes. Paris: Duprat. See also Œuvres de Laplace, pp. 1–5.

  • Le Seur, T., & Jacquier, F. (1768). Elémens du calcul integral (Vol. 2). Parma: Monti.

  • Le Seur, T., Jacquier, F., & Boscovich, G. R. (1743). Riflessioni de' Padri Tommaso Le Seur, Francesco Jacquier de el' Ordine de' Minimi, e Ruggiero Giuseppe Boscovich della Compagnia di Gesù Sopra alcune difficoltà spettanti i danni, e Risarcimenti della Cupola Di S. Pietro. Domenico Sante Santini, Roma.

  • Legendre, A. M. ([1783]1785). Recherches sur l'attraction des sphéroïdes homogènes. Mémoires de Mathématiques et de Physique présentés par divers Savants Étrangers à l'Académie Royale des Sciences de Paris (411–435).

  • Legendre, A. M. (1788). Mémoire sur les intégrales doubles. Mémoires de l'Académie Royale des Sciences de Paris (pp. 454–486).

  • Leibniz, G. W. (1684a). Meditationes de cognitione, veritate et ideis, Acta Eruditorum (pp. 537–542).

  • Leibniz, G. W. (1684b). Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus. Math. Schr. V (pp. 220–226). [Acta Eruditorum].

  • Leshem, A. (2003). Newton on mathematics and spiritual purity. Dordrecht: Kluwer Academic Publishers.

  • Lord, F. H. (2000). Piety, politeness, and power: Formation of a Newtonian culture in New England, 1727–1779. Doctoral Dissertation. Golinski, J. (Supervisor). University of New Hampshire, New Hampshire.

  • Lüthy, C. (2000). What to do with seventeenth-century natural philosophy? A taxonomic problem. Perspectives on Science, 8, 164–195.

    Article  Google Scholar 

  • Lynn, M. R. (1997). Enlightenment in the republic of science: The popularization of natural philosophy in eighteenth-century Paris. Doctoral Dissertation. Sella D (Supervisor). Madison–MA: The University of Wisconsin.

  • Maclaurin, C. (1740). De Causa Physica Fluxus et Refluxus Maris. In Pièces qui ont remporté le prix de l’Académie Royale des Sciences en 1740, 193–234. Paris: Martin, Coignard et Guérin. See also Newton [1739–1742]1822, III, pp. 210–245.

  • Maclaurin, C. (1742). A treatise of fluxions (in two books). Edinburgh: TW and T Ruddimans.

  • Malet, A. (1990). Gregoire, Descartes, Kepler and the law of refraction. Archives Internationales D’histoire Des Sciences, 40, 278–304.

    Google Scholar 

  • Mandelbrote, S. (2004a). Newton and Newtonianism: An introduction. Studies in History and Philosophy of Science Part A, 35, 415–425.

    Article  Google Scholar 

  • Mandelbrote, S. (2004b). Eighteenth-century reactions to Newton’s anti-trinitarianism. In J. E. Force & S. Hutton (Eds.), Newton and Newtonianism: New studies (pp. 93–111). New York–Boston–Dordrecht–London–Moscow: Kluwer Academic Publishers.

  • Marcialis, M. T. (1989). Francesco Algarotti’s worldly Newtonianism. Memorie Della Società Astronomica Italiana, 60, 807–821.

    Google Scholar 

  • Markley, R. (1999). Newton, corruption, and the tradition of universal history. In J. E. Force & R. H. Popkin (Eds.), Newton and religion: Context, nature, and influence (pp. 121–143). Dordrecht: Kluwer Academic Publisher.

  • Mazzotti, M. (2004). Newton for ladies: Gentility, gender and radical culture. British Journal for the History of Science, 37, 119–146.

    Article  Google Scholar 

  • McLaurin, C. ([1748]1971). An account of Sir Isaac Newton’s Philosophical Discoveries, in Four Books. New York: Georg Olms Verlag.

  • McMullin, E. (1978). Newton in matter and activity. Notre Dame: University of Notre Dame Press.

  • Montgomery, S. L. (2000). Science in translation: Movements of knowledge through cultures and time. Chicago: University of Chicago Press.

  • Munby, A. N. L. (1952). The distribution of the first edition of Newton’s Principia. Notes and Records of the Royal Society, 10, 28–39.

    Article  Google Scholar 

  • Nauenberg, M. (1994a). Newton’s early computational method for dynamics. Archive for History of Exact Sciences, 46, 221–252.

    Article  Google Scholar 

  • Nauenberg, M. (1994b). Newton’s principia and inverse square orbits. College Mathematics Journal, 25, 212–222.

    Article  Google Scholar 

  • Nauenberg, M. (1996). Huygens and Newton on curvature and its applications to dynamics. De Zeventiende Eeuw, Cultur in De Nederlanden in Interdisciplinair Perspectief, 12, 215–234.

    Google Scholar 

  • Newton (1714). Philosophiae naturalis principia mathematica. Editio secunda auctior et emendatior. Amsterdam: Sumptibus Societatis.

  • Newton (1723). Analysis per Quantitatum, Series, Fluxiones, ac Differentias: cum Enumeratione Linearum Tertii Ordinis. AmstaeIodami.

  • Newton, I. ([1671]1736). The method of fluxions and infinite series with its application to the geometry of curve-lines. London: Woodfall.

  • Newton. I. ([1704]1730). Opticks: Or, a treatise of the reflections, refractions, inflections and colours of light (4th edn). London: William Innys.

  • Newton, I. ([1726]1729). The mathematical principles of natural philosophy. Transl. by Motte Andrew. London: Motte.

  • Newton, I. ([1739–1742]1822). Philosophiae Naturalis Mathematica Principia, auctore Isaaco Newtono, Eq. Aurato, perpetuis commentariis illustrata, communi studio Pp. Thomae Le Seur et Francisci Jacquier ex Gallicana minimorum familia, matheseos professorum. Editio nova. Glasgow: Duncan.

  • Newton, I. (1666). De gravitatione et aequipondio fluidorum. Ms Add. 4003. Cambridge: The Cambridge University Library. Retrieved from http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00093.

  • Newton, I. (1687). Philosophiae naturalis principia mathematica. Imprimatur S. Pepys. Reg. Soc. Preses. Julii 5. 1686. Londini, Jussi Societatus Regiae ac Typis Josephi Streater. Prostat apud plures Bibliopolas. Anno MDCLXXXVII.

  • Newton, I. (1693). Fourth letter to Richard Bentley. 189.R.4.47, ff. 7–8, Trinity College Library, Cambridge, UK. Retrieved from http://www.newtonproject.ox.ac.uk/view/texts/normalized/THEM00258.

  • Newton, I. (1713). Philosophiae naturalis principia mathematica. Editio secunda auctior et emendatior. Cambridge: Cornelius Crownfield.

  • Newton, I. (1723). Philosophiae Naturalis Principia Mathematica autore Isaaco Newtono equite aurato. Editio ultima ciu accedit analysis per quantitatum series, fluxiones ac differentiae cum enumeratione linearum tertii ordinis. Sumptibus Societatis, Amstaelodami (1723).

  • Newton, I. (1726). Philosophiae Naturalis Principia Mathematica. Editio tertia aucta et emendate. London: Guil. and Joh. Innys.

  • Newton, I. (1760). Philosophiae naturalis principia mathematica, auc- tore Isaaco Newtono, Eq. Aurato. Perpetuis commentariis illustrate, communi studio pp. Thomae le Seur et Francisci Jacquier ex Gallicana Minimorum Familia, matheseos professorum. Editio altera longe accuratior et emendatior. Geneva: Philibert.

  • Newton, I. (1972). Philosophiae Naturalis Principia Mathematica. The Third Edition (1726) with variant readings. Assemled and edited by A. Koyré and I. B. Cohen, with the assistance of A. Whitman. Cambridge–Mass: Harvard University Press.

  • Newton, I. (1999). The principia: Mathematical principles of natural philosophy. Translated by I. Bernard Cohen and Anne Whitman, assisted by Julia Budenz; preceded by ‘A guide to Newton’s Principia’ by I. Bernard Cohen. Berkeley: University of California Press.

  • OO Euler, L, ([1911, 1913, 1917]1941). Opera Omnia, Series 1, volumes I, X, II, III, IV respectively. Leipzig and Berlin, Teubner (in the references shortened as OO).

  • Osler, M. (2004). The new Newtonian scholarship and the fate of the scientific revolution. In J. E. Force & S. Hutton (Eds.), Newton and Newtonianism: New studies (pp. 1–13). Dordrecht–London–Moscow: Kluwer.

  • Pagden, A. (1988). The reception of the ‘New Philosophy’ in eighteenth century Spain. Journal of the Warburg and Courtauld Institute, 51, 126–140.

    Article  Google Scholar 

  • Pater, C. de (1994). Willem Jacob’s Gravesande (1688–1742) and Newton’s Regulae Philosophandi 1742. Sources and Documents Relating to the Early Modern History of Ideas, 21, 257–294.

  • Pecot, J. N. (1993). Le problème de l’ellipsoïde et l’analyse harmonique: la controverse entre Legendre et Laplace. Cahiers du séminaire d’histoire des mathématiques 2e s, 3, 113–157.

  • Pemberton, H. (1728). A view of Sir Isaac Newton’s philosophy. London: Palmer.

  • Phemister, P. (1993). Locke, sergeant, and scientific method. In T. Sorell (Ed.), The rise of modern philosophy: The tension between the new and traditional philosophies from Machiavelli to Leibniz (pp. 231–249). Oxford: Clarendon Press.

  • Phillipson, N. (1981). The Scottish enlightenment. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 19–40). Cambridge: Cambridge University Press.

  • Pisano, R. (2022). Galileo Galilei: The two Le Mecaniche. Translations, Text and Commentaries. Springer, pre-print/camera ready.

  • Pisano, R. (2007). Brief history of centre of gravity theory. Epistemological notes. In Proceedings of 3rd conference of European Society for the history of science (pp. 934–941). Krakow: Poland Academy of Science.

  • Pisano, R. (2009a). Il ruolo della scienza archimedea nei lavori di meccanica di Galilei e di Torricelli. In E. Giannetto, G. Giannini, D. Capecchi & R. Pisano (Eds.), Da Archimede a Majorana: La fisica nel suo divenire (pp. 65–74). Rimini: Guaraldi Editore.

  • Pisano, R. (2009b). On method in Galileo Galilei’ mechanics. In: H. Hunger (Ed.) Proceedings of ESHS 3rd conférence (pp. 147–186). Vienna: The Austrian Academy of Science.

  • Pisano, R. (2009c). Continuity and discontinuity. On method in Leonardo da Vinci’ mechanics. Organon, 41, 165–182.

  • Pisano, R. (2010). On principles in sadi carnot’s thermodynamics (1824). Epistemological Reflections. Almagest, 2, 128–179.

  • Pisano, R. (2011). Physics–mathematics relationship. Historical and Epistemological notes. In E. Barbin, M. Kronfellner, C. Tzanakis (Eds.), European summer university history and epistemology in mathematics (pp. 457–472). Vienna: Verlag Holzhausen GmbH-Holzhausen Publishing Ltd.

  • Pisano, R. (2013a). Reflections on the scientific conceptual streams in Leonardo da Vinci and his relationship with Luca Pacioli. Advances in Historical Studies, 2, 32–45.

    Article  Google Scholar 

  • Pisano, R. (2013b). On Lagrangian in Maxwell’s electromagnetic theory: Scientiatum VI (pp. 44–59). Rio de Janeiro: The Federate University of Rio de Janeiro Press.

  • Pisano, R. (2013c). Notes on the historical conceptual streams for mathematics and physics teaching. Pedagogika. the Lithuanian Mathematical Society, 54, 7–17.

    Google Scholar 

  • Pisano, R. (2013d). Historical reflections on physics mathematics relationship in Electromagnetic theory. In E. Barbin & R. Pisano (Eds.), The dialectic relation between physics and mathematics (pp. 31–57). In The XIXth Century. Dordrecht: Springer.

  • Pisano, R. (2014). Note sulle Fortificazioni nei Quesiti di Tartaglia. Libro Sesto e sua Gionta. In S. D’Agostino, G. Fabricatore (Eds.), Proceedings of the international conference in history of engineering (815–825). Napoli, II: Cuzzolin.

  • Pisano, R. (2017). A Development of the principle of virtual laws and its framework in Lazare Carnot’s mechanics as manifest relationship between physics and mathematics. International Journal for Historiography of Science, 2, 166–203.

    Google Scholar 

  • Pisano, R. (2020). A tale of tartaglia’s libro sesto & gionta in quesiti et inventioni diverse (1546–1554). Exploring the historical and cultural foundations. Foundations of Science, 25(2), 477–450.

  • Pisano, R., Agassi, J., & Drozdova, D. (2017). Hypothesis and perspective in history and philosophy of science: Homage to Alexandre Koyré 1892–1964. Dordrecht: Springer.

  • Pisano, R., & Bussotti, P. (2012). Galileo and Kepler: On theoremata circa centrum gravitatis solidorum and mysterium cosmographicum. History Research, 2, 110–145.

    Google Scholar 

  • Pisano, R., & Bussotti, P. (2013). Notes on the concept of force in Kepler. In R. Pisano, D. Capecchi, & A. Lukešová A (Eds.), Physics, astronomy and engineering. Critical problems in the history of science and society. In International 32nd congress for the SISFA-Italian Society of historians of physics and astronomy (pp. 337–344). Šiauliai: The Scientia Socialis UAB & Scientific Methodical Centre Scientia Educologica Press.

  • Pisano, R., & Bussotti, P. (2015). Newton Geneva edition as research programme concerning the relationship physics–mathematics. In P. Tucci (Ed.), 34th SISFA (pp. 149–158). Pavia: Pavia University Press.

  • Pisano, R., & Bussotti, P. (2016a). A Newtonian tale details on notes and proofs in Geneva edition of Newton’s Principia. Journal of the British Society for the History of Mathematics, 31(3), 160–178.

    Google Scholar 

  • Pisano, R., & Bussotti, P. (2016b). The fiction of the infinitesimals in Newton’s works: A note on the metaphoric use of infinitesimals in Newton. Isonomia, 9, 141–160.

    Google Scholar 

  • Pisano, R., & Bussotti, P. (2017a). On the conceptualization of force in Johannes Kepler’s Corpus: An interplay between physics/mathematics and metaphysics. In R. Pisano, J. Agassi, & D. Drozdova (Eds.), Alexandre Koyré 1892–1964 (pp. 295–346). Dordrecht: Springer.

  • Pisano, R., & Bussotti, P. (2017b). The fiction of infinitesimals in Newton’s works. On the metaphorical use of infinitesimals in Newton. In F. Marcacci, & M. G. Rossi (Eds.), Special issue entitle reasoning, metaphors and science isonomia–epistemologica (Vol. 9, pp. 141–160).

  • Pisano, R., & Bussotti, P. (2017c). Homage to Galileo Galilei 1564–2014: Reading Iuvenilia Galilean works within history and historical epistemology of science. Special Issue Philosophiae Scientiae, 21(1)

  • Pisano, R., & Bussotti, P. (2020). Newton’s Geneva edition: The notes on integral calculus. In A. La Rana, & P. Rossi (Eds.), International 39th congress of the Italian Society for the history of physics and astronomy (Pisa/VIRGO 2019, 9–12 Sept.) (pp. 127–134). Pavia: Pavia University Press.

  • Pisano, R., & Capecchi, D. (2013). Conceptual and mathematical structures of mechanical science in the western civilization around 18th century. Almagest, 4(2), 86–121.

    Article  Google Scholar 

  • Pisano, R., & Capecchi, D. (2016). Tartaglia’s Science of Weights and Mechanics in the Sixteenth Century Selections from Quesiti et inventioni diverse. Dordrecht: Springer.

  • Pisano, R., Pellegrino, E. M., Anakkar, A., & Nagels, M. (2021). Conceptual polymorphism of entropy into the history: Extensions of the second law of thermodynamics towards statistical physics and chemistry during nineteenth–twentieth centuries. Foundations of Chemistry. https://doi.org/10.1007/s10698-021-09401-y

    Article  Google Scholar 

  • Pisano, R., Copperscmith, J., & Peacke, M. (2020) Essay on machines in general (1786). Text, translations and commentaries. Lazare Carnot's mechanics (Vol. 1). Dordrecht: Springer.

  • Poincaré, H. (1892). Les forms d’équilibre d’une masse fluide en rotation. Revue Générale des Sciences Pures et Appliquées, 3, 809–815.

    Google Scholar 

  • Porter, R. (1981). The enlightenment in England. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 1–18). New York–Cambridge: Cambridge University Press.

  • Porter, R., & Teich, M. (1992). The scientific revolution in national context. New York–Cambridge: Cambridge University Press.

  • Pulte, H., & Mandelbrote, S. (2011). The reception of Isaac Newton in Europe. London: Continuum, Publishing Corporation.

  • Purrington, R. D., & Durham, F. (1990). Newton’s legacy. In F. Durham & R. D. Prurrington (Eds.), Some truer method (pp. 1–13). New York: Columbia University Press.

  • Rattansi, P. M. (1981). Voltaire and the enlightenment image of Newton. In H. Lloyd-Jones, V. Pearl, & B. Worden (Eds.), History and imagination: Essays in honour of H. R. Trevor-Roper (pp. 218–231). New York: Holmes and Meier.

  • Rouse Ball, W. W. ([1893]1972). An essay on Newton’s principia. London: Macmillan.

  • Rousseau, G. S., & Porter, R. (1980). The ferment of knowledge: Studies in the historiography of eighteenth century science. Cambridge: Cambridge University Press.

  • Ruderman, D. (1997). On defining a Jewish stance toward Newtonianism: Eliakim ben Abraham Hart’s Wars of the Lord. Science in Context, 10, 677–692.

    Article  Google Scholar 

  • Rupert Hall, A. (1999). Isaac Newton: Eighteenth-century perspectives. Oxford: Oxford University Press.

  • Schama, S. (1981). The enlightenment in the Netherlands. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 54–71). Cambridge: Cambridge University Press.

  • Schuster, J. A. (2000). Descartes opticien: The construction of the law of refraction and the manufacture of its physical rationales, 1618–1629. In S. Gaukroger, J. Schuster, & J. Sutton (Eds.), Descartes’ natural philosophy (pp. 258–312). London–New York: Routledge.

  • Schuster, J. A. (2013). Descartes Agonistes: Physico-mathematics, method and corpuscular-mechanism 1618–1633. Dordrecht: Springer.

  • Smolinski, R. (1999). The logic of millennial thought: Sir Isaac Newton among his contemporaries. In J. E. Force & R. H. Popkin (Eds.), Newton and religion: Context, nature, and influence (pp. 259–289). Dordrecht: Kluwer Academic Publisher.

  • Snobelen, S. (1997). Caution, conscience, and the Newtonian reformation: The public and private heresies of Newton, Clarke, and Whiston. Enlightenment and Dissent, 16, 151–184.

    Google Scholar 

  • Snobelen, S. (1998). On reading Isaac Newton’s Principia in the 18th century. Endeavour, 22, 159–163.

    Article  Google Scholar 

  • Snobelen, S. (2004). William Whiston, Isaac Newton and the crisis of publicity. Studies in History and Philosophy of Science Part A, 35, 573–603.

    Article  Google Scholar 

  • Stewart, L. (1992). The rise of public science: Rhetoric, technology, and natural philosophy in Newtonian Britain, 1660–1750. Cambridge: Cambridge University Press.

  • Stewart, L. (2004). The trouble with Newton in the eighteenth century. In J. E. Force & S. Hutton (Eds.), Newton and Newtonianism: New studies (pp. 221–238). New York–Boston–Dordrecht–London–Moscow: Kluwer Academic Publishers.

  • Taylor, S. S. B. (1981). The enlightenment in Switzerland. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 72–89). Cambridge: Cambridge University Press.

  • Teich, M. (1981). Bohemia: From darkness into light. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 141–163). Cambridge: Cambridge University Press.

  • Thijssen, J. M. H. (1992). David Hume and John Keill and the structure of Continua. Journal of the History of Ideas, 53, 271–286.

    Article  Google Scholar 

  • Todhunter, I. (1873). History of the theory of attraction and the figure of the Earth from the time of Newton to that of Laplace (Vol. 2). London: Macmillan and Co.

  • Turnbull, H. W. (1960). The correspondence of Isaac Newton 1676–1678 (Vol. 2). Cambridge: Cambridge University Press.

  • Turnbull, H. W. (1961). The correspondence of Isaac Newton 1688–1694 (Vol. 3). Cambridge: Cambridge University Press.

  • Wall Van der EGE. (2004). Newtonianism and religion in the Netherlands. Studies in History and Philosophy of Science Part A, 35, 493–514.

    Article  Google Scholar 

  • Wallis. J. (1693–1699). Opera mathematica 1693 (Vol. 2, pp. 390–396). Oxford: Theatro Sheldoniano.

  • Wallis, P. J., & Wallis, R. (1977). Newton and Newtoniana, 1672–1975: A bibliography. Folkston: Dawson.

  • Westfall, R. S. ([1983]1995). Never at rest: A biography of Isaac Newton. Cambridge: Cambridge University Press.

  • Westfall, R. S. (1958). Science and religion in seventeenth century England. New Haven: Yale University Press.

  • Westfall, R. S. (1971). The construction of modern science: Mechanism and mechanic. New York: Wiley.

  • Whaley, J. (1981). The protestant enlightenment in Germany. In R. Porter & M. Teich (Eds.), The enlightenment in national context (pp. 106–117). Cambridge: Cambridge University Press.

  • Whiston, W. (1707). Praelectiones astronomicae. Charkouiae: Typis Academicis.

  • Wigelsworth, J. R. (2003). Competing to popularize Newtonian philosophy: John Theophilus Desaguliers and the preservation of reputation. Isis, 94, 435–455.

    Article  Google Scholar 

  • Wightman, W. P. D. (1957). David’s Gregory commentary on Newton’s “Principia”. Nature, 4556(179), 393–394.

  • Wright, J. M. F. (1833). Commentary on Newton’s Principia, with a supplementary volume: Designed for the use of students at the university. London: Tegg.

  • Yolton, J. ([1990]1994). Philosophy, religion and science in the seventeenth and eighteenth centuries. New York: University of Rochester Press.

  • Young, B. (2004). Newtonianism and the enthusiasm of enlightenment. Studies in History and Philosophy of Science Part A, 35, 645–663.

    Article  Google Scholar 

  • Zinsser, J. P. (2001). Translating Newton’s Principia: The Marquise du Châtelet’s revisions and additions for a French audience. Notes and Records of the Royal Society of London, 55, 227–245.

    Article  Google Scholar 

  • Zinsser, J. P. (2003). Essay review: The ultimate commentary: A consid- eration of I. Bernard Cohen’s Guide to Newton’s Principia. Notes and Record of the Royal Society of London, 57, 231–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Pisano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisano, R., Bussotti, P. Conceptual Frameworks on the Relationship Between Physics–Mathematics in the Newton Principia Geneva Edition (1822). Found Sci 27, 1127–1182 (2022). https://doi.org/10.1007/s10699-021-09820-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-021-09820-2

Keywords

Navigation