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Abstract In artificial intelligence (AI), a number of criticisms were raised against

the use of probability for dealing with uncertainty. All these criticisms, except what

in this article we call the non-adequacy claim, have been eventually confuted. The

non-adequacy claim is an exception because, unlike the other criticisms, it is

exquisitely philosophical and, possibly for this reason, it was not discussed in the

technical literature. A lack of clarity and understanding of this claim had a major

impact on AI. Indeed, mostly leaning on this claim, some scientists developed an

alternative research direction and, as a result, the AI community split in two

schools: a probabilistic and an alternative one. In this article, we argue that the non-
adequacy claim has a strongly metaphysical character and, as such, should not be

accepted as a conclusive argument against the adequacy of probability.
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Introduction

Antony Eagle (2005) has recently argued that the concept of randomness, as

presented in the current philosophical literature, is misleading and that this can

entail serious consequences due to the central role that randomness plays in many

scientific disciplines.
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IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

e-mail: piscopo@iridia.ulb.ac.be

M. Birattari

e-mail: mbiro@ulb.ac.be

123

Minds & Machines (2008) 18:273–288

DOI 10.1007/s11023-008-9097-3



In this article, we discuss the implications that the lack of an adequate definition

of randomness had in the development of artificial intelligence. From the late 1960s

till the late 1980s, the artificial intelligence community engaged in a vigorous and at

times vitriolic debate about the nature of uncertainty and about the methods for its

treatment. A part of the community considered probability as perfectly adequate for

dealing with uncertainty. Another part of the community insisted instead on the

inadequacy of the probabilistic framework and devoted itself to the development of

alternative approaches including, for example, fuzzy sets theory (Zadeh 1965),

possibility theory (Zadeh 1978; Dubois and Prade 1987), Dempster–Shafer theory

(Shafer 1976), and the transferable belief model (Smets and Kennes 1994). For a

broad overview on the debate see Shafer and Pearl (1990). As a result of this debate,

the artificial intelligence (AI) community is nowadays split in two schools that

develop along distinct research directions. This appears clearly from the fact that a

significant amount of research works dealing with alternative methods are published

in journals or conference proceedings that are entirely devoted to them. The fact that

the debate on uncertainty in AI reached its climax about 20 years ago, and that since

then only few articles have been devoted to this debate, does not mean that a

satisfactory definition of uncertainty, and of the related concept of randomness, has

been achieved. Indeed, the very existence of the two communities should be seen as

an evidence of the fact that some key issue on which these two communities diverge

has not been properly addressed. Our thesis is that the key issue is what we call here

the non-adequacy claim.

All the criticisms raised against the adoption of probability in AI have been

discussed at length in the literature and have been eventually confuted, typically by

highlighting some technical fault. A systematic analysis of the discussion of these

criticisms can be found in Cheeseman (1985). Possibly, the only criticism that has

not been addressed is the non-adequacy claim, which concerns the status of

randomness that is assumed within the probabilistic framework. This claim has been

proposed in different formulations and can be summarized as follows:

Probability theory is not suitable to handle uncertainty in AI because it has

been developed to deal with intrinsically stochastic phenomena, while in AI

uncertainty has an epistemic nature.

Contrary to most of the other criticisms moved against the use of probability in AI,

the non-adequacy claim has a marked philosophical character. Plausibly for this

reason, the non-adequacy claim does not lend itself to the kind of analysis that is

customarily proposed in the technical literature. As a consequence, this claim has

been so far overlooked.

The separation of the AI community in two schools is now perceived as highly

problematic: In their first editorial on Fuzzy Sets and Systems, the most

representative journal of the alternative school, the current editors stress that

establishing a common ground with the mainstream is one of their priorities (Dubois

and Prade 1999). This appears unfeasible unless the non-adequacy claim is properly

addressed. By taking a philosophical outlook on the non-adequacy claim, we show

that it has a strongly metaphysical character and that, as such, it should not be

accepted as a conclusive argument against the adequacy of probability.
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The Critical Issue of Uncertainty in AI

Uncertainty is a key issue in AI. Indeed, the final goal of AI is to design artifacts that

are able to carry out tasks in the real world without human intervention. These

artifacts should gather information on the environment and, on the basis of this

information, make decisions and act purposely. In the typical case, the knowledge

gathered on the environment is incomplete and/or imprecise, which calls for the

adoption of decision making procedures that are robust to uncertainty.

As detailed in Section ‘‘The Emergence of Uncertainty’’, issues related to

uncertainty characterized only an advanced phase of the development of AI. At that

moment, probability appeared as the natural candidate for dealing with uncertainty.

Yet, as we will see in Section ‘‘Criticisms against Probability, Answers and Open

Questions’’, criticisms were raised on the adequacy of the probabilistic approach.

The Emergence of Uncertainty

In its early developments, AI did not have to handle the problem of uncertainty. The

early machines were designed to perform intellectual activities like proving

theorems (Newell et al. 1957) or playing chess (Newell et al. 1958). In these

applications, the world experienced by machines is an abstract world of which a

complete model is provided in the form of a symbolic description. In the case of

chess, for example, a full description of the environment can be given by specifying

the position of each piece on the chessboard and the immediate result of each move

is fully predictable. Chess is a game with perfect information since the current state

of the game is known at any time by both players, moreover, chance does not play

any role since the rules of the game are rigidly deterministic. It was precisely the

noise-free character of this game that made it the perfect application to try out the

newborn AI techniques. Early AI researchers were confident that the high speed of

computers could overcome the main issue in chess playing, that is, the huge size of

the state space. Indeed, the typical chess program is designed to explore in a more or

less exhaustive way all possible moves and counter-moves down to a certain depth,

for then selecting the most promising move on the basis of some criterion. Yet, this

brute-force approach is not viable in real-world contexts: Besides the speed needed

for evaluating a possibly large number of alternative options, real-world applica-

tions require the ability to take decision and act on the basis of typically partial and/

or imprecise knowledge.

Artificial intelligence techniques started being applied to real-world problems

between the late 1970s and the early 1980s. Nonetheless, in these first real-world

applications, the problem of uncertainty was substantially dodged. In mobile

robotics, for example, robots were navigating in toy worlds rather than in the real

one: the environment they were moving in was highly engineered and the operating

conditions were carefully controlled. The robotics project Shakey (Nilsson 1984) is

a significant example of this phase of the research in mobile robotics and more

generally in AI. Shakey’s world is designed to resemble as close as possible a

chessboard, where objects are assigned a well defined location and are easily
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detectable. This clearly simplifies both the perception and the representation of the

environment.1 Like in the case of chess, the model of the environment Shakey is

equipped with, is symbolic and it is supposed to be a perfect mirror of the

(simplified) world in which Shakey navigates. The Shakey project apparently rests

upon the assumption that techniques designed for operating a robot in a simplified

world would directly generalize to the real world. In the late 1970s and early 1980s,

the same assumption underlined the newborn expert systems designed to help

human experts to make decisions within a specialized area of knowledge. The world

to which expert systems (Shortliffe 1980; Buchanan and Shortliffe 1984; Buchanan

and Feigenbaum 1978; Duda et al. 1979) refer is a simplified and self-contained

version of the real one.

The late 1980s and early 1990s saw the decline of the symbolic approach. With a

provocative article titled ‘‘Elephants don’t play chess’’, Rodney Brooks opened the

way to what he called the nouvelle AI (Brooks 1990). He questioned the grounding

idea of the abstract artificial intelligence (Brooks 1990, 1991) according to which

intelligence consists in performing intellectual activities in an abstract world like

that of chess. In what can be considered a manifesto of the nouvelle AI (Brooks

1991) Brooks stated that the time had come to focus on embodied systems that are

situated in real worlds scenarios and that are able to react to contingencies on a real-

time basis. As Brooks pointed out (1991) between the 1980s and the 1990s, almost

all researchers had access to fast and powerful processors: huge amount of real-

world data, and the uncertainty connected to it, could be processed in a reasonable

amount of time and at a reasonable cost. Besides, starting from the 1980s, huge

investments were devoted to the research aiming at building systems capable of

moving purposefully in real-world scenarios without human intervention.2 The

growing number of implementations of physical systems situated in the real world

made clear that real-world scenarios should be considered in all their complexity

and that the uncertainty associated with these scenarios should not be dodged but,

rather, properly handled.

Criticisms Against Probability, Answers and Open Questions

When AI applications had to explicitly deal with uncertainty, the probabilistic

framework appeared as the natural candidate for building models from partial

knowledge and for supporting decision making under uncertainty. The probabilistic

framework was a well-established 300-year-old framework with a respectable

record of successes in treating practical problems emerging in many scientific

domains ranging from statistical mechanics to information theory. Nevertheless,

1 The chessboard model of the environment has been adopted in several AI applications. In machine

learning, for example, different reinforcement learning (Sutton and Barto 1998) techniques such as Q-

learning (Watkins 1989) are designed to tackle problems in which the world is represented as a grid and in

which objects are represented as points inhabiting the sectors of this grid.
2 Just to cite one significant example, the Defense Advanced Research Projects Agency—the agency of

the US Department of Defense that is responsible for the development of new technologies for military

use—sponsored a robotics research project with the goal of developing an autonomous vehicle running on

roads.
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following McCarthy and Hayes (1969), some researchers criticized the use of

probability in AI applications and, accordingly, they developed alternative

formalisms.

The analysis we propose in this article stems from the understanding that the

criticisms raised against the probabilistic framework are indeed composite. We find

convenient to highlight two main elements in these criticisms. The first one is

related to technical issues on the use of probability theory, while the second one is

clearly of philosophical nature and concerns the status of the hypotheses assumed

within such a framework.

The technical element was discussed at length in the artificial intelligence

literature: both the arguments against probability theory and the counter-arguments

were clearly expressed and analyzed. A systematic and authoritative analysis was

proposed in the mid-1980s by Peter Cheeseman (1985). The fundamental idea

underlying Cheeseman’s counter-arguments (1985) is that most criticisms raised

against probability theory derive from a unique fallacy, namely the idea that

probabilities have to be conceived as frequency ratios. Indeed, according to

Cheeseman, most criticisms state that probability is not appropriate for dealing with

those situations in which repeated experiments cannot be performed and where,

thus, the frequency ratio definition is meaningless. Cheeseman pointed out that a

Bayesian interpretation is all what is needed when coping with little data, which is

the usual case in AI applications.

Cheeseman’s stand for a Bayesian subjective interpretation of probability in AI is

indeed the cornerstone of his defense of probability. A number of other elements in

his analysis followed naturally.

According to Cheeseman, the recurrent statement ‘‘Bayesian analysis requires

vast amounts of data’’ (Buchanan and Shortliffe 1984) and the strictly related ‘‘prior

probabilities assume more information than given’’ (Garvey et al. 1981; Buchanan

and Shortliffe 1984) derive from the above mentioned fallacy. Cheeseman pointed

out that when knowledge is lacking, the maximum entropy assumption allows one

to make the initial assignments. If the updated assignments differ from the initial

ones, we do not have to conclude that the initial ones were wrong. Such conclusion

would be again based on a misconception, namely that we deal with the true

probability of an hypothesis. From his subjective Bayesian position, Cheeseman

made clear that probability assignments are simply numerical values that express

our state of knowledge and that can evolve, even significantly, due to the fact that

we acquire further information.

Another claim analyzed by Cheeseman is that ‘‘more than one number is needed

to represent uncertainty’’ (Shafer 1976). Cheeseman elaborated on the issue pointing

out that different representations can be considered. A selection among them should

be based on their capability of successfully solving the specific problem at hand.

Cheeseman addressed also the widely heard statement that the Bayesian approach

is not appropriate since ‘‘people are not good in estimating probabilities’’ (Tversky

and Kahneman 1974). This incapability of estimating probabilities emerged clearly

in the domain of expert systems, where human experts turned out to be often unable

to provide consistent prior probabilities. According to Cheeseman, we should not

conclude that probability is inadequate, but simply tackle this problem. Also in this
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context, Cheeseman pointed out that when knowledge is not enough for defining

prior probabilities, the maximum entropy should be used.

With his article, Cheeseman thought he had provided conclusive counter-

arguments to all claims raised against the use of probability in AI. The same

conviction was shared by a vast majority of the AI community, which felt that the

debate on the adequacy of probability could be considered as fully extinguished.

Nonetheless, it was recognized that the debate had been fruitful and raised some

genuine issues that stimulated further research.3 For example, Bayesian networks

(Pearl 1988) emerged as a result of the discussion. The significant successes

obtained by Bayesian networks in the solution of problems involving uncertain

knowledge strengthened further the conviction that probability is all what is needed

when dealing with uncertainty.

On the other hand, some researchers kept feeling unsatisfied with the

probabilistic framework and kept pursuing the development of alternative

approaches. In Section ‘‘The Metaphysical Character of the Non-adequacy Claim’’,

we argue that the lack of a thorough analysis of the philosophical element,

embodied by the non-adequacy claim, is what determined the separation between

the two schools.

The Metaphysical Character of the Non-adequacy Claim

The fact that the mainstream keeps using the probabilistic framework indicates that

no conclusive empirical evidence has been produced in the literature showing that

handling AI problems in probabilistic terms systematically leads to incorrect

predictions. This suggests that the justification of alternative approaches stands on

non-evidential arguments. Our thesis is that the argument that justified the

introduction of alternative methods, and determined the split of the AI community,

is the non-adequacy claim. Our analysis will show that this argument has a marked

metaphysical character in Popper’s sense (Popper 1935), that is, this argument

cannot be tested and possibly disproved on the basis of experience.

In Section ‘‘Two Formulations of the Non-adequacy Claim’’, we discuss two

different forms under which the non-adequacy claim appeared in the AI literature.

In Section ‘‘Challenging the Non-adequacy Claim’’, we point out why this claim

entails a metaphysical drift.

Two Formulations of the Non-adequacy Claim

The non-adequacy claim recurs particularly often in the technical literature. In this

section, we discuss two versions of the non-adequacy claim that can be found in the

writings of two of the most representative scientists of the alternative school: Lotfi

Zadeh and Glenn Shafer. Yet, before entering the discussion of these two versions,

we briefly introduce their general characterizing elements.

3 For a broad analysis on the advancements made in the understanding and in the treatment of uncertainty

in the last 20 years see (Walley 1991, 1996, 2000).
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Both versions stand upon a dichotomy. Zadeh and Shafer assume that uncertainty

has two distinct natures: a stochastic and an epistemic one. A dichotomic view of

uncertainty is not new. Indeed, for centuries uncertainty has been interpreted by

some authors as stochastic and by some others as epistemic. See Hacking (1975) for

a remarkable historical analysis of this duality. Concerning the dual nature of

uncertainty, the point made by Zadeh and Shafer contains an element of novelty.

They state that both a stochastic and an epistemic uncertainty exist. They argue that

these two kinds of uncertainty are distinct and of different nature. They conclude

that the two kinds of uncertainty need to be handled with two distinct approaches.

Zadeh and Shafer consider probability to be adequate to handle stochastic

uncertainty, while they propose fuzzy sets theory and Dempster–Shafer theory,

respectively, to handle epistemic uncertainty. According to them, whether one

should adopt a probabilistic model or an alternative one in order to tackle a given

problem depends uniquely on the nature of the problem at hand: A problem is

stochastic if the source of uncertainty can be traced back to an underlying physical

random mechanism; conversely, a problem is epistemic, and therefore deterministic,

if no underlying random mechanism can be spotted. In the latter case, alternative

methods are adequate since no randomness hypothesis is postulated in the

mathematical apparatus. The adoption of two types of models ensures that every

kind of uncertainty is handled by a framework that is specifically tailored to it, that

is, that matches its inherent nature.

In this argument, we find convenient to isolate two main hypotheses. We name

them discrimination hypothesis and correspondence hypothesis. On the one hand,

the discrimination hypothesis assumes that it is possible to draw a sharp

demarcation line between what is inherently stochastic and what is inherently

deterministic. On the other hand, the correspondence hypothesis assumes that, in

order to be adequate, a model has to match the inherent nature of the given problem.

In Section ‘‘Challenging the Non-adequacy Claim’’, we will critically analyze these

two hypotheses and we will show that they raise a number of issues. Here, we limit

ourselves to use the above concepts to disentangle the main passages of Zadeh’s and

Shafer’s argumentation.

The Non-adequacy Claim in Zadeh

The following passage of Zadeh constitutes an illustrative example of the kind of

dichotomic argumentation we sketched above:

In dealing with soft data of the type encountered in such diverse fields as

psychology, sociology, anthropology, medicine, economics, management

science, operation research, pattern classification and system analysis, it is a

standard practice to rely almost entirely on the techniques provided by

probability theory and statistics […]. It can be argued, however, as we do in

the present article, that such techniques cannot cope effectively with those

problems in which the softness of data is nonstatistical in nature—in the sense

that it relates, in the main, to the presence of fuzzy sets rather than to random

measurement errors or data variability—(Zadeh 1981 pp. 69–70).

Metaphysical Arguments in Artificial Intelligence 279

123



On a strictly technical level, this statement of Zadeh has been already discussed

by Cheeseman (1985) who refuted it by showing that the founding concepts of fuzzy

sets theory—such as the concepts of fuzzy sets and degree of membership (Zadeh

1965)—can be formulated in purely Bayesian terms.

As far as our analysis is concerned, in this quotation we can recognize the

discrimination hypothesis behind the distinction that Zadeh draws between

problems that are ‘‘nonstatistical in nature’’ and those that are not so; and the

correspondence hypothesis behind the claim that the former cannot be modeled in

probabilistic terms since no random process is involved. Zadeh instantiates the

terms of the above distinction by the dichotomy randomness/imprecision. In

particular, he stresses the idea that the imprecision of natural language is not to be

assimilated to randomness since it has an intrinsically deterministic nature. In his

view, imprecision is deterministic because:

the source of imprecision is the absence of sharply defined criteria of class

membership, rather than the presence of random variables—(Zadeh 1965,

p. 339).

The source of imprecision is simply ascribed to the fact that the problem at hand

is not sharply defined. What Zadeh means by this is made clear by the wording

‘‘presence of random variable’’. By adopting the term presence, Zadeh conveys the

idea that a random variable is not a mathematical entity but, rather, an entity that

exists in Nature. If this entity can be spotted in the portion of reality we are

observing, it is legitimate to adopt a probabilistic framework. Otherwise, it means

that we are faced to a deterministic, but not well defined, problem and fuzzy sets

have to be employed.

An example can better clarify Zadeh’s viewpoint. In the statement ‘‘John is tall’’,

uncertainty comes from the fact that tallness is not sharply defined and is rather a

gradual property (Bellman and Zadeh 1970, p. 142). Zadeh handles the problem by

reformulating the original statement as ‘‘John is a member of the class of tall

people’’, and by introducing the concept of degree of membership: the higher the

degree of membership of John into the class of tall people, the taller John is. On the

contrary, in Zadeh’s terminology, the statement ‘‘John will get married within a

year’’ is ‘‘a probabilistic statement concerning the uncertainty of the occurrence of a

nonfuzzy event’’ (Bellman and Zadeh 1970, p. 142). Here, uncertainty stems solely

from the fact that it is not known precisely when the sharp event ‘‘marriage’’ will

occur. In this case, probability is the right apparatus.

Within this reasoning, the demarcation between deterministic problems and

stochastic problems is presented as something objective, existing independently

from the observer and the observation. As a consequence, the selection of the model

to handle the problem at hand appears to be as a straightforward procedure that

simply consists in picking out the model that reflects the nature of the problem itself.

This emerges clearly in Zadeh’s claim that fuzzy sets are the ‘‘natural way’’ (Zadeh

1965, p. 339) for dealing with epistemic uncertainty and this because they are

‘‘completely nonstatistical in nature’’ (Zadeh 1965, p. 340) as the problem they are

intended to model. Here, no empirical evidence is advanced to support the claim:

The justification of fuzzy sets stands entirely on the a priori assumptions that we can
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always draw a sharp line of demarcation between different natures of uncertainty

and consequently we can select the model that perfectly matches the case at hand.

The discrimination and the correspondence hypotheses have been adopted by

Zadeh for justifying also a later development of fuzzy sets theory, that is, the theory

of possibility (Zadeh 1978). This kind of justification persists also in his recent

scientific works (Zadeh 2005) and clearly appears to have influenced the literature

dealing with alternative methods. Just to cite a representative example, a

justification of the fuzzy approach based on the discrimination and the correspon-
dence hypotheses can be found substantially unaltered in a very recent work by

Ashu Solo and Madan Gupta (2007 p. 251).4

The Non-adequacy Claim in Shafer

In its main traits, Shafer’s argument resembles the one proposed by Zadeh. Also

Shafer’s version of the non-adequacy claim stands on a dichotomy: the dichotomy

chance/belief. Shafer introduces this dichotomy through an analysis of its historical

evolution and argues that, for centuries, the concept of belief has been identified

with that of chance and that these two concepts have been wrongly unified under the

name of probability (Shafer 1976, 1978). Since the dawn of probability, epistemic
uncertainty and aleatory uncertainty have been clearly distinguished, being the

former the older one. Yet, with the introduction of the theory of chances in the late

seventeenth century ‘‘probability acquired its aleatory connotations’’ (Shafer 1976

p. 33) and the two kinds of uncertainty have been superposed. Shafer argues that this

superposition is misleading, and that, while chance is an inherent property of a

random experiment, belief is a personal opinion about the outcome of such an

experiment. Since they do not necessarily coincide, it is a forcing fit to make beliefs

‘‘obey to all rules obeyed by chance’’ (Shafer 1976, p. 9). The demarcation should

be restored and the two kinds of uncertainty should be handled by two different

techniques. Only chance should obey the axioms of probability, while beliefs should

be dealt with alternative rules.

As we can see, the argument that chance and belief have to be treated by different

models, is justified on the demarcation and the correspondence hypothesis. Like

Zadeh, Shafer assumes that a sharp distinction between epistemic uncertainty and

aleatory uncertainty can be done, which allows one to select the model that fits the

problem at hand. The fact that the problem is inherently random constitutes the

necessary and the sufficient condition for applying probability. If this is not the case,

alternative frameworks have to be chosen instead. This idea comes out very clearly

in his claim that ‘‘chances arise only when one describes an aleatory (or random)
experiment’’ (Shafer, 1976, p. 9). By using the verb arise Shafer appears to meet

Zadeh’s view according to which chances are not mathematical entities for

4 This article appears in a collection of works that report the cutting-edge research in fuzzy theory and

soft computing. Within this context, the authors draw a demarcation between type one uncertainty and

type two uncertainty, meaning by this stochastic uncertainty and deterministic uncertainty, respectively.

Then, on the basis of a correspondence-like argumentation, they claim that ‘‘fuzzy logic has proven to be

a very promising tool for dealing with type two of uncertainty’’ and they conclude: ‘‘Stochastic theory is

only effective with type one uncertainty’’ (Solo and Gupta 2007, p. 257).
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modeling phenomena, but rather real entities that only probability can mirror since it

is rooted into the concept of chance.

Yet, unlike Zadeh, Shafer avoids the misconception that Cheeseman (1985)

singled out in most of the criticisms raised against probability (see Section

‘‘Criticisms against Probability, Answers and Open Questions’’), namely that

probabilities are necessarily frequencies. Indeed, Shafer interprets probabilities in

the Bayesian sense. Nevertheless, he maintains that Bayesian probability is

inadequate for dealing with beliefs precisely because beliefs have nothing to do with

the chance inhabiting the world, and this is why they have to be ruled by different

laws.

More technically, Shafer criticizes the use of Kolmogorov’s probability axioms

in the definition of a theory of beliefs. In particular, he questions the additivity

axiom. He criticizes the fact that this axiom entails that a belief on a hypothesis

should be functionally related with the belief on its negation. Coherently, he

proposes a new model for dealing with beliefs. This model, named Dempster-Shafer

model (Shafer 1976), is an extension of the model developed in the 1960s by Arthur

Dempster (1967) but completely departs from the latter precisely in the fact that it

does not postulate the third axiom of probability. As we reported in Section

‘‘Criticisms against Probability, Answers and Open Questions’’, the technical

questioning of the additivity axiom embodies an actual difficulty encountered by the

AI researchers in representing partial beliefs. It is indeed a fact that in some AI

applications, like expert systems, practitioners found unnatural to represent partial

knowledge in terms of precise additive probabilities. Yet, as already remarked by

Cheeseman (1985) (see Section ‘‘Criticisms against Probability, Answers and Open

Questions’’), the rejection of the probabilistic framework should be based on cogent

pragmatic reasons. As it appears from the above analysis, Shafer’s justification of an

alternative framework is, on the contrary, independent from any practical

evaluation.

Shafer does not provide any conclusive empirical evidence showing that

modeling beliefs in probabilistic terms leads to contradictions. Instead, he grounds

his rejection of the probabilistic approach on unempirical conjectures as the one that

beliefs cannot be modeled as if they were chances since:

Chances […] must be conceived as features of the world. They are not

necessarily features of our knowledge or belief—(Shafer 1976 p. 16).

Shafer’s statement that Nature is inherently stochastic concerns issues that

cannot be tested directly. Yet, Shafer insists that handling beliefs as if they were

chances is a contradiction in terms. Following this line of reasoning, he criticizes

Laplace on his use of probability by saying that:

as a determinist he could not make philosophical sense of randomness—

(Shafer 1976, p. 17).

The contradiction Shafer sees derives only from the assumption that a model is

justified uniquely by its perfect correspondence to the nature of the object it refers

to. Coherently with this assumption, adopting a probabilistic framework amounts to

assume that randomness is an entity existing in Nature, which clearly could not be
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accepted by a determinist like Laplace. Here, it appears that the reason why Shafer,

as well as Zadeh, claims that probability is not adequate to treat epistemic

uncertainty has to be searched in the interpretation of the status of randomness. A

thorough analysis of this issue is the subject of Section ‘‘Challenging the Non-

adequacy Claim’’.

Challenging the Non-adequacy Claim

The two versions of the non-adequacy claim discussed in Section ‘‘Two

Formulations of the Non-adequacy Claim’’ state that it is contradictory to apply

the probabilistic framework to problems that are not inherently stochastic.

According to this claim, probabilistic models are adequate only when the source

of uncertainty can be traced back to some underlying physical stochastic process. If

this is not the case, alternative models have to be chosen instead. In this section, we

challenge this claim. More precisely, we show that the demarcation and the

correspondence hypotheses have a marked metaphysical character and, as a result,

we question the non-adequacy claim as a valid argument against the probabilistic

framework.

Within the demarcation hypothesis, Zadeh and Shafer adopt a naturalistic
interpretation of randomness. In their argumentation, the demarcation between

stochastic and deterministic phenomena is presented as something that is in the

nature of things: whether a phenomenon is stochastic or deterministic can be simply

assessed by direct observation. In reality, such a natural demarcation cannot be

drawn on the basis of empirical data. Indeed, empirical data is always finite and, on

the basis of a finite sequence of observations, it is not possible to state in absolute

terms whether an observed mechanism is stochastic or deterministic. At most, a

conventional demarcation can be defined. In the literature, different conventional

criteria have been proposed including a characterization of randomness in terms of

complexity of the sequence of observations (Kolmogorov 1963) and an operational

definition of randomness based on a number of empirical tests (Martin-Löf 1966;

Marsaglia 1995). It is in the nature of these criteria to provide conclusions that

cannot be taken as absolutely certain.

The above consideration about the distinction between deterministic and random

phenomena, highlights an evident clash within the non-adequacy claim. More

precisely, it highlights the metaphysical character of the demarcation hypothesis.

The fact that many processes exist that, at least up to a certain level of accuracy, can

be conveniently described in terms of stochastic variables is justified on the fact that

this idealization allows satisfactory results to be obtained when solving problems of

interest in several scientific disciplines. As pointed out above, it is yet a completely

different issue to establish empirically whether processes exist that are stochastic,

that is, to establish if stochastic variables exist in Nature. Indeed, wondering about

the actual existence in Nature of stochastic variables is a purely metaphysical issue

since it is impossible to falsify, on the basis of a limited number of empirical

observations, either the statement ‘‘stochastic variables exist in Nature’’ or its

contrary ‘‘stochastic variables do not exist in Nature’’. A stochastic variable is
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simply an entity that is perceived through some observables which take on, in time,

values that are governed by some probability measure. In this sense, a stochastic

variable is the objectification of the concept itself of a probability measure. Being

this concept well defined from a formal viewpoint (Billingsley 1986), stochastic

variables exist as mathematical entities in the same way as, for example, real

numbers exist.

As far as the correspondence hypothesis is concerned, it is to be observed that

this hypothesis contradicts the scientific praxis. Indeed, the adoption of probability

in clearly non-stochastic contexts is a very old practice. This idea can be found

already in Pascal’s argument du pari. Pascal makes precisely the assumption that

the very existence of God is the result of a stochastic experiment. Within the

Pascalian epistemology, this assumption is clearly only a convenient hypothesis. In

the historical development of probability theory, what remained of the pari is the

idea that games of chance can be considered as models of all the situations

involving uncertainty (Hacking 1975), even for those in which no stochastic

experiment is involved. By his hypothesis, Pascal opened the way to the

applicability of the probabilistic framework to situations in which little or no data

at all is available. Pascal could make use of the probabilistic framework, even if he

embraced a deterministic metaphysics, precisely because he intended randomness as

an idealization rather than as a noumenon, which appear yet superposed within the

non-adequacy claim. It is precisely this superposition that can explain why Shafer

(1976) criticizes those determinist scientists, like Laplace, who followed Pascal’s

idea. As Shafer (1976) correctly remarks, a determinist like Laplace could not

accept the idea that Nature is intrinsically stochastic. In fact, intended as an

ontological truth, randomness would have clashed unacceptably with the rigid

determinism that characterized the philosophy of Laplace. Yet, Laplace accepted

randomness simply because he intended it as a convenient fictitious hypothesis for

solving practical problems. If randomness is interpreted in this sense, the conflict

that Shafer (1976) spots in Laplace’s thinking simply disappears.

For centuries after Pascal and Laplace, the probabilistic framework continued to

be used in clearly non-stochastic contexts. A significant example is given by

nonlinear deterministic systems that present a chaotic behavior.5 Despite their

deterministic nature, these systems are described and studied with tools such as

Markov models and Monte Carlo methods, which were originally developed for

stochastic processes. As an example, consider (pseudo-)random number generators

commonly used in computer programming. Although these generators are perfectly

deterministic, the sequences of numbers they produce pass a variety of tests of

randomness and the fact that they look as random is indeed their raison d’être. If

one had to adopt the correspondence hypothesis, these sequences of numbers, being

intrinsically deterministic, could not be described in probabilistic terms and could

not therefore serve their purpose of being used in computer programs as a source of

randomness.

5 It is worth pointing out here that the issue we have raised above against the demarcation hypothesis is

not relevant in this context. Indeed, we are concerned here with a mathematical system: the fact that it is

deterministic can be stated on the basis of a formal analysis and does not need to be assessed empirically.
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In some sense, the correspondence hypothesis is an a priori criterion for assessing

the adequacy of a model: It is only the inherent nature of the problem at hand that

decides whether a model is adequate or not. This clearly contrasts with the widely

accepted scientific practice that prescribes that models should be empirically tested

and therefore accepted on the basis of an a posteriori criterion. The shift of the focus

from an a posteriori criterion for the assessment of a model to an a priori one,

definitely characterizes the correspondence hypothesis as metaphysical.

The metaphysical glow that pervades the whole non-adequacy claim is, in our

view, what prevented Zadeh and Shafer from recognizing that the adoption of

probabilistic models to deal with epistemic uncertainty stands simply on a working
hypothesis: observations of a deterministic but (partially) unknown phenomenon

can be seen as if they were produced stochastically. Though fictitious, this

hypothesis finds its justification in the fact that it allows one to formulate predictions

that are eventually empirically tested. Whether this working hypothesis should be

adopted or rejected, ultimately depends on its usefulness in the specific application

at hand and can be decided only on the basis of an empirical evaluation. In this

sense, the claim that continues being put forward in the recent literature (Zadeh

2005; Solo and Gupta 2007) that probability is inadequate for dealing with the

uncertainty arising in deterministic contexts, cannot be accepted as a valid argument

against probability.

Keeping to overlook the metaphysical character of this claim and accepting it as

such is not without consequence. First of all, this means to preserve the reason of the

split between the probabilistic and the alternative school. Indeed, since a

metaphysical statement cannot, by definition, be empirically checked, it is accepted

or rejected dogmatically. No agreement can be found on such an absolute ground.

Until the focus is redirected toward cogent empirical evaluations that the whole

community can examine, there will always be an insurmountable reason of

separation between the two schools. Secondly, failing to recognize the metaphysical

character of the non-adequacy claim could have an impact on the foundations of AI,

more in general. If metaphysical criteria like the perfect adherence to the nature of

problems were accepted, this would open the way to the rejection, on the basis of

metaphysical arguments, of any scientific hypothesis formulated in AI. This because

the scientific method allows to put forward hypotheses that are checked against

experience but that are never definitively verified, though these are firmly fastened

to reality by their ability to solve practical problems.

It is worth pointing out here that the selection among empirical models, that solve

equally well a given problem, can be regulated also by extra-evidential criteria on

the basis of some principle of economy as for instance simplicity. It should be

remarked, for what concerns this issue, that some exponents of the alternative

school claimed that the methods they proposed had to be preferred to probability

because their analytical formulation turned out to be easier to deal with (Bellman

and Zadeh 1970; Dubois and Prade 1997). Yet, this claim appears to be purely

qualitative since no systematic study exists, as far as we know, that provides

quantitative elements that support the claim. Indeed, no formal ergonomic

evaluation has been performed in order to show that alternative methods are

simpler.
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Before concluding, we want to add a clarification about our argumentation

concerning the use of metaphysical statements in science. By pointing out the

metaphysical character of the non-adequacy claim, we do not mean to exclude it

tout court. Although we deem it an invalid argument against the use of probability,

we do not exclude that this claim could have a regulative role. In other words, we do

not exclude that such a metaphysical idea could suggest new techniques for

handling uncertainty. After all, in the history of science bold speculations have

always played an important role and some of them, thanks to the perseverance of

brilliant and far-seeing minds, eventually became scientific theories. This, yet, could

happen because these bold speculations withstood the test of experience. The point

is that metaphysical ideas can suggest interesting research lines along which new

techniques can be conceived, but these techniques will have to be evaluated for their

ability to produce satisfactory predictions: Metaphysical elements should not play

any role in their evaluation.

Conclusion

The tangible effect of the lack of a philosophical analysis of the non-adequacy claim
is that part of the AI community is nowadays convinced that the introduction of

alternative method represents a paradigm shift (Blair1999; Nikravesh 2007). Yet, a

paradigm shift requires that an insolvable anomaly is spotted in the current

paradigm. In the case of the probabilistic framework, no unsolvable anomaly has

been actually highlighted. This explains why the mainstream AI community kept

working within the probabilistic approach.

The problem is that nowadays an alternative framework exists, to which a

considerable amount of theoretical and experimental work has been devoted. The

situation is rather atypical: a 40-year-old framework, which is considered by some

as a new paradigm, co-exists with a well-founded 300-year-old one. Notwithstand-

ing many efforts to reconcile these two frameworks, they keep developing along

distinct research directions.

In this article, we argued that this situation should be ascribed to a metaphysical

quarrel and, as such, it could be solved only by taking a philosophical perspective. A

philosophical reassessment of the debate over uncertainty appears to be important

for AI. Given the key role that the treatment of uncertainty has in artificial

intelligence, an answer to the philosophical questions connected with it could have a

significant impact not only on the methodological foundations of the uncertainty

field but also on the foundations of the whole AI research. Indeed, inquires about the

issue of assessing whether an empirical framework should be accepted or rejected

are essential to the foundations of any science and this is even more true for a young

discipline like AI that is still in deep evolution.
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