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Abstract

In Dirac-Bergmann constrained dynamics, a first-class constraint typically does not alone generate

a gauge transformation. By direct calculation it is found that each first-class constraint in Maxwell’s

theory generates a change in the electric field ~E by an arbitrary gradient, spoiling Gauss’s law. The

secondary first-class constraint pi,i = 0 still holds, but being a function of derivatives of momenta, it is

not directly about ~E (a function of derivatives of Aµ). Only a special combination of the two first-class

constraints, the Anderson-Bergmann (1951)-Castellani gauge generator G, leaves ~E unchanged. This

problem is avoided if one uses a first-class constraint as the generator of a canonical transformation ;

but that partly strips the canonical coordinates of physical meaning as electromagnetic potentials and

makes the electric field depend on the smearing function, bad behavior illustrating the wisdom of the

Anderson-Bergmann (1951) Lagrangian orientation of interesting canonical transformations.

The need to keep gauge-invariant the relation q̇ − δH
δp

= −Ei − pi = 0 supports using the primary

Hamiltonian rather than the extended Hamiltonian. The results extend the Lagrangian-oriented reforms

of Castellani, Sugano, Pons, Salisbury, Shepley, etc. by showing the inequivalence of the extended

Hamiltonian to the primary Hamiltonian (and hence the Lagrangian) even for observables, properly

construed in the sense implying empirical equivalence.

Dirac and others have noticed the arbitrary velocities multiplying the primary constraints outside the

canonical Hamiltonian while apparently overlooking the corresponding arbitrary coordinates multiplying

the secondary constraints inside the canonical Hamiltonian, and so wrongly ascribed the gauge quality

to the primaries alone, not the primary-secondary team G. Hence the Dirac conjecture about secondary

first-class constraints rests upon a false presupposition. The usual concept of Dirac observables should

also be modified to employ the gauge generator G, not the first-class constraints separately, so that the

Hamiltonian observables become equivalent to the Lagrangian ones such as the electromagnetic field Fµν .

Keywords: Dirac-Bergmann constrained dynamics; gauge transformations; canonical quantization;

observables; Hamiltonian methods
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1 Introduction

In the early stages of research into constrained Hamiltonian dynamics by Bergmann’s school, it was

important to ensure that the new Hamiltonian formalism agreed with the established Lagrangian for-

malism. That was very reasonable, for what other criteria for success were there at that stage? One

specific manifestation of Hamiltonian-Lagrangian equivalence was the recovery of the usual 4-dimensional

Lagrangian gauge transformations for Maxwell’s electromagnetism and (more laboriously) GR by Ander-

son and Bergmann [1]. 4-dimensional Lagrangian-equivalent gauge transformations were implemented

by Anderson and Bergmann in the Hamiltonian formalism using the gauge generator (which I will call

G), a specially tuned sum of the first-class constraints, primary and secondary, in electromagnetism or

GR [1].

At some point, early on and explicitly in Dirac’s work and increasingly in a tacit way by the mid-

1950s among Bergmann and collaborators, equivalence with 4-dimensional Lagrangian considerations

came to play a less significant role. Instead the idea that a first-class constraint by itself generates a

gauge transformation became increasingly prominent. That claim, which goes back to Bergmann and

Dirac [2, 3, 4, 5], has been called the “‘standard’” interpretation [6] and is adopted throughout Henneaux

and Teitelboim’s book [7, pp. 18, 54] and countless other places [8, 9, 10]. This idea displaced the

Anderson-Bergmann gauge generator until the 1980s and remains a widely held view, though no longer

a completely dominant one in the wake of the Lagrangian-oriented reforms of Castellani, Sugano, Pons,

Salisbury, Shepley, etc. Closely paralleling the debate between the Lagrangian-equivalent gauge generator

G and the distinctively Hamiltonian idea that a first-class constraint generates a gauge transformation

is the debate between the Lagrangian-equivalent primary Hamiltonian (which adds to the canonical

Hamiltonian all the primary constraints, whether first- or second-class) and Dirac’s extended Hamiltonian

HE, which adds to the primary Hamiltonian the first-class secondary constraints.

A guiding theme of Pons, Shepley, and Salisbury’s series of works [11, 12, 13] is important:

We have been guided by the principle that the Lagrangian and Hamiltonian formalisms should

be equivalent (see . . . ) in coming to the conclusion that they in fact are. [14, p. 17; embedded

reference is to [15]]

While proponents of the primary Hamiltonian have emphasized the value of making the Hamiltonian

formalism equivalent to the Lagrangian, what has apparently been lacking until now is a proof that

the Lagrangian-inequivalent extended Hamiltonian is erroneous. While inequivalence of the extended
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Hamiltonian to the Lagrangian might seem worrisome, it is widely held that the difference is confined

to gauge-dependent unobservable quantities and hence makes no real physical difference. If that claim

of empirical equivalence were true, it would be a good defense of the permissibility of extending the

Hamiltonian. But is that claim of empirical equivalence true?

This paper shows that the Lagrangian-equivalent view of the early Anderson-Bergmann work [1] and

the more recent Lagrangian-oriented reforms are correct, that is, are mandatory rather than merely an

interesting option. It does so by showing by direct calculation that a first-class constraint makes an

observable difference to the observable electrical field, indeed a bad difference: it spoils Gauss’s law

∇ · ~E = 0. The calculation is perhaps too easy to have seemed worth checking to most authors.

This paper also critiques the usual Hamiltonian-focused views of observables deployed in the extended

Hamiltonian tradition to divert attention from such a calculation or (in the case of one paper that

calculates the relevant Poisson brackets [16]) to explain away the embarrassment of a Gauss’s law-violating

change in the electric field. Attention is paid to which variables have physical meaning when (off-shell

vs. on-shell), etc., with the consequence that canonical momenta have observable significance only

derivatively and on-shell rather than primordially and off-shell. The fact that introducing a Hamiltonian

formalism neither increases nor decreases one’s experimental powers is implemented consistently. Indeed

apart from constraints, canonical momenta play basically the role of auxiliary fields in the Hamiltonian

action
R

dt(pq̇−H(q, p)): one can vary with respect to p, get an equation q̇− δH
δp

= 0 to solve for p, and

then use it to eliminate p from the action, getting
R

dtL. One would scarcely call an auxiliary field a

primordial observable and the remaining dependence on q or its derivatives in L derived.

This paper interacts with the mistaken ‘proof’ that a first-class primary constraint generates a gauge

transformation. This mistake in Dirac’s book [5] has been copied in various places, including several more

recent books [47, 7, 10]. Pons has critiqued this derivation [17]; my critique offers a partly complementary

perspective on the logic of Dirac’s argument. One can see by inspection that the 3-vector potential Ai

is left alone by the sum of first-class primary constraints, while the scalar potential is changed. But the

science of electrostatics [18] explores the physical differences associated with different scalar potentials A0

and the same (vanishing) 3-vector potential Ai. Thus Dirac et al. have pronounced observably different

electric fields to be gauge-related. Dirac’s mistake involves failing to attend to the term −A0p
i,i in

the canonical Hamiltonian density for electromagnetism (to apply his analysis to that specific case) in

some cases where it cannot be ignored. Apparently thinking that the secondary constraints were absent

or cancelled out in different evolutions (which they do not in general because the coefficient −A0 of

the secondary constraint is gauge-dependent), Dirac felt the need to add in the secondary first-class

constraints by hand, extending the Hamiltonian, in order to recover the gauge freedom that supposedly

was missing. Thus the motivation for the extended Hamiltonian and the original ‘proof’ that primary

first-class constraints generate gauge transformations are dispelled.

This paper also explores the consequences for Dirac’s conjecture that all first-class secondary con-

straints generate gauge transformations. That conjecture was predicated on the assumed validity of the

proof that primary first-class constraints generate gauge transformations. With that proof refuted, the

Dirac conjecture cannot even get started; it rests on a false presupposition.

The actual situation is quite the reverse of the idea that a first-class constraint generates a gauge

transformation: the most obvious interesting examples of first-class constraints, as in Maxwell’s electro-

magnetism and in General Relativity, change the physical state or history, and in a bad way, spoiling the

Lagrangian constraints, the constraints in terms of q and q̇. Those are the physically relevant constraints,

parts of Maxwell’s equations (Gauss’s law) or the Einstein equations; the canonical momenta p are merely

auxiliary quantities useful insofar as they lead back to the proper behavior for q and q̇. While there might

be examples where a first-class constraint does generate a gauge transformation—e.g., —such cases are

rare or uninteresting in comparison to those that do not.1 Instead, a gauge transformation is generated

1A free relativistic particle with all 4 coordinates as dynamical functions of an arbitrary parameter, but without an auxiliary

lapse function N , is an example kindly mentioned by Josep Pons. If one has the auxiliary lapse function [11, 19], one gets a

primary and a secondary constraint, the latter including a piece quadratic in momenta—looking naively like a Hamiltonian,

one might say. If one instead integrates out the lapse using ∂L
∂N

= 0, then the resulting Hamiltonian formalism has vanishing

canonical Hamiltonian, while the primary constraint becomes more interesting. Conserving the primary constraint gives no

secondary or higher constraint, partly because the canonical Hamiltonian vanishes. The solitary primary constraint is first-class

by antisymmetry of the Poisson bracket. In the absence of higher-order constraints, the gauge generator is just the smeared
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by a special combination of first-class constraints, namely, the gauge generator G [1, 21, 22, 23]. It long

was easy to neglect 4-dimensional coordinate transformations in GR because a usable gauge generator

was unavailable after the 3 + 1 split innovation in 1958 [24, 25] rendered the original (rather fearsome)

G [1] obsolete by trivializing the primary constraints. The 3 + 1 gauge generator G finally appeared in

1982 [21], the lengthy delay indicating that no one was looking for it for a long time.

For Maxwell’s electromagnetism, where everyone knows what a gauge transformation is—what makes

no physical difference, namely, leaving ~E and ~B unchanged—and where all the calculations are easy, one

can test the claim that a first-class constraint generates a gauge transformation. There is no room for

“interpretation,” “definition,” “assumption,” “demand,” or the like. Additional postulates are either

redundant or erroneous. Surprisingly, given the age of the claim [2, 3], such a test apparently hasn’t been

made before, at least not completely and successfully (c.f. [26, 27, 28, 29], on which more below), and has

rarely been attempted. Perhaps the temptation to default to prior knowledge has been irresistible. By

now the sanction of tradition and authority also operate. Views about observability have also deflected

attention away from the question in the context of the extended Hamiltonian. Anyway the test can be

made by re-mathematizing the verbal formula. The result is clearly negative: a first-class constraint—

either the primary or the secondary—generates a physical difference, a change in ~E. This change involves

the gradient of an arbitrary function, implying that ∇ · ~E 6= 0, spoiling Gauss’s law. Similar problems

arise in GR, as will be discussed in a subsequent work in preparation. An error early in Dirac’s book

contributed to the problem; the same problem reappears in the books by Henneaux and Teitelboim and

by Rothe and Rothe [7, 10].

An alternative use of a first-class constraint, using it as a generating function in a canonical transfor-

mation, is also considered. While not illegal, such a canonical transformation is unrelated to electromag-

netic gauge freedom (making as much sense for Proca’s massive electromagnetism with only second-class

constraints as for Maxwell’s with only first-class constraints) and, as Anderson and Bergmann [1] would

have predicted, alters the physical significance of the canonical field variables.

2 Expected Payoff of Clarity about First-Class Constraints

and Gauge Transformations

While the process of Lagrangian-equivalent reform started some time ago, it has by no means swept the

field. One also finds works that inconsistently mix the two views. While such issues cause little trouble in

electromagnetism because all calculations are easy and one already knows all the right answers anyway

and so does not depend on the Hamiltonian formalism, it does matter for GR, where the right answers

are sometimes unknown or controversial and many calculations are difficult.

It is therefore important both to show that the extended Hamiltonian formalism and associated view

of gauge freedom are incorrect (as this paper does) and to implement consistently the consequences of the

Lagrangian-equivalent Hamiltonian formalism in the arenas of change and observables in GR (as successor

papers will do). It has been widely held (or worried) that GR in Hamiltonian form lacks objective change

[4, 30, 31, 32, 33]. It also has been widely held in the Hamiltonian context, that “observables” in GR

must be constants of the motion, spatially integrated quantities, or the like [34].

Both these conclusions are motivated largely by the alleged result that a first-class constraint generates

a gauge transformation. Once one realizes that a first-class constraint by itself does not generate a gauge

transformation, the fact that the Hamiltonian of GR is just a sum of first-class constraints no longer

implies, or even suggests, that time evolution is just a gauge transformation. Instead room is left for

showing that the Hamiltonian formalism discloses time-dependence in exactly the same context as the

Lagrangian formalism, namely, when there is no time-like Killing vector field. Likewise one is relieved

of the expectation that an observable quantity should have vanishing Poisson brackets with all of the

first-class constraints; instead one might expect observables to have vanishing Poisson bracket with the

gauge generator G. (Of course additional modification might be necessary for Lagrangian equivalence in

primary first-class constraint, so in this case a primary constraint does indeed generate a gauge transformation. A free relativistic

particle is of course a system for which nothing happens. Potentially more interesting is the fact that one can integrate out the

lapse in GR as in the Baierlein-Sharp-Wheeler action. Then the Hamiltonian constraint arises at the primary level [20].
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relation to GR, where the symmetry is external and one anticipates Lie derivative terms; but replacing

the first-class constraints with G is still a step in the right direction.) While applications to GR will

be saved for another work due to the amount of calculation involved, achieving clarity about first-class

constraints and gauge transformations in Maxwell’s electromagnetism will be a useful step.

3 A First-Class Primary Constraint Does Not Generate a

Gauge Transformation

It is widely held [5, p. 21] [7, p. 17] [35] [10, p. 68] that a primary first-class constraint generates a gauge

transformation. Dirac purportedly proves this claim early in his book, and the same argument reappears

in many places including authoritative books, some of them not very old. In a later section the tempting

error that leads to this conclusion, namely, neglecting the fact that first-class secondary constraints

with gauge-dependent coefficients already appear in the canonical Hamiltonian, will be discussed. For

now a direct and apparently novel (surprisingly enough) test will be applied to show simply that the

transformation effected by a first-class primary constraint is not generally a gauge transformation. The

test is simply ascertaining what happens to the electric field in Maxwell’s electromagnetism, the standard

example of a simple yet physically relevant relativistic field theory.

The electromagnetic field strength Fµν =df ∂µAν−∂νAµ is unchanged by Aµ → Aµ−∂µε. ~E and ~B are

parts of Fµν and hence constructed from derivatives of Aµ. (For a charged particle in an electromagnetic

field, or for a charged scalar field interacting with the electromagnetic field, it is the derivatives of Aµ, not

the canonical momentum conjugate to Aµ, to which charge responds.) That fact will prove important

once, in the Hamiltonian formulation, one has conceptually independent canonical momenta pi satisfying

the secondary first-class constraint pi,i = 0. Electromagnetic gauge transformations are defined “off-

shell,” without assuming the field equations. But off-shell there is no relationship between Ȧi and pi,

and hence none between ~E and pi. The constraint pi,i = 0 in phase space can cease to be equivalent

to ∇ · ~E = 0 if one does something inadvisable—such as treating p0 or pi,i as if it (by itself) generated

a gauge transformation. That is somewhat as Anderson and Bergmann warned in discussing canonical

transformations that do not reflect Lagrangian invariances: the meanings of the canonical coordinates

and/or momenta can be changed [1]. The relationship between first-class constraints, the gauge generator

G, and canonical transformations will be explored below. It turns out that G does basically the same good

thing whether one simply takes Poisson brackets directly or makes a canonical transformation; a first-

class constraint does either something permitted but pointless (a position-dependent field redefinition)

or something disastrous (spoiling Gauss’s law).

The Legendre transformation from L and Ȧµ to H and pµ fails because pµ =df
∂L

∂Ȧµ
is not soluble for

Ȧµ [36]. One gets a primary constraint p0(x) =df
∂L

∂A0,0
= 0. Likewise in General Relativity [24, 25], one

can choose a divergence in L and a set of fields using a 3+1 split, the lapse N = 1/
p

−g00 and shift vector

N i = 3g
ij
gj0, such that p0 =df

∂L

∂N,0
= 0 and pi =df

∂L

∂Ni,0
= 0. One needs the dynamical preservation of

the primary constraints, from which emerge secondary constraints. In electromagnetism this constraint is

Gauss’s law, or rather, something equivalent to Gauss’s law using Ȧi = δH

δpi . The algorithm of constraint

preservation terminates thanks to the constraint algebra. The time evolution is under-specified: there is

gauge/coordinate freedom due to the presence of first-class constraints (having 0 Poisson brackets among

themselves, strongly in electromagnetism, using the constraints themselves in GR). All constraints in

both theories are first-class. The Poisson bracket is

{φ(x), ψ(y)} =df

Z

d3z
X

A

„

δφ(x)

δqA(z)

δψ(y)

δpA(z)
− δφ(x)

δpA(z)

δψ(y)

δqA(z)

«

;

the fundamental ones are {qA(x), pB(y)} = δA
Bδ(x, y).

These familiar matters set up the belated test of whether a first-class constraint really generates a

gauge transformation. Exactly what do first-class constraints have to do with gauge freedom? Curiously,

this question has two standard but incompatible answers in the literature on constrained dynamics, both

dating to the 1950s in Bergmann’s work. One of them is correct, namely, that the gauge generator G

[1, 21, 22, 23] generates a gauge transformation, a change in the description of the physical state (or
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history, if GR is the theory in question) that makes no objective difference. This answer is motivated

by Hamiltonian-Lagrangian equivalence and is associated with the primary Hamiltonian. It was eclipsed

during the 1950s and has slowly reappeared since the 1980s. However, its consequences for observables,

change in GR, and similar foundational questions have not been fully explored yet. The other standard

answer, more influential in the literature on canonical GR, is that a first-class constraint (by itself)

generates a gauge transformation [2, 3, 26, 6, 7, 35, 10], a distinctively Hamiltonian claim associated

with the extended Hamiltonian.

In electromagnetism the fundamental Poisson brackets are {Aµ(x), pν(y)} = δν
µδ(x, y). The constraints

are the primary p0(x) = 0 and the secondary pi,i (x) = 0. One hopes to keep the latter equivalent to

Gauss’s law, but that isn’t just automatic because Gauss’s law involves the electric field, whereas the

secondary constraint involves a canonical momentum, which a priori is unrelated to the electric field and

becomes equal to it (up to a sign, depending on one’s conventions) only using the equations of motion

q̇ = δH
δp
.

What does p0(x) do? By re-mathematizing the claim that a first-class constraint generates a gauge

transformation, one predicts that p0(x) changes Aµ via a gauge transformation. Smearing p0(y) with

arbitrary ξ(t, y) and taking the Poisson bracket gives [36, p. 134]

δAµ(x) = {Aµ(x),

Z

d3yp0(y)ξ(t, y)} = δ0µξ(t, x). (1)

While this expression doesn’t look just as one would expect from experience with the Lagrangian, might

it reflect (as is often claimed abstractly) some more general gauge invariance disclosed by the Hamiltonian

(especially the extended Hamiltonian) formalism? One can calculate that

δFµν =df Fµν [A+ δA] − Fµν[A] = ∂µδAν − ∂νδAµ = ∂µξδ
0
ν − ∂νξδ

0
µ. (2)

This definition reflects the standard gauge variation of a velocity as the time derivative of the gauge

variation of the corresponding coordinate. Letting µ = m, ν = n, one sees that the magnetic field is

invariant [36, p. 134], which is a good sign.

What happens to the electric field ~E? Here Sundermeyer stops short [36, p. 134].2 Let µ = 0, ν = n:

δF0n = −δ ~E = ∂0δAn − ∂nδA0 = ∂0ξδ
0
n − ∂nξδ

0
0 = −∂nξ. (3)

Unless one restricts oneself to the very uninteresting special case of spatially constant ξ (perhaps still

depending on time), this is not a gauge transformation, because the world is different, indeed worse.3

While ~B is unchanged, ~E is changed by ∂nξ(t, x). Thus Gauss’s law ∇· ~E = 0 is spoiled: ∇· ~E = ∇2ξ 6= 0

typically. This spoilage of the Lagrangian constraint is not immediately obvious because the secondary

constraint pi,i = 0 still holds. The trouble is that this expression, which lives in phase space, ceases to

mean what one expected. p is independent of q, but q̇ is dependent on q by definition; hence q̇ and p are

independent, at least until after Poisson brackets are calculated. ~E is a familiar function of derivatives

of Aµ; the change in Aµ implies a Gauss’s law-violating change in ~E. While still pi,i = 0 (the phase

space constraint surface is preserved), this constraint is no longer equivalent to Gauss’s law: pi,i = 0 but

∇· ~E 6= 0. Instead ~E acts as though some phantom charge density were a source. The relationship between

p and q̇ has been altered, something that Anderson and Bergmann warned could happen [1]. Changing
~E is a physical difference, not a gauge transformation—indeed a bad physical difference, because spoiling

Gauss’s law is bad.

If a first-class constraint does not generate a gauge transformation, one might hope that a book

on constrained dynamics would point that fact out. That expectation is almost fulfilled. Sundermeyer

commented on the “vague relation between first class constraint transformations and local gauge trans-

formations.” [36, p. 134] Sundermeyer appeared to be in the process of reinventing the gauge generator

in the chapters on electromagnetism and Yang-Mills theories [36, pp. 134, 168], but did not carry on

quite far enough to notice the difficulty.

2Costa et al. [16] got the same mathematical result. They failed to discern that it was problematic physically, for reasons

discussed below involving which fields are observable.
3This result shows the inadequacy of the view, which one sometimes hears, that a first-class constraint generates a time-

independent gauge transformation. Even a time-independent ξ(x) changes ~E and spoils Gauss’s law.
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3.1 Claims Overlooking This Problem

Others have fallen into error on this point [26, 28]. Bergvelt and de Kerg, applying their Hamiltonian

technique to a Yang-Mills field,

. . . first note that two points of [final constraint manifold] M2 of the form (A0, A,π) and

(Â0, A, π) (i.e. differing only in their A0-component) are gauge equivalent. They can be

connected by an integral curve of the gauge vector field Ȧ( δ
δA0

), with Ȧ = Â0 − A0. So the

A0-component of points of M2 is physically irrelevant and without loss of generality we can

ignore it. [28, p. 133].

This physical equivalence claim contradicts the science of electrostatics, wherein one studies what electric

fields can be generated by merely the scalar potential [37, 18]. Presumably their “crucial assumption”

that some freedom located in their preceding paper had no physical significance [38] contributed to this

difficulty. One already knows from the Lagrangian formulation what the gauge freedom is, so there is

no room for independent postulates; they are either redundant or erroneous. Gotay, Nester and Hinds

make a similar mistake with the primary constraint [26], as will appear shortly.

4 A First-Class Secondary Constraint Does Not Generate

a Gauge Transformation

What does the secondary constraint pi,i (x) do? According to a standard textbook on constrained

dynamics by Henneaux and Teitelboim, excepting a few exotic counterexamples,

one postulates, in general, that all first-class constraints generate gauge transformations. This

is the point of view adopted throughout this book. There are a number of good reasons to

do this. First, the distinction between primary and secondary constraints, being based on the

Lagrangian, is not a natural one from the Hamiltonian point of view.. . . Second, the scheme

is consistent.. . . Third, as we shall see later, the known quantization methods for constrained

systems put all first-class constraints on the same footing, i.e., treat all of them as gauge

generators. It is actually not clear if one can at all quantize otherwise. Anyway, since the

conjecture holds in all physical applications known so far, the issue is somewhat academic.

(A proof of the Dirac conjecture under simplifying regularity conditions that are generically

fulfilled is given in subsection 3.3.2.) [7, p. 18, emphasis in the original]

This is a striking passage in view of the test that is about to be run on electromagnetism regarding its

secondary constraint and the one that was just run above on the primary constraint. Getting sensible

results does require privileging the Lagrangian formalism, so one should not downplay the primary vs.

secondary distinction on Hamiltonian grounds. It would be interesting, but will not be attempted here,

to trace all the influence of the Dirac conjecture in this standard work, as well as to address the third

consideration about quantization methods (about which see [39, 40]).

Another way to find out what the secondary constraint pi,i does to the electric field is simply to cal-

culate it. To my knowledge, this has not been done, surprisingly enough, or at least not done successfully

and then appropriately understood. (Proponents of the primary Hamiltonian and its gauge generator

don’t need to calculate it, because the usual gauge transformation of Aµ to Aµ − ∂µε makes the answer

obvious. Only proponents of the extended Hamiltonian and/or the associated claim that a first-class

constraint generates a gauge transformation ought to have done so. But if they had, they’d likely have

seen this problem before. Costa et al. did perform relevant calculations on this point [16]; the reason

that they did not discern the absurdity of the result involves observables and will be discussed below.)

The answer is the secondary first-class constraint also changes ~E, also generally violating Gauss’s law,

at least if one uses a time-dependent smearing function. If one does not use time-dependent smearing

functions, then one has no way to write G and hence no hope of recovering the usual electromagnetic

gauge transformations as described in, for example, Jackson [18]. Part of the trouble, as diagnosed by

Pons [17], is that Dirac envisioned gauge transformations as pertaining to 3-dimensional hypersurfaces,

whereas Bergmann tended to envision them (more appropriately for GR given the freedom to slice more
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or less arbitrarily) as pertaining to 4-dimensional histories (though Bergmann seems to me not consistent

on that point). Smearing pi,i with an arbitrary function ε(t, y), one finds [16, 35]

δAµ(x) = {Aµ(x),

Z

d3ypi,i (y)ε(t, y)} = −δi
µ

∂

∂xi
ε(t, x). (4)

One can thus find the change in Fµν :

δFµν = ∂µδAν − ∂νδAµ = ∂µ(−δi
ν

∂

∂xi
ε) − ∂ν(−δi

µ

∂

∂xi
ε) = δi

µ∂ν∂iε− δi
ν∂µ∂iε. (5)

Clearly ~B is unchanged, but ~E’s change is obtained by setting µ = 0, ν = n:

δF0n = −δ ~E = δi
0∂n∂iε − δi

n∂0∂iε = −∂n∂0ε. (6)

Again ~E is changed by an arbitrary gradient, and Gauss’s law is spoiled: ∇· ~E = ∇2ε̇. One could avoid this

change in ~E using exclusively time-independent smearing functions; but one will thereby fail to recover

the usual electromagnetic gauge transformations in works like Jackson [18]. Imposing time-independence

(or spatial homogeneity) on smearing functions is of course also incompatible with Lorentz invariance

(to say nothing of general covariance for the analogous issue in GR).

So neither constraint by itself generates a gauge transformation (without a pointless and misleading

restriction on smearing, at any rate, which restricts what the constraint itself is trying to generate).

Each makes a bad physical difference. Dirac wrote that “I haven’t found any example for which there

exists first-class secondary constraints which do generate a change in the physical state.” [5, p. 24] This

remark now looks curious; it’s not easy to find anything interesting that isn’t a counterexample when

the appropriate test is run. 30 years ago Castellani said that

Dirac’s conjecture that all secondary first-class constraints generate symmetries is revisited and

replaced by a theorem.. . . The old question whether secondary first-class constraints generate

gauge symmetries or not . . . is then solved: they are part of a gauge generator G . . . [21, pp.

357, 358]. (emphasis in the original)

After many years the force of the word “replaced” still has not been absorbed (e.g., [7]): it involves the

elimination of the old erroneous claim, not just the introduction of a new true claim. Perhaps Castellani’s

diplomatic wording has slowed the understanding of his result. His target was the secondaries in isolation

(supposedly the live issue vis-a-vis the Dirac conjecture), but the same holds for the primaries. Neither

generates a gauge transformation by itself, but the two together, properly tuned, do.

4.1 Claims Overlooking This Problem

One can find examples where these problems should have been noticed. One is the influential paper by

Gotay, Nester and Hinds [26]. (According to Web of Science, this paper has been cited c. 150 times.)

Having developed a sophisticated theory, they rightly turned to applying it to Maxwell’s electromag-

netism. Having written the Hamiltonian field equations, they made a transverse-longitudinal split of the

3-vector potential ~A and its canonical momentum. They obtain, among other familiar results,

∂A⊥

∂t
= undetermined,

∂ ~AL

∂t
= −∇A⊥.

Thus “the evolution of A⊥ and ~A⊥ is arbitrary.” [26] So far, so good—at least if one counts a single bit

of arbitrariness, given that the arbitrariness in −∇A⊥ determines the arbitrariness in the evolution of
~AL. Time will tell if that interpretation is maintained.

Let us compare the equations of motion [of which the relevant parts just appeared] and

the known gauge freedom of the electromagnetic field with the predictions of the algo-

rithm.. . . [Something pertaining to the primary constraint has as] its effect to generate ar-

bitrary changes in the evolution of A⊥. This is clearly consistent with the field equations.
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Well, it is consistent with the field equations if one pays the price by adding a gradient in ∂ ~AL
∂t

in accord

with the familiar electromagnetic gauge freedom. But that turns out not to be what they have in mind.

Turning now to the first-class secondary constraint . . . , we wonder if it is the generator of

physically irrelevant motions. . . . [Imposing a suitable demand ] has the effect of replacing the

second of equations [shown above] by

d ~AL

dt
= −~∇A⊥ − ~∇g

and leaving the others invariant. As A⊥ is arbitrary to begin with, it is evident that this

equation is completely equivalent to [the ones shown]. The addition of −~∇g to the right-hand

side of this equation has no physical effect whatsoever. [26, p. 2397].

It is now clear that they envisage two arbitrary functions, not one. But this latter physical equivalence

claim is clearly false. Now that the former claim is disambiguated, it becomes clearly false also. Thus

they wrongly claim of the primary and of the secondary that a gauge transformation is generated. By

taking the divergence of the modified equation, one sees the falsehood of the second physical equivalence

claim:

~∇ · ∂
~AL

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g = 0

= ~∇ · ∂(
~AL + ~AT )

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g

= ~∇ · ∂
~A

∂t
+ ~∇ · ~∇A⊥ + ~∇ · ~∇g

= ~∇ · (∂
~A

∂t
+ ~∇A⊥) + ~∇ · ~∇g =

~∇ · ~E + ∇2g = 0. (7)

Gotay, Nester and Hinds see their result as a vindication of the extended Hamiltonian formalism for

the case of electromagnetism, but it isn’t, because the electric field is changed by a so-called gauge

transformation and Gauss’s Law is spoiled. Likewise Belot takes it that the electric field is preserved as

long as the conjugate momentum to which it is equal (up to a sign) on-shell is preserved [41, p. 189],

but that is not the case. This problem illustrates a remark of Henneaux and Teitelboim’s:

The identification of the gauge orbits with the null surfaces of the induced two-form relies

strongly on the postulate made throughout the book that all first-class constraints generate

gauge transformations. If this were not the case, the gauge orbits would be strictly smaller

than the null surfaces, and there would be null directions not associated with any gauge

transformation. [7, p. 54]

Another difficulty appears in Faddeev’s treatment [27], which, largely through notational confusion,

gives the impression of showing that the constraint pi,i generates a standard electromagnetic gauge

transformation. He uses the symbol Ek for the canonical momentum conjugate to Ak. (Faddeev does

not bother introducing a canonical momentum conjugate to A0, so this paragraph will avoid the term

“secondary constraint.”) It isn’t difficult to show that the canonical momentum Ek has vanishing Poisson

bracket with the smeared constraint
R

d3xΛ(x)∂kEk for smearing function Λ(x). But this result is hardly

decisive for the electric field. Using the letter E for a canonical momentum cannot make a canonical

momentum into the electric field, which is still just the familiar A0,i −Ȧi, which pushes on charged

matter. Taking results about the canonical momentum and treating them as applying to the electric

field is, in effect, the fallacy of equivocation regarding the meaning of Ek. Faddeev does not investi-

gate, directly or indirectly, what a Poisson bracket with
R

d3xΛ(x)∂kEk does to A0,i −Ȧi. Hence the

supposed demonstration that
R

d3xΛ(x)∂kEk generates an electromagnetic gauge transformation, fails.

The relation between the electric field and the canonical momentum in facts holds only on-shell, that is,

after all Poisson brackets are taken, because it reappears in the equation q̇ = δH
δp

after being discarded

in the Legendre transformation. Hence showing that the canonical momentum has vanishing Poisson

bracket with
R

d3Λ(x)∂kEk does not show the same result for the electric field. If one hasn’t defined a
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Poisson bracket for a velocity, one can at least ascertain what the smeared divergence of the canonical

3-momentum does to A0,i and Ai and then infer the altered Fµν (as was just done above). If one defines

a Poisson bracket for a velocity (following Anderson and Bergmann [1]), one can calculate the Poisson

bracket of the electric field with the smeared divergence of the canonical 3-momentum and find that it

isn’t 0 (as is done below). Thus the smeared divergence of the canonical 3-momentum does not generate

a gauge transformation. But the error seems to be tempting and to pass by without remark.

5 Gauge Generator as Special Sum of First-Class Con-

straints

While Dirac studies electromagnetism [5], his process of adding terms to and subtracting terms from the

Hamiltonian is not systematic. Neither is there much concern to preserve equivalence to the Lagrangian

formalism [42]. He seems not to calculate what his first-class constraints actually do.

One can add the two independently smeared constraints’ actions together:

δAµ(x) = {Aµ(x),

Z

d3y[p0(y)ξ(t, y) + pi,i (y)ε(t, y)]} = δ0µξ − δi
µ∂iε, (8)

getting their combined change in ~E:

δF0n = −δ ~E = −∂nξ − ∂n∂0ε. (9)

If one puts the constraints to work together as a team by setting ξ = −ε̇ to make the δF0n = 0, then

δAµ(x) = {Aµ(x),

Z

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)]} = −δ0µε̇− δi
µ∂iε = −∂µε, (10)

which is good. Not surprisingly in light of the form of the gauge generator [1, 21, 23]

G =

Z

d3x(pi,i ε− p0 ε̇), (11)

p0 and pi,i generate compensating changes in ~E when suitably combined. Indeed we have pieced together

G by demanding that the changes in ~E cancel out. Two wrongs, with opposite signs and time differenti-

ation, make a right. This tuning, not surprisingly, is a special case of what Sundermeyer found necessary

to get first-class transformations to combine suitably to get the familiar gauge transformation for the

potentials for Yang-Mills [36, p. 168]. Sundermeyer, however, did not calculate the field strength(s) and

notice the disastrous spoilage of the Gauss’s law-type constraints by first-class transformations. Hence

recovering the familiar gauge transformation of the potentials for him was merely a good idea.

One could make similar remarks about Wipf’s treatment of Yang-Mills fields [35, p. 48], except

that Wipf doesn’t even seem to find recovering the Lagrangian gauge transformations a good idea; it’s

simply an option. (The same seems to hold for Banerjee, Rothe and Rothe [43] vis-a-vis [10].) If one

doesn’t have that taste, one at any rate has “the canonical symmetries” from an arbitrary sum of the

first-class constraints [35, p. 48]; Wipf advocates extending the Hamiltonian [35, pp. 40, 41] to account

for all the gauge freedom. But what one actually one gets from an arbitrary sum of first-class constraints

is the spoilage of Gauss’s law. Combining the constraints to form the gauge generator is not just an

option, nor even just a good idea; it is compulsory. To my knowledge even the proponents of the gauge

generator G and the primary Hamiltonian have never shown that the extended Hamiltonian and its

associated first-class-constraint-generates-a-gauge-transformation claim are disastrous because of their

effect on observables—which, in the appropriate sense, include the electric field.

Now with the primary and secondary constraints working together, Gauss’s law is preserved:

∇ · ~E = ∇2ξ + ∇2ε̇ = ∇2(−ε̇ + ε̇) = 0. A first-class constraint typically does not generate a gauge

transformation; it is part of the gauge generator G, which here acts as {Aµ, G} = −∂µε, {pµ, G} = 0.

Hence electromagnetism is just what Jackson says it is [18]; if a first-class constraint alone generated a

gauge transformation, the Hamiltonian formulation would not be equivalent to the Lagrangian formula-

tion.
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Advocates of the gauge generator G combining the constraints [1, 21, 23] generally have aimed to

recover the usual transformation of the potential(s) Aµ; the transformation of the field strength(s) Fµν

would follow obviously in the usual way and so did not need explicit calculation. Part of the contribution

made here is to calculate the effects of a first-class constraint on the field strength Fµν, because calculating

the effect on the gauge-invariant observable field strength leaves nowhere for error to hide. By taking

the curl before tuning the sum of first-class constraints rather than after, one sees more vividly why

that tuned sum is required and the separate pieces are unacceptable; one sees the looming disaster to be

avoided, rather than avoiding it without seeing it. Beholding the resulting disaster makes the package

involving the gauge generator G, the primary Hamiltonian, and Lagrangian-equivalence compulsory in

a way it previously has not seemed. The commutative diagram illustrates what differs and what is the

same in commuting the operations of inferring Fµν from Aµ and in inferring from effects of the tuned

combination G from the effects of the separate first-class constraints:

Aµ
L−equiv.−−−−−−→ G =

R

d3x(−p0ε̇+ εpi,i ) −−−−→ δAµ = −∂µε

R

d3x(p0ξ+εpi,i)

?

?

?

y

?

?

?

y

curl

δAµ = δ0µξ − δi
µε,i

curl−−−−→ δFµν = (δ0νξ,µ −δi
νε,iµ ) − µ↔ ν

L−equiv.−−−−−−→
ξ=−ε̇

δFµν = 0

While the top line is fairly familiar, the bottom line appears to be novel, with the merely partial exception

of ([16]). It is of course unacceptable to have δFµν 6= 0, so requiring Lagrangian equivalence from the

Hamiltonian resolves the trouble.

This explicit treatment exhibits the force of conditions about the gauge generator that have long been

known more abstractly.4 In particular, Hamilton’s equations are preserved by a quantity G if and only

if G(t) is first-class, ∂G
∂t

+ {G,Hp} ≡ pfcc, and the Poisson bracket of G with the primary first-class

constraints is a sum of primary first-class constraints [17]. (Second-class constraints are assumed to be

absent or at any rate eliminated.) If one attempts to substitute for G, for cases like electromagnetism,

Yang-Mills, or GR, a primary constraint multiplied by an arbitrary function of time (and space), the

equation above yields something of the form pfcc+ sfcc ≡ pfcc, which is false. Likewise, attempting to

substitute for electromagnetism (not Yang-Mills or GR, which are more intricate) a secondary constraint

multiplied by an arbitrary function gives sfcc+ 0 ≡ pfcc [36, p. 127], which is also false. The sum of

the two schematic equations, (pfcc+ sfcc) + (sfcc+ 0) ≡ pfcc, by contrast, is not obviously hopeless,

and indeed works out if one tunes the relative coefficients correctly.

6 Gauge Invariance of q̇ − δH
δp

= −Ei − pi = 0

In the Lagrangian formalism, one defines the canonical momenta as pi =df
∂L

∂qi,0
. In that context, there

is no difference in gauge transformation properties between pi =df
∂L

∂qi,0
; pi simply inherits its gauge

transformation behavior through this definition.

In the Hamiltonian formalism, one thing changes and another one doesn’t. What changes is the gauge

transformation behavior of pi. In the Hamiltonian formalism pi is independent, so it no longer inherits

gauge transformation behavior from ∂L
∂qi,0

. Instead pi gets its gauge transformation behavior somehow or

other (together or separately) from Poisson brackets with first-class constraints. What does not change

is the gauge transformation behavior of q̇i (which in many examples is heavily involved in the Lagrangian

gauge transformation behavior of ∂L

∂qi,0
).

One hopes, of course, to recover from the new Hamilton’s equation q̇i − δH
δpi

= 0 what one had in

the Lagrangian formalism in pi =df
∂L

∂qi ,0
and then gave up in setting the conjugate momenta free. On

the other hand, if one is careless about gauge transformation properties of pi or (more commonly) q̇i

in the Hamiltonian formalism, it is possible to spoil q̇i − δH
δpi

= 0. The equation q̇i − δH
δpi

= 0 holds

only on-shell; it is not an identity in the Hamiltonian formalism. Thus one thing that one must not do

(though one sometimes sees it done) is to pretend that one can use this equation to define the gauge

transformation properties of q̇i. One cannot do that, because gauge transformations are generated using

4Thanks to Josep Pons for this remark.
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Poisson brackets, i.e., off-shell, at the same logical ‘moment’ as the equations q̇i = δH
δpi

, which are also

generated using Poisson brackets. Thus there is no relationship between q̇i and δH
δpi

at that stage. For

the case of electromagnetism, there is no relationship between the electric field ~E (which is not quite

Ȧi, but is close enough) and the canonical momentum pi (which is not quite δH

δpi , but, again, is close

enough). On the other hand, one still knows the gauge transformation behavior of the velocity q̇i,

namely, the time derivative of the gauge transformation of qi: δq̇i = (δq)i,0 . For electromagnetism, this

means roughly that one can simply calculate how the new Fµν following from the new Aµ by the usual

definition (taking the curl), differs from the old Fµν derived from the old Aµ. The on-shell equality of

q̇i and δH
δpi

thus imposes a condition of on-shell equality of the gauge transformations of q̇i and δH
δpi

.

This condition restricts what sorts of transformations can be gauge transformations. In the case at

hand, ~E is roughly Ȧi (corrected by some unproblematic spatial derivatives of Aµ) and pi is roughly
δH
δpi

(again, corrected by some unproblematic spatial derivatives of Aµ). Thus the condition is that the

gauge-transformation properties of ~E and pi agree on-shell. While pi has vanishing Poisson bracket with

each first-class constraint separately in this case, ~E has vanishing Poisson bracket only with the gauge

generator G that combines the two first-class constraints so as to cancel out the change that each one

makes separately. Gauge invariance of q̇i = δH
δpi

thus necessitates regarding G as the gauge generator,

and not regarding each isolated first-class constraint as generating a gauge transformation. That way,

and only that way, one keeps q̇i − δH
δpi

= 0 gauge invariant. Otherwise it isn’t clear what the rules of the

Hamiltonian formalism are.

For the specific case of electromagnetism, one has the (canonical) Hamiltonian [36, p. 127]

Z

d3x[
1

2
(pi)2 +

1

4
F 2

ij −A0p
i,i ]. (12)

Thus q̇ − δH
δp

= 0 is just, for three of the four components of Aµ,

Ȧi − δH

δpi
= Ȧi − (pi +A0,i ) = Ȧi + A0,i −pi = −Ei − pi = 0. (13)

What one reckons as gauge freedom must be compatible with this on-shell relationship. While pi has

vanishing Poisson brackets with each first-class constraint separately, Ei is invariant under a transforma-

tion of Aµ only if one tunes the primary and secondary constraints’ smearing functions to cancel out the

induced changes in Ei. Thus being a gauge transformation requires more than leaving pi alone (as one

might think sufficient if one gives the Hamiltonian formalism priority [16] [7, p. 20]); it requires leaving

Ei alone as well. Otherwise one makes the relationship Ȧi − δH
δpi = −Ei − pi = 0 gauge-dependent,

spoiling Hamiltonian-Lagrangian equivalence and undermining the physical meaning of pi on-shell (the

only context where pi has any physical meaning). These concerns about the extended Hamiltonian bear

some resemblance to Sugano, Kagraoka and Kimura’s [40]. Likewise, Banerjee, Rothe and Rothe connect

restrictions on the gauge parameters, the expected Lagrangian gauge transformations, preserving the

Hamilton equations of motion, and the gauge generator [43]. Pons also derives conditions for the gauge

generator G by requiring the gauge-covariance of Hamilton’s equations [17].

7 Counting Degrees of Freedom

One might think that correct counting of degrees of freedom would depend on whether one takes the

generator of gauge transformations to be a special combination of the first-class constraints or an arbitrary

combination. In the former case, there are only as many independent functions of time (and perhaps

space) as there are primary first-class constraints; some of the constraints are smeared with the time

derivative of functions that smear other constraints. In the latter case there are as many independent

functions of time (and perhaps space) as there are first-class constraints. However, behavior over time

is irrelevant; hence a function and its time derivative, being independent at a moment, count separately.

Thus the counting works out the same either way [7, pp. 89, 90]. Getting the correct number of degrees

of freedom thus does not show whether each first-class constraint or only the special combination G

generates gauge transformations.
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8 Error in Identifying Primaries As Generating Gauge

Transformations

One major reason that first-class constraints wrongly have been thought to generate gauge transforma-

tions is that Dirac claims to prove it early in his book [5, p. 21]. One finds the same proof repeated in

other works [7, 35, 10]. The canonical Hamiltonian is, up to a boundary term [36, p. 127],

Z

d3x[
1

2
(pi)2 +

1

4
F 2

ij −A0p
i,i ]. (14)

The primary Hamiltonian adds the primary constraint with an arbitrary velocity. Dirac, not using the

gauge generator G, saw the arbitrary velocities v multiplying the primaries outside his H ′ but apparently

forgot the corresponding arbitrary q’s (like A0) multiplying the secondaries inside H ′. Thus he did not

notice that the first-class primaries outside H ′ and first-class secondaries inside H ′ work as a team to

generate gauge transformations. Thus

[w]e come to the conclusion that the φa’s, which appeared in the theory in the first place as

the primary first-class constraints, have this meaning: as generating functions of infinitesimal

contact transformations, they lead to changes in the q’s and the p’s that do not affect the

physical state. [5, p. 21, emphasis in the original]

One could hardly reach such a conclusion without thinking that the primaries were the locus of all de-

pendence on the arbitrary functions. He then conjectures that the same holds for first-class secondary

constraints. As appeared above, neither the primaries nor the secondaries generate a gauge transforma-

tion in electromagnetism. Dirac’s failure presumably encouraged him to extend the Hamiltonian in order

to recover what was apparently missing [5, pp. 25, 31]. But it is unnecessary and obscures the relation of

the fields to those in the more perspicuous and reliable Lagrangian formalism [44, p. 39]. Indeed the ex-

tended Hamiltonian breaks Hamiltonian-Lagrangian equivalence [45]. Requiring Hamiltonian-Lagrangian

equivalence fixes the supposed ambiguity permitting the extended Hamiltonian [46].

Pons’s reworking of Dirac’s analysis of gauge transformations avoids falling into Dirac’s mistake [17].

Pons, like Dirac, takes the two gauge-related trajectories to have identical initial conditions—not merely

physically equivalent ones related by a gauge transformation at the initial moment. As a result, their

analyses as applied to electromagnetism would make the A0 the same on the two trajectories at the initial

moment—thereby making the contribution from the secondary constraint disappear initially because its

relative coefficient is 0. One can make this assumption at the initial moment, but one cannot impose

it (without serious loss of generality) a second time. Pons’s analysis is abstract enough to leave room

for the secondary constraints within H ′ to play a role because integrating v0 = Ȧ0 will make the values

of A0 differ between the two trajectories later on. Dirac, alas, oversimplifies by forgetting that setting

the very same initial data between the two cases implies assuming gauge-dependent entities such as

A0 in electromagnetism and the lapse and shift vector in GR to be initially equal (not merely gauge-

equivalent). Dirac’s second transformation thus omits the role of the secondaries in H ′ at a time when,

unlike the initial moment, one may no longer assume the values of A0 (the secondaries’ coefficients) on

the two evolutions to be equal without loss of relevant generality. Dirac’s error is not so much that

he does not run his analysis for long enough—that would suggest a neglected mathematical complexity

about infinitesimal transformations, and he does in fact work to second order—but the logical error of

applying in general an expression that holds only in the special case that sets even A0, the lapse and

shift, etc. to be equal. If Dirac’s claim were merely that a primary first-class constraint generates a gauge

transformation over time infinitesimally if one compares two configurations that are physically equivalent

and initially have the same A0, lapse, shift, etc., then that would be correct. But this comparison cancels

out the instantaneous effect of a primary first-class constraint on the initial data (such as altering the

electric field by an arbitrary gradient, as seen above). Having underestimated the violence of a primary

first-class constraint transformation by considering equal rather than gauge-equivalent initial data, Dirac

fails to notice the need to attend to the secondaries in general and in particular for his second infinitesimal

transformation on p. 21.

13



8.1 Perpetuation in Recent Works

This same mistake continues to be made, as in ([47, 7, 35, 10]). The problem will be clear if one starts

with Wipf’s treatment; those by Govaerts [47, pp 116, 117] (a bit earlier) and Rothe and Rothe [10, p.

68] (very recently) are basically the same, while Henneaux and Teitelboim’s is a bit too brief for complete

clarity in isolation. The time evolution of a system with first-class constraints is derived from the primary

Hamiltonian Hp (the canonical Hamiltonian H plus the primary constraints φa with arbitrary multiplier

functions µa). For a phase space quantity F, Wipf says that one compares

two infinitesimal time evolutions of F = F (0) given by Hp with different values of the multi-

pliers,

Fi(t) = F (0) + t{F,H}+ t{F, φa}µa
i i = 1, 2 . (5.16)

The difference δF = F2(t) − F1(t) between the values is then

δµF = {F, µaφa}, , µ = t(µ2 − µ1). (5.17)

Such a transformation does not alter the [sic] physical state at time t, and hence is called a

[sic] infinitesimal gauge transformation. [reference to Dirac’s book [5] in arxiv version] [35, p.

40]

Like Dirac, Wipf has overlooked the fact that the canonical Hamiltonian also is influenced by the mul-

tiplier functions: the canonical Hamiltonian contains the gauge-dependent quantity A0 multiplying the

secondary constraint, while the multiplier function is Ȧ0. Thus not only the µa multiplier functions, but

also the canonical Hamiltonian H , needs a subscript 1 or 2—at least after the initial moment when one

can stipulate away that difference by assuming identical (not merely equivalent) initial data. With this

mistake corrected, one has in general

δµF = t{F,H2 −H1} + t{F, φa}(µa
2 − µa

1) =

t{F,
Z

d3y − (A2
0 − A1

0)(y)π
i,i (y)}+ t{F,

Z

d3yp0(y)}(µ2 − µ1). (15)

The correct expression exhibits the secondary constraint(s) working together with the primary con-

straint(s). One can cancel out the term t{F,
R

d3y − (A2
0 − A1

0)(y)π
i,i (y)} only in special cases, such as

at the initial moment. Given the restricted erroneous expression involving only the primary constraint,

a ‘gauge transformation’ that changes only A0 would be exhibited. But as was shown in detail above, or

as follows from a moment of reflection on electrostatics, changing A0 while leaving everything else alone

does alter the physical state, and hence is not a gauge transformation. It is obvious that this expression

does not change the canonical momenta p0 or pi; what does it do to Aν? The corrected expression,

unlike Dirac’s, changes Aj as well, as it should, and affects the initial data also. Letting F = Aν(x) gives

(changing notation from t to δt for a small interval, and recalling that our initial moment can be called

t = 0)

δµAν(δt, x) =

δt{Aν(0, x),

Z

d3y − (A2
0 −A1

0)(0, y)π
i,i }+ δt{Aν ,

Z

d3yp0}(µ2 − µ1) =

δt

Z

d3yδi
νδ(x, y)(A

2
0,i −A1

0,i )(y) + δtδ0ν (µ2 − µ1)(x) =

δtδi
ν (A2

0,i −A1
0,i )(x) + δtδ0ν(Ȧ2

0 − Ȧ1
0)(0, x) =

δt(A2
0 −A1

0),ν (0, x). (16)

This expression clearly resembles the usual gauge transformation property of electromagnetism −∂νε,

so one can say that the two evolutions differ by a (standard) gauge transformation, as one would hope.

Thus it is false that the primary first-class constraints generate a gauge transformation in examples like

electromagnetism, because it is a special combination of the primaries and secondaries that does so. The

primary by itself changes ~E, as does the secondary by itself. Continuing with Wipf,
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[w]e conclude that the most general physically permissible motion should allow for an arbitrary

gauge transformation to be performed during the time evolution. But Hp contains only the

primary FCC. We thus have to add toHp the secondary FCC multiplied by arbitrary functions.

This led Dirac to introduce the extended Hamiltonian . . . which contains all FCC [reference to

Dirac’s book [5]]. He accounts for all the gauge freedom.

Clearly, Hp and He should imply the same time evolution for the classical observables. [35,

pp. 40, 41]

But the secondary first-class constraint already is present in the primary Hamiltonian, as is the gauge

freedom, so there is nothing missing that needs adding in by hand. Such an omission is all the more con-

sequential in relation to General Relativity, in which the canonical Hamiltonian is nothing but secondary

constraints (and boundary terms).

Now the problem in the treatment of Henneaux and Teitelboim can be identified readily and treated

briefly.

Now, the coefficients va are arbitrary functions of time, which means that the value of the

canonical variables at t2 will depend on the choice of the va in the interval t1 ≤ t ≤ t2.

Consider, in particular, t1 + δt. The difference between the values of a dynamical variable F

at time t2, corresponding to two different choices va, ṽa of the arbitrary functions at time t1,

takes the form

δF = δva[F,φa] (1.35)

with δva = (va − ṽa)δt. Therefore the transformation (1.35) does not alter the physical state

at time t2. We then say, extending a terminology used in the theory of gauge fields, that the

first-class primary constraints generate gauge transformations. [7, p. 17]

By now it has been seen that this statement is false in general, being derived in the special case of

comparing two evolutions from identical initial data. The assumption of identical initial data precludes

finding any influence of the primary constraints on the initial data and prevents finding the influence of

the secondary constraints on the infinitesimal time evolution.

Unfortunately Dirac’s mistake also reappears in the recent book by Rothe and Rothe [10, p. 68].

Failure to look inside the black box H , the canonical Hamiltonian, and see the secondary first-class

constraints while doing this little calculation seems to be much of the cause. Choosing Ai as a phase

space quantity to test the behavior of the quantity built from primary first-class constraints gives an easy

diagnostic to see that no gauge transformation is generated.

9 Dirac Conjecture’s Presupposition

Dirac, having supposedly shown that primary first-class constraints generate gauge transformations,

conjectured that secondary first-class constraints do the same [5]. Eventually it was found that this

conjecture has counterexamples, namely ineffective constraints, though they are a bit exotic and might

sensibly be banned [7]. But the Dirac conjecture has a much more serious problem, namely, the falsehood

of its presupposition that primary first-class constraints generate gauge transformations. Whether that

problem makes the Dirac conjecture false or lacking in truth value will depend on the logical details of the

formulation, but it certainly winds up not being an interesting truth. Complementing the falsification

by direct calculation above is a diagnosis (just above) of the mistake that Dirac and others have made

in failing to pay attention to the term
R

d3x−A0p
i,i term in the Hamiltonian.

How does one reconcile this result that a primary first-class constraint does not generate a gauge

transformation with the multiple ‘proofs’ of the Dirac conjecture in the literature [48, 7, 49, 50] and

the statements that it can be made true by interpretive choice [6, 7]? These proofs usually presuppose

that a Dirac-style argument has already successfully addressed primary first-class constraints, so the

only remaining task involves secondary or higher order constraints. The remaining task tends to involve

statements about first-class constraints, which are simply assumed to generate gauge transformations

individually. Thus ‘proofs’ of the Dirac conjecture are frequently just statements about Poisson brackets

and first-class secondary (and higher) constraints—straightforward technical questions with results that
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are, presumably, correct. Conceptually involved proofs of the Dirac conjecture, which essentially talk

about gauge transformations, must fail. But mere technical statements about vanishing Poisson brackets

are not threatened at all. Hence there is no tension with the correctness of the calculations.

10 Observability of P i
vs. Ei Can Be Crucial

While it is acknowledged that the extended Hamiltonian not equivalent to L strictly, this inequivalence

is often held to be harmless because they are equivalent for “observables.” This claim presumably is

intended to mean that the extended Hamiltonian is empirically equivalent to L, differing only about

unobservable matters. Such a response will be satisfactory only if “observable” here is used in the

ordinary sense of running experiments. Technical stipulations about the word “observable,” especially

distinctively Hamiltonian stipulations, are irrelevant. Unfortunately it is not the case that the extended

Hamiltonian is empirically equivalent to the Lagrangian, a fact that has been masked by equivocating

on the word “observable” between the ordinary experimental sense and a technical Hamiltonian sense.

It is peculiar to think of observing canonical momenta conjugate to standard Lagrangian coordinates—

in fact it seems to be impossible to observe that kind of canonical momentum as such. What would

be the operational procedure for observing pi? Rather, its experimental significance is purely on-shell,

parasitic upon the observability of suitable functions of qi and/or derivatives of qi—derivatives (spatial

and temporal) of Aµ in the electromagnetic case. One neither acquires new experimental powers (such

as the ability to sense canonical momenta) nor loses old ones (such as the ability to detect a certain

combination of derivatives of Aµ) by changing formalisms from the Lagrangian to the Hamiltonian. There

are two ways to see that pi is not the primordial observable electric field. The first way involves the

fact that pi does not even appear as an independent field in the Lagrangian formalism, which formalism

is correct and transparent. While it is perfectly acceptable for some quantity to be introduced that is

on-shell equivalent to the Lagrangian electric field, there is no way for that new quantity to become the

electric field primordially, rather than merely derivatively and on-shell. Aµ or a function of its derivatives

still has that job. Apart from constraints, canonical momenta are auxiliary fields in the Hamiltonian

action
R

dt(pq̇ − H(q, p)): one can vary with respect to p, get an equation q̇ − δH
δp

= 0 to solve for p,

and then eliminate p to get
R

dtL. One would scarcely call an auxiliary field a primordial observable and

the remaining q in L derived! The second way involves the fact that the electric field is what pushes on

charge; but it is easy to see that in both the Lagrangian and Hamiltonian contexts, what couples to the

current density is not pi, but Aµ. For a complex scalar field ψ, the Lagrangian interaction term takes the

form ∼ (ψ∂αψ
∗ −ψ∗∂αψ)Aα +ψψ∗A2. The absence of terms connecting ψ with derivatives of Aµ implies

that charge couples to Aµ and/or its derivatives, not to the canonical momenta conjugate to Aµ, even

in the Hamiltonian context. What is the operational procedure for measuring pi? The only plausible

answer is to use on-shell equivalence to the empirically available F0i, which involves derivatives of Aµ.

Otherwise, what reason is there to believe that any procedure for measuring pi involves a measurement of

the quantity that pushes on charge? Thus one should be disturbed, pace Costa et al. [16], by the failure

of Ȧi = δHE
δpi

to return the usual Lagrangian relation between pi and the derivatives of Aµ from the

extended Hamiltonian. The coupling of charge-current to Aµ ensures that Aµ or something built from

its derivatives is the primordial observable electric field. Thus the usual argument [16, 7, 35, 10] to show

that the inequivalence of the extended Hamiltonian to the Lagrangian is harmless because irrelevant to

observable quantities, fails. Unless “observables” are taken in the ordinary empirical sense, rather than

a technical Hamiltonian sense, empirical equivalence is not shown.

The ‘proof’ of the Dirac conjecture by Costa et al. [16] deserves special comment. This paper

goes beyond other treatments of the supposed equivalence of the extended Hamiltonian to the primary

Hamiltonian for observables [7, 10] in explicitly addressing the example of electromagnetism in sufficient

detail. The equivalence conclusion is reached by explicitly taking the canonical momentum pi to be the

primordial physically meaningful quantity playing the role of the electric field. For a function of canon-

ical coordinates and momenta (no time derivatives), having vanishing Poisson bracket with the gauge

generator requires having vanishing Poisson bracket with each first-class constraint, because different

orders of time derivative of the smearing function cannot cancel each other out [16]. But that latter

condition opens the door to taking all first-class constraints to generate gauge transformations and using
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the extended Hamiltonian, they claim. They recognize that one can use Hamiltonian’s equations from

the primary Hamiltonian and find a quantity that is equal in value on-shell to a gauge-invariant function

of q and p. I observe that the electric field is in this category. They also observe that such a quantity

is invariant under the gauge generator of the primary Hamiltonian (the specially tuned combination of

first-class constraints) and is not invariant under the first-class constraints separately, as I emphasized

above. In their words,

[o]ne can verify the invariance under [the usual electromagnetic gauge transformation of Aµ]

of the equations of motion . . .

∂0Aj = πj + ∂jA0, (3.8b)

. . . deriving from the primary Hamiltonian. . . .

We next recognize F ij , πj . . . [matter terms suppressed] as the canonical forms of the basic

gauge-invariant quantities of electrodynamics. One can easily check that all these functions are

indeed first class. Thus, F ij , πj . . . are also invariant under the extended infinitesimal trans-

formations [generated by an arbitrary sum of independently smeared first-class constraints].

. . . [That extended first-class transformation] leaves invariant the equations of motion. . .

∂0Aj = πj + ∂jA0 − ∂jξ2, (3.12b)

. . . arising from the extended Hamiltonian

HE = H +

Z

d3x{ξ1(x)π0(x) + ξ2(x)[∂jπj(x) − . . .]}. (3.13)

[spinor contribution in secondary constraint suppressed]

Here ξ1 and ξ2 are arbitrary Lagrange multipliers.

As a matter of fact, the sets of equations of motion (3.8) and (3.12) are different. However,

irrespective of whether one starts from (3.8) or (3.12) one arrives at the Maxwell equations

∂0F ij = ∂iπj − ∂jπi, (3.14)

∂0πj = ∂iF ij . . . , (3.15)

[16, pp. 407, 408]

I note the absence of Gauss’s law!

They continue:

Therefore, HT and HE generate the same time evolution for the gauge-invariant quantities,

as required by [the equation of motion for gauge invariant phase space functions].

We now discuss the alternative formalism-dependent realizations of the electric field (−πj).

From (3.8b) one obtains

πj = F 0j . (3.17)

Hence, F 0j is a faithful realization of πj within the formalism of the primary Hamiltonian. We

can check that F 0j is invariant under [the gauge generator related to the primary Hamiltonian,

which combines the first-class constraints with related smearings] but not under [the sum

of separately smeared first-class constraints, which is related to the extended Hamiltonian

formalism]. [16, p. 408]

This is the crucial point announced in my paper’s title—but Costa et al. fail to recognize the absurdity

of the results of the extended Hamiltonian formalism. They continue:

On the other hand, the formalism of the extended Hamiltonian provides the equally faithful

realization for πj [see Eq. (3.12b)]

πj = F 0j + ∂jξ2, (3.18)

which is invariant under [the sum of independently smeared first-class constraints]. One should

not be puzzled by the fact that (3.18) does not coincide with (3.17) or, what amounts to the

same thing, with the Lagrangian definition of πj . . . . [16, p. 408]
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But one should be puzzled. If πj is equated to the electric field (as they say), and if F 0j is just an

abbreviation for a familiar expression involving derivatives of Aµ (as follows from (3.12b) and (3.18)—and

hence is still the electric field!), then we have the contradiction (electric field = electric field + arbitrary

gradient). With this contradiction in hand, one can derive various other plausible errors. This arbitrary

gradient is what spoiled Gauss’s law above. In any case F 0j has a much better claim to be the electric field

than does πj , which is just an auxiliary field in the Hamiltonian action. Thinking that functions of phase

space were the only quantities that needed to stay gauge invariant—that is, not considering the actual

electric field—is what opened the door to the extended Hamiltonian and taking each first-class constraint

as separately generating a gauge transformation. One should infer that an isolated first-class constraint

does not generate a gauge transformation in electromagnetism. F 0j is the primordial observable electric

field; the canonical momentum as an independent field is formalism-dependent, not even appearing in

the Lagrangian formalism. In a Lagrangian for charged matter with an electromagnetic field, charge-

current couples primordially to Aµ, from which ~E is derived, and not to the canonical momentum.

Velocities (such as appear in the electric field) are not physically recondite—automobiles have gauges

that measure them—but canonical momenta are: they acquire physical significance solely on-shell, as

Costa et al. remind us. Hence failure to recognize the fundamentality of the Lagrangian formalism leads

them to claim to have vindicated the Dirac conjecture, when they had all the ingredients and calculations

necessary to refute it instead.

One might also worry that physically meaningful quantities are expected to have vanishing Poisson

bracket with the gauge generator [16], given that tensors in GR will not qualify due to the Lie derivative

term. (This problem is peculiar to external symmetries.) While this requirement is not unusual, it

introduces the difficulties afflicting the notion of observables in GR into the presumably more perspicuous

discussion of equivalence of equations of motion.

Crucial to gauge-transforming the electric field (as opposed to the canonical momentum to which it

is equal on-shell) is having a gauge transformation formula for velocities. In a Hamiltonian formalism it

is tempting, though inadvisable, to avoid velocities in favor of functions of q and p. But the Lagrangian

formalism essentially involves the commutativity of gauge variation and time differentiation [51, 43].

Imposing that condition in the Hamiltonian formalism using the primary Hamiltonian (the one equivalent

to the Lagrangian) yields the gauge generator G [51, 43]. Thus the Hamiltonian formalism naturally can

give the correct gauge transformation for velocities and quantities built from them, such as the electric

field. One does not need to avoid looking for gauge-invariant quantities involving the velocities and default

to functions of only q and p in a Hamiltonian context, as Costa et al. did [16]. Alternately, one can be

satisfied in a (primary) Hamiltonian formalism with functions of q and p [52] but, in view of the need

to preserve Hamiltonian-Lagrangian equivalence, avoid seeking the largest collection of transformations

(the first-class transformations rather than just the gauge generator G) that preserve the phase space

quantities at the expense of Hamiltonian-Lagrangian equivalence.

11 Anderson and Bergmann (1951): Canonical Transfor-

mations and Lagrangian-Equivalence

None of this confusion associated with Hamiltonian transformations that aren’t induced by Lagrangian

gauge transformations should be much of a surprise, ideally, in that Anderson and Bergmann explicitly

discussed how the preservation of the Lagrangian constraint surface, which they called Σl, corresponds

to canonical transformations generated by the gauge generator G [1]. Hence one would expect transfor-

mations that aren’t generated by G—e.g., those generated by an isolated primary constraint in a theory

(such as Maxwell’s electromagnetism or GR) where the gauge generator G doesn’t contain that primary

constraint in isolation (i.e., smeared by its very own arbitrary function)—not to preserve the Lagrangian

constraint surface. Hence the point that a first class constraint by itself (in theories where such does not

appear in isolation in G) generates not a gauge transformation, but a violation of the usual Lagrangian

constraint surface, is already implicit in Anderson and Bergmann—at least if one is working with canoni-

cal transformations. (Outside the realm of canonical transformations, one can still take Poisson brackets

directly. But then there are far fewer rules and hence there is much less reason to expect anything good
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to happen.) As they observe,

Naturally, other forms of the hamiltonian [sic] density can be obtained by canonical trans-

formations; but the arguments appearing in such new expressions will no longer have the

significance of the original field variables yA and the momentum densities defined by Eq. (4.2)

[which defines the canonical momenta as πA ≡ ∂L
∂ẏA

]. It follows in particular that transfor-

mations of the form (2.4) [“invariant” transformations changing L by at most a divergence,

such as electromagnetic gauge transformations or passive coordinate transformations in GR]

will change the expression (4.9) [for the Hamiltonian density] at most by adding to it further

linear combinations of the primary constrains, i.e., by leading to new arbitrary functions wi.

[1, p. 1021]

So they invented the gauge generator G to make sure that the q’s and p’s keep their usual meanings.

Unfortunately the point was lost after Bergmann, Anderson and Dirac repeatedly said things that were

incompatible with that correct claim about the gauge generator G, namely, that a first-class constraint

generates a gauge transformation. Accounting for the change in Bergmann’s and Anderson’s view is

beyond the scope of this paper. It seems to be, at least in part, connected with the tendency to drop the

primary constraints and their associated canonical coordinates from the phase space, especially once the

primary constraints for GR were expressed in the trivial form of the vanishing of some momenta. The

view that a first-class constraint generates a gauge transformation then became the conventional wisdom

expressed in countless works for decades, with lingering consequences (such as regarding observables

[53, 54]) even where the gauge generator has been gaining ground.

11.1 Canonical Transformations Generating Position-Dependent Field

Redefinitions

If one wishes, one can treat a smeared primary constraint as a canonical transformation generator in the

sense of ([1, 55]) and preserve some sense of physical equivalence for the transformation generated by the

primary first-class constraints. That is a feature of dynamics in general, not Dirac-Bergmann constrained

dynamics in particular. It makes use of p0, but not the fact that p0 = 0 (its being a constraint) or its

having vanishing Poisson brackets with the other constraints and Hamiltonian (its being first-class). But

equivalence is preserved only by losing some of the original fields’ meanings.

Let C =
R

d3yε(t, y)p0(y). One can add to the Hamiltonian action the time integral of the total time

derivative of this quantity. One gets new canonical coordinates, QA = qA + δC
δpA

, and new canonical

momenta, PA = pA − δC

δqA , and a slightly altered Hamiltonian, K = H + ∂C
∂t

= H +
R

d3yp0
∂ε
∂t
, which

adds a term proportional to a primary constraint only. Of the new Q’s, only the 0th differs from the old

q’s (Q0 = q0 + ε); the new momenta are the same as the old. The trouble arises subtly: for the other Q’s

velocity-momentum relation, Q̇a = δK
δPa

, the dependence on the 0th canonical coordinate in K involves

the altered Q0. The electromagnetic scalar potential is involved in the relation between Ȧi and pi, so

changing the scalar potential alters the relationship between the canonical momenta and the velocities,

the sort of issue to which Anderson and Bergmann called attention. For q0 corresponding to A0 (or the

lapse N or shift vector N i in General Relativity), one can change q0 alone however one likes over time

and place (which is what the corresponding primary constraint does)—but only at the cost of ceasing

to interpret the new canonical coordinate Q0 = q0 + δq0 as (minus5) the scalar potential A0 (or lapse

N or shift N i)! The new Hamiltonian K differs from H only by a term involving a primary constraint

p0 = P0, which doesn’t matter. The new velocity-momentum relationship is

Q̇i =
δK

δPi
=

∂

∂Pi
(
1

2
P 2

j +
1

4
F 2

jk + Pj∂j [Q
0 − ε]) = Pi + ∂i(Q

0 − ε). (17)

One can solve for Pi and then take the 3-divergence:

Pi,i = ∂i(Q̇
i − Q0,i +ε,i ) = ∂i(q̇

i − ∂iq
0) = ∂iF0i = −∂iEi. (18)

5I use − + ++ metric signature. But indices are placed up and down freely, depending on whether the general paradigm

QA or the specific case Aµ is more relevant.
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By using the full apparatus of a canonical transformation and keeping track of the fact that Q0 is no

longer (up to a sign) the electromagnetic scalar potential as q0 is, one can resolve the contradiction about

vanishing vs. nonvanishing divergence of the canonical momentum vis-a-vis the electric field. Such

reinterpretation, which strips the new canonical coordinates of some of their usual physical meaning and

replaces them with a pointlessly indirect substitute, though mathematically permitted, is certainly not

what people usually intend when they say that a first-class constraint generates a gauge transformation.

What they mean, at least tacitly, is that the fields after the transformation by direct application of

Poisson brackets (not a canonical transformation) have their usual meaning—hence one would (try to)

calculate the electric field from Q̇i − Q0,i (thus spoiling the Lagrangian constraints, as shown above)

rather than Q̇i − Q0,i +ε,i . Supposing that one attempts to retain the old connection between the

0th canonical coordinate and the electromagnetic scalar potential, one can calculate the alteration in the

electric field (that is, the electric field from QA less the electric field from qA) as δF0n = ∂0δAn−∂nδA0 =

0 − ∂n
δC
δp0

= −∂nε, as found above by more mundane means. To avoid the contradiction of a physics-

preserving transformation that changes the physics, one can and must re-work the connection between

Q0 and A0, as shown. But simply avoiding this sort of generating function, one that is not (a special

case of) G, is more advisable.

In short, as a canonical transformation generator with suitable smearing, p0, the primary first-class

constraint, generates only an obfuscating position-dependent change of variables. It has nothing to do with

the usual gauge freedoms of electromagnetism (or GR, by analogy). It has nothing to do with p0’s being

first-class; the canonical transformation would work equally well for Proca’s massive electromagnetism,

in which that constraint is second-class. Only in detail does it even depend on p0’s being a constraint,

as opposed to merely something that lives on phase space. It is easy to see reasons not to make such

transformations, and wrong to make them without understanding what they do.

One can also try the secondary constraint pi,i as a generator of a canonical transformation: D =
R

d3y − ε,i p
i(y) after dropping a boundary term. The new canonical coordinates are QA = qA + δD

δpA
=

qA − ε,i δ
i
A = Aα − ε,i δ

i
α. The new canonical momenta are PA = pA − δD

δqA = pA. One sees that the

new Qi are not the original electromagnetic 3-vector potential Ai anymore. (They are not a gauge-

transformed vector potential, either, unless one throws the trouble onto Q0 by stripping it of its relation

to the electromagnetic scalar potential.) The new Hamiltonian is K = H + ∂D
∂t

= H +
R

d3y − piε,0i ,

which differs from the old by a term proportional to the secondary constraints (and perhaps a boundary

term). Thus the altered Q̇− P relation is Q̇i = δK
δPi

= Pi + Q0,i −ε,0i . One can take the divergence and

solve for P i,i : P i,i = ∂i(Q
i,0 −Q0,i +ε,0i ) = ∂i(q

i,0 −∂iq
0) = ∂iF0i = −∂iEi. By taking into account the

fact that the new Q’s are no longer all just the electromagnetic 4-vector potential Aµ, one resolves the

contradiction between vanishing and nonvanishing divergence. The electric field ~E, which is an observable

by any reasonable standard, is no longer specified simply by (derivatives) of the new canonical coordinates

Q, but requires the arbitrary smearing function ε used in making the change of field variables also. That

is permissible but hardly illuminating.

One can do basically the same thing with Proca’s massive electromagnetism [18, 36, 48], taking the

secondary constraint, now second-class, as the generator of a canonical transformation. The secondary

sprouts a new piece m2A0. The transformed massive Hamiltonian K gets an extra new term m2Q0ε̇. The

new canonical momenta reflect a change in the primary constraint form: P0 = p0 −m2ε. But everything

cancels out eventually, leaving equations equivalent to the usual ones for massive electromagnetism,

naturally. Only in detail does the first-class (massless) vs. second-class (massive) character of the

secondary constraint make any difference. As the generator of a canonical transformation, a first-class

constraint doesn’t generate a gauge transformation in massless electromagnetism any more than a second-

class constraint generates a gauge transformation in massive electromagnetism. Both generate permissible

but pointless field redefinitions.

The key difference is that a special combination of first-class constraints in massless electromagnetism

does generate a gauge transformation, whereas in massive electromagnetism, there is no gauge transfor-

mation to generate, so no combination of anything can generate one. Amusingly, given that the key issue

is changing Aµ by a four-dimensional gradient, and not directly the first-class or even constraint charac-

ter of the generator, one can use the same special sum
R

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)] as applied to

massive electromagnetism to generate a Stueckelberg-like gauged version of massive electromagnetism,
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with the smearing function ε, in this case not varied in the action, as the gauge compensation field.
R

d3y[−p0(y)ε̇(t, y) + pi,i (y)ε(t, y)] is no longer a sum of constraints (not even second-class ones, though

p0 is a second-class constraint). This possibility might take on some importance in application to in-

stalling artificial gauge freedom in massive Yang-Mills theories, where the proper form has been a matter

of some controversy [56, 57, 58, 59, 60, 61].

Finally, one can use the gauge generator G as the generator of a canonical transformation in Maxwell’s

electromagnetism. It turns out that, in contrast to an arbitrary function on phase space (or a first-class

constraint) as a generator, the gauge generator G generates the very same thing for the canonical variables

as a canonical transformation as it does ‘by hand’ by taking the Poisson bracket directly with q and p.

Dropping a spatial divergence, one has G =
R

d3x − ε,µ p
µ. One gets the new canonical coordinates

QA = qA + δG
δpA

= Aα − ε,α and new canonical momenta PA = pA − δG

δqA = pA, and a slightly altered

Hamiltonian, K = H + ∂G
∂t

= H +
R

d3y− pµε,µ0 , which adds related terms proportional to the primary

and secondary constraints (and a spatial boundary term). Significantly, QA − qA = δG
δpA

= {qA, G} and

PA −pA = − δG

δqA = {pA, G}. That is, G does the very same thing to qA and pA whether one simply takes

the Poisson bracket with G directly or uses G to generate a canonical transformation. Thus if one uses

G, one can be nonchalant (as people often are using first-class constraints separately [5, p. 21]) about

whether one is making a canonical transformation or is merely directly taking a Poisson bracket; that

lack of concern does not carry over to expressions different from G, however. G does one good thing,

recovering the usual electromagnetic gauge transformations, used either way. By contrast, each isolated

first-class constraint offers a choice of two bad things (one disastrous, one merely awkward): it can either

destroy the field equations if used directly in Poisson brackets, or generate a confusing change of physical

meaning of the variables as the generator of a canonical transformation.

One can summarize in a table some of the results about using the gauge generator G vs. a smeared

individual constraint or other phase space function, and using it as a canonical transformation generating

function vs. using it directly via Poisson bracket. Presumably the experience for electromagnetism largely

carries over for other constrained theories. For the first-class theory one has these phenomena:

Canonical transformation Direct Poisson bracket

Gauge generator G Gauge transformation Gauge transformation

Smeared constraint Locally varying field redefinition Spoils ~∇ · ~E = 0

The entries in the first column can be described in more detail. One can illustrate the illuminating

(invariant) canonical transformations related to G (top left corner) and the obscuring but permissible

more general canonical transformations (bottom left corner) in the following diagrams.

The first is a commutative diagram with well understood entries and transformations. (The equation

numbers correspond to the remarks in Anderson and Bergmann [1].)

L invariant gauge 2.4:−−−−−−−−−−−−−−−−−−−−−→
δL=div, δAµ=∂µξ, δgµν=£ξgµν

L′

constrained Legendre

?

?

?

y

?

?

?

y

constrained Legendre

H invariant canonical G−−−−−−−−−−−−−−−−−−−−−−−→
preserves qA sense, 4.2: πA= ∂L

∂q̇A

H′

One can of course also make point transformations, changes among the qA’s only. In electromagnetism,

one might use Aµ instead of Aµ; that is probably the least bad choice if one does not stick with Aµ.

In GR one is free to use gµν , g
µν (which equals gµν√−g), or various other fields, for example. For

Anderson and Bergmann, this freedom to make point transformations is already implied by their rather

abstract use of qA (or actually yA in their notation) and rather general form of gauge transformations.

A field redefinition from one choice of qA to another will of course induce a contragredient change in

the canonical momenta. One can also add a divergence to the Lagrangian density. Such an alteration

will also tend to alter the canonical momenta, but not mysteriously. These two changes were combined

to simplify the primary constraints of GR in 1958 [24, 25]. One could augment the diagram above to

indicate more fully the resources of Lagrangian field theory. The main point, however, is to distinguish
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adequately what is allowed within the Lagrangian formalism from the greater, and more dangerous,

generality of the Hamiltonian formalism.

The second is an unhealthy aspiring commutative diagram illustrating how allowing general canonical

transformations—for example, a single primary or secondary first-class constraint—leads to entries and

transformations that are not widely understood, if meaningful at all.

L ?−−−−→ L′

constrained Legendre

?

?

?

y

x

?

?

?

inverse constrained Legendre?

H general canonical−−−−−−−−−−−−−−−−−−−−−−−−→
violates qA sense or 4.2: πA= ∂L

∂q̇A

H′

A canonical transformation to action-angle variables, for example, would give a Hamiltonian that would

resist an inverse Legendre transformation back to a Lagrangian [62, p. 80]. Suffice it to say that

Hamiltonian-Lagrangian equivalence is obscured by general canonical transformations. It is not very

obvious what the resulting equations mean physically, given that the usual Lagrangian variables such as

gµν , not the canonical momenta, are the ones with known direct empirical meaning. General canonical

transformations are useful tricks in mechanics, where one already understands what everything means,

but needs to solve specific problems. But a position-dependent change of variables when one is already

on marshy ground, having difficulty identifying change or observables, is inadvisable without the greatest

care.

12 How to Get Right Electromagnetic Fields with Wrong

Gauge Transformations

One might think that misidentifying the generator of a gauge transformation would lead to selecting

the wrong fields in mildly nontrivial examples such as electromagnetism. That a first-class constraint

generates a gauge transformation was held by Bergmann and collaborators [2, 3, 4], not just Dirac [5].

Bergmann commented that, for electromagnetism, the physical variables are (omitting sources, unlike

him) ∇× ~E and ∇× ~B because they are neither 0 nor gauge-dependent [2]. Bergmann evidently got the

right fields for electromagnetism. How is that result compatible with his having the wrong generator(s)?

Using his condition of vanishing Poisson bracket with each first-class constraint, one should find that

∇· ~E is gauge-dependent but ∇× ~E is gauge-invariant; ~B is gauge-invariant, but ∇· ~B = 0. That ∇· ~E is

gauge-dependent is incredible, but it is tempting not to do the calculation because the expected answer

is obvious. By contrast, using G [1], one finds that ~E is gauge-invariant, as is ~B, but both have vanishing

divergence. One keeps the same fields, but for different reasons. Given the wrong notion, one would

exclude ∇ · ~E because it is gauge-dependent. Given the right notion (using G), one excludes ∇ · ~E as

vanishing. Thus one sees how, in this example, the wrong gauge transformations are consistent with the

correct gauge-invariant non-vanishing ~E and ~B parts, the curls.

13 Presupposition of Dirac Observables

The usual concept of “Dirac observables” as entities that Poisson-commute with all first-class constraints

is interesting largely on the assumption that a first-class constraint generates a gauge transformation.

Now that it is clear that a first-class constraint generally does not generate a gauge transformation, the

usual concept of Dirac observable, so defined, is of rather lessened interest, if any. One might nonetheless

calculate how the electromagnetic field strength Fµν fares when measured by the crooked rod of Dirac

observables as traditionally defined. One can take its Poisson bracket directly once one defines, with

Anderson and Bergmann, the Poisson bracket of the time derivative of a canonical coordinate to be the

time derivative of the Poisson bracket of the canonical coordinate [1]:

{q̇A, } =
∂{qA, }
∂t

. (19)
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This definition facilitates recapitulating a calculation made above (Eqn. 3) by more pedestrian means.

Smearing p0(y) with arbitrary ξ(t, y) and taking the Poisson bracket gives

δFµν = {Fµν(t, x),

Z

d3yp0(y)ξ(t, y)} = {∂µAν − ∂νAµ,

Z

d3yp0(y)ξ(t, y)} =

∂µξδ
0
ν − ∂νξδ

0
µ. (20)

Let µ = 0, ν = n:

δF0n = −δ ~E = ∂0δAn − ∂nδA0 = ∂0ξδ
0
n − ∂nξδ

0
0 = −∂nξ 6= 0. (21)

As was also found above, while ~B is unchanged, ~E is changed by ∂nξ. Hence the electric field is not a

Dirac observable by the usual reckoning, which is odd. That is contrary to what Matschull found [29],

likely because the temptation to default to the conventional wisdom overwhelmed the motivation to do

trivial calculations.

What does the secondary pi,i (x) do? That calculation also can be redone using the Poisson bracket

now:

δFµν = {Fµν(t, x),

Z

d3ypi,i (y)ε(t, y)} = {∂µAν − ∂νAµ,

Z

d3y − pi(y)
∂ε

∂yi
}

= ∂µ

Z

d3yδ(x, y)(−δi
ν

∂ε

∂yi
) − µ↔ ν = δi

µ∂ν∂iε− δi
ν∂µ∂iε. (22)

Clearly ~B is unchanged, but ~E’s change is obtained by setting µ = 0, ν = n:

δF0n = −δ ~E = δi
0∂n∂iε − δi

n∂0∂iε = −∂n∂0ε. (23)

Again ~E is changed by an arbitrary gradient. This is again contrary to Matschull’s claim [29].

By now the remedy is clear: the primary and secondary constraints should be suitably combined in

G. A plausible replacement for the usual concept of Dirac observable, at least for electromagnetism and

other theories with internal symmetries, is to look for quantities that have vanishing Poisson bracket

with the gauge generator G. That should suffice for electromagnetism; the field strength Fµν is thus

observable. One has

{Fµν(t, x), G} = { ∂

∂xµ
Aν(t, x) − ∂

∂xν
Aµ(t, x),

Z

d3y − pσ(y)
∂ε

∂yσ
} =

Z

d3y(− ∂

∂xµ
δσ

ν ∂σε(t, y) +
∂

∂xν
δσ

µ∂σε(t, y) = −∂µ∂νε(t, x) + ∂ν∂µε(t, x) ≡ 0. (24)

Thus the electric and magnetic fields are observable by the appropriate criterion, which uses the gauge

generator G rather than any first-class constraint in isolation. For Yang-Mills fields, matters should be

more complicated, but still equivalent to the Lagrangian result (where F i
µν is gauge-dependent and hence

not observable [36]).

14 Conclusion

Carefully doing Hamiltonian calculations for electromagnetism, as an end in itself, would be using a

sledgehammer to crack a peanut. But the pattern of ensuring that the Hamiltonian formalism matches

the Lagrangian one, which is perspicuous and correct, will prove very illuminating for the analogous

treatment of GR. There the right answers are generally not evident by inspection, and the calculations

are difficult and error-prone. Knowing what a properly dotted “i” and a properly crossed “t” look like

will be crucial in GR, where various attractive entrenched errors related to the first-class-constraint-

generates-a-gauge-transformation theme need to be diagnosed. In particular, one should use the primary

Hamiltonian and its associated gauge generator G, not the extended Hamiltonian and each first-class

constraint smeared separately. While various people have made such advocacy before, it would seem

that the calculation of the gauge dependence of the electric field and the spoilage of Gauss’s law achieve

a new level of rational compulsion for the Lagrangian-equivalent primary Hamiltonian and G.
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One example of an entrenched error in canonical GR is the common claim that Hi generates a spatial

coordinate transformation. While of course Hi does have the appropriate Poisson brackets with the

spatial metric and its conjugate momentum to generate a spatial coordinate transformation as far as

those fields are concerned [36], the falsehood of the statement in classical GR is evident from the Poisson

bracket with the shift vector N j and the lapse function N . The immediate results

{Hi(x),N
j(y)} = 0,

{Hi(x), N(y)} = 0 (25)

do not give even the Lie derivative of a scalar like the lapse N , much less that of a vector like N i. One

can treat Hi as generating a coordinate transformation on a single initial data surface (much as one can

keep ~E from changing due to pi,i if one uses only a time-independent smearing function). But failure to

transform the lapse and shift destroys the information that allows the aspiring initial data surface to be

embedded consistently into space-time; the aspiring initial data surface instead is just a lonely moment.

To recover the usual electromagnetic gauge transformations and GR coordinate transformations, one

instead needs the gauge generator to pick out gauge transformations in the Hamiltonian context [21];

G transforms the scalar potential (or lapse and shift) appropriately as well. Taking seriously the gauge

generator G, not first class constraints in isolation, as generating gauge transformations will remove the

still common expectation [10] that observables should have vanishing Poisson brackets with first class

constraints. There might be some clarification achieved for canonical quantization.
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