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Abstract

Recent work on the history of General Relativity by Renn, Sauer, Janssen et al. shows that

Einstein found his field equations partly by a physical strategy including the Newtonian limit,

the electromagnetic analogy, and energy conservation. Such themes are similar to those later

used by particle physicists. How do Einstein’s physical strategy and the particle physics deriva-

tions compare? What energy-momentum complex(es) did he use and why? Did Einstein tie

conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge

(1911-14) of the canonical energy-momentum tensor and its translation-induced conservation?

After initially using energy-momentum tensors hand-crafted from the gravitational field equa-

tions, Einstein used an identity from his assumed linear coordinate covariance xµ
′

= Mµ

ν
xν to

relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations

and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the

canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange,

Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor’s

asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so

much on Maxwell’s theory (which avoids negative-energies but gets an asymmetric canonical

tensor as a result) as on a scalar theory (the Newtonian limit). Einstein’s theory thus has a

symmetric canonical energy-momentum tensor. But as a result, it also has 3 negative-energy

field degrees of freedom (later called “ghosts” in particle physics). Thus the Entwurf theory fails

a 1920s-30s a priori particle physics stability test with antecedents in Lagrange’s and Dirichlet’s

stability work; one might anticipate possible gravitational instability.

This critique of the Entwurf theory can be compared with Einstein’s 1915 critique of his

Entwurf theory for not admitting rotating coordinates and not getting Mercury’s perihelion

right. One can live with absolute rotation but cannot live with instability.

Particle physics also can be useful in the historiography of gravity and space-time, both

in assessing the growth of objective knowledge and in suggesting novel lines of inquiry to see

whether and how Einstein faced the substantially mathematical issues later encountered in

particle physics. This topic can be a useful case study in the history of science on recently

reconsidered questions of presentism, whiggism and the like. Future work will show how the

history of General Relativity, especially Noether’s work, sheds light on particle physics.
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1 Introduction

. . . but Grossmann & I believed that the conservation laws were not satisfied and New-

ton’s law did not result in first-order approximation. (Einstein, 1996b, p. 160)

So wrote Einstein to Besso on December 10, 1915, explaining why the newly accepted ‘right’ field

equations had previously been rejected. This first concern of Einstein and Grossmann, that the

conservation laws were not satisfied, is actually rather mysterious, as will appear shortly.

General Relativity is traditionally credited to Einstein’s mathematical strategy of Principles

(equivalence, generalized relativity, general covariance, eventually Mach) in the contexts of discovery

and justification. According to this common (often implicit) view, not only did Einstein discover his

late 1915 field equations (note the success term “discover”) using these principles, but also we today

should believe his theory on the same grounds. At any rate we today should have a reasonably high

prior degree of belief in it on those grounds, and a low prior for theories violating those principles,
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so that empirical confirmation that has arisen since the mid-1910s can leave us rationally with a

high degree of belief in his theory. In an important sense the physics of space-time and gravity

“arrived” in 1915-19, when the final field equations were found and striking empirical confirmation

arrived in the form of the bending of light. Since that time little important has happened relevant

to space-time philosophy, so understanding the 1910s makes one up to date. This story (or perhaps

caricature), though widely circulated partly due to Einstein’s media penetration (reinforced on

everything from T-shirts to the American Physical Society’s robot-repellent process of selecting

Einstein’s face in order to read Physical Review journals), can be challenged on both descriptive

historical and normative philosophical grounds.

In fact a number of the leading historians of General Relativity have argued recently that Einstein

found his field equations by a quite different route. Indeed Einstein’s “physical strategy” (it has

been called, to contrast it with the more familiar “mathematical strategy” of Principles) has been

recovered by historians by a combination of meticulous study of his notebooks during the early-

mid 1910s and taking seriously the published record of his work in that era. Einstein’s physical

strategy involves seeking relativistic gravitational field equations using the Newtonian limit, an

analogy between gravitation and electromagnetism (the most developed relativistic field theory at

the time), the coupling of all energy-momentum including gravity’s as a source for gravity, and

energy-momentum conservation (Norton, 1989; Renn and Sauer, 1999; Janssen, 2005; Brading,

2005; Renn, 2005b; Renn, 2005a; Janssen and Renn, 2007; Renn and Sauer, 2007). Thus the

descriptive historical claim of the role of the mathematical strategy of principles in Einstein’s

process of discovery has been significantly exaggerated. Indeed at least one reason why has been

offered: Einstein re-wrote his own history in order to justify his decreasingly appreciated unified

field theory quest (van Dongen, 2010). Einstein might well also simply have come to believe that

his mathematical strategy made the crucial difference in 1915.

Normative issues also arise regarding the relative strengths of the physical and mathematical

strategies as arguments. On the one hand, the mathematical strategy of Principles is sometimes

seen as not compelling (Norton, 1995; Stachel, 1995). Thus one might look for something more

compelling, such as eliminative inductions, Norton argued. On the other hand, Einstein’s physical

strategy also has its puzzles. Just how Einstein arrived at (what we take to be) his definitive field

equations is tortuous and paradoxical. Renn and Sauer find

what might be called the three epistemic paradoxes raised by the genesis of general

relativity:

The paradox of missing knowledge. . . .

The paradox of deceitful heuristics . . .

The paradox of discontinuous progress. How could general relativity with its nonclassical

consequences—such as the dependence of space and time on physical interactions—

be the outcome of classical and special-relativistic physics although such features are

incompatible with their conceptual frameworks? (Renn and Sauer, 2007, pp. 118, 119)

If the physical strategy and the mathematical strategy both have their limitations as arguments,

where does that leave us?

I suggest that we should not be afraid to find both strategies’ lines of argument quite imperfect

during the 1910s. A great deal has been learned in the last 100 years, some of it empirical, some

of it theoretical, which makes our epistemic situation very different from Einstein’s in late 1915.
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It also isn’t clear that the most reasonable views to hold in 1915 were Einstein’s. Nordström’s

(second) theory, for example, was simpler and hence arguably more plausible a priori, before or

after the Einstein-Fokker geometrization (Einstein and Fokker, 1914). While Einstein’s late 1915

theory handled Mercury better than Nordström’s theory did, why must the evidence from Mercury

more than offset the greater antecedent plausibility of Nordström’s theory by the standards of the

day (von Laue, 1917)? As von Laue put it,

This agreement between two individual numbers [the perihelion prediction of Einstein

and the Newcomb anomaly], achieved under conditions which cannot be arbitrarily

altered, so that it seems uncertain whether the suppositions (specifically the assumption

of two mass points) are fulfilled with sufficient accuracy, does not seem to be a sufficient

reason, even though it is note-worthy, to change the whole physical conception of the

world to the full extent as Einstein did in his theory. (Roseveare, 1982, p. 182)1

In 1912-15 it wasn’t so clear that a revised gravitational theory was needed anyway. The matter-

based zodiacal light hypothesis (or something close enough) had seemed to significant people (New-

comb’s last view, expressed posthumously in 1912 (Newcomb, 1912, pp. 226, 227), and Seeliger) to

be doing well enough in addressing Mercury’s problem (Roseveare, 1982, pp. 69, 156). Mercury’s

perihelion was not the only empirical difficulty for astronomy anyway (Roseveare, 1982, p. 86),

so a gravitational solution for just that problem was not especially plausible in advance. Zenker

makes an interesting effort to relate this episode to formal philosophy of science (Zenker, 2009).

As Lakatos emphasized, if we want to speak of progress rather than mere change, we need

normative standards (Lakatos, 1971). If we distinguish our epistemic situation in 2015 from that

of 1915 as we should, we both can and must find something(s) in the last 100 years to fill in the

gap that 1915 cannot fill for us, in order to identify the rational progress made in space-time and

gravitational theory. Chang has emphasized the value of attending to contemporary knowledge in

writing the history of science and integrating the history and philosophy of science (Chang, 2009;

Chang, 2012).

Fortunately there is at least one way to do that, a way largely unexplored, namely, using later

particle physics arguments (Kraichnan, 1955; Feynman et al., 1995)—which bring us to the nor-

mative challenge to the use of Einstein’s principles. Much of the reason that Einstein’s work has

generated a scholarly industry (as only a few scholars do), presumably, is the belief that Einstein’s

reasons for General Relativity, whatever they were, are also good reasons for us, indeed among

the best that we have. More broadly, General Relativity is one of the most impressive scientific

theories, and it is at least plausible that something methodologically interesting can be learned

from the process by which it arose. But maybe our reasons are quite different from and even much

better than Einstein’s reasons. Particle physicists know that Einstein’s equations are what one nat-

urally arrives for a local interacting massless spin-2 field, with good explanations for the detailed

nonlinearity, general covariance, etc. from nuts-and-bolts principles of (at least) Poincaré-covariant

field theory. (Poincaré symmetry does not exclude a larger symmetry, as is especially clear from

1Diese Übereinstimmung zwischen zwei einzelnen Zahlen, erhalten unter Bedingungen, an denen jede willkürliche

Veränderung unmöglich ist, bei der uns selbst unsicher scheint, ob die Voraussetzungen (wir denken an die Annahme

zweier Massenpunkte) mit ausreichender Genauigkeit erfüllt ist, scheint uns, so bemerkenswert sie ist, doch kein

hinreichender Grund, das gesamte physikalische Weltbild von Grund aus zu ändern, wie es die Einsteinsche Theorie

tut. (von Laue, 1917, p. 269)
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a Kleinian subtractive as opposed to Riemannian additive picture of geometry (Norton, 1999b).)

In 1939 it became possible to situate Einstein’s theory vis-a-vis the full range of relativistic wave

equations and Lorentz group representations: Pauli and Fierz recognized the equation for a mass-

less spin 2 field as the source-free linearized Einstein equations (Fierz, 1939; Pauli and Fierz, 1939;

Fierz and Pauli, 1939). That same year Rosen wondered about deriving General Relativity’s non-

linearities from an initially special relativistic starting point (Rosen, 1940). Work by Kraichnan,

Gupta, Feynman, Weinberg, Deser et al. eventually filled in the gaps, showing that, on pain of

instability, Einstein’s theory is basically the only option (eliminative induction, philosophers would

say), with contributions by many authors (Weyl, 1944; Papapetrou, 1948; Gupta, 1954; Kraich-

nan, 1955; Thirring, 1961; Halpern, 1963b; Halpern, 1963a; Feynman et al., 1995; Wyss, 1965;

Ogievetsky and Polubarinov, 1965; Weinberg, 1965; Nachtmann et al., 1968; Deser, 1970; van

Nieuwenhuizen, 1973a; Boulware and Deser, 1975; Pitts and Schieve, 2001; Boulanger and Esole,

2002). One could also consider massive spin 2 gravity if it works (Pauli and Fierz, 1939; Fierz and

Pauli, 1939; Ogievetsky and Polubarinov, 1965; Freund et al., 1969), an issue apparently settled

negatively in 1970-72 but reopened recently and now very active (Hinterbichler, 2012; de Rham,

2014).2 To recall a punchy expression by Peter van Nieuwenhuizen, “general relativity follows from

special relativity by excluding ghosts” (van Nieuwenhuizen, 1973a), ghosts being negative-energy

degrees of freedom.3 According to Boulanger and Esole,

[i]t is well appreciated that general relativity is the unique way to consistently deform

the Pauli-Fierz action
∫

L2 for a free massless spin-2 field under the assumption of

locality, Poincaré invariance, preservation of the number of gauge symmetries and the

number of derivatives in L2 [references suppressed] (Boulanger and Esole, 2002).

The point of invoking particle physics here, then, is to use it as a foil for Einstein’s physical

strategy, given that they share very similar core ideas, such as an electromagnetic analogy and cru-

cial use of energy-momentum conservation. Particle physics, one should recall, was the mainstream

tradition of scientific progress during the 1920s-50s, while “General Relativity” was a backwater

topic in physics (Eisenstaedt, 1986; Eisenstaedt, 1989; Schutz, 2012). More specifically, it was a

province for mathematicians and for speculative unified field theories that did not retain Einstein’s

late 1915 field equations (van Dongen, 2010).

As will appear below, Einstein’s general ideas of using the Newtonian limit, an electromagnetic

2The inclusion of Weyl refers to what he actually showed, not to his intentions, which were to refute Birkhoff’s

flat space-time project. I thank Harvey Brown for discussion.
3Van Nieuwenhuizen’s claim is slightly exaggerated—unimodular General Relativity is also an option, though it

barely differs. So is something like a scalar-tensor theory with an arbitrary solution-dependent cosmological constant

(Pitts and Schieve, 2001). So is pure spin-2 massive gravity, it appeared in late 2010 (de Rham et al., 2011; Hassan

and Rosen, 2011; Hinterbichler, 2012; de Rham, 2014). But in the early 1970s everyone read Boulware & Deser

(Tyutin and Fradkin, 1972; Boulware and Deser, 1972) who said that linear pure spin-2 doesn’t have the correct

massless limit (Zakharov, 1970; van Dam and Veltman, 1970; van Dam and Veltman, 1972; Boulware and Deser,

1972; van Nieuwenhuizen, 1973b) and also turns nonlinearly into spin-2 and spin-0, where the spin-0 is a ghost

(negative energy, hence presumably unstable). Apparently no one read Maheshwari (Maheshwari, 1972), who already

exhibited one of the recent counterexamples that avoid the spin-0 ghost even nonlinearly (Pitts, 2016), so decades

of opportunities were missed. Whether Vainshtein’s conjectured nonperturbative smooth massless limit (Vainshtein,

1972; Deffayet et al., 2002) was believed is hard to say, but it didn’t much matter as long as the nonlinear ghost

issue seems insoluble as was claimed (Boulware and Deser, 1972). The bending of light has to be introduced as an

empirical premise to refute Nordström’s theory, van Nieuwenhuizen rightly notes.
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analogy, and energy-momentum conservation were good ideas—in other hands they would in time

yield a remarkably compelling argument leading almost uniquely to Einstein’s field equations. But

Einstein’s own development of them was a mixed enterprise, including surprising blunders reflecting

ignorance not only of the literature of his day (Herglotz, 1911; Mie, 1912; Mie, 1913; Born, 1914),

but also of results known already to Lagrange, Hamilton, Jacobi and others, to the effect that the

conservation of energy is related to time translation invariance and the conservation of momentum to

spatial translation invariance. According to Gorelik, “There is no indication in Einstein’s works that

he was aware of the connection between symmetry and conservation principles.” (Gorelik, 2002)

Gorelik draws upon 1970s-80s Russian-language scholarship by Vladimir P. Vizgin (Vizgin, 1972;

Vizgin, 1975; Vizgin, 1981). If Einstein did not have knowledge on the topic, he nonetheless clearly

had relevant (false) beliefs. He appealed to the wrong symmetry (rigid general linear coordinate

transformations), and secretly made use of the correct symmetry (rigid translation invariance), in

deriving conservation laws. There is also a severe disharmony, if not quite an inconsistency, in his

occasional appeal to the equations of motion or field equations of matter. He appeals to an action

principle for a point particle, then generalizes to dust (to use our term) by analogy, then further

generalizes by analogy a symmetric energy-momentum tensor for any sort of matter. But he does

not generalize the appeal to an action principle to continuous matter. Why not? Consequently

Einstein set himself the extraordinary task of getting the gravitational field equations alone to

entail energy-momentum conservation. This is not much better motivated that trying to get energy-

momentum conservation for a system of two coupled oscillators while using the equations of motion

of just one of them. According to Kuhn, finding scientists’ mistakes is a legitimate activity in the

history of science (not discredited by Lakatosian whiggishness), and indeed a very illuminating

activity (Kuhn, 1971). One finds in Einstein’s work both flashes of brilliance and dark patches.

This paper will sharpen the electromagnetic analogy by introducing an electromagnetic theory,

“Entwurf electromagnetism,” that is a much closer analog to Einstein’s Entwurf theory than is

Maxwell’s. Maxwell’s theory entails the conservation of charge: take the 4-divergence, and watch

the symmetric-antisymmetric cancellation on the left side because mixed partial derivatives are

equal and 1−1 = 0 (Deser, 1972) But “Entwurf electromagnetism” does not entail the conservation

of charge, though of course it permits such conservation. (That isn’t necessarily bad: de Broglie-

Proca massive electromagnetism (Deser, 1972; Jackson, 1975; Pitts, 2011) merely permits charge

conservation, rather than requiring it; charged matter manages to conserve charge anyway using

its own Euler-Lagrange equations.) Relatedly, Entwurf electromagnetism, unlike Maxwell or de

Broglie-Proca, has various features and especially bugs which also have analogs in the Entwurf

theory, most notably interacting positive- and negative-energy degrees of freedom. Particle physics

would later use such things (with the name “ghosts”) as a more or less sufficient condition for

instability, seeing such theories as doomed. Excluding “ghosts” was found by Fierz and Pauli to be

related to gauge freedom for massless particles/fields at least for the kinetic (derivatives) part of

the Lagrangian density (Fierz, 1939; Fierz and Pauli, 1939; Fierz, 1940; Wentzel, 1949). Excluding

ghosts implies (in the massless case) basically a divergenceless free field equation, because the

divergence, if nonzero, would involve lower-spin degrees of freedom (such as a vector for a tensor

theory, or a scalar for a vector theory) with negative energy. Divergenceless free field equations,

in turn, necessitate that any source introduced must be conserved. The conservation of energy-

momentum should hold only for gravity and everything else together, so gravity has to serve as
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part of its own source, implying nonlinearity of a quite specific sort. In fact it is difficult to arrive

at anything besides Einstein’s equations as we know and love them (or maybe unimodular GR,

scalar-tensor theories with an arbitrary cosmological constant, or pure spin-2 massive gravity, a

topic much in the news since the late 2010s as a generalization of the Fierz-Pauli linear theory

(Hinterbichler, 2012; de Rham, 2014)).

This critique of the Entwurf theory as doomed a priori due to negative energies can be compared

with Einstein’s late 1915 self-critique of Entwurf for not admitting rotating coordinates and not

getting Mercury’s perihelion right (Einstein, 1996a; Janssen, 1999). Admitting rotating coordinates

was one of Einstein’s many interesting conjectural desiderata, some of which led nowhere, so it isn’t

much of a criticism of the theory except ad hominem to Einstein. Not getting Mercury’s perihelion

right isn’t much of a criticism, either: Newton’s and Nordström’s theories didn’t get Mercury

right, either, and a “dark matter” solution (though not dark, just heavier than it looked, zodiacal

light) was hardly ruled out (Roseveare, 1982; Earman and Janssen, 1993). It’s a bit like a losing

lottery ticket: one would be very happy with a winning ticket, but one should not expect to win.

Nordström’s theory fared somewhat worse than Newton’s theory regarding Mercury, but neither

Nordström nor Einstein seemed to hold that fact against Nordström’s theory (Roseveare, 1982, pp.

155, 156).

This response is very much in line, incidentally, with Laudan’s take on unsolved problems (prob-

lems that have not been solved by any theory):

unsolved problems generally count as genuine problems only when they are no longer

unsolved. Until solved by some theory in a domain they are generally only “potential”

problems rather than actual ones. [footnote suppressed] There are two factors chiefly

responsible for this: . . . Second, it is often the case that even when an effect has been well

authenticated, it is very unclear to which domain of science it belongs and, therefore,

which theories should seek, or be expected, to solve it. (Laudan, 1977, pp. 18, 19,

emphasis in the original)4

2 Conservation Quest and Symmetric Stress-Energy

Einstein wanted a local relativistic gravitational field theory that implied the conservation of energy-

momentum. Was gravity supposed to imply conservation by itself, or could matter help? He

seems not to have taken a consistent view on that crucial question. Along the way he started

using a variational formalism. Thus he wrote down a Lagrangian density for his Entwurf theory

(Einstein, 1914) (Janssen and Renn, 2007, p. 869). The Entwurf theory has special features that

make energy-momentum easier to represent—namely, the canonical energy-momentum tensor is

symmetric when the metric gµν is used to move an index. Relatedly, the Entwurf also special vices,

namely, negative-energy degrees of freedom. Avoiding such things, one now knows, is why the

canonical energy-momentum tensor for Maxwell’s theory is asymmetric. Whether such negative-

energy degrees of freedom should have been seen as a vice in the mid-1910s is an interesting question.

Einstein seems to have little to say about the matter. In any case one can make use of what we know

now about classical field theory to interrogate the historical record to see how Einstein addressed

4I thank the audience at EPSA in Duesseldorf for bringing Laudan’s point to my attention.
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issues that, we now know, were waiting for him in the mathematics. But it is getting a bit ahead to

invoke variational principles and the canonical energy-momentum tensor initially, because Einstein

did not use them initially.

A lengthy 1912 unpublished manuscript on special relativity, which has attracted some com-

ment (Janssen and Mecklenburg, 2007; Rowe, 2008; Lehmkuhl, 2011), sheds useful light on the

development of Einstein’s thought on material stress-energy:

The general validity of the conservation laws and of the law of the inertia of energy

. . . suggest that relations [deduced for electrodynamics] are to be ascribed a general

significance, even though they were obtained in a very special case. We owe this gen-

eralization, which is the most important new advance in the theory of relativity, to

the investigations of Minkowski, Abraham, Planck, and Laue.[reference suppressed] To

every kind of material process we might study, we have to assign a symmetric tensor

(Tµν). . . . Each time, the problem to be solved consists in finding out how (Tµν) is to be

formed from the variables characterizing the processes studied. If several processes that

can be separated from one another as regards energy occur in the same space, then we

have to assign to each such individual process its own stress-energy tensor (T
(1)
µν ), etc.,

and to set (Tµν) equal to the sum of these individual tensors. (Einstein, 1996f, p. 79)

Electromagnetic (Minkowski) and continuum (Laue) stress-energy tensors were symmetric and not

canonical (Minkowski, 1908; Laue, 1911; Norton, 1992). Indeed the symmetric stress-energy tensor

that Einstein wanted was not essentially related to either of the two recipes now familiar to us,

canonical or metric. At this stage Einstein also had covariant and contravariant stress-energy

tensors for gravity itself (Einstein and Grossmann, 1913).

3 Intermittent Use of a Matter Lagrangian

Einstein’s occasional use of an action principle for matter is more mysterious than seems to have

been noticed. In his 1913 Entwurf work he used a generally covariant particle matter action

−m
∫

dtds
dt , thus arriving at the geodesic equation, on the assumption that no non-gravitational

forces act. He then quite appropriately and correctly generalized the law to what we now call dust:

In order to derive the law of motion of continuously distributed incoherent masses, we

calculate the momentum and the ponderomotive force per unit volume and apply the

law of the conservation of momentum.” (Einstein and Grossmann, 1913)

While “balance law” seems like a better choice of words than “law of the conservation” (and

Einstein was often clearer on this point), his intention is clear. Moving from particle to continuum

by analogy, Θµν = ρ0
dxµ

ds
dxν

ds
. (He had not yet started writing contravariant indices “up,” though

Grossmann mentions that notation of Ricci and Levi-Civita in a footnote.)

From the foregoing one surmises that the momentum-energy law will have the form (10)

∑

µν

∂

∂xν
(
√−ggσµΘµν)− 1

2

√−g
∂gµν

∂xσ
Θµν = 0. (σ = 1, 2, 3, 4)
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The first three of these equations (σ = 1, 2, 3) express the momentum law, and the last

one (σ = 4) the energy law. It turns out that these equations are in fact covariant with

respect to arbitrary substitutions. [footnote suppressed] Also, the equations of motion

of the material point from which we started out can be rederived from these equations

by integrating over the thread of flow. (Einstein and Grossmann, 1913)

It is worth noting something that the antiquated notation tends to hide, namely, that Einstein’s

conserved quantity is a weight 1 tensor density with mixed indices, one “up” from Θµν (as required

for a partial divergence) and one “down” from gσµ. This sort of quantity is as good as any and

better than most if one is hoping to take a covariant derivative and have few Christoffel symbol

terms (as one can see in Grossmann’s mathematical part of the paper). It also has the same

transformation rule as the canonical energy-momentum tensor (mixed tensor density of weight 1),

which was in the process of being invented by Herglotz, Mie and Born (Herglotz, 1911; Mie, 1912;

Mie, 1913; Born, 1914), apparently unbeknownst to Einstein. So far, so good.

Einstein goes on:

We call the tensor Θµν the (contravariant) stress-energy tensor of the material flow. We

ascribe to equation (10) a validity range that goes far beyond the special case of the flow

of incoherent masses. The equation represents in general the energy balance between the

gravitational field and an arbitrary material process; one has only to substitute for θµν

the stress-energy tensor corresponding to the material system under consideration. The

first sum in the equation contains the space derivatives of the stresses or of the density

of the energy flow, and the time derivatives of the momentum density or of the energy

density; the second sum is an expression for the effects exerted by the gravitational field

on the material process. (Einstein and Grossmann, 1913)

A bit later he listed “mechanical, electrical, and other processes”. Perhaps at this point one notices

more clearly what Einstein did not do in introducing the incoherent mass flow, namely, introduce any

Lagrangian density to give equations of motion/field equations for matter. Thus Einstein supplied

no relation between Θµν and a continuous matter action. One further notices that he didn’t derive

the particulate matter stress-energy tensor from the Lagrangian, either; the particle Lagrangian

yielded equations of motion (the geodesic equation), but the material stress-energy tensor is not

derived from it. Rather, just the conservation/balance equations are derived using the matter

equations of motion that follow from the Lagrangian.

His use of a matter action for a particle indicates that he didn’t object to action principles;

before long he would also adopt one for gravity. Why, then, did he not use one for continuous

matter? Did he perhaps think that an explicit Lagrangian density was required, so that it would

be useless merely to assume that one existed without writing it down? Relativistic fluids are

admittedly not simple even for more modern authors (Ray, 1972; Schutz and Sorkin, 1977), and

some of the complication applies already for dust, though there was progress rather early (Herglotz,

1911; Born, 1914; Lorentz, 1917; Nordström, 1917). If this omission of a matter Lagrangian

density is only somewhat mysterious in 1913 (when various ingredients are missing or novel), it will

become much mysterious once Einstein relies more heavily on Lagrangian densities. The would-be

commutative diagram, though wobbly on the particle side (left) due to putting in the stress-energy

tensor definition by hand (“exogenous”), is outright broken on the continuum side (right) due to
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the empty top-right corner:

Lagrangian for particle in gravity
continuum−−−−−−−→

by analogy??
[NOTHING]

geodesic equation





y

of motion equation





y

of motion??

exogenous Θµν continuum−−−−−−→
by analogy

exogenous Θµν

satisfies balance law satisfies balance law

Over time the mathematical technology employed would be improved: notation with contravariant

indices up (thus making many aspects of general covariance evident by inspection), a gravitational

Lagrangian density, and expression of the material stress-energy balance law using a covariant

derivative, for example.

But what never changed while Einstein sought the field equations through late 1915 is the missing

matter Lagrangian in the top right corner of this diagram. (A matter Lagrangian does appear in

1916 (Einstein, 1916a), although it isn’t used much, as Einstein emphasizes.) That absence becomes

important when one compares to Born’s canonical tensor formalism. Why? Because it will become

obvious that, using Born’s formalism, conservation laws follow automatically from the gravitational

and material equations of motion assuming merely rigid space-time translation invariance, that is,

the mere uniformity of nature, a rather humble and familiar set of symmetries known for most or

all of a century to do such jobs ((Lagrange, 1811) (translated as (Lagrange, 1997, pp. 180-183) for

energy, (Hamilton, 1834; Jacobi, 1996) for momentum).

Einstein, by contrast, uses the wrong symmetry (rigid general linear invariance, a symmetry of

his own devising) while not appealing to material equations of motion. That he gets conservation

laws at all will result only because he sneaks space-time translation invariance in without noticing!

Below I will introduce a counterexample that is invariant under rigid general linear transformations

but depends on the coordinates and so violates the conservation laws. To get conservation, it isn’t

necessary to write out explicitly what the matter Lagrangian density is; it is sufficient that it exist

(along with the gravitational Lagrangian, which Einstein will adopt) and be space-time translation

invariant, in order for conservation to follow. By not making that move (which would have been

evident by comparison to the emerging canonical tensor formalism (Herglotz, 1911; Mie, 1912; Mie,

1913; Born, 1914), Einstein had to work a good deal harder. He falsely believed that conservation

was tied to the detailed form of the gravitational field equations. In fact his criterion of satisfying

energy-momentum conservation was nearly trivial, because he theory satisfying the uniformity of

nature and having a variational formulation would satisfy it.

When Einstein and Grossmann later tie their balance law to covariant differentiation and use a

Gothic T
ν
σ for the material stress-energy tensor density, the material energy balance law will be

writable as ∇ν

√−gθν
σ = 0, i.e., ∇νT

ν
σ = 0. Einstein is often careful—not always, but more often

than writers today are—to note that this is an equation of balance, not conservation. (The point

has been made at times, including (Landau and Lifshitz, 1975; Gorelik, 2002; Ohanian, 2010).5)

5Ohanian’s use of a weight 0 rather than weight 1 expression is suboptimal, however, because it obscures the

difference between a Christoffel term that cannot be removed and one that can. Similar remarks hold for Gorelik’s

symmetric weight 2 expression. To obtain a tensorial expression, one needs a covariant divergence. To obtain a

continuity equation that can be integrated into a conservation law, one needs a partial divergence. These requirements

are compatible for contravariant vector densities of weight 1 (and their axial cousins), but otherwise conflict. To turn
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Gravity affects matter, so one would expect conservation to be violated unless some way to keeping

track of gravitational energy-momentum is used.

4 Entwurf Derivation of Gravitational Field Equations

The derivation of the gravitational field equations in the Entwurf contains a fascinating mixture

of good ideas that would bear fruit later in the particle physics tradition, and subtle interesting

error. Generalizing the Newtonian field equations ∇2φ = 4πkρ would presumably lead to

the form

(11) κ · Θµν = Γµν ,

where κ is a constant and Γµν a second-rank contravariant tensor derived from the

fundamental tensor µν by differential operations. In line with the Newton-Poisson law

one would be inclined to require that these equations (11) be second order. (Einstein

and Grossmann, 1913)

Such an equation is seemingly inconsistent with general covariance, he says; maybe there are

fourth derivatives, but that seems premature to consider. [Purely algebraic terms, as in the 1890s

Seeliger-Neumann long-range modification of Einstein’s equations and the first half of Einstein’s

1917 cosmological constant paper (Einstein, 1917; Norton, 1999a; Pitts, 2015), are also not enter-

tained.] “Besides, it should be emphasized that we have no basis whatsoever for assuming a general

covariance of the gravitational equations. [footnote suppressed]” (Einstein and Grossmann, 1913)

Instead tensoriality under arbitrary linear transformations is required.

Einstein wants to find the nonlinear part of the gravitational field equations to ensure the conser-

vation of energy-momentum—a nontrivial task when one is not using a variational principle. His

method is clever and largely sound, but may contain an interesting and important mistake that will

make energy-momentum conservation seem much more difficult to achieve than it actually is, as

will appear. (If Einstein does not make that mistake here, he will make it eventually; the roots of

ambiguity might appear before the tree.) Recalling equation (10), the material energy-momentum

balance law, it follows that
∑

µν

1

2

√−g
∂gµν

∂xσ
Θµν

(the opposite of the second, non-divergence term) “is the momentum (or energy) imparted by the

gravitational field to the matter per unit volume.” The first term,
∑

µν
∂

∂xν
(
√−ggσµΘµν ) presum-

ably seems already acceptable, being equated to a divergence. It isn’t identically a divergence, I

note, but an expression involving the metric and matter fields and derivatives thereof, proportional

to the matter equations of motion and thus 0 only if one uses the matter equations of motion. Does

Einstein lose track of the role of the matter equations in getting here? Resuming with Einstein:

a displacement (tangent) vector into a contravariant vector density of weight 1, one can multiply by a mixed tensor

density of weight 1. Not coincidentally, the canonical energy-momentum tensor is just that sort of entity, at least

in simple enough field theories including special relativistic ones. In GR one can try to do the same thing, but

complications arise (Goldberg, 1958; Trautman, 1962; Schutz and Sorkin, 1977).
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For the energy-momentum law to be satisfied, the differential expressions Γµν of the

fundamental quantities γµν [the inverse metric gµν] that enter the gravitational equa-

tions

κΘµν = Γµν

must be chosen such that
1

2κ

∑

µν

√−g · ∂gµν

∂xσ
Γµν

can be rewritten in such a way that it appears as the sum of differential quotients. [that

is, as a divergence] (Einstein and Grossmann, 1913, p. 163)

Einstein has dropped the first term (the coordinate divergence) from equation 10 (as if forgetting

that it involves the matter equations of motion), substituted the gravitational field equations into

the second term, and asked for the resulting modified second term to be a divergence. Grossmann

in the mathematical part supplies the mathematical manipulations. If Einstein’s goal is merely to

ensure that the gravitational equations in the absence of matter conserve energy-momentum, all

is innocent. If he wishes to achieve energy-momentum conservation for gravity + matter with the

help of the matter equations of motion as well, again all is fine. Eventually he uses the gravitational

equations and equation 10 to get energy-momentum conservation for gravity + matter; hence much

depends on how clearly one understands the roots of equation 10.

The lengthy equation 12 is an identity with the left side being a divergence and the right side

(up to a constant factor) being a product of
√−g

∂gµν

∂xσ
and a term in large curly braces containing

the sum/difference of four terms. The third and fourth terms in curly braces in equation 12 are

isolated in equation 13 (which I divide by 2 for convenience and express in more modern notation,

including the summation convention) as

−κθµν =
1

2
gαµgβν ∂gτρ

∂xα

∂gτρ

∂xβ
− 1

4
gµνgαβ ∂gτρ

∂xα

∂gτρ

∂xβ
.

This θµν is designated the “ ‘contravariant stress-energy tensor of the gravitational field.’ ” (em-

phasis and quotation in the original) A corresponding covariant tensor tµν is achieved by lowering

both indices with gµν . Note that these entities are symmetric due to

∂gτρ

∂xβ
= −gτσgλρ∂gσλ

∂xβ
,

and that symmetry requires having the indices in the same place, so they differ from the mixed

tensor density expression earlier by moving an index with the position-dependent metric or inverse

metric. Thus these symmetric entities are not directly useful for conservation laws. These entities

are also tensors under general rigid linear (or, for that matter, affine) coordinate transformations,

which is all the invariance to which Einstein and Grossmann presently aspire (though the translation

part of affine symmetry is tacit). The first and second terms on the right side of identity 12 are

collected together and named ∆µν(γ), a sort of nonlinear generalization of the d’Alembertian; it

appears to serve also as a receptacle for whatever part of the right side of equation 12 did not

look like part of a stress-energy tensor. Using the stress-energy tensor to re-express the left side of

equation 12 also, one indeed gets equation 12a, which in modernized notation is

∂

∂xν

(√−ggσµκθµν
)

=
1

2

√−g
∂gµν

∂xσ
(−∆µν + κθµν ).
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Einstein perceives an interesting analogy between the role of the material stress-energy tensor Θµν in

the “conservation law (10) for matter” (really a balance law) and the role of the gravitational stress-

energy tensor θµν in “conservation law (12a) for the gravitational field. . . . [T]his is a noteworthy

circumstance considering the difference in the derivation of the two laws.” I confess that I don’t

see the point, unless one introduces stronger independently motivated restrictions on ∆µν . Such

independent conditions do indeed hold in the later particle physics tradition (Kraichnan, 1955;

Deser, 1970; Pitts and Schieve, 2001), however, in which the corresponding entity is linear, hence

describing a free (non-interacting) gravitational field rather than self-interacting one. Linearity is

partly dependent on one’s choice of field variables such as gµν or gµν, so it is possible to have a

free field that doesn’t look free. I see no reason to think that such a hidden virtue applies here,

however.

Using the identity result Γµν = ∆µν − κθµν (equation 17 in updated notation), the gravitational

field equations (11) above Γµν = κΘµν (updated) take the form (18 in updated notation)

∆µν = κ(Θµν + θµν).

Einstein and Grossmann remark:

These equations satisfy a requirement that, in, our opinion, must be imposed on a

relativity theory of gravitation; that is to say, they show that the tensor θµν of the grav-

itational field acts as a field generator in the same way as the tensor Θµν of the material

processes. An exceptional position of gravitational energy in comparison with all other

kinds of energies would lead to untenable consequences. (Einstein and Grossmann,

1913)

This universal coupling principle is a cornerstone of the particle physics derivations such as (Kraich-

nan, 1955; Deser, 1970; Pitts and Schieve, 2001). But it looks as though the Einstein-Grossmann

version is trivial, absent a better reason to regard the form of ∆µν as independently plausible rather

than merely as a waste receptacle for all terms that don’t look like a stress-energy tensor.

Einstein now turns to recovering the energy-momentum conservation law in his melodramatic

way that neglects the matter equations and the full significance of the uniformity of nature.

Adding equations (10) and (12a) while taking into account equation (18), one finds

(19)
∑

µν

∂

∂xν

√−g · gσµ(Θµν + θµν) = 0 (σ = 1, 2, 3, 4)

This shows that the conservation laws hold for the matter and the gravitational field

taken together.

Einstein’s result here is both correct and satisfying. He also presents a covariant form with a

notation that looks more familiar to modern readers in his equation (22), which in updated notation

(and correction of the differentiation index from ν) is

∂

∂xσ
(
√−ggσµ(Tµν + tµν)) = 0.

Both conservation laws are somewhat indirect in terms of symmetric (and weight 0) stress-energy

tensors, because the conservation laws are most naturally written in mixed weight 1 form, as be-

comes clear later with a variational principle. One recalls that coordinate divergences integrate into
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conserved quantities, whereas covariant divergences (except where those few special cases in which

they are coordinate divergences, such as weight 1 contravariant vector densities (Anderson, 1967))

do not (Landau and Lifshitz, 1975, p. 280). Unfortunately it seems plausible here, and becomes

clear later when he uses a variational principle, that he doesn’t realize that he has worked far harder

than necessary to achieve this result. As Lagrange and others knew much earlier, conservation laws

hold due to the spatio-temporal uniformity of nature and the equations of motion/field equations

for everything that has energy and momentum. If one does not keep track of when one uses the

material equations of motion/field equations, one might mistakenly think that they are not used,

leaving the gravitational field equations to do all the work.

5 Partial Shift to Variational Principle

Einstein and Grossmann make a partial shift to a variational principle in the paper “Covariance

Properties of the Field Equations of the Theory of Gravitation Based on the Generalized Theory of

Relativity” (Einstein and Grossmann, 1914). To be specific, he introduces a Lagrangian density for

gravity but not matter. Contravariant indices are still written down, at the beginning of the paper,

but soon are moved up apart from the coordinate differentials dxν. For convenience I will modernize

the notation without further comment. The gravitational field equations come from varying the

action (using H as in “Hamilton” for the Lagrangian density—in this paper H has absorbed the

factor of
√−g)

∫

dτ(δH − 2χ
√−gTµνδgµν) = 0.

It would be convenient if they could say that
√−gTµν was the derivative of the Lagrangian density

with respect to gµν, as Hilbert later would. As matters stand, Einstein and Grossmann rather

conspicuously avoid introducing a matter Lagrangian density and deriving matter field equations

from it. “In the Lagrangian, matter thus appears simply ‘black-boxed,’ rather than as an expression

explicitly involving some set of variables describing the constitution of matter. . . .” (Renn and

Stachel, 2007, p. 859).

Later in the year (October/November) in “The Formal Foundation of the General Theory of

Relativity,” Einstein draws on the Minkowski-Laue special relativistic material stress-energy, which

is symmetric and includes anistropic pressure/stress (Einstein, 1914). Einstein, however, argues

for the mixed, weight 1 tensor density T
ν
σ , which, one recalls, is not symmetric and is similar to

what we now know as the canonical tensor (Herglotz, 1911; Mie, 1912; Mie, 1913; Born, 1914;

Nordström, 1917).

Einstein rightly insists on deriving an energy-momentum conservation law and posits a gravita-

tional energy-momentum t
ν
σ to complement the material stress-energy T

ν
σ to help achieve it. In the

absence of external forces

one has to demand that for the material system and associated gravitational field com-

bined, some theorems remain that express the constancy of total momentum and total

energy of matter plus gravitational field. This leads to the statement that a complex of

quantities t
ν
σ must exist for the gravitational field such that the equations

∑

ν

∂(Tν
σ + tνσ)

∂xν
(42.c)
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apply. This point can only be discussed in more detail when the differential laws of the

gravitational field have been established. (Einstein, 1914)

This last sentence is important, albeit in a worrisome way. It suggests that Einstein thinks that

the detailed gravitational field equations play a key role in achieving conservation, not merely a

rather weak structural property (such as translation invariance, a.k.a. the uniformity of nature) as

is actually the case.

6 Translation Symmetry Smuggling

After further discussion of the conservation laws for several types of matter (Einstein, 1914), a

version of the hole argument appears as an argument against general covariance for the gravitational

field equations, notwithstanding the general covariance of the matter field equations. Thus one is

satisfied with “linear” transformations. The word “linear” is ambiguous between strictly linear (like

y = mx) and affine (like y = mx+ b) interpretations, which is interesting given Einstein’s tendency

to neglect the role of translations. Later, in section 15, the invariance of the action under strictly

linear transformation properties is discussed, resulting in a condition 2Sν
σ ≡ 0 for a scalar action

under linear coordinate transformations. Notationally, the Lagrangian density is now
√−gH : H

itself has reverted to being a scalar. Using the abbreviation gµν
σ for ∂gµν

∂xσ
, one has equation 76a:

Sν
σ = gντ ∂(H

√−g)

∂gστ
+ gντ

µ

∂(H
√−g)

∂gστ
µ

+
1

2
δν
σH

√−g − 1

2
gµτ
σ

∂(H
√−g)

∂gµτ
ν

This identity and other considerations involving preferred coordinates will be used to infer the

conservation of energy-momentum. This derivation of equation 76a, unfortunately, is a red herring.

It smuggles rigid translation symmetry without mentioning it, apart from the restriction that it de-

pend only on the inverse metric and its first partial derivative—which excludes explicit dependence

on the coordinates. Thus Einstein is tacitly using affine, not strictly linear coordinate transfor-

mations. Translations should hardly have been controversial, so extending the symmetry group

from linear to affine is entirely reasonable. Unfortunately Einstein seemed not to notice that he

was doing so, and hence was confused about the relationship between symmetries and conservation

laws. Did he think that more symmetries (16 linear or 20 affine vs. 6 Lorentz or 10 Poincaré) could

imply fewer conservation laws? If not, why not rest in the knowledge that Poincaré invariance

already ensures the conservation laws? Clearly in light of Noether’s first theorem (Noether, 1918)

that cannot be the correct view, whether or not it was Einstein’s at the time. While one cannot

hold Einstein responsible for mathematics developed a few years later, the antiquity (first half of

the 19th century, as well as recent continuum work (Herglotz, 1911)) of the connection between

translation symmetries and conservation laws makes it difficult to hold him blameless here. The

larger affine group gives if anything more conservation laws, not fewer, than a merely Poincaré-

covariant theory would have. At worst, a larger symmetry group could lead to conservation laws

that are trivial, redundant or weird—but still true. Did he forget translations and really use only

linear coordinate covariance xµ′

= Mµ
ν xν vs. affine xµ′

= Mµ
ν xν + Nµ? (Mµ

ν and Nµ constant)

Rigid translations relative to one coordinate system are rigid translations relative to any affinely

related coordinate system as well. Hence assuming translation invariance in one coordinate system
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implies translation invariance in all of the desired coordinate systems. But given that transla-

tion invariance implies energy-momentum conservation via the (now) well known derivation of the

canonical energy-momentum tensor (Goldstein, 1980), the specifically linear coordinate symmetry

of the Lagrangian density must be doing something else.

To see where translations are smuggled in, one can work through the derivation. Of the La-

grangian density he writes before equation 61: “Let H be a function of the gµν and their first

derivatives ∂gµν

∂xσ
. . . .” This statement already guarantees energy-momentum conservation for grav-

ity in the absence of matter, because it implements rigid space-time translation invariance for the

vacuum gravitational field equations. But Einstein has a great deal of work yet to do that he seems

to think is relevant to arriving at the conservation laws. In particular, he pays a great deal of at-

tention to rigid linear coordinate transformations. “Now we shall assume H to be invariant under

linear transformations, i.e., ∆H shall vanish with
∂2∆xµ

∂xαxσ
does.” (Einstein, 1914) This statement

is ambiguous: clearly one could include rigid translations within this notion of linearity. But that

point is not made. In arriving at an identity supposedly following from strictly linear transforma-

tions, invariance under translations gets smuggled in at least once. In deriving equation 76a with

Sν
σ from matter energy balance and gravity’s field equations, he sets

1

2
gµν ,σ

∂H
√−g

∂gµν
+

1

2
gµν,σα

∂H
√−g

∂gµν,α

equal to
1

2
(
√−gH),σ .

What if we allowed ourselves strictly linear but not affine symmetry of the Lagrangian density,

such as by including a term A
√−ggµνxµxν (A a constant)? This term is a weight 1 scalar density

under linear (but not affine!) coordinate transformations and so transforms properly to leave the ac-

tion invariant under linear (but not affine) coordinate transformations. (If one worries that this term

becomes large at spatial or temporal infinity, one could use something like A
√−gsinc2(gµνx

µxν)

instead; the points that I wish to make would still hold.) Let ξµ = mµ
νxν be an infinitesimal vector

corresponding to a small version of the coordinate transformation xµ′

= Mµ
ν xν = (δµ

ν +mµ
ν + . . .)xν;

mµ
ν is constant and so small that quadratic terms are negligible. The coordinates xµ are a vector

under rigid linear transformations, so one can treat them as a vector field for present purposes,

giving them a Lie derivative, one that vanishes in fact. That vanishing makes sense because the Lie

derivative gives a fixed coordinate variation, comparing the value of a field at the same numerical

coordinate label in two different coordinate systems (Bergmann, 1962).

Let us work through the derivation, covering the same ground a bit more quickly because the Lie

derivative is now familiar (to us!). Let H be the Lagrangian density H
√−g, but allowing a term

like A
√−ggµνx

µxν to be included within the Lagrangian density also. Then one has the identity

0 = £ξH− £ξH =
∂(ξµH)

∂xµ
− ∂H

∂gστ
£ξg

στ − ∂H
∂gστ

ν

£ξg
στ
ν − ∂H

∂xµ
£ξx

µ

= mσ
νδν

σH + mσ
ν xν dH

∂xσ
− ∂H

∂gστ
(mµ

νxνgστ
µ − 2gντmσ

ν ) − ∂H
∂gστ

ν

(mµ
νgστ

µ + mµ
αxα∂µgστ

ν − 2gατ
ν mσ

α)− 0

= mσ
νδν

σH + mσ
ν xν

(

∂H
∂gαβ

gαβ
σ +

∂H
∂gαβ

ρ

∂σgαβ
ρ +

∂H
∂xσ

)

− ∂H
∂gστ

(mµ
νxνgστ

µ − 2gντmσ
ν )
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− ∂H
∂gστ

ν

(mµ
νgστ

µ + mµ
αxα∂µgστ

ν − 2gατ
ν mσ

α)

= mσ
νδν

σH + mσ
νxν ∂H

∂xσ
− ∂H

∂gστ
(−2gντmσ

ν )

− ∂H
∂gστ

ν

(mµ
νgστ

µ − 2gατ
ν mσ

α)

= mσ
νδν

σH + mσ
ν xν ∂H

∂xσ
+ mσ

ν2
∂H
∂gστ

gντ − mσ
ν

∂H
∂gµτ

ν
gµτ
σ + mσ

ν 2gντ
µ

∂H
∂gστ

µ

= 2mσ
νSν

σ + mσ
νxν ∂H

∂xσ
= 0. (1)

From the arbitrariness of mσ
ν one infers that

2Sν
σ + xν ∂H

∂xσ
= 0.

One easily sees that the linearly but not affinely invariant term A
√−ggµνxµxν satisfies this extended

identity, but not Einstein’s identity 2Sν
σ = 0. Thus Einstein’s identity follows not from strictly linear

invariance, but from affine invariance. But the translation invariance is what does the real work of

insuring conservation laws.

Rearranging a bit, one can find the conserved current associated with Noether’s first theorem.

One has the identity

0 = £ξH− £ξH = ∂µ(ξµH− ∂H
∂gστ

µ

£ξg
στ )− dH

dgστ
£ξg

στ = 0.

Substituting the explicit form of the vector field ξµ = mµ
ν xν, one obtains

∂µ(mα
ν [δµ

αxνH− ∂H
∂gστ

µ

xν∂αgστ + 2
∂H
∂gστ

µ

gσνδτ
α])− dH

dgστ
mα

ν (xν∂αgστ − 2gσνδτ
α) = 0.

Einstein was indeed near an application (in advance) of Noether’s first theorem to his linear sym-

metry. This might well have been a novelty. Unfortunately this conservation law does not entail

the conservation of energy-momentum (certainly not with what one hoped would be the energy-

momentum). To entail energy-momentum conservation, the linear symmetry would need to exclude

the term A
√−ggµνxµxν . But the exclusion of such terms implies/requires translation invariance.

(Einstein quietly smuggled translation symmetry in by allowing only dependence on the metric and

its derivative.) Once translation invariance appears, energy-momentum conservation is assured.

But then the linear symmetry is completely irrelevant, an idle wheel as far as energy-momentum

conservation is concerned. Hence Einstein applied something like Noether’s first theorem in advance

of Noether, but to the wrong symmetry for achieving his goal of conservation laws. It is perhaps

noteworthy that the linear coordinate symmetry includes rotations and boosts and so implies the

conservation of angular momentum and center-of-mass motion.

Suppose that, not noticing all this, we attempt to form the canonical energy-momentum tensor

for gravity, using for a Lagrangian density including a term like A
√−ggµνx

µxν . It is useful to review

the derivation of the canonical tensor in the presence of explicit space-time coordinate dependence,

L(g, ∂g, x). (Because I am not paralleling Einstein’s derivation, I will feel free to use L as the symbol

for the Lagrangian density.) The total derivative dµ takes into account both implicit dependence

17



on location via the metric g and its partial derivative, and explicit coordinate dependence. (Indices

are suppressed. One can take g to stand for gravity and matter if matter is included.) One has

0 = −dµL + dµL =

−δν
µdνL +

∂L
∂g

∂µg +
∂L

∂(∂νg)
∂µ∂νg +

∂L
∂xµ

=

−δν
µdνL +

∂L
∂g

∂µg + dν

(

∂L
∂(∂νg)

∂µg

)

− dν

(

∂L
∂(∂νg)

)

∂µg +
∂L
∂xµ

=

dν

(

−δν
µL +

∂L
∂(∂νg)

∂µg

)

+

(

∂L
∂g

− dν
∂L

∂(∂νg)

)

∂µg +
∂L
∂xµ

=

dν

(

∂L
∂(∂νg)

∂µg − δν
µL
)

+
dL
dg

∂µg +
∂L
∂xµ

= 0. (2)

The Euler-Lagrange equations dL
dg

= 0 contain the total derivative d in order to get rid of boundary

terms. Energy-momentum conservation is also with respect to the total derivative in order to try

to achieve a temporally constant spatial integral. Thus one sees that, using the field equations,

the conservation of energy-momentum fails insofar as ∂µL 6= 0 (non-uniformity of nature, failure of

space-time translation invariance), as expected. One could observe this failure even more explicitly,

if desired, by adding to a reasonable Lagrangian density the term

A
√−ggµνxµxν . (3)

This term is suitably covariant under rigid strictly linear coordinate transformations, giving an

invariant contribution to the action, but it violates space-time translation invariance. Thus one sees

that strictly linear transformations are quite irrelevant, while translations do the work of ensuring

conservation. Thus Einstein has used space-time translation invariance of H
√−g crucially while

giving it only a nod by leaving xµ out of the list on which H
√−g depends. By contrast he used

the wrong symmetry, rigid strictly linear coordinate transformations, with fanfare on his way to

inferring conservation laws. Far from anticipating a special case of Noether’s first theorem (one that

was already in the literature of his day and that had simpler analogs that were very old), Einstein

had a surprisingly poor grasp of the connection between symmetries and conservation laws at this

stage. Thus he used an elaborate, quite unnecessary and misleading alternative to the simple route.

(Luckily for Einstein’s definitive theory, the linearly covariant term A
√−ggµνxµxν is not generally

covariant. General covariance also includes translation invariance, moving down to zeroth order as

well as up to second and higher powers, if one represents ‘general’ coordinate transformations using

a Taylor series, as is sometimes useful (Ogievetsky, 1973).)

Einstein’s same expression Sν
σ (now multiplied by 2) reappears in the mature 1916 treatment

of the conservation laws (Einstein, 1916a, equation 14). Hence some of the above discussion still

applies to Einstein’s understanding of (what we take to be) his definitive theory. That work

concludes:

It is to be emphasized that the (generally covariant) laws of conservation (21) and

(22) are deduced from the field equations (7) of gravitation, in combination with the

postulate of general covariance (relativity) alone, without using the field equations (8)

for material phenomena. (Einstein, 1916a)
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Equation (21) is the true but pseudotensorial conservation law

∂

∂xν
(Tν

σ + t
ν
σ),

while (22) is the material energy-momentum balance law. That Einstein didn’t need to use general

covariance to get the true conservation law if only he had used the matter field equations remains

true. One doesn’t need any relativity at all, but only the 4-parameter translation group, the

uniformity of nature (Goldstein, 1980, chapter 12). On the other hand, for the mature theory, the

gravitational field equations do in fact entail conservation by themselves (Einstein, 1916a) (and

even vice versa! (Noether, 1918; Anderson, 1967; Pitts, 2010)). One might find such a result very

satisfying if one has it. But one should not insist on it in advance because there is little antecedent

reason to think that it is possible. Neither is there any evident reason to consider it necessary. To

think otherwise is akin to planning to support oneself by winning the lottery when one is able to

work.

There are also the restrictions Bµ = 0, Einstein’s view of which has occasioned some discussion.

A clearer view of the logic will appear below in the discussion of “Entwurf electromagnetism,”

a theory of electromagnetism (not ever seriously proposed by anyone, to my knowledge) that is

analogous to the Entwurf gravitational theory.

7 Conservation Laws: A Sketch of History

Should we be surprised by Einstein’s apparent lack of awareness of the connection between sym-

metries and conservation laws? Gorelik has remarked (and I take the liberty to repeat a sentence

from above):

There is no indication in Einstein’s works that he was aware of the connection between

symmetry and conservation principles. (He discussed the importation into GR, not of

all ten conservation laws of SR, but only of those pertaining to energy and momentum).

This is not surprising. It was only in 1911 that Gustav Herglotz established, for the

first time, a link between ten conservation laws and ten symmetries of the Poincaré

group in the context of the mechanics of continuous media in SR (Vizgin 1972), which

was rather remote from Einstein’s domain of interest. And Noether’s work in which the

symmetry-conservation link was elaborated in a general form, appeared only in 1918,

when Einstein had already worked out his pseudotensor solution. (Gorelik, 2002)

I am glad to have Gorelik’s agreement in the first sentence or two. If Einstein could only have known

the basic point about the link between time- and space-translation symmetries and the conservation

of energy and momentum (respectively) by encountering one recent paper (Herglotz’s) on relativistic

continuum mechanics, or by reading work from the future (Noether’s), then I would share Gorelik’s

lack of surprise as well. However, neither the Poincaré group nor continua (whether mechanical or

fields) are essential conceptual ingredients. The essential ingredients were in fact much older, on

the order of a century or more, being present already in nonrelativistic particle mechanics. Hence

if we are not surprised by Einstein there, there must be some deeper reason, perhaps such as a

difference between mathematics and physics.
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It has long been known that energy and momentum conservation, respectively, hold due to

∂(laws)/∂t = 0, ∂(laws)/∂xi = 0. Historical sketches for energy, momentum, and angular momen-

tum have appeared (Lagrange, 1811) (translated as (Lagrange, 1997, pp. 180-183)) (Hamilton,

1834; Jacobi, 1996; Kuhn, 1959; Houtappel et al., 1965; Elkana, 1974; Kastrup, 1987) (Whittaker,

1944, pp. 59, 60, 62) (Kosmann-Schwarzbach, 2011, p. 34) including Newton, Huygens, Bernoullis,

Lagrange, Hamilton and Jacobi. Kastrup’s work is particularly valuable. The conservation of

momentum

has been evolved gradually from the observation of Newton, Principia, Book I. introd.

to Sect. XI., that if any number of bodies are acted on only by their mutual attractions,

their common centre of gravity will either be at rest, or move uniformly in a straight

line. . . . (Whittaker, 1944, p. 59)

Likewise angular momentum appears in Kepler and Newton (p. 60), while energy appears in Huy-

gens, Newton, the Bernoullis, and Lagrange (p. 62). Here is Lagrange (until the 1990s unavailable

in English):

14. Une intégration qui a toujours lieu lorsque les forces sont des fonctions de distances,

et que les fonctions T , V , L, M , etc., ne contiennent point la variable finie t, est celle

qui donne le principe de la conservation des forces vives.” (Lagrange, 1811, p. 318)

(Kosmann-Schwarzbach, 2011, p. 34).

With some assumptions, “l’intégral trouvée sera simplement T + V = const.; laquelle contient le

principe de la conservation des forces vives (sect. III, art. 34).” (Lagrange, 1811, p. 319) The

translation of Lagrange renders this passage as:

14. An integration which is always possible when the forces are functions of distance

and when the functions T , V , L,, M , etc. do not contain the finite variable t, is the one

which will result in the principle of the Conservation des Forces Vives.” (Lagrange,

1997, p. 233)

Kosmann-Schwarzbach is prepared to say “kinetic energy” rather than the untranslated “Forces

Vives”; the reminder of the vis viva controversy of the 18th century is a signal not to demand a mod-

ern vocabulary. “Therefore, the derived integral will simply be T + V = constant which expresses

the principle of the Conservation des Forces Vives (SECTION III, Article 34). (Lagrange,

1997, p. 234) Hamilton related the conservation of energy (to use the modern term), momentum

and angular momentum to symmetries of his function (Hamilton, 1834). During the 1830s-40s,

Jacobi discussed the conservation of living force as holding if and only if there was no t-dependence

(Nakane and Fraser, 2002; Jacobi, 1996).

But it took a while longer for the mature understanding of conservation laws as applied to

real physical systems including electromagnetism and conservation as connected with translation

invariance of a Lagrangian to become clear, because it was not so clear than as now that fundamental

physics could be described in terms of a Lagrangian or Hamiltonian. Electromagnetism posed

a challenge for a time (Heimann, 1974; Clausius, 1877; Roseveare, 1982). Subsumption of the

fundamental physical laws (or rather their classical antecedents!) to the principle of least action

clearly postdated Lagrange. But it remains clear that, if a variational principle is accepted, then
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one ought to expect a Lagrange-like result to hold in classical field theory. Thus one might expect

that adopting a variational principle would imply inferring conservation laws from rigid translation

symmetries.

Houtappel, van Dam and Wigner are useful for a discussion of less ancient sources:

Dr. E. Guth kindly acquainted us with his study of the history of the connection between

conservation laws and the invariance of the Lagrangian. Apparently, the first one to

notice the connection (in 1842) was C. G. J. Jacobi. . . who derived the conservation laws

for linear and angular momentum from the Euclidean invariance of the Lagrangian.

. . . [Re-inventors Gött in 1897, Hamel in 1904.] The first complete discussion of the

derivation of the ten integrals of motion (corresponding to the ten infinitesimal elements

of the inhomogeneous Lorentz group) was given by G. Herglotz [Ann. Physik 36,

493 (1911)]. F. Klein called attention to Herglotz’ work and encouraged F. Engel. . . ,

Gött. . . , E. Noether. . . ; and E. Bessel-Hagen. . . . (Houtappel et al., 1965, p. 606)

What did Einstein know and when did he know it? The canonical energy-momentum tensor

appeared in a mature form in Herglotz for relativistic continua (Herglotz, 1911), Mie for electrody-

namics (Mie, 1912; Mie, 1913) (who worried about asymmetry), and Born for classical field theory

in general. Born seems to have invented classical field theory by finding the generality of which

Herglotz’s continua and Mie’s electromagnetism were special cases (Born, 1914). Born’s paper was

submitted by Hilbert on 20 December 1913. Born’s understanding of the connection between rigid

translation symmetries and conservation laws was crystal-clear:

The assumption of Mie just emphasized, that the function Φ [the Lagrangian density]

is independent of x, y, z, t, is also the real mathematical reason for the validity of

the momentum-energy-law. . . . We assert that for these differential equations, a law,

analogous to the energy law (3′) of Lagrangian mechanics, is always valid as soon as

one of the 4 coordinates xα does not appear explicitly in Φ.

Thus there is a clear sense in which the canonical energy-momentum tensor should have been

available to Einstein, or at least readily invented by him due to analogs in mechanics, during much

of this period. That Einstein was not given to long bibliographies is evident, but this weakness

in scholarship did not serve him well in the context of conservation laws. Herglotz’s work would

eventually be used to clarify the right side of Einstein’s equations (Nordström, 1917). Born’s

criterion for conservation laws is satisfied by both the Entwurf theory and the definitive theory of

1915-16.

One point that should almost go without saying is that Born’s derivation of the conservation laws

involves Euler-Lagrange equations for all the fields. That point is worth emphasizing, however, due

to its contrast with Einstein’s failure most of the time to use a matter Lagrangian and have Euler-

Lagrange equations for matter. If Einstein had used a matter Lagrangian as well as a gravitational

Lagrangian, he would have arrived at conservation laws for energy-momentum readily due to rigid

translation invariance, just as Born did, with no diversion through a linear coordinate symmetry

and the detailed form of the gravitational field equations; still less would general covariance have

been necessary as seems to be the case in ((Einstein, 1916a)). The fact that Einstein appealed

to general covariance and avoided using the matter Euler-Lagrange equations in 1916 shows that
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(pace Ohanian (Ohanian, 2010)) Einstein did not imitate Born; presumably Einstein failed to grasp

the significance of Born’s work if he knew of it. (Born doesn’t seem to have noticed either.) Did

Einstein ever understand the relationship between conservation laws and translation symmetries?

For convenience, here is a (hardly novel, e.g. (Goldstein, 1980, chapter 12)) derivation of the

energy-momentum conservation laws for a system of gravity g and matter u coupled together,

parallel to the Lagrangian particle derivation of conservation of energy from ∂(laws)
∂t

= 0. Space-

time rigid translation invariance is assumed, but no higher symmetry, not even Poincaré invariance,

much less linear or affine invariance, is used for the Lagrangian density L(g, ∂g, u, ∂u,��x
µ). g is the

metric-gravitational field gµν (or its inverse or the like), while matter u is any matter admitting

variational principle. Indices of gµν and (as needed) u are suppressed. A comma indicates partial

differentiation, and leaves less clutter than sole use of ∂. Much of the point is to make memorable

a point that is otherwise less vividly conveyed by a summation over fields.

0 = −∂µL + ∂µL = −δν
µ∂νL +

∂L
∂g

g,µ +
∂L
∂g,ν

g,µν +
∂L
∂u

u,µ +
∂L
∂u,ν

u,µν =

−δν
µ∂νL +

∂L
∂g

g,µ +∂ν

(

∂L
∂g,ν

g,µ

)

− ∂ν

(

∂L
∂g,ν

)

g,µ +
∂L
∂u

u,µ +∂ν

(

∂L
∂u,ν

u,µ

)

− ∂ν

(

∂L
∂u,ν

)

u,µ =

∂ν

(

−δν
µL +

∂L
∂g,ν

g,µ +
∂L
∂u,ν

u,µ

)

+

(

∂L
∂g

− ∂ν
∂L
∂g,ν

)

g,µ +

(

∂L
∂u

− ∂ν
∂L
∂u,ν

)

u,µ =

∂ν

(

∂L
∂g,ν

g,µ +
∂L
∂u,ν

u,µ −δν
µL
)

+
dL
dg

g,µ +
dL
du

u,µ = 0. (4)

Here dL
dg = 0 are the gravity field equations, while dL

du = 0 are the material field equations, which

Einstein neglected. So the conservation of material + gravity energy-momentum follows from
dL

dgµν
= 0 and dL

du = 0, but not from dL
dgµν

= 0. One would no more expect conservation to follow from

just the gravitational field equations when matter is present, than one would expect conservation

for two interacting oscillators using the equations of motion of just one of them.6 There is no

need for details of gravity’s or matter’s field equations. One does not need the sophistication of

Noether’s first theorem (Noether, 1918). One does not need relativistic or Galilean boost invariance;

one does not even need rotational invariance unless one also demands the conservation of angular

momentum. One does not need tensor calculus. One needs only to assume that everything with

energy-momentum has Euler-Lagrange equations and that the spatio-temporal uniformity of nature

holds.

Many quantum field theory textbooks begin with a treatment of classical Lagrangian field theory,

wherein one sees how rigid translation invariance leads to energy-momentum conservation, among

other things. This result is so well known now that it is worth a moment’s pause to ponder why

its relevance to the history of General Relativity has not seemed evident. The reason, presumably,

is the idea that quantum field theory books’ discussions of Noether’s (first) theorem apply only

6Remarkably, for the ‘final’ field equations of General Relativity, one actually does get conservation laws from the

gravitational equations alone (Noether, 1918; Anderson, 1967; Pitts, 2010), which is possible only because the theory

has constraints that tie the gravitational energy-momentum to be equal and opposite the matter energy-momentum

apart from terms with automatically vanishing divergence, a very special property. But there was no reason to expect

such a result. Clearly Einstein and Grossmann did not expect it: they thought that conservation failed instead, as

appeared in the epigraph (Einstein, 1996b, p. 160). These issues are related to the case of electric charge (Brading,

2002), but complicated by the fact that gravity has energy but electromagnetism does not have charge.
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to field theories that live in a certain kind of geometry, Minkowski space-time, a geometry with

many symmetries; perhaps one imagines an infinite perfect grooved crystalline block underwriting

certain metrical properties (a mental image, if present, which might be appropriately counteracted

by calling Minkowski space-time a “glorious nonentity” (Brown and Pooley, 2006)). By contrast

General Relativity is a field theory involving a very different, variably curved space-time with

(typically) no symmetries (no Killing vector fields). Even the Entwurf theory, with a larger-than-

Poincaré symmetry group, does not live in Minkowski space-time. The key mistake lies in thinking

that the applicability of Noether’s first theorem is restricted to theories with certain geometries.

In fact Noether’s theorems do not care which entities we interpret as “geometry.” What matters is

the Lagrangian density, which transformations leave it invariant (or invariant up to a divergence,

making a generalization often attributed to Bessel-Hagen but already considered in part by Noether

(Noether, 1918, footnote on pp. 249, 250 of the original, endnote 20 of the translation) (Kosmann-

Schwarzbach, 2011, p. 92 endnote 20 of the translation) (Bessel-Hagen, 1921)), and which fields

have Euler-Lagrange equations. Every field (‘geometrical’ or otherwise) is a threat to conservation

laws (Trautman, 1966; Brading and Brown, 2002). To avoid this threat, it is sufficient (and

more or less necessary) for each field to have either symmetries (such as not seeing any explicit

dependence on space-time coordinates, to start with the basics) or Euler-Lagrange equations. In

‘Special Relativity’ the metric has symmetries, while everything else has Euler-Lagrange equations;

in General Relativity the metric has Euler-Lagrange equations, hence in that respect acting more

like matter than does the flat metric of special relativity. The symmetry group of the Lagrangian

of GR + matter (or, for that matter, of Entwurf + matter) is larger than the symmetry group

of that same matter in Special Relativity, so Noether’s first theorem still applies and still yields

conserved quantities (Noether, 1918; Trautman, 1962; Schutz and Sorkin, 1977).7 The more the

symmetries of the Lagrangian (not of the ‘geometry’, whatever that means), the more conserved

currents there are. Thus there is no work required to ensure conservation laws in a gravitational

field theory derivable from a Lagrangian density that satisfies the spatio-temporal uniformity of

nature. One of Einstein’s heuristics, seeking energy conservation in the correct form

∂

∂xµ
(
√−gT µ

ν +
√−gtµν ) = 0

(Janssen and Renn, 2007), could not possibly fail for any theory derivable from an action principle

concerning its gravitational and material field equations, unless it violated the uniformity of nature.

Brading’s application of Noether’s theorems to General Relativity points one in the correct direction

(Brading, 2005); some of the points also apply already to the years 1913-15 during the Entwurf

phase.

What then happens when one introduces additional symmetries, whether rotations (standard

even nonrelativistically), boosts, or general linear transformations? As should be clear at least

to us (Herglotz, 1911; Noether, 1918) (though evidently it was not to Einstein), the tie between

symmetries and conservation laws implies that if more symmetries are introduced, then there are

more conservation laws, not fewer. Adding rotational symmetry relates coordinate systems at

7One can complain that the Noether-derived pseudo-tensorial conserved quantities in General Relativity have

peculiar properties. Indeed they do, but perhaps this fact is partly a feature rather than just a bug, because at least

the cardinalities of the Lagrangian symmetries and of the conservation laws thereby match (Pitts, 2010). In any case

it is irrelevant to theories like Entwurf, for which Noether’s first theorem applies but the second does not.

23



different spatial orientations and yields the conservation of angular momentum. Adding Lorentz

boost symmetry of Special Relativity gives a result involving center of mass motion (Hill, 1951)

and relates conservation in different frames. Adding linear coordinate symmetry won’t falsify the

above; then one has the affine group. No matter what further symmetries are added, energy-

momentum conservation will continue to hold iff rigid translation symmetries exist and because of

those symmetries. Those conservation laws will fail if and only if physical laws vary with place or

time, i.e., there is explicit dependence of L on xµ. Such might happen if, e.g., God parted the

Red Sea for the Moses and the Israelites, or an immaterial soul acted on a brain, or a Humean

failure of the uniformity of nature occurred—not the sort of example that physicists as such usually

considered in the 20th century,8 or that would have detained Einstein the Spinozist (Jammer, 1999).

8 Entwurf Lagrangian More Like Newton than Maxwell

In pursuing the electromagnetic analogy as part of his physical strategy, Einstein paid some atten-

tion to the Lagrangian density for Maxwell’s theory. “The Lagrangian is modeled on the Lagrangian

−1
4FµνFµν for the free Maxwell field.” (Janssen and Renn, 2007, p. 869) This analogy is especially

strong if one writes it in terms of a field strength, for then it takes the plausible form of (field

strength)2. On the other hand, for some purposes it is more important how the Lagrangian density

looks in terms of the potentials. The potentials are the primitive fields in the Lagrangian and the

quantities varied to find the Euler-Lagrange equations. From that standpoint of emphasizing the

potentials, does the Entwurf Lagrangian still resemble that of Maxwell’s electromagnetism?

While Einstein’s physical strategy makes use of analogies to both Newtonian gravity and

Maxwell’s electromagnetism, it could happen on some point that the two analogies point in different

directions. One could then ask whether he followed one or the other more closely in that respect.

Such an occasion arises with the gravitational energy-momentum tensor for the Entwurf theory.

Consider Einstein’s Entwurf Lagrangian

Q = −1

2

√−ggµνgαρ∂gρβ

∂xµ
gβλ∂gλα

∂xν

(Einstein, 1914). While it has an obvious tensor-related feature, namely contracted indices, it lacks

another by now common tensor feature, namely, a multiplicity of terms (some of them subtracted)

due to different contractions of the indices. Instead the Entwurf Lagrangian density has the

form (gradient)2, like that of a scalar theory, such as the Klein-Gordon equation less the mass

term, or Nordström’s theory, apart from nonlinearities in the metric perturbation due to the use

of
√−ggµνgαρgβλ rather than the gravitation-free

√−ηηµνηαρηβλ. It especially resembles a scalar

theory regarding its energy-momentum tensor. For a scalar theory, the canonical energy-momentum

tensor is symmetric, or close enough (recalling that one needs to use a metric to raise or lower an

index), because the Lagrangian is quadratic in the field gradient and one divides and multiplies by

the field gradient to get the canonical energy-momentum.

By contrast, consider a familiar and highly successful vector theory, Maxwell’s electromagnetism.

Historically, a recognizably modern Lagrangian density for electromagnetism in terms of potentials

appeared in Schwarzschild in 1903 (Schwarzschild, 1903; Kastrup, 1987); others would make Lorentz

8See ((Laywine, 1994; van Strien, 2015)) for 18th and 19th century discussions of the soul-body problem. I owe

the latter reference to Katherine Brading.
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invariance manifest over the next few years. Expressing the Lagrangian density in terms of the

potential Aµ rather than the field strength Fµν , one obtains

L = −1

2
(Aν ,µ Aν,µ − Aµ,ν Aν,µ).

There are two terms here, a possibility that exists because of the (co)vector index on Aµ. Actually

there are three possible terms, but the third one (∂µAµ)2 differs from the second Aµ,ν Aν,µ only

by a divergence and so makes little difference. If we retain the usual custom of ignoring (∂µAµ)2,

then everything interesting hinges on the relative coefficient of Aµ,ν Aν,µ to that of the default term

−1
2Aν ,µ Aν,µ. In Maxwell’s theory, that relative coefficient is precisely what is required to avoid

a negative energy scalar (“spin-0”) degree of freedom that would otherwise arise from A0 in the

default term (Wentzel, 1949). If there were a photon mass term −1
2m2AνAν , there would be the

full remaining 3 degrees of freedom per spatial point due to the three spatial components An. A0

would be determined by the other components. For the massless case m = 0 there is the familiar

gauge freedom that further reduces the physical degrees of freedom to two per spatial point. As

a result of having two terms in the Lagrangian density, electromagnetism has an asymmetrical

canonical energy-momentum tensor. Thus avoiding negative-energy degrees of freedom pushes one

to an asymmetric canonical tensor and, for massless particles/fields (with waves traveling at speed

c), gauge freedom. Such considerations are now part of the basics of relativistic field theory (Pauli

and Fierz, 1939; Fierz and Pauli, 1939; Wentzel, 1949).

Given Einstein’s commitment to a symmetric material stress-energy tensor and employment of

a symmetric non-canonical gravitational stress-energy tensor above, it is perhaps lucky that the

Entwurf theory’s canonical stress-energy tensor is (with an index moved with gµν) symmetric,

in that he could adopt the canonical definition of stress-energy without having to reconsider his

gravitational theory. On the other hand, one could imagine that the asymmetric canonical stress-

energy (pseudo)tensor of the ‘final’ late 1915 theory could have been an obstacle to adopting that

theory if Einstein’s process of discovery had differed slightly from how it actually went. Should

such asymmetry have been an obstacle? Why wasn’t it? This asymmetry has remedies of various

sorts (Belinfante-Rosenfeld technology (Rosenfeld, 1940; Wentzel, 1949)), with different collections

of virtues and vices. For a symmetric rank 2 potential, there are 5 possible terms in the Lagrangian

at quadratic order, but two of them are equal up to a divergence (Einstein, 1914; Sexl, 1967).

(If one works at the level of equations of motion rather than the Lagrangian density, there are 5

distinct terms (Ohanian and Ruffini, 1994, p. 141). It follows that such equations of motion cannot

be derived from a Lagrangian density unless two of the coefficients are related.) Excluding negative

energy spin-1 (vector) degrees of freedom imposes some restrictions (Ogievetsky and Polubarinov,

1965; Sexl, 1967; van Nieuwenhuizen, 1973a). The result is not quite unique even with 0 graviton

mass because unimodular general relativity, with (at the lowest order approximation) a traceless

potential γµ
µ = 0, is also a possibility, and in a roundabout way gives Einstein’s equations up to a

solution-dependent cosmological constant (Unruh, 1989), or one could leave the trace unrestricted

and get something like a scalar-tensor theory with an arbitrary cosmological constant (Pitts and

Schieve, 2001). A nonzero graviton mass should also be considered. Trying all possible terms

is a familiar practice in particle physics, though without the benefit of the philosophical name

“eliminative induction.”

What came of the symmetric energy-momentum tensor for gravity as the definitive field equations
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came into focus? In equation 20a of ((Einstein, 1915b)), Einstein writes down for gravity the

canonical formula for energy-momentum, a mixed weight 1 quantity befitting his longstanding

recognition of mixed weight 1 quantities for conservation laws. He knows that it is a tensor only

under linear transformations. Is it symmetric (with an index moved with the metric)? Symmetry

is not manifest and seems not to be an urgent question. Substantially the same situation held later

in that dramatic month (Einstein, 1915a) and in the mature 1916 review article (Einstein, 1923)

(which also notes that the gravitational field equations themselves entail conservation, as shown

by brute force). And indeed the gravitational energy-momentum (pseudo)tensor for the late 1915,

which inherits so much from the gravitational energy-momentum tensor of the Entwurf theory, is

indeed asymmetric. Did Einstein have good reasons for not holding out for a symmetric quantity?

Perhaps initially he just didn’t notice the asymmetry. He wrote to de Donder on 23 July 1916

(Einstein, 1996e):

I did not perform the somewhat tedious calculation of

tνσ =
1

2κ

(

∂L∗

∂gαβ
ν

gαβ
σ − δν

σL∗
)

.

Not having calculated the canonical energy-momentum, he might well not have noticed that (with

an index moved) it was asymmetric. What about later on when the asymmetry became evident?

Was the desire for a symmetric stress-energy complex for gravity trumped by satisfaction with

the late 1915 theory—a theory for which isolation of gravitational energy-momentum seemed less

natural anyway?

9 Logic of Conservation and ‘Entwurf Electromagnetism’

Einstein’s reasoning about conservation laws has attracted attention from historians of General

Relativity. The topic was confusing to the actors of the 1910s (Pais, 1982, chapters 14, 15) (Rowe,

2002), and significantly clarified by Noether and Klein (Noether, 1918; Klein, 1918; Brading and

Brown, 2003). But the degree to which much of the discussion over the last century has been

supererogatory—going beyond the call of duty by trying to get conservation laws the hard way

instead of the easy way—has not been discussed much (Gorelik providing an exception noticed

above (Gorelik, 2002)). One might hope to see Einstein’s reasoning (especially during the Entwurf

period) as a special case of Noether’s first theorem, given her work’s definitive clarification of such

matters. One’s hope for that outcome might be strengthened by noticing how widely understood

were some relevant special cases on which Einstein could draw without having to anticipate work

from the future. The antiquity of knowledge that energy and momentum are conserved, respec-

tively, due to time- and space-translation invariance was recalled above. Especially if one has a

particle physics-inspired inclination to see all relativistic field theories as similar, rather than an

expectation that General Relativity is exceptional, one will be likely to ask such questions. Of

course General Relativity is exceptional in some respects, as the mathematics dictates. But I have

in mind questions of heuristics and presumption, for which one might or might not be inclined

to try to apply the usual rules to General Relativity depending on one’s attitude against or for

GR-exceptionalism, respectively.
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Though Born was part of the Göttingen circle with Hilbert, his work was not recognized as

decisive or even very relevant for understanding the origin of conservation laws in General Relativ-

ity, as one notices by Born’s basically non-existent role in the story of Göttingen’s wrestling with

conservation laws in General Relativity (Rowe, 1999; Noether, 1918; Klein, 1918). Evidently Born

did not notice either. Everyone seems to have followed Einstein in turning attention to the grav-

itational field equations apart from material Euler-Lagrange equations. Turning to contemporary

authors, Smeenk and Martin have come unusually close by appreciating the role that Mie’s and

Born’s works played in influencing Hilbert (Smeenk and Martin, 2007). But the fact that Mie’s

and Born’s canonical energy-momentum tensor already formally solved the problem for Einstein,

especially in the Entwurf phase and in part for General Relativity, does not come up. Presumably

most authors, then and now, have been so attentive to the conspicuously novel facets of Einstein’s

theory, especially the gravitational field equations, that its features shared with simpler theories

can be overlooked. Works that derive conservation laws for General Relativity from translation

invariance of the whole theory’s (gravitational + material) Lagrangian density by Noether’s theo-

rem are not so common ((Goldberg, 1958; Schutz and Sorkin, 1977) being some examples). Often

the rush to fault the results by some exogenous criteria for ‘physical meaning’—whether the early

Hilbert-Klein triviality concern that the result is a sum of a term vanishing on-shell and a term

with identically vanishing divergence (Klein, 1917; Brading and Brown, 2003) or the now-usual

criticisms of pseudotensors (Schrödinger, 1918; Bauer, 1918; Pauli, 1921)—inhibits noticing the

fact that Noether’s first theorem does apply to General Relativity, does give conserved quantities,

and does give them because of ‘rigid’ translation invariance(s!).

The logic of the conservation laws can be better understand by the introduction of a possible

electromagnetic theory, which I call Entwurf electromagnetism, because it closely parallels the

Einstein-Grossmann Entwurf theory of gravity. In contrast to the usual electromagnetic theory,

for which the Lagrangian density is the difference of two terms, the Lagrangian density for Entwurf

electromagnetism in the absence of sources is a single term (gradient)2, much like a scalar theory:

L = −1

2
Aν,µ Aν,µ.

Like a scalar theory, this electromagnetic theory has a symmetric canonical stress-energy tensor

(if one moves an index with the tacit flat metric diag(−1, 1, 1, 1)). Unlike a scalar theory, this

electromagnetic theory has a negative-energy degree of freedom, thanks to Lorentz invariance, in

A0. One can see the issue in the energy density

t00 =
1

2
(Ȧ2

m + Am,2n −Ȧ2
0 − A0,

2
n ), (5)

which is positive for the spatial vector potential but negative for A0, the scalar potential.

The principle of ‘least’ action for the electromagnetic potential Aµ gives the electromagnetic

field equations ∂µ∂µAν = −4πJν . In contrast to Maxwell’s equations, these field equations do

not require the conservation of charge, though of course they permit it. Where then does charge

conservation come from? Is it a separate postulate, by analogy to some of Einstein’s thought?

Perhaps it is in classical electrodynamics (Jackson, 1975). But when matter is really field(s), the

conservation of charge comes from the matter field equations. In general outline the situation is

the same as for de Broglie-Proca’s massive electromagnetism (Deser, 1972; Jackson, 1975), though
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massive electromagnetism is a good theory whereas Entwurf electromagnetism is not. Using the

electromagnetic and material field equations, one infers for Entwurf electromagnetism

∂µ∂µ∂νAν = −4π∂νJν = 0.

Thus ∂νAν satisfies the source-free wave equation. This three-derivative expression is obviously a

close analog of Einstein’s restriction (Janssen, 1999; Einstein and Grossmann, 1914; Einstein, 1914)

Bσ =df
∂

∂xν

∂

∂xα

(√−ggαβgσµ
∂gµν

∂xβ

)

= 0,

which, however, is nonlinear. In terms of the Lagrangian density, this condition is Bµ =

∂σ∂α

(

gνα ∂H
√
−g

∂gµν,σ

)

= 0 (Einstein, 1914). It says that, approximately, a divergence of the gravi-

tational potential satisfies the source-free wave equation. The gravitational sector of the Entwurf

theory (that is, not invoking a matter Lagrangian and its Euler-Lagrange equations) doesn’t care

whether or not its source is conserved; one can feed that information in by hand or not as one

wishes.

Einstein evidently thought that these conditions Bµ = 0 had something to do with coordinates

and covariance and that they needed to be fed into the formalism to get conservation laws (Janssen

and Renn, 2007). It is true that, in the unfortunate and backwards way that Einstein uses these

conditions, they do need to be fed in to get conservation. But at least if one takes the Entwurf

theory to be a free-standing entity based on a variational principle (neglecting Einstein’s aspirations

to arrive at the Entwurf theory from a generally covariant theory with the help of conditions Bµ = 0

(Janssen and Renn, 2007)), the conditions have nothing to do with coordinates or covariance. The

conditions Bµ = 0, if imposed to get conservation laws, amount to a freezing out of sources for

some gravitational degrees of freedom by hand. Freezing out sources (third derivatives) is better

than freezing out degrees of freedom altogether as one sometimes sees (Rosen, 1973), but it is

hardly a deep insight into classical field theory.

Normatively speaking, where do these restrictions come from in a properly sorted out field the-

ory? Einstein often seems to think that the restrictions hold as a consequence of energy-momentum

conservation. But where does energy-momentum conservation come from? Once again our atten-

tion should be drawn (at least in part) to the matter field equations. One disanalogy between

gravity and electromagnetism is that for electromagnetism, the field equations of charged matter

ensure charge conservation (partly because the electromagnetic field is electrically neutral), whereas

for gravity, because gravity is one of the things that has energy-momentum, both the material and

gravitational field equations are needed to ensure energy-momentum conservation. But note espe-

cially that energy-momentum conservation does not depend on the details of the gravitational field

equations, or on the postulation of coordinate restrictions, or on the assumption of material energy-

momentum balance of the specific form ∇µT µν = 0 that Einstein uses. (Alternate possibilities will

appear below.) Returning to Entwurf electromagnetism, charge conservation does not depend on

the electromagnetic field equations, which are indifferent to the question. Neither does conservation

depend on the assumption of the auxiliary condition ∂ν∂µ∂µAν = 0. It switches the cart and the

horse. Conservation holds due to the charged matter field equations. The charged matter field

equations and the electromagnetic field equations together imply the condition ∂ν∂µ∂µAν = 0.

Charge conservation was never at risk (if charged matter behaves reasonably), so the detailed form
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of the electromagnetic field equations was not needed to ensure charge conservation. By the same

token, energy-momentum conservation did not hang by the thread of the detailed gravitational field

equations as Einstein and Grossmann evidently believed (recalling the epigraph): “but Grossmann

& I believed that the conservation laws were not satisfied” (Einstein, 1996b, p. 160). Conserva-

tion laws were guaranteed as long as the theory’s gravitational and matter field equations were

Lagrangian-based and the uniformity of nature was assumed.

Here a comparison between the special features of Maxwell’s and Einstein’s theories with the more

typical situation exemplified by the Entwurf theories is useful. Charge non-conservation would be

a miracle in Entwurf electromagnetism or (much more realistically) de Broglie-Proca massive elec-

tromagnetism, but it would not be a contradiction. The theory could consistently be coupled to

a non-conserved charge current; the matter field equations then would not be playing their usual

part. One would then have ∂ν∂µ∂µAν 6= 0. Likewise for energy-momentum in the Entwurf gravita-

tional theory: it could consistently couple to a non-conserved energy-momentum. The matter field

equations would not do their usual job, and one would have Bσ 6= 0. By contrast Maxwell’s theory

can only be coupled to a conserved charge current. It would be a contradiction, not a miracle,

for Maxwell’s equations to be true and charge conservation to be false, because ∂2

∂xν∂xµ Fµν ≡ 0 by

symmetric-antisymmetric cancellation. Thus the restriction on ∂νAν disappears in favor of gauge

freedom. Likewise with the definitive Einstein equations: it would be a contradiction, not a mir-

acle, for Einstein’s equations to be true and energy-momentum conservation to be false. Thus

the restriction involving Bσ becomes vacuous in favor of permitting arbitrary coordinates. Such

properties of Maxwell’s and Einstein’s theories are fascinating, perhaps even heroic. They are not

necessary, however; hence it is supererogatory and misleading to focus attention of them. Neither

are such properties typical. The typical situation is that if the matter and gravity laws are globally

space-time translation invariant, then the gravity field equations dL
dgµν

= 0 and the matter field

equations dL
du = 0 together conserve energy-momentum. Any half-reasonable theory would suffice;

conservation could fail if and only if a miracle (or a Humean non-uniformity of nature) occurred.

Einstein’s frequent failure to invoke the matter field equations made it seem that gravity had to

conserve energy all alone. This overly strong demand, remarkably enough, is actually fulfilled in

the definitive late 1915 field equations. But this is hardly the result of clear understanding of the

relationship between symmetries, conservation laws and Euler-Lagrange equations.

10 Einstein’s Daring Premises and Energy Conservation

The imperfections of Einstein’s appeal to energy-momentum conservation can best be seen if one

casts it in terms of a more formal deductive argument. What appears is that Einstein uses very

strong premises that probably only he believed in order to derive conservation, when in fact conser-

vation followed from vastly weaker and more widely acceptable premises. Moreover, the resources

needed for that superior argument were already old and widely diffused in the literature in general

outline, and available in mature form in recent literature as well. We will need some abbreviations

for premises:

P: the field equations for matter and gravity are, at least, Poincaré-invariant. Part of Einstein’s

project was to generalize Special Relativity, so he would not wish to give up the symmetries already

achieved. In particular, rigid space-time translation invariance is included.
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GM: General covariance applies to the Material field equations. GM is a rather strong, distinc-

tively Einsteinian premise. It plays a key role in Einstein’s argument, but no role in the conservation

of the canonical energy-momentum tensor. Obviously GM entails the matter sector of P , though

I haven’t bothered to supply a name to the Poincaré invariance of the matter laws.

AM: there is an Action principle for the Material field equations. Einstein only occasionally

explicitly uses this premise, but he eventually accepts it, leaving little point in avoiding it. His initial

derivation of the material energy-momentum balance equation GM ∧ AM → (∇µ

√−gT µ
ν = 0) for

a point mass also uses a matter action. In fact it is true for any matter fields, though Einstein

seems not to make the argument. Instead he seems to postulate ∇µ
√−gT µ

ν = 0 by analogy from

the result derived from the point particle action principle.

Such postulation is somewhat peculiar logically, because it is not easy to see why that equation

would be true unless it is because of GM ∧AM. As Blanchet noted, it would be straightforward to

handle all the empirical support for the equivalence principle without making matter see exactly

an effective curved geometry. One could, for example, simply take a generally covariant matter

Lagrangian, make a perturbative expansion of the curved metric about a flat background, and then

truncate after a term or two, or 47, or 500,000,000. Indeed this sort of strategy was viable in

1992 (Blanchet, 1992) (and presumably still is, if the constraints are merely empirical), so it was

certainly viable in the 1910s. Blanchet writes:

A class of generically nonmetric couplings between nongravitational fields and the gravi-

tational field is introduced. It is shown that these couplings violate the weak equivalence

principle at a level (a priori) smaller than the current Eötvös-type experimental lim-

its.. . .

Metric theories of gravity, i.e., theories embodying the Einstein equivalence principle,

have deserved a privileged status among alternative theories for nearly eighty years.. . . In

a metric theory, the nongravitational fields of all types are coupled, in a universal way, to

a single curved spacetime metric gµν associated with gravity (gµν is called the physical

metric), in the local Lorentz frames of which the standard special-relativistic laws of

physics are valid [references suppressed]. This coupling to gravity, which is referred to

as the metric coupling, consists merely in the minimal replacement, in the Lagrangian

density of special relativity (written in generally covariant form), of the Minkowski

metric ηµν by the physical metric gµν .. . .

The primary motivation underlying the postulates of metric theories of gravity is an

empirical one.. . .

However, we show in this Letter that the empirical motivation for considering only

metric theories of gravity may not be fully justified at present. We introduce a large

class of generically nonmetric couplings to gravity, which thus do not in general satisfy

the Einstein equivalence principle nor the weak equivalence principle.. . .

We can understand the small magnitude of the equivalence-principle violation as follows.

First of all, the nonmetric couplings we consider have the property of being metric at

first order in the field (in a sense made precise below). (Blanchet, 1992)

For such a theory, the matter action will have a generalized Bianchi identity that becomes, using
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the matter field equations (Kraichnan, 1955; Rosen, 1973; Pitts, 2016),

gαν∇µ
δSmt

δgµν
+ ηαν∂µ

δSmt

δηµν
|g = 0. (6)

If the term involving ηµν vanished, then the first term would survive to give ∇µ

√−gT µ
ν = 0 using

Hilbert’s metric definition of the stress-energy tensor using the curved metric, as desired. This is

the familiar form of the energy-momentum balance law. But nonmetric coupling of the matter,

even if metrical to a high degree of approximation (so that the flat background metric is difficult

to notice), would spoil Einstein’s energy-momentum balance equation: ∇µ

√−gT µ
ν 6= 0, because

the flat geometry would still be detectable (however weakly), as in the equation above. Thus any

merely empirical motivation for ∇µ

√−gT µ
ν = 0 as an exact relation is tenuous. If one’s only

logical path to a true conservation law ∂
∂xµ (

√−gT µ
ν +

√−gtµν ) = 0 were via the material energy-

momentum balance law in the fully metrical form ∇µ
√−gT µ

ν = 0 (as Einstein seemed to think),

then one would have made the true conservation law tenuous. By contrast, the true conservation

law ∂
∂xµ (

√−gT µ
ν +

√−gtµν ) = 0 is in fact extremely robust, holding for any (gravitationally and

materially) Lagrangian-based local field theory with at least rigid translation symmetry and a

fortiori any Lagrangian-based local relativistic (at least Poincaré-invariant) field theory. Thus it

is clear how inadvisable it is to rely on the energy-momentum balance law in the purely metrical

form ∇µ
δSmt

δgµν
= 0 to establish the true conservation law. One’s premise could easily be false, while

the conclusion would still be true for other reasons.

A few more premises still need to be identified and labeled.

DG: the as-yet unspecified Details of the Gravitational field equations (beyond Poincaré invari-

ance, locality, second order derivatives, etc. that often go without saying), to be filled in so as to

achieve (among other things) energy-momentum conservation.

AG: there is an Action principle for the Gravitational field equations.

Einstein’s argument, or argument family (taking into account the vagueness of DG), might be

reconstructed as

(∇µ

√−gT µ
ν = 0) ∧ P ∧ DG→ ∂

∂xµ
(
√−gT µ

ν +
√−gtµν ) = 0.

If we ask why one should accept ∇µ

√−gT µ
ν = 0, recalling the hole in the aspiring commutative

diagram, one might invoke GM ∧AM : the matter field equations are generally covariant and follow

from an action principle. Einstein’s mature statement did introduce a matter Lagrangian (Einstein,

1916a), even if he emphasized that his derivation of energy-momentum conservation did not use

the matter Euler-Lagrange equations. If one reconstructs Einstein’s argument along those lines,

one has

GM ∧ AM ∧ P ∧ DG→ ∂

∂xµ
(
√−gT µ

ν +
√−gtµν ) = 0.

Einstein adopted an action principle for gravity earlier and with more enthusiasm than he did for

matter. It will not be unfair to introduce premise AG then:

GM ∧ AM ∧ P ∧ DG ∧ AG→ ∂

∂xµ
(
√−gT µ

ν +
√−gtµν ) = 0.

What is peculiar about Einstein’s work (partly with Grossmann), in light of the canonical ten-

sor derivation tradition from Lagrange to Born, is that the premises GM and DG are wholly
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irrelevant—neither the general covariance of the matter laws nor the detailed form of the grav-

itational field equations is needed. The material energy-momentum balance lemma of the form

∇µ

√−gT µ
ν = 0 is also irrelevant. They are irrelevant because it is already the case that

AM ∧ P ∧ AG→ ∂

∂xµ
(
√−gT µ

ν +
√−gtµν ) = 0.

Conservation follows from P , Poincaré invariance of all the laws (material and gravitational) and

from the Euler-Lagrange equations for both gravity (AG) and matter AM . Indeed one doesn’t

strictly need to rotations and boosts of the Poincaré group to get conservation, though they were

not in doubt in Einstein’s mind or in Special Relativity. It would strain out gnats and swallow

camels to regard AG (an action principle for gravity) as insecure and hence worth avoiding, but

GM (general covariance of matter laws) as a secure foundation. It is also unclear why an action

principle would be appropriate for gravity and not for matter. Hence the canonical tensor derivation

along the lines of Lagrange and Born is applicable, simple, and well motivated.

11 Why Did Einstein Seek What He Couldn’t Lack?

Given that energy-momentum conservation was never at risk (notwithstanding Einstein and Gross-

mann’s beliefs and despite Einstein’s efforts to use it as a restrictive principle), that the knowledge

needed to realize that was both old (Lagrange et al.) and readily available recently (Herglotz, Mie,

Born), the question arises, why did Einstein try (in an incorrect way) to find what he couldn’t

possibly have lacked?9 Why didn’t he take conservation to be already secured by space-time trans-

lation invariance, as in Herglotz, Mie and Born, or even Lagrange, Hamilton and Jacobi? One

possibility is that he took translation invariance (the uniformity of nature) so much for granted

that it didn’t occur to him to draw conclusions from it. But plenty of other people had done so.

Perhaps he didn’t realize that translation invariance secured the conservation laws? That seems

like a surprising thing for a theoretical physicist working on space-time in the 1910s not to know, or

at least not to suspect based on the early-mid 19th century Lagrangian particle mechanics analogs.

But Einstein is known not to have read widely in the literature (Kennefick, 2007, p. 90) and his

bibliographies are rather brief.

It is true that variational principles were more highly regarded and better known among mathe-

maticians interested in mechanics than they were among physicists. Corry has helpfully discussed

Hilbert’s reading list (Corry, 1999). Perhaps Einstein’s surprising lack of understanding into the

connection between symmetries and conservation laws in a Lagrangian context is explained by his

being definitely a physicist and only a late convert to mathematics.10 On the other hand, the

connection between momentum conservation and the independence of the Lagrangian from spatial

coordinates for particle mechanics—think of a free particle, a harmonic oscillator, or center-of-mass

coordinates for the two-body problem—is right there on the surface:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0.

It is difficult to imagine developing the facility to use a variational principle for a field theory

with a 10-component field, as Einstein did, without encountering or rediscovering how ignorable

9I thank Alex Blum for helpful discussions of this question.
10I thank Dennis Lehmkuhl for a discussion of this question.
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coordinates imply momentum conservation. Hence the question seems to me not yet adequately

resolved.

A more flattering suggestion is that Einstein wanted to avoid a matter Lagrangian density. So

often he avoids invoking one or even the matter field equations (whether or not derived from an

action principle) where they would help a great deal. Einstein also did not love variational principles

wholeheartedly. According to Lanczos, who claimed to be of one mind with the later Einstein’s

“cosmic philosophy,” “Einstein never cared much for ‘action principles’,” . . . (Lanczos, 1974, p. 33).

Einstein said as much himself to de Donder:

I must admit to you that, unlike most of our colleagues, I am not at all of the opinion

that every theory must be put into the form of a variation principle. I attribute this

common urge simply to the fact that everyone is used to scalars but not to tensors.

[note suppressed] If the Hamiltonian form is desired nonetheless, the following device

is best used. [Drop the second derivatives by partial integration. . . .] (Einstein, 1996e,

pp. 235, 236) (Kosmann-Schwarzbach, 2011, pp. 27,28)

Einstein also wrote to Lorentz:

I myself am compelled to derive the Hamiltonian function retroactively, in order to

derive the expression for the conservation laws conveniently. [note suppressed] Never-

theless, I must admit that I actually do not see in Hamilt. princip. anything more than

a means toward reducing a system of tensor equations to a scalar equation for which

the conservation laws are always satisfied and easily derived. (Einstein, 1996d)

But this was a day or two after he had written to Lorentz in his previous letter:

I am of the conviction that the depiction of the theory would gain much clarity if

Hamilton’s formulation were taken as a point of departure, as you have done in your

fine paper published by the Amsterd[am] Acad. [note suppressed] (Einstein, 1996c)

Einstein’s confession of not being fully enamored of variational principles also has to be weighed

against the fact that he first motivated the material energy-momentum balance law with a particle

matter Lagrangian already in 1913 (Einstein and Grossmann, 1913), and that he consistently used

a gravitational Lagrangian once he adopted it. Eventually variational treatments of General Rela-

tivity were produced by a number of authors (Hilbert, 2007; Lorentz, 1917; Einstein, 1916a; Weyl,

1917; Nordström, 1917). In 1916 Einstein emphasized that his derivation of the true conservation

and material balance laws used only the gravitational field equations (to recall from above):

It is to be emphasized that the (generally covariant) laws of conservation (21) and

(22) are deduced from the field equations (7) of gravitation, in combination with the

postulate of general covariance (relativity) alone, without using the field equations (8)

for material phenomena. (Einstein, 1916a)

But he nevertheless used a matter Lagrangian density M and derived material Euler-Lagrange

equations (8)
∂

∂xα

(

∂M

∂q(ρ)α

)

− ∂M

∂q(ρ)
= 0
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from it! It seems peculiar to suppose that Einstein’s mature statement of the variational treat-

ment of his theory contains assumptions that he considers basically unwarranted (leaving aside the

quibbles under equation (8) that there might be higher derivatives or that the q(ρ) might not be

independent). If one has a matter Lagrangian, why not use it? But then the mystery returns.

Did Einstein perhaps, by analogy to how Maxwell’s equations alone entail the conservation of

charge, think that the gravitational field equations alone ought to entail the conservation energy?

His physical strategy did indeed involve an electromagnetic analogy. But Einstein’s analogy to

electromagnetism was not very sophisticated (Einstein and Grossmann, 1913) and not much like

what automatically comes to mind from later writers (Pauli and Fierz, 1939; Fierz and Pauli,

1939; Gupta, 1954; Gupta, 1957; Ohanian and Ruffini, 1994). Einstein talks about electrostatics

more and Maxwell’s electromagnetism less than a modern person would expect. It is indeed an

interesting idea to ask that the electromagnetic or gravitational field equations alone entail their

respective source. But it is an act of theoretical supererogation, which Einstein clearly did not

recognize. Recall again the epigraphic quotation from Einstein’s letter to Besso on December 10,

1915:

. . . but Grossmann & I believed that the conservation laws were not satisfied and New-

ton’s law did not result in first-order approximation.” (Einstein, 1996b, p. 160)

This is not the statement that one makes if one sought a super-elegant route to conservation but

had to settle for a more pedestrian route. Rather, Einstein and Grossmann had thought that there

was no other route to conservation than the one that, they concluded, had failed. That was an

underwhelming thing to think in 1915.

Another possibility that one might consider is that Einstein wanted a symmetric energy-

momentum tensor but worried that he didn’t have one. Above his commitment to a symmetric

material stress-energy tensor was exhibited. Asymmetry was of concern to Mie and Born (Mie,

1913; Born, 1914). There is no obvious reason to value highly a symmetric material stress-energy

tensor but not require a symmetric gravitational energy-momentum tensor. But the Entwurf the-

ory has a symmetric stress-energy tensor (moving the index with the curved metric)! I am not

aware of Einstein’s worrying about an asymmetric stress-energy complex from a generally covari-

ant theory during either the first or the second phase of his weighing of such theories. As everyone

now knows, the “Einstein pseudotensor” (derived using the canonical recipe) is asymmetric. But

Einstein seems not to have known that during the early contemplation of a generally covariant

theory. Neither does he seem to have worried about it later; the strong 1912 commitment to sym-

metric stress-energy (Einstein, 1996f) seems to have been overlooked or quietly waived for gravity

in 1915-16. Recall what he wrote to de Donder on 23 July 1916 (Einstein, 1996e):

I did not perform the somewhat tedious calculation of

tνσ =
1

2κ

(

∂L∗

∂gαβ
ν

gαβ
σ − δν

σL∗
)

.

Or did he no longer care, as more modern authors would advise? If one doesn’t believe in grav-

itational energy, or believes that it exists but isn’t anywhere in particular (not localizable), one

might not object. (Unbelief in gravitational energy was associated with doubt about gravitational

radiation, which was dispelled partly by thought experiment (Feynman et al., 1995; Bondi, 1957;
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DeWitt and Rickles, 2011; Kennefick, 2007).) But Einstein continued to take gravitational energy

and true conservation laws seriously during the 1910s, even when others didn’t.

Einstein’s reasoning regarding energy conservation, far from being prescient, was not even partic-

ularly well informed in this respect. It fell below that of some of his contemporaries (such as Born)

and predecessors (such as Lagrange), and apparently dragged the Göttingen mathematicians down

to his own level by distracting attention from the matter field equations and the symmetries of the

combined gravitational-material Lagrangian. The particle physics-inspired disposition to see Gen-

eral Relativity as a law-abiding example of the rules of classical field theory, rather than the great

exception, is sometimes fruitful in suggesting questions for the history of General Relativity. That

is perhaps all the more fitting because the Entwurf theory has no gauge freedom, so Noether’s first

theorem applies but not her second. On the other hand, Einstein’s recognition that conservation

laws involve a partial rather than covariant derivative and his attachment to the mixed (one index

up, one down) weight 1 form of the conservation laws even before he had the canonical tensor (to

say nothing of Noether’s theorems) shows him more insightful in 1913 than many of his successors

in the following century. Regarding the question of how hard one should try to make Einstein look

deeply rational (Janssen, 2007), the examples considered in this paper show Einstein capable of

surprises in both directions.

12 Entwurf, Negative Energy and Instability?

Having negative-energy and positive-energy degrees of freedom interact seems scary, likely to imply

instability, to physicists of various times and places. And yet due to relativity’s −+ ++ geometry,

negative-energy degrees of freedom tend to crop up regularly if one is not careful (Fierz and Pauli,

1939; van Nieuwenhuizen, 1973a). For a vector potential, if the spatial components have positive

energy, then the temporal component will have negative energy unless one engineers it away, as

occurs in Maxwell’s theory. Particle physicists call negative-energy degrees of freedom “ghosts.”

Ghosts are almost always considered fatal (except in certain contexts where they are introduced

as a technical tool). What is to keep nothing from turning spontaneously into something and

anti-something? Even energy conservation, supposed to exclude perpetual motion machines of the

first kind, fails to stop the bleeding. Negative energy degrees of freedom were tacitly assumed not

to exist in 19th century formulations of energy conservation, it would seem. Lagrange considered

whether positive energy was required for stability; he showed that bad things could happen if the

potential were indefinite (Lagrange, 1811). It did not occur to him to entertain negative kinetic

energy, however, something hardly conceivable apart from relativity and the de-materialization

of matter into fields in the 20th century. Lagrange showed that positive energy was stable with

a separable potential (Lagrange, 1811). The separability requirement was removed by Dirichlet

(Dirichlet, 1846; Morrison, 1998). It is perhaps still not perfectly clear whether ghosts so are

fatal in classical field theory (Bambusi and Grébert, 2006). But the generally shared expectation

that gravity should be quantized makes such a refuge of limited value—at least if field theory is

formulated with infinite spatial volume, hence without wavevector restrictions and therefore with

dangerous resonances.

How does the Entwurf theory fare if one is suspicious enough of negative energy to check for it?
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The Lagrangian density is (not worrying about an overall factor which varies from paper to paper)

Q = −1

2

√−ggµνgαρ∂gρβ

∂xµ
gβλ∂gλα

∂xν

(Einstein, 1914) (Janssen and Renn, 2007, p. 869). One can neglect the nonlinearity and keep only

quadratic terms in the Lagrangian (hence linear terms in the field equations) using the expansion

gµν = diag(−1, 1, 1, 1)+
√

32πGγµν . Setting 32πG = 1 for convenience, one has

Q = −1

2

∂γρβ

∂xµ

∂γρβ

∂xµ
+ . . . =

1

2
(γ̇2

00−2γ̇2

0i + γ̇2
ij) + . . . :

Entwurf has ghosts ! The time-space components of the metric g0i are 3 real degrees of freedom, and

they have the wrong sign (negative energy). Testing for positive energy became routine in particle

physics from 1930s (Fierz and Pauli, 1939). Did Einstein or anyone seek positive energy during

the 1910s? Reading the main papers regarding the Entwurf theory hardly shows such concern.

Gravitational waves make a good test, but they seem not to be studied before (Einstein, 1916b),

when he is surprised by 0-energy waves. If he had wrestled with negative-energy waves, then he’d

have been relieved by 0-energy waves! Approximate wave solutions were still fresh in (Einstein,

1918)(Weyl, 1921, pp. 251-252)(Eddington, 1922).

13 In What Sense Was Rotation the Nemesis of Entwurf?

Rotation has been described as the “nemesis” of the Entwurf theory (Janssen, 1999). As far

as Einstein’s self-understanding is concerned, clearly the failure of even Minkowski space-time in

rotating coordinates to satisfy the field equations seemed very problematic (Einstein, 1996a). But

if we set aside the context of discovery and ask ourselves why we should reject the Entwurf theory,

or even why Einstein’s contemporaries should reject the theory (given that they likely didn’t share

his opinions about the relativity of rotation), the picture changes. Einstein had many fascinating

opinions, often called Principles, some of which are borne out in his (from our perspective) definitive

theory, some of which are not. Those that apply in his final theory are at least approximately

empirically adequate, which is significant, even if too weak to make them probably true without

further argument (Pitts, 2011). The problem is that the easiest way to make a plausible rival

theory that also empirically approximates it arbitrarily well, adding a photon/graviton mass term,

radically changes the conceptual features of the theory by destroying the gauge freedom (Pauli and

Fierz, 1939; Fierz and Pauli, 1939; Freund et al., 1969). That is at least the natural thing to think; it

is rigorously true in electromagnetism even under quantization, but gravity has a long, complicated,

and (since 2010) very dynamical story to which I alluded in a footnote above. Einstein’s desire

to include rotating coordinate systems works in General Relativity, but it could easily have been

the case (and might yet be the case) that plausible, empirically viable theories lack that feature.

Hence rotation might have been a nemesis for Entwurf in Einstein’s mind, but need not be in ours.

What really was wrong with the Entwurf theory is that it had ghosts. That bug certainly would

have been pointed out immediately in a more rational counterfactual history in which gravity is

sorted out after special relativistic wave equations rather than before due to Einstein’s premature

speculative brilliance (Ohanian, 2008, p. 334).
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How significant such a rationally reconstructed history is depends in part on what one is doing

history for. If one wants, with Ranke, just wants only to show what actually happened, then

stories about what should have happened are clearly off-target. If one wants to exhibit the growth

of genuine scientific knowledge in the spirit of justified true belief, then as Lakatos urged, one needs

standards to distinguish progress from mere change (Lakatos, 1970; Lakatos, 1971). The natural

sciences (at least most of them) are epistemically very impressive, a fact that makes their history

particularly interesting and important. Einstein’s General Relativity, in turn, is a spectacular

example within the sciences. Thus much of the interest in the history of General Relativity is

rooted in the epistemic impressiveness of General Relativity. Surely both the epistemic status of

Einstein’s process of discovery and the epistemic status of our degree(s) of belief in the theory

are very interesting indeed. Thus rather than leave impressive analytical tools sitting on the

table unused, one should try to answer those epistemic questions as well as possible. Particle

physics provides many novel and sharp tools for that purpose. Clearly one does not want artificial

Lakatosian quasi-history with the actual contingent history in the footnotes, pace Lakatos (Lakatos,

1971, pp. 106, 107); as Kuhn said, such a product is “not history at all but philosophy fabricating

examples” (Kuhn, 1971). The other way around, a true history of what actually happened footnoted

with remarks about what should have happened, is far more promising. This work can be viewed

as such a footnote to the history of General Relativity. This work might also be seen as an early

gesture toward Chang’s vision of normatively informed history of science (Chang, 2009; Chang,

2012) as applied to gravity and space-time. Recall that Kuhn was quite willing for historians of

science to diagnose mistakes in past scientists’ work; it was quite legitimate for the historian as

such to discuss

. . . the failure of the man who creates a new theory and of his entire generation to see

in that theory consequences which a later generation found there.. . . [and] . . . mistakes

or of what a later generation will see as having been mistakes and will accordingly feel

constrained to correct. Historical data of these sorts are all central and essential for

the internal historian of science. Often they provide his most revealing clues to what

occurred. (Kuhn, 1971)

Indeed.
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Bessel-Hagen, E. (1921). Über die Erhaltungssätze der Elektrodynamik. Mathematische Annalen,

84:258–276.

Blanchet, L. (1992). A class of nonmetric couplings to gravity. Physical Review Letters, 69:559–561.

Bondi, H. (1957). Plane gravitational waves in general relativity. Nature, 179:1072–1073.

Born, M. (1914). Der Impuls-Energie-Satz in der Elektrodynamik von Gustav Mie. Nachrichten von

der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische

Klasse, pages 23–36. Translated as “The Momentum-Energy Law in the Electrodynamics of

Gustav Mie” in Jürgen Renn and Matthias Schemmel, editors, The Genesis of General Relativ-

ity, Volume 4: Gravitation in the Twilight of Classical Physics: The Promise of Mathematics,

Springer, Dordrecht (2007), pp. 745-756.

Boulanger, N. and Esole, M. (2002). A note on the uniqueness of D = 4, N = 1 supergravity.

Classical and Quantum Gravity, 19:2107–2124. gr-qc/0110072v2.

Boulware, D. G. and Deser, S. (1972). Can gravitation have a finite range? Physical Review D,

6:3368–3382.

Boulware, D. G. and Deser, S. (1975). Classical general relativity derived from quantum gravity.

Annals of Physics, 80:193–240.

Brading, K. (2005). A note on general relativity, energy conservation, and Noether’s theorems. In

Kox, A. J. and Eisenstaedt, J., editors, The Universe of General Relativity, Einstein Studies,

volume 11, pages 125–135. Birkhäuser, Boston.
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