

ACCEPTED VERSION

Mark A. Pitt, Woojae Kim, Daniel J. Navarro, and Jay I. Myung
Global model analysis by parameter space partitioning
Psychological Review, 2006; 113(1):57-83

Copyright 2006 American Psychological Association

http://hdl.handle.net/2440/23023

PERMISSIONS

http://www.apa.org/pubs/authors/posting.aspx

Authors of articles published in APA journals may post a copy of the final manuscript,
as accepted for publication, as a word processing file, on their personal website, their
employer's server, or in their institution's repository after it is accepted for publication.

The following conditions would prevail:

The posted article must carry an APA copyright notice and include a link to the APA
journal home page or to the final published version using the article’s DOI, or digital
object identifier, that may be found on the first page of the published article, in the
upper right-hand corner. Further, the posted article must include the following
statement: "This article may not exactly replicate the final version published in the APA
journal. It is not the copy of record."

17 Jun 2015

http://hdl.handle.net/2440/23023
http://www.apa.org/pubs/authors/posting.aspx

	
	
	
	
	
	

This is an author manuscript version of the following paper:

Pitt, M. A., Kim, W., Navarro, D. J. & Myung, J. I. (2006). Global model analysis by
parameter space partitioning. Psychological Review, 113, 57-83.

The copyright is held by the American Psychological Association. To comply with
their policies regarding authors posting manuscripts on personal webpages, we are
required to note the following: this article may not exactly replicate the final version
published in the APA journal. It is not the copy of record.

Parameter Space Partitioning 1

Global Model Analysis by Parameter Space Partitioning

Mark A. Pitt, Woojae Kim, Daniel J. Navarro, and Jay I. Myung

Ohio State University

running head: Parameter Space Partitioning

Correspondence information:

Mark A. Pitt
Department of Psychology
1885 Neil Avenue
Ohio State University
Columbus, OH 43210-1222
office (614) 292- 4193
fax (614) 688-3984
pitt.2@osu.edu
http://lpl.psy.ohio-state.edu

Parameter Space Partitioning 2

Abstract

To model behavior, we need to know how models behave. This means learning what other

behaviors a model can produce besides the one generated by participants in an experiment. This

is a difficult problem because of the complexity of psychological models (e.g., their many

parameters) and because the behavioral precision of models (e.g.,interval-scale performance)

often mismatches their testable precision in experiments, where qualitative, ordinal predictions

are the norm. Parameter space partitioning is a solution that evaluates model performance at a

qualitative level. Given a definition of a qualitative data pattern, there exists a partition on the

model's parameter space that divides it into regions that correspond to each data pattern.

Markov-chain Monte Carlo methods are used to discover and define these regions. Three

application examples, all using connectionist models, demonstrate its potential and versatility for

studying the global behavior of psychological models. Among other things, one can easily assess

how central and robust the empirical data pattern is to the model, as well as the range and

characteristics of its other behaviors.

Parameter Space Partitioning 3

The experimental method of scientific inquiry has proven to work quite well in

psychology. Its unique blend of methodological control and statistical inference are effective for

testing qualitative (i.e., ordinal) predictions derived from theories of behavior. Data collection

and dissemination have become very efficient, so much so that far more may be known about a

behavioral phenomenon than is reflected in its corresponding theory.

That our knowledge extends beyond the reach of the theory may be a sign of productive

science, and underscores the fact that theories are broad conceptualizations about behavior that

cannot be expected to explain the minutia in data. Cognitive modeling is a research tool that can

act as a counter-force to slow and fill this explanatory gap. It compensates for a theory’s

limitations of precision in data synthesis, description, and prediction. Whether the model is an

implementation of an existing theory, or a neurally inspired environment in which to study

processing (e.g., information integration, representational specificity, probabilistic learning),

models are rich sources of ideas and information on how to think about perception, cognition,

and action. The pros and cons of various implementations can be evaluated. Inconsistencies and

hidden assumptions can come to light during model creation and evaluation. In short, the

modeler is forced to confront the complexity of what is being modeled, and in the process, can

gain insight into the relationship between variables and the functionality of the model (see

Shiffrin & Nobel, 1998 for a personal account of this process).

Of course, the virtues of modeling are accompanied by vices. One of the more serious,

often leveled against connectionist models (Dawson & Shamanski, 1994; McCloskey, 1991) but

by no means restricted to them, is that model behavior can be mysterious and difficult to

understand, which can defeat the purpose of modeling. A model should not be as (or more)

complex than the data being described. Rather, models should offer a simpler and tractable

Parameter Space Partitioning 4

description.

The preceding observations are not so much a comment about models or modeling per se,

but a comment about the need for methods for analyzing model behavior. The computational

power of cognitive models requires correspondingly sophisticated tools to study them. The wide

variety of models in the discipline makes the need for universal tools all the more pressing and

challenging. In this paper, we introduce a versatile model analysis and comparison method. We

begin by situating it in relation to existing methods.

Methods of Model Analysis

Model analysis methods can be differentiated along two dimensions, whether they

measure a model’s local or global behavior, and whether model behavior is evaluated

quantitatively or qualitatively. The position of many analysis methods along these, largely

independent, dimensions is shown schematically in Figure 1. In the following discussion,

quantitative methods are reviewed before qualitative ones.

Figure 1 here

Quantitative Model Analysis

Most quantitative evaluations of models are local. That is, they consider the behavior of

the model only at its best-fitting parameter values. In contrast, global methods aim to elucidate a

model's behavior across the full range of its parameter values. Not surprisingly, the two

approaches are complementary in what they tell us about model behavior.

Local Quantitative Methods

The most common form of local model analysis is data fitting, in which a model is tested

by measuring how closely it approximates (i.e., fits) data generated in an experiment. Because

data are a reflection of the psychological process under study, a good fit to the data is a

Parameter Space Partitioning 5

necessary condition a model must satisfy to be taken seriously. A good fit determines how well a

model passes the sufficiency test of mimicking human performance. It is especially useful in the

early stages of model development as a quick and easy check on sufficiency. Quantitative

measures of goodness-of-fit include percent variance accounted for, root mean square deviation,

and maximum likelihood. Although a good fit makes a model a member of the class of possible

contenders, the size of this class will depend on the amount and variety of evidence already

accumulated. As more data are collected about an underlying cognitive process, the number of

viable models will diminish. If two models that one is comparing fit all of the data similarly

well, other analysis methods are needed to choose between them.

Another local method that is useful for probing model behavior more deeply than

goodness-of-fit is a sensitivity analysis, in which a model’s parameters are varied around its best-

fitting values to learn how robust model behavior is to slight variations of those parameters. If a

good fit reflects a fundamental property of the model, then this behavior should be stable across

reasonable parameter variation. Another reason a model should satisfy this criterion is that

human data are noisy. A model should not be so sensitive that its behavior changes noticeably

when noise is encountered. Cross validation, in which a model is fit to the second of two data

sets using the best fitting parameter values from fitting the first data set, is a fit-based approach

to quantifying this sensitivity (Stone, 1974; Browne, 2000).

Global Quantitative Methods

A drawback of local analysis methods is the very fact that they are local. Each fit

provides a view of the model's behavior at a particular point in its parameter space, but does not

provide any information about how it behaves at other parameter settings. This can be

particularly disconcerting if the behavior of the model is sensible only at a few settings.

Parameter Space Partitioning 6

Furthermore, relying on purely local methods leaves one with a few “snapshots” of model

performance that are difficult to piece together into a comprehensive understanding of the

model. The task of comparing two models is even more arduous with local methods.

For these reasons, researchers have begun developing global analysis techniques. They

are intended to augment local methods, not replace them. From a global perspective, the goal is

to learn something about the full range of behaviors that a model exhibits. By doing so, we can

gain a deeper understanding of the model and how it compares to competing models. Two of the

most popular quantitative global methods are Bayesian methods (e.g., Myung & Pitt 1997; Kass

& Raftery 1995) and minimum description length (MDL; e.g., Rissanen 1996, 2001; Grünwald

1998; Grünwald, Myung, & Pitt, in press). In both, the focus is on predictions made by the

model at all of its parameter values. This global perspective yields a natural measure of a

model’s a priori data-fitting potential (i.e., the model’s flexibility or complexity in fitting future,

unseen data sets; Myung 2000). Although both methods are statistically rigorous, technical

requirements currently limit their application to the diverse range of models in psychology.

More recently, Navarro et al (2004; Kim, Navarro, Pitt, & Myung, 2004; see also

Wagenmakers, Ratcliff, Gomez, & Iverson, 2004) introduced a global quantitative method,

called landscaping, that was developed with an eye toward increased versatility and

informativeness about model discriminability. The essence of the technique involves

determining how well two models fit each other's data. What is being measured is the extent to

which two models mimic one another. The approach is attractive since landscapes are relatively

easy to create, requiring only a comparison of fits to data sets. In addition, landscapes can be

used to assess the informativeness of data in distinguishing pairs of models by inspecting where

within these landscapes experimental data are located. In short, the landscape provides a global

Parameter Space Partitioning 7

perspective from which to understand the relationship between two models and their fits to data.

However, like MDL and Bayesian methods, landscaping requires that the models make

quantitative predictions. A method free from this restriction would have much wider

applicability.

Qualitative Methods

Implicit in the use of quantitative methods of model analysis is that the goal of modeling

is to approximate closely empirical data. Although there are good reasons for doing so, one must

be careful to avoid modeling the quantitative minutiae of a data set while missing theoretically

important qualitative properties or trends in the data. In the words of Box (1976, p. 792) “Since

all models are wrong the scientist must be alert to what is importantly wrong. It is inappropriate

to be concerned about mice when there are tigers abroad”. Thus, it is important not to lose sight

of qualitative behavior. In this regard, model evaluation at the qualitative level can not only be

informative, but sometimes more appropriate. It is certainly the most common in the

psychological sciences.

Hypothesis Testing as A Local Qualitative Method

Hypothesis testing as used in the experimental method of psychological inquiry is in

essence a local qualitative method of model analysis. Hypotheses generated in experimental

settings are qualitative predictions about an ordinal pattern of data across conditions. One might,

for instance, observe a preference reversal under some experimental conditions that only one of

two models is able to reproduce. A correct prediction is generally held to be strong evidence in

favor of the winning model, and not without reason (Platt, 1964). Only in rare circumstances will

a model predict the exact (interval) quantitative differences among conditions. As such, most

psychological models are often intended to be illustrative of some underlying process rather than

Parameter Space Partitioning 8

a precise description of its inner workings. Accordingly, the failure of a model to reproduce the

“fine grain” of a data set is not necessarily fatal to the model. It may merely indicate that minor

changes are required. On the other hand, if a model cannot capture the gross qualitative pattern

of the data, something is seriously amiss. As with all local methods of model analysis,

hypothesis testing is most informative when the qualitative pattern in the data can be captured by

only one model.

Global Qualitative Methods

Hypothesis testing is the work-horse of model evaluation in much of psychology, but like

its quantitative counterpart, goodness-of-fit, its focus on local behavior is a limitation. We gain

only a glimpse of what the model can do. It would be useful to know how many of the other

qualitative patterns in that same experiment the model could elicit. A model that can produce

any logically-possible pattern is no more impressive than one that fails to produce the empirical

pattern (Roberts & Pashler, 2000). In other words, there is the implicit problem pertaining to

what we might call “qualitative complexity or flexibility.” The solution is the same as with

quantitative methods like MDL: Study the qualitative behavior of the model across a broad range

of parameter values.

Dunn and James’ (2003) signed difference analysis is an example of global qualitative

model analysis. One seeks to identify the set of signed differences (i.e., +'s or -'s) permitted

between two data vectors when a model's parameter values are varied across the entire parameter

space. It is a simple means of deriving testable ordinal predictions from models in which the

functional relationship between task performance measurements (e.g., dependent variables) and

underlying constructs (i.e., model parameters) is assumed to be monotonic and otherwise

unspecified. This method of global analysis is probably most useful in the early stages of

Parameter Space Partitioning 9

cognitive modeling where models are defined primarily in terms of their qualitative predictions,

and no or few assumptions are made about other details of the underlying process. As models get

more refined with elaborate relationships between dependent variables and model parameters, a

more sophisticated method is needed.

The purpose of the current paper is to introduce a highly informative method of global

qualitative model analysis, parameter space partitioning (PSP). It involves doing exactly what

the name implies: A model’s parameter space is literally partitioned into regions that correspond

to qualitatively different data patterns that the model could generate in an experiment. Study of

these regions can reveal a great deal about the model and its behavior, as we show in three

application examples. In particular, one can learn how representative human performance is of

the model, as well as the characteristics of other behaviors the model exhibits.

Because the focus of PSP is on qualitative differences in performance, the method is

more widely applicable than its quantitative counterparts like MDL and Bayesian methods

(Figure 1), which are confined to models that can generate probability distributions (e.g.,

Generalized Context Model of Nosofsky (1986), Fuzzy Logical Model of Perception of Oden &

Massaro (1978)). PSP can not only be applied to this class of models, but others as well (e.g.,

connectionist), making it possible to compare models across classes, a highly desirable feature

given the diversity of models in the discipline. The popularity and complexity of connectionist

models made them an ideal class in which to demonstrate the potential of PSP for studying

model behavior.

Parameter Space Partitioning: A Global Qualitative Method

A simple example illustrates the gist of PSP. Consider a visual word recognition

experiment in which participants are asked to categorize stimuli as words or nonwords. The

Parameter Space Partitioning 10

mean response time to words is then measured as the dependent variable across three

experimental conditions, A, B and C. In this situation, it may be reasonable to claim that the

important theoretical property is the ordinal relationship (fastest to slowest) across conditions. In

this case, there are 13 possible orderings (including equalities) that can be observed across the

three conditions (e.g., A > B > C, A > B = C, B > C = A, etc). Each of these orderings defines a

qualitative data pattern. Suppose further that mean participant performance yielded the pattern B

> C > A.

Now consider two hypothetical models, M
1
 and M

2
, of word recognition, each with two

parameters. Using PSP, we can answer the following questions about the relationship between

the models and the empirical data generated in the experiment: How many of the thirteen data

patterns can each model produce? What part of the parameter space includes the empirical

pattern? How much of the space is occupied by the empirical pattern? What data patterns are

found in nearby regions as well as the rest of the parameter space?

Figure 2 shows the parameter space of each model partitioned into the data patterns it can

generate. Model M
1
 produces three, one of which is the empirical pattern. Note how it is central

to model performance, occupying the largest portion of the parameter space. Even though the

model generates two other patterns, they are smaller and differ only minimally from the

empirical pattern. In contrast, M
2
 produces nine of the thirteen patterns. Although one is the

empirical pattern, M
2
's performance is not impressive because it can mimic almost any pattern

that could possibly have been observed in the experiment. Indeed, the fact that M
2
 can mimic

human performance seems almost incidental. Not only does the empirical pattern occupy a small

region of the parameter space, but larger regions are produced by patterns that are not human-

like (e.g., C>A>B).

Parameter Space Partitioning 11

Figure 2 here

As this example illustrates, PSP analyses can be of two types, one focused on the number

of patterns and the other the size of the region occupied by a pattern. The goal of the “counting

analysis” is to find and count all of the data pattens that a model could potentially generate by

varying its parameter values. When appropriate, one may also perform a “volume analysis,” in

which the volumes of the regions in parameter space that are occupied by each data pattern are

compared, to gain a more thorough understanding of model behavior. Using this information, we

can estimate the proportion of the parameter space that is taken up by each pattern, and then use

these quantities to identify those that are most and least representative. For instance, if a pattern

can be produced only within a tiny region of a model’s parameter space, then one is probably

justified in concluding that it is irrelevant to the model’s overall performance.

The idea of looking for patterns across the entire parameter space is not new. For

example, most recently Johansen and Palmeri (2002) used a grid search to look for predictions

made by categorization models. What is new about PSP is the approach taken to solving the

search problem, which overcomes the limitations of grid search. With PSP, high-dimensional

models can be partitioned with good accuracy in a reasonable amount of time. This capability

makes it possible to gain a great deal of insight into the behavior of cognitive models, as we

demonstrate below. The method cannot only be used to learn about the behavior of a single

model, but also compare models, develop models, and use the analyses to guide future

experimentation.

Implementing PSP

Implementation of PSP requires solving two non-trivial problems. One is how to define a

data pattern, and the other is how to devise an efficient search algorithm to find the data patterns.

Parameter Space Partitioning 12

Each set of a model’s parameter values generates a model output, but not every model output is a

distinct data pattern. How many qualitatively “different” outputs can a model produce?

Answering this question, which is what PSP enables us to do, depends critically on how a data

pattern is defined. This is something which will vary from experiment to experiment, and indeed

may vary within an experiment depending upon what a researcher wants to learn. Although there

is no general solution, the scientist usually knows what patterns should be found in order to

support or falsify a model. Nevertheless, it is a good idea to try out a couple of different pattern

definitions and to perform sensitivity analyses to ascertain if and to what extent conclusions

obtained under one definition hold across others. An example of this process is presented later in

the paper (in the section comparing TRACE and Merge). Most of the time, ordinal predictions

are being tested, so a “natural” definition of a data pattern is the ordinal relationship of model

outputs, such as A>B and A=B. However, if one is interested in ordinal patterns, a critical issue

regards how to define “equality.” In many situations it may seem appropriate that a quantitative

prediction of A=1.99 and B=2 be treated as the qualitative pattern A=B. “Equivalence” must be

defined a priori. How this is done will depend on the models and the experimental design, but

the basic idea is no different than that used in null hypothesis significance testing. Quantitative

criteria are adopted that define equivalence and nonequivalence (i.e., what constitutes one data

pattern versus another). These can be more or less stringent, as we demonstrate in the TRACE

and Merge examples. Another example of how equivalence can be defined is presented in the

first application, which focuses on the ALCOVE model of category learning.

The Search Algorithm

Once a data pattern is defined, the next challenge is to find all patterns a model can

simulate. The set of all data patterns forms a partition on the parameter space, in the sense that

Parameter Space Partitioning 13

each point in the space can correspond to only one pattern, however improbable. Once we have a

definition of a data pattern, we have in effect created an unknown partition on the parameter

space. Accordingly, the problem to be solved is to search a multi-dimensional parameter space

in such a way that we visit each part of the partition at least once. As the number of parameters

in a model increases, the space becomes higher dimensional, and the search problem can become

very hard. The consequence of this is that brute force search methods to find all regions, such as

grid search or a random search procedure like Simple Monte Carlo (SMC) will not work, or take

far too long to succeed. Markov Chain Monte Carlo (MCMC; Gilks, Richardson, &

Speigelhalter, 1996; Robert & Casella, 1999) is a much more sophisticated sampling method that

we encorporated into an algorithm that efficiently finds all regions.

Application of the PSP algorithm begins with a starting set of parameter values at which

the model can generate a valid data pattern (i.e., one that satisfies the definition of a data

pattern). This initial set can be supplied by the modeler or from an exploratory run using SMC.

Given the parameter set and the corresponding data pattern generated by the model, the

algorithm samples nearby points in the parameter space to map the region that defines the data

pattern. MCMC is used to approximate quickly and accurately the shape of this region. The

process then begins anew by sampling a nearby point just outside of this region.

Figure 3 illustrates how the algorithm works in the space of a two-parameter model. The

process begins with the initial parameter set serving as the current point in the parameter space

(filled point in panel a). A candidate sample point (shaded point) is drawn from a small,

predefined region, called a jumping distribution, centered at the current point. The model is then

run with the candidate parameter values and its output is evaluated to determine if the data

pattern is the same as that generated by the initial point. If so, the candidate point is accepted as

Parameter Space Partitioning 14

the next point from which another candidate point is drawn. If the new candidate point does not

yield the same data pattern as the initial one, it is rejected as belonging to the current region.

Another jump from the initial point is attempted, accepting those points that yield the same data

pattern. The sequence of all accepted points, including repetitions of the same point, recorded

across all trials is called the Markov chain corresponding to the current data pattern. In the

language of MCMC, this implementation is called the Metropolis-Hastings algorithm with a

uniform target distribution defined over a given region (Robert & Casella, 1999, ch. 6). As such,

the theory of MCMC guarantees that the sample of accepted points will eventually be distributed

uniformly over the entire region. This feature of MCMC allows us to estimate the volume

occupied by the region, regardless of its size (panel b). A region’s volume is estimated using a

multi-dimensional ellipsoid whose shape and size are computed using the estimated mean vector

and covariance matrix of the MCMC sample of the region (see Appendix B for details).

Figure 3 here

Every rejected point (shaded point in panel b), which must be outside the current region,

is checked to see if it generates a new valid data pattern. If so, a new Markov chain

corresponding to the newly discovered pattern is started to define the new region. In effect,

accepted points are used to shift the jumping distribution around inside the current region to map

it completely, whereas rejected ones are used to initiate new MCMC search processes to map

new regions. Over time, as many search processes as there are unique data patterns will be run.

A more extensive and detailed discussion of the algorithm is provided in Appendix A.

Algorithm Evaluation

We tested the accuracy of the PSP algorithm by measuring its ability to find all of the

data patterns defined for a particular model. The difficulty of the search problem was varied by

Parameter Space Partitioning 15

manipulating the definition of a pattern (i.e., number of patterns) and the number of parameters

in the model. The extent of both (see Table 1) was deliberately made large to make the test

challenging. The efficiency of the algorithm was measured by comparing its performance to

SMC (random search).

The model was a hypercube whose dimensionality d (i.e., number of parameters) was 5,

10, or 15. To illustrate the evaluation method, a two-dimensional model (d=2) is depicted in

Figure 4 that contains twenty data regions (outlined in bold) that the algorithm had to find. Note

that a large portion of the space does not produce any valid data patterns. Exactly what

constitutes an “invalid” pattern will vary across models and experimental setups, but they

roughly correspond to those patterns that the model can produce, but do not meet criteria

established by the researcher to be considered in the analysis. The modeling contexts in which

PSP is demonstrated below provide two very different examples of how a data patterns is

defined.

In Figure 4, note that the sizes of the valid data regions vary a great deal. Some are

elicited by a wide range of parameter values whereas others can be produced only by a small

range of values. This contrast grows exponentially as the dimensionality of the model increases,

and was purposefully introduced into the test to make the search difficult and approximate the

complexities (i.e., nonlinearities) in cognitive models. Ten independent runs of each search

method were carried out to assess the reliability of algorithm performance.

Figures 4 and 5 here

Figure 5 shows performance of the PSP algorithm for a search problem in which there

were one hundred regions embedded in a 10-dimensional hypercube (d=10). The PSP algorithm

found all regions and did so in nine minutes. SMC found only about 23 patterns in nine minutes,

Parameter Space Partitioning 16

and given its sluggish performance, it seems doubtful that SMC would find all of them in

anything close to a reasonable amount of time.

Table 1 summarizes results from the complete test. The mean proportion of patterns

found is listed in each cell. Results are clear and consistent. The PSP algorithm almost always

found all of the patterns whereas SMC failed to do so in every condition. Most noteworthy is the

success of the PSP algorithm in the toughest situation, when there were 15 parameters and 500

data patterns. Its near perfect success suggests it is likely to perform admirably in other testing

situations (see Appendix B for another test of the algorithm). In the remainder of this paper, we

describe its applications to analyzing the behavior of a single model and to comparing design

differences between two models.

Table 1 here

Application 1: Evaluating the Qualitative Performance of ALCOVE

In standard model-fitting analyses, a model’s ability to fit (or simulate) the data is taken as

evidence that it approximates the underlying cognitive process. In a PSP analysis, the definition

of “fit” is relaxed to be a qualitative, ordinal relation on the same scale as the experimental

predictions themselves. Model performance is then evaluated by determining how many of the

possible orderings of conditions it can produce and how central the empirical pattern is among

them (Figure 2). In this section, we examined the behavior of ALCOVE (Kruschke 1992), a

highly successful exemplar-based account of human category learning, in the context of the

seminal Shepard, Hovland, and Jenkins (1961) experiment. While there are some category

learning effects that it does not capture without extension or modification (e.g, Kruschke &

Erikson 1995, Lee & Navarro 2002), ALCOVE remains a simple and powerful account of a

broad range of phenomena.

Parameter Space Partitioning 17

Background to the Analysis

The ALCOVE Model

In some category learning experiments, participants are shown a sequence of stimuli,

each of which possesses some unknown category label. The task is to learn which labels go with

which stimuli, using the feedback provided after responses are made. ALCOVE solves this

problem in the following way (for a detailed description, see Kruschke 1992). When stimulus i is

presented to ALCOVE, its similarity to each of the previously stored exemplars, sij, is

calculated. Following Shepard (1987), similarity is assumed to decay exponentially (with a

width parameter c) as a function of the attention-weighted city-block distance between the two

stimuli in an appropriate psychological space. After estimating these similarities, ALCOVE

forms response strengths for each of the possible categories. These are calculated using

associative weights maintained between each of the stimuli and the categories. The probability

of choosing the k-th category follows the choice rule (Luce, 1963) with parameter N.

Having produced probabilities for each of the various possible categorization responses,

ALCOVE is provided with feedback from an external source. This takes the form of a “humble

teacher” vector, in which learning is required only in cases where the wrong response was made.

Two learning rules are then applied, both derived by seeking to minimize the sum-squared error

between the response strengths and the teaching vector, using a simple gradient descent

approach to optimization. Using these rules, ALCOVE updates the associative weights (with

parameter 0w for the learning rate) and the attention weights (with a learning rate parameter

0a) prior to observing the next stimulus.

The Shepard, Hovland and Jenkins Task

In a classic experiment, Shepard et al. (1961) studied human performance in a category

Parameter Space Partitioning 18

learning task involving eight stimuli divided evenly between two categories. The stimuli were

generated by varying exhaustively three binary dimensions such as color (black vs. white), size

(small vs. large) and shape (square vs. triangle). They observed that, if these dimensions are

regarded as interchangeable, there are only six possible category structures across the stimulus

set, illustrated in Figure 6a. This means, for example, that the category structure that divides all

squares into one category, and all triangles into the other is regarded as equivalent to the

category structure that divides small shapes from large ones, as shown in the lower right.

Empirically, Shepard et al. (1961) found robust differences in the way in which each of

the six fundamental category structures was learned. In particular, by measuring the mean

number of errors made by subjects in learning each type of category structure, they found that

Type I was learned more easily than Type II, which in turn was learned more easily than Types

III, IV and V (which all had similar error measures), and that Type VI was the most difficult to

learn. More recently, Nosofsky, Gluck, Palmeri, McKinley and Glauthier (1994), replicated

Shepard et al.'s (1961) task using many more subjects, and reported detailed information relating

to the learning curves. Figure 6b shows the mean proportion of errors for each category type.

Consistent with the conclusions originally drawn by Shepard et al. (1961), it is generally held

that the theoretically important qualitative trend in these data is the finding that there is a natural

ordering on these curves, namely that I<II<(III, IV, V)<VI. This kind of pattern is called a weak

order, since the possibility of ties is allowed.

Figure 6 here

The psychological importance of this weak order structure is substantial. Suppose we had

two models of the category learning process, M1 and M2, of roughly equal complexity. M1

provides a reasonably good quantitative fit to the data, by assuming that all types are learned at

Parameter Space Partitioning 19

the same rate, and closely approximates the average of the six empirical curves. In contrast, M2

reproduces the ordering I<II<(III, IV, V)<VI, but learns far too slowly and, as a result, fits the

data much worse than M1 . Since the models are of equivalent complexity, a classical model

selection analysis would prefer model M1. However, while clearly both models have some flaws,

most psychologists would prefer M2, because it captures the theoretically relevant property of

the data. This discrepancy arises because quantitative model selection methods like MDL tend to

assume that all properties of the data are equally relevant. In many psychological applications,

this is not the case. In what follows, we assume that the weak order structure is the important

theoretical property of the empirical data, and use the PSP method to ask how effectively

ALCOVE captures this structure.

The PSP Analysis

As with any parameterized model, ALCOVE makes different predictions at different

parameter values. When applied to the Shepard et al. (1961) task, ALCOVE will sometimes

produce curves that have the same qualitative ordering as the empirical data, but at other times

they will look quite different. It would be nice to know something about the other orders that

ALCOVE can produce, since it seems that we might learn something about the model itself. A

PSP analysis can provide such information. Using the “weak order” definition of a pattern of

curves, there are 4,683 different data patterns that a model could produce. One would hope that

ALCOVE generates only a small proportion of these, and that the extra patterns it does produce

are interpretable in terms of human performance.

Preliminaries

At this stage we have only an intuitive definition of a data pattern. However, to perform

PSP analyses, a formal method of associating a set of learning curves with a particular pattern

Parameter Space Partitioning 20

must be defined. The weak order that defines a data pattern in the ALCOVE example can be

decomposed into a set of equivalence relations, and a strong order on the equivalence classes.

The strong order part is easy: We simply rank the classes in terms of mean learning rate. The

equivalence relations are more difficult to derive. How does one justify the equivalence of III,

IV, and V when mean learning rate may be similar but not identical? We solved the problem by

relying on a clustering procedure to partition the six curves into a natural ordering.

The procedure we employed was a variant on the clustering technique introduced by

Kontkanen, Myllymäki, Buntine, Rissanen, and Tirri (2005). The essence of the technique is to

view a clustering solution as a probabilistic model for the data. In the current application, the

likelihood function for the data takes the form of a mixture of binomials, with a single

multivariate binomial for each cluster. The clustering procedure now reduces to a statistical

inference problem, which is solved by choosing the set of clusters that optimizes a Minimum

Description Length statistic. The six learning curves reported by Nosofsky et al. (1994) are

averaged across 40 subjects over the first 16 blocks, consisting of 16 stimulus presentations

each. Each data point is thus pooled across 40 x 16 = 640 trials. Using this technique it is

possible to infer that I<II<(III, IV, V)<VI is indeed the natural structure for these data (Navarro

& Lee, submitted).

Additionally, we need to be able to associate a set of predicted learning curves with a

data pattern. A set of response probabilities is first discretized to the same resolution as the

empirical data, by finding the expected values for the data, given by np, where n is the sample

size and p is the average response probability predicted for some category type across any given

block of trials, and then rounding to the nearest integer. While the rounding error is a nuisance, it

is negligible for n=640. The discretized curves are then mapped onto a qualitative data pattern by

Parameter Space Partitioning 21

using the same clustering technique used to classify the empirical data.

For the PSP analysis of ALCOVE, we constrained the parameter vectors (c, N, 0w, 0a)

to lie between (0, 0, 0, 0) and (20, 6, 0.2, 0.2), and disallowed any parameter combination that

did not produce monotonic curves. These ranges were deliberately chosen to be quite broad with

respect to the kinds of parameter values that are typically observed in experimental contexts, and

non-monotonic curves seem highly inappropriate in a simple learning task. In other words, the

chosen constraints reflect those provided by empirical data and by theory.

A technical complication is introduced by the fact that ALCOVE’s predictions are

slightly dependent on the order in which stimuli are observed. Each stimulus has a different

effect on ALCOVE, so variations in order of presentation produce slight perturbations in the

response curves. However, even these minor perturbations can violate the continuity

assumptions that underlie the PSP algorithm. In order to deal with these order effects, we chose

20 random stimulus orders, and ran the PSP algorithm 10 times for each stimulus order, yielding

a total of 200 runs. As it turns out, the important properties of ALCOVE appear to be invariant

under stimulus reordering, but some unimportant properties are not.

How Many Data Patterns can ALCOVE Produce?

After running the PSP algorithm 200 times, we observed that each run produced a

different number of patterns, ranging from a minimum of 32 to a maximum of 122. Although

this range is substantial, it reflects an inherent variability in ALCOVE more so than the PSP

algorithm itself. The mean number of patterns recovered for a particular stimulus order ranged

from 46.5 to 102.8, while the range in the number of patterns recovered within an order was

minimal: The smallest range was a mere 7 patterns, while the largest was 36. Moreover, there

was an important amount of redundancy across the 200 runs, with 17 patterns being found on

Parameter Space Partitioning 22

every occasion, which included the empirical pattern I<II<(III,IV,V)<VI. We will refer to these

17 patterns as “universal” patterns, and the other 183 patterns as “particular” patterns.

Compared to the set of all 4683 possible data patterns, even the largest count of

17+183=200 patterns encompassed by ALCOVE is quite a small number. In a sense, this is quite

a success for the model, because the empirical pattern, rather than being a random ordering,

suddenly looks far less unlikely if we assume humans do something rather ALCOVE-like. Even

in the scenario where we allow all 200 recovered patterns to be treated as a genuine ALCOVE

prediction, the empirical pattern is one pattern in 200, rising from the much less satisfying base

rate of 1 in 4683. If the substantive predictions are restricted to the set of universal patterns, the

empirical pattern is now 1 in 17. Either way, ALCOVE provides a reasonably good qualitative

account of these data.

This initial analysis demonstrates that ALCOVE passes a basic sufficiency test, in that it

can account for the qualitative structure of the observed data without “going overboard” and

producing every possible pattern. Of course, as psychologists, we are interested in more than just

how many patterns ALCOVE produces. For example, it would be useful to know what kinds of

category-type orderings are generally preserved across all 200 data patterns. One crude method

for determining this is to find the average position (i.e., its rank among the six curves) of each

category type across all patterns. This is illustrated in Figure 7, which plots the mean rank for

each of the six types across all patterns for both universal and particular patterns. Rank increases

or stays flat as the index of the type increases. The main difference between the two types of

patterns is that the universals do not really distinguish between Types II, III and IV, whereas the

particulars do not distinguish between IV and V. Importantly, on average, rank does not decrease

with index. This is encouraging, because both empirically and algebraically, the difficulty of the

Parameter Space Partitioning 23

task either increases or stays constant as the index increases (see Feldman, 2000). This analysis

demonstrates that on average, the set of 200 patterns that make up ALCOVE’s entire set of

qualitative predictions roughly preserve an important property of the empirical data: A

monotonic increase in learning difficulty across category type.

Figure 7 here

Which Patterns Matter?

The finding from the preceding counting analysis that some patterns are frequent

(universals) and others rare (particulars) suggests that some may be more representative of

model behavior than others. However, the frequency with which a pattern is found is an

unsatisfying definition of its importance to a model’s behavior, since it confounds the model’s

properties with the robustness of the search algorithm. This naturally calls for a volume analysis,

in which the proportion of the parameter space that is occupied by each pattern is estimated.

Although a model’s parameter space is a potentially important source of information

about a model, two things must be kept in mind when wanting to distinguishing the “major”

patterns that are responsible for most of ALCOVE’s behavior from the “minor” patterns that are

irrelevant to the model. The first is that a volume analysis is meaningful only if one is willing to

ascribe meaning to the model’s parameters themselves, by linking them to psychological

constructs. In the case of ALCOVE, such connections have been well established (see Kruschke

1993). Arguably, the nature of the exemplar theory on which ALCOVE is based, and the manner

in which the model captures Kruschke’s (1993) “three principles”, provide exactly this kind of

justification. The second issue pertains to the generality of the results. A volume analysis is

specific to a particular parameterization of the model (i.e., how the parameters are defined and

combined in the model equation). If the model is reparameterized, the volume analysis could

Parameter Space Partitioning 24

change. In this regard, a volume analysis can draw attention to the appropriateness of a model’s

parameterization.

As it turns out, for ALCOVE there is a strong relationship between the size (i.e., volume)

of the region occupied by a pattern and the frequency with which it was discovered across the

200 runs. In Figure 8, the log of the average volume for each of the 200 patterns discovered is

plotted against the frequency with which they were discovered across the 200 runs of the

algorithm. Patterns on the far left are the ultimate particulars, having been discovered only once,

while patterns on the far right are the universals, having been discovered on every occasion.

Noting that the scale on the y axis is logarithmic, we observe that the universals are by far the

largest patterns. The empirical pattern, indicated by the circle, is one of the larger patterns, and is

a universal.

Figure 8 here

The data in Figure 8 let us refine the answer to the question, “To what extent does

ALCOVE predict the empirical pattern?” The fact that the empirical pattern is among the 17

universals is encouraging, as is the regularity in Figure 7. However, by considering the size of

the various regions, we can take this analysis a step further. We could, for instance, exclude all

patterns that do not reach some minimum average size. This approach is illustrated by the

horizontal threshold shown in Figure 8: Only patterns that occupy more than 1% of the

parameter space on average lie above this line. This is a pretty stringent test given that the

parameter space is four-dimensional. Only seven patterns exceeded it, and the empirical pattern

is not one of them, occupying 0.52% of the space.

If we next examine the universal patterns that occupy as much as or more space than the

empirical pattern, some general properties of ALCOVE’s behavior emerge. Table 2 lists these 11

Parameter Space Partitioning 25

patterns, ranked by volume from largest to smallest. (The remaining patterns - universals plus

particulars - are so small that together they occupy less than 1% of the total volume.) Looking

down the Table, it is clear that Types III and IV are always (11 of 11) predicted to be learned at

about the same rate, and Type V is also about the same (9 of 11) . Type VI, on the other hand, is

most often learned slower than III, IV and V (7 of 11). Type I is usually (8 of 11) faster than III-

VI, as is Type II (7 of 11). So, not only is the empirically-observed pattern I<II<(III,IV,V)<VI

among the universals, but many of the largest patterns preserve the pairwise relations found in

the empirical data. They are, in short, “close” to the empirical pattern. The exception to this

claim regards the relationship between Types I and II. Their ordering is ambiguous. It might be

I<II (4 of 11), I=II (4 of 11), or even II<I (3 of 11). In this case, ALCOVE does not make a

strong qualitative prediction.

Table 2 here

Summary

These analyses both confirm and extend our knowledge of ALCOVE. It should comfort

category learning researchers to learn that ALCOVE captures the I<II<(III,IV,V)<VI ordering in

a robust manner (it is a universal, not a particular), and that the various pairwise relations that the

ordering implies are almost always satisfied. On the other hand, some might be worried by the

volume occupied by this single pattern (0.52%), wishing it were larger, and thus more central to

model behavior. Despite its smallish size, the volume analysis as a whole shows that the

empirical pattern is in fact “central” to the model, in the sense that the dominant alternative

patterns are quite similar to the empirical one. “Distant” patterns (i.e., violations of weak

orderings) are rarely if ever generated by ALCOVE; this information is very useful to know in

model evaluation. In this regard, the added understanding provided by this global analysis of

Parameter Space Partitioning 26

ALCOVE increases one’s confidence in claiming that the model can “account” for the data

precisely because we know the range of behaviors it exhibits in this experimental setting.

The PSP analysis also revealed some unexpected behaviors. It is somewhat surprising

that it is even possible for ALCOVE to predict II<I. It may be that this happens only at very odd

choices of parameters (i.e., ones that are computationally feasible but psychologically bizarre),

and is certainly something that would be interesting to look into in future work.

Application 2: Comparing the Architectures of Merge and TRACE

In addition to learning about the behavior of a single model, PSP analyses can inform us

about the behavioral consequences of design differences between models. In this and the next

example, PSP is applied to two localist connectionist models of speech perception, TRACE

(McClelland & Elman, 1986) and Merge (Norris, McQueen, & Cutler, 2000). We compared

them in two experimental settings, one intended to bring out architectural differences, and the

other differences in weighting bottom-up (sensory) information.

Background to the Analysis

Architectural Differences of TRACE and Merge

The two models are illustrated schematically in Figure 9. They are similar in many ways.

Both have a phonemic input stage and a word stage. There are excitatory connections from the

phoneme input to the word stage, and inhibitory connections within the word stage. They differ

in how prior knowledge is combined with phonemic input to yield a phonemic decision

(percept). In TRACE, word (prior) knowledge can directly affect sensory processing of

phonemes. This is represented by direct excitatory connections from the word stage back down

to the phoneme stage. Also note that in TRACE the phoneme stage performs double duty, also

serving as a phoneme decision stage. In Merge, these two duties are purposefully separated into

Parameter Space Partitioning 27

two distinct stages to prevent word information from affecting sensory registration of phonemes.

Instead, lexical knowledge affects phoneme identification via excitatory connections from the

word to the phoneme-decision stage. In contrast to the direct interaction between phoneme and

word levels in TRACE, these two sources of information are integrated at a later decision stage

in Merge.

Figure 9 here

Although not visible in the diagrams in Figure 9, the models differ in another important

way. In keeping with the belief that bottom-up (sensory) information takes priority in guiding

perception early in processing, activation of a phoneme decision node in Merge must be initiated

by phoneme input before excitatory lexical activation can affect phoneme decision making.

TRACE contains no such constraint.

The goal of our investigations was to assess the impact of these two design differences on

global model behavior. Norris et al (2000) proposed Merge as an alternative to TRACE because

they felt the evidence from the experimental literature did not warrant interaction (i.e., direct

word-to-phoneme feedback). The adequacy of the Merge architecture was demonstrated in

simulation tests in which it performed just as well as, if not slightly better than, TRACE in

reproducing key experimental findings. PSP analyses of the models’ behaviors were performed

in two of these experimental settings. In the first, the subcategorical mismatch study by Marslen-

Wilson and Warren (1994), the consequences of splitting phoneme processing into separate

input and decision stages was evaluated. In the second, the indirect inhibition experiment of

Frauenfelder, Segui, and Dijkstra (1990), the contribution of the bottom-up priority rule to model

performance was examined.

In order to compare the two models, it was necessary to equate them in every way

Parameter Space Partitioning 28

possible to ensure that differences in performance were attributable only to design differences,

not other factors, such as the size of the lexicon. In essence, we wanted to compare the

fundamental structural and functional properties that define the models. We did this by first

implementing the version of Merge described in Norris et al (2000), and then making the

necessary changes to Merge to turn it into TRACE. In the end, TRACE required four fewer

parameters than MERGE. The names of the parameters, along with other model details, are in

Appendix C.

The Subcategorical Mismatch Experiment

The first comparison of the two models was performed in the context of the

subcategorical mismatch experiment of Marslen-Wilson and Warren (1994, Experiment 1;

McQueen, Norris, & Cutler, 1999, Experiment 3). The setup is attractive because of the large

number of conditions and response alternatives, which together permitted detailed analyses of

model behavior at both the phonemic and lexical levels. In the experiment, listeners heard one-

syllable utterances and then had to classify them as words or nonwords (lexical decision task) or

categorize the final phoneme (phonemic decision task). The stimuli were made by appending a

phoneme (e.g., /b/ or /z/) that was excised from the end of a word (e.g., job) or nonword (e.g.,

joz) to three preceding contexts, to yield six experimental conditions (listed in Table 3). The first

context was a new token of those same items but with the final consonant removed (e.g., jo), to

create cross-spliced versions of job and joz. The second consisted of equivalent stretches of

speech from a word that differed only in the final consonant (e.g., jo from jog in both cases). The

third was the same as the second except that the initial parts were excised from two nonwords

(e.g., jo from jod and jo from jov).

Table 3 here

Parameter Space Partitioning 29

Because cues to phoneme identity overlap in time (due to coarticulation in speech), a

consequence of cross-splicing is that cues to the identity of the final consonant will conflict

when the first word ends in a consonant different from the second. For example, jo from jog

contains cues to /g/ at the end of the vowel, which will be present in the resulting stimulus when

combined with the /b/ from job (Condition 2 in Table 3).

Marslen-Wilson and Warren (1994) were interested in how such stimuli affect phoneme

and lexical processing. As the results in Table 3 show (taken from McQueen et al, 1999), in the

lexical decision task, reaction times slowed when listeners heard cross-spliced stimuli, but

responding was not affected by the source of the conflicting cues (i.e., equivalent RTs in

Conditions 2 and 3). Phoneme categorization, in contrast, was sensitive to the subtle variation in

phonetic detail, but only when the stimulus itself formed a nonword (e.g., joz; Conditions 5 and

6). Importantly, the use of cross-spliced stimuli nullifies the bottom-up priority rule in Merge,

which otherwise might have contributed to any differences (see Norris et al, 2000, for details).

To the extent that differences are found across models, they are probably a result of their

different architectures.

The PSP Analysis

The subcategorical mismatch experiment contains two dependent measures of

performance, classification decisions and the speed with which those decision were made

(response time). We treated classification performance as a qualitative pattern in the PSP

analysis. We then performed a separate investigation of the RT predictions.

Preliminaries

Classification in these two models is usually defined in terms of the activation state of the

network when specific decision criteria are met, such as a phoneme node exceeding an activation

Parameter Space Partitioning 30

threshold. Because there are multiple conditions in the subcategorical mismatch experiment, a

data pattern is really a profile of classifications across these conditions. In this experiment there

are six conditions, with a phoneme and lexical response in each, for a total of 12 categorization

responses that together yield a single data pattern. With four possible phoneme responses and

three possible lexical responses, there were a total of 2,985,984 (46 x 36) patterns. Of interest is

how many and which of these patterns TRACE and Merge produce.

We applied two classification decision rules. The effect of these rules is that they

establish the necessary mapping between the continuous space of network states to the discrete

space of data patterns, making it possible to associate each data pattern with a region in

parameter space. Because any one rule could yield a distorted view of model performance, the

use of two rules enabled us to assess the generality of the results. In addition, we found that

some model properties that are not evident with one criterion emerged when performance was

compared across rules. The first rule, labeled weak threshold, was a fixed activation threshold,

with values of 0.4 for phoneme nodes and 0.2 for lexical nodes. It is the same rule used by Norris

et al (2000), and was adopted to maintain continuity across studies.

The second rule, called the stringent threshold, required classification to be more

decisive, by requiring the activation level of competing nodes to be significantly lower than the

winning node. Two thresholds were used, the higher of which was the lower bound for the

chosen node and the lower of which was the upper bound for the nearest competitor. These

values were 0.45 and 0.25 for phoneme classification, and 0.25 and 0.15 for lexical decision.

Two other constraints were also enforced as part of the stringent threshold. There had to be a

minimum difference in activation between the winning node and its closest competitor of 0.3 for

phoneme classification and 0.15 for lexical decision. Finally, for nonword responses in lexical

Parameter Space Partitioning 31

decision, the difference in activation between the two lexical items, jog and job, could not be

more than 0.1.

The models were designed as depicted in Figure 9. The only lexical nodes were job and

jog. All necessary phoneme nodes were included, with /b/, /z/, /g/, /v/ being of primary interest.

The PSP algorithm was run for both models and both decision rules. To obtain a data pattern, all

six stimuli were fed into the model and both phoneme and lexical classification responses

assessed. The algorithm and models were run in Matlab on a Pentium IV computer. The time

required to find all patterns varied greatly, taking as little as 22 minutes (TRACE, stringent

threshold) and as long as 24 hours (Merge, stringent threshold). The consistency of results was

ascertained using five multiple runs for each model and threshold. The averaged data are

presented below.

How Many Patterns do the Models Produce?

The analysis began by comparing classification (asymptotic) performance of the two

models. Table 4 contains three measures that define their relationship under the weak and

stringent thresholds. The second column contains Venn diagrams that depict the similarity

relation between the models when measured in terms of the number of data patterns each can

generate. Looking first at the weak threshold data, both models generate 21 common patterns,

with TRACE producing only a few unique patterns compared to Merge (2 vs 30). The filled dot

represents the empirical pattern, which both models produced.

The nature of the overlap in the diagram indicates that TRACE is virtually nested within

Merge, with 21 of its 23 patterns also being ones that Merge produces. However, Merge can

produce an extra 30 patterns, suggesting that in the subcategorical mismatch design, Merge is

more flexible (i.e., complex) than TRACE1. That said, the difference between them is not all that

Parameter Space Partitioning 32

great, although it does not disappear under further scrutiny (see below). Perhaps most

impressively, both models are highly constrained in their performance, generating fewer than 60

of the some 3 million patterns that are possible in the design.

When the stringent threshold is imposed, both models generate fewer patterns, with

TRACE producing 7 and Merge 26, as indicated in the lower half of Table 4. Nevertheless, the

relationship between the models remains unchanged: TRACE is almost nested within Merge.

However, the one unique TRACE pattern turns out to be the empirical data, which Merge no

longer generates.

Table 4 here

Interestingly, the change in threshold primarily caused a drop in the number of shared

patterns, indicating that the models are more distinct under the stringent threshold. To

understand why, turn your attention to columns 3 and 4, which contain estimates of the

proportion of the parameter space occupied by the valid data patterns. Although the percentages

for both models is rather small, half as much of TRACE’s parameter space is used compared

with Merge’s. Predictably, the regions shrink when the stringent threshold is applied. If one then

examines how much of each valid volume is occupied by common and unique patterns, the

reason for the increased distinctiveness of the models presents itself. For TRACE (column 5),

this region is occupied almost entirely by the 21 common patterns (100%). Under the stringent

threshold, this value drops slightly to 92%, but because there is only one unique pattern in this

case, its value must be 8%, the size of the region occupied by the empirical pattern. The

remaining 15 common patterns (21 - 6) occupied such tiny regions in TRACE’s parameter space

under the weak threshold that application of the stringent threshold eliminated them. A similar

situation occurred with Merge (column 6), with 12 of the 16 common patterns (of which the

Parameter Space Partitioning 33

empirical pattern was one) disappearing due to a change in threshold. Four became unique to

Merge. A few patterns unique to each model also failed to satisfy the stringent threshold (2 for

TRACE and 7 for Merge).

Although a change in threshold brings out differences in the models, analysis of their

common patterns under both thresholds reveals an impressive degree of similarity. For example,

under the weak threshold, the regions in parameter space of all 21 patterns are comparable in

size across models. To measure this, we correlated the rank orderings (from smallest to largest)

of the volumes in the two models. Use of the actual volume estimates themselves is

inappropriate because of differences in model structure and parameterization. With D= .75, the

correlation is high. For the stringent threshold it is slightly lower, D= .60, but keep in mind that

there were only six data points in this analysis. These associations indicates that the overlap

between models is not just nominal in terms of shared data patterns, but those regions are similar

in relative size with all other common regions, making the models functionally highly similar.

Is the Variation Across Patterns Sensible?

To the extent that a model produces data patterns other than the empirical one, a mark of

a good model is for its performance to degrade gracefully. In the first application of PSP,

ALCOVE's performance degraded gracefully because all of its patterns looked similar to the

empirical one. In the current analysis, we measured deviation by counting the number of

mismatches (different decisions) between a particular pattern and the empirical one. Since a

pattern consists of 12 decisions, there are a maximum of 12 possible mismatches (6 phonemic

and 6 lexical). Histograms of the mismatch counts were created for both models, and are shown

in Figure 10 alongside a histogram showing the base rate at each mismatch distance (e.g., there

are thousands of possible patterns with six mismatches, but only 12 patterns with one mismatch).

Parameter Space Partitioning 34

Figure 10 here

Both models show a remarkable proclivity to produce human-like data. The distributions

are located near the zero endpoint (empirical pattern) with peaks between two and four

mismatches. The probability is virtually zero that a random model (i.e., a random sample of

patterns) would display such a low mismatch frequency. The weak threshold distributions are

slightly to the right of the stringent threshold distributions, and Merge’s distributions are slightly

to the right of TRACE’s. In both cases, this is probably a base rate effect; allowing more patterns

increases the likelihood of more mismatches2.

An equally desirable property of a model is that patterns that mismatch across many

conditions occupy a much smaller region in the parameter space than those that mismatch by

only one or two conditions. That is, larger regions should correspond to patterns that are more

similar to the empirical pattern. When region volume is correlated with mismatch distance, this

is generally true for both models, but stronger for Merge (D=-0.51) than TRACE (D= -0.38).

The mismatch distributions beg the question, What types of classification errors do the

models make? To answer this, the proportion of mismatches in each of the 12 conditions was

computed for each model and are plotted in Figure 11. The profile of mismatches across

conditions again reveals more similarities than differences between the models. For the most part

the models performed similarly. The only noteworthy differences are that Merge produced more

phoneme misclassifications (conditions 3 and 6) and TRACE produced a greater proportion of

lexical misclassifications. In the four phoneme conditions in which errors were made, the final

phoneme was created by cross-splicing two different phonemes, creating input that specified one

weakly and the other strongly. The errors are a result of misclassifying the phoneme as the more

weakly specified (lowercase) alternative (e.g., g instead of B). By design, Merge’s bottom-up

Parameter Space Partitioning 35

only architecture heightens its sensitivity to sensory information, which in the present simulation

made it a bit more likely than TRACE to misclassify cross-spliced phonemes.

Lexical misclassification errors in TRACE are due primarily to a bias to respond

“nonword.” However, a small percentage of these lexical errors are due to classifying the

stimulus as jog (condition 5). This also occurred in condition 2, but much less often, with

misclassifications as jog constituting 8% of the mismatches for TRACE and 3% for Merge.

Figure 11 here

Which Patterns Matter?

Although some misclassifications can be legitimized on many grounds (e.g., humans

make such errors, perception of ambiguous stimuli will not be constant), it is important to

determine whether they are characteristic behaviors of the model or idiosyncratic patterns, like

the “particulars” defined in the ALCOVE analysis. That is, it is useful to distinguish between

unrepresentative and representative behaviors. To do so, we measured the volumes of all regions

identified by the PSP algorithm. As in the ALCOVE analysis, a threshold of 1% of the valid

volume was adopted to define a meaningful pattern. When this is done, many patterns turn out to

be noise and the set of representative patterns is reduced to a handful. For TRACE, 21 of its

patterns (2 unique and 18 common) do not meet this criterion. Four patterns, all common,

dominate in volume, together accounting for 99% of the volume (range 4.1 % - 57.9%). For

Merge, the set of dominant patterns is larger, and is split equally between common and unique

patterns. Thirty six patterns (21 unique and 15 common) fail to reach the 1% criterion. Seven

common (range 2.0% - 27.6%) and eight unique (1.4% - 21.1%) patterns do so and make up

97% of the valid volume. Even with a threshold that eliminated 75% of all patterns, the

asymmetry in pattern generation between the models is still present (TRACE=4; Merge=15).

Parameter Space Partitioning 36

The volumes of these representative common patterns are graphed in Figure 12. The

numerals in the legend refer to the mismatch distance of each common pattern from the

empirical pattern. Most obvious is the fact that the empirical pattern is much larger in TRACE

than in Merge (27% and 6.8%) and that one mismatching pattern (filled black) dominates in both

models (57.9% and 27.6%). This pattern turns out to be one in which there is a bias to classify

all stimuli as nonwords. As a group, the eight unique Merge patterns mismatch the empirical

pattern more than the common patterns. The largest pattern occupies a region of 21.1% (five

mismatches), more than twice the next largest region (8.4%). In this pattern, not only did Merge

exhibit the same nonword response bias, but it also categorized cross-spliced phonemes as the

competing (remnant) phoneme.

Figure 12 here

Response Time Analyses

Up to this point in the analysis we have compared only the classification behavior of the

models, but the time course of processing is equally important, as experimental predictions often

hinge on differences in RT between conditions. TRACE and Merge are often evaluated on their

ability to classify stimuli at a rate (e.g., number of cycles) that maintains the same ordinal

relations across conditions found with RTs. To assess the robustness of simulation performance,

parameters can be varied slightly and additional simulations then run to ensure that the model

does not violate this ordering (e.g., by producing a change in the RT pattern). In their

comparison of Merge and TRACE, Norris et al (2000) found neither produced an RT reversal.

Our test was a more exhaustive version of theirs.

The PSP analysis defines for us the region in the parameter space of each model that

corresponds to the empirical data pattern. When assessing RT performance, what we want to

Parameter Space Partitioning 37

know is whether there are any points (i.e., parameter sets) in this region that yield invalid RT

patterns, as defined by the ordinal relations among conditions in the experiment (i.e., the RT

pattern in the six phonemic and three lexical conditions in Table 3). To perform this analysis,

10,000 points were sampled over the uniform distribution of the empirical region. Simulations

were then run with each sample and the cycle time at which classification occurred was

measured and compared across all conditions. Violations were defined as reversals in cycle

times between adjacent conditions (e.g., condition 1 vs. condition 2) in phoneme classification

and lexical decision. Just as Norris et al (2000) reported, we did not find a single reversal

between conditions for either model.

Summary

The PSP analyses reveal that the consequence of splitting the phoneme level in two is to

produce a slightly more flexible model. This was found when all patterns were considered and

when those most representative were considered, so the nature of this additional flexibility is of

some interest. By splitting the phoneme level in two, Merge was not transformed into a different

model. Rather, the model’s behavior was expanded beyond that of TRACE, as the nested

relationships in Table 4 show. Merge retained many of TRACE’s behaviors (producing most of

its patterns) plus acquired new ones. A consequence of this expansion is that the

representativeness of these behaviors is considerably different across models, as shown in Figure

12. It is because these differences are quantitative and not qualitative that the models are so

similar on other dimensions (e.g., frequency and types of mismatches, relative region size,

response time relations between conditions). PSP is a powerful tool for addressing pointed

questions about the functionality of model architectures. Another example is presented next.

Other uses of PSP are discussed at the end of the paper.

Parameter Space Partitioning 38

Application 3: The Bottom-Up Priority Rule in Merge and TRACE

Background to the Analysis

The Bottom-Up Priority Rule

This second comparison of TRACE and Merge was performed to determine how the

addition of a bottom-up priority (BUP) rule in Merge distinguishes it from TRACE. Recall that

in Merge, for a phoneme decision node to become activated (Figure 9), excitation must be

initiated from the phoneme input stage (i.e., evidence for the phoneme must be in the acoustic

signal). In TRACE, this is not required. Initial activation via top-down connections from the

word stage is possible. For example, having been presented with jo in job, excitation from the

job node will feedback and excite the b node. Inhibitory connections between phoneme nodes

makes it possible to observe indirect word-to-phoneme inhibition, because the activated b node

will in turn inhibit competing phoneme nodes (e.g., g). Thus, word nodes have the ability to

excite directly and inhibit indirectly phoneme nodes.

Of course, one can easily incorporate a BUP rule into TRACE, simply by not allowing

top-down feedback to influence a phoneme node until after that node has received some bottom-

up input. Similarly, the BUP rule can be removed from Merge, by allowing phoneme decision

units to be activated by word layer units without first having to be activated by phonemic input

units.

This observation suggests an elegant way to assess the rule’s contribution to model

behavior: Run PSP analyses on both models with and without the BUP rule. This amounts to the

2x2 factorial design shown in Table 5. The lower left and upper right cells represent the models

as originally formulated. This comparison serves as a reference from which to understand the

contribution of the priority rule and the models’ structures in affecting behavior. Comparisons of

Parameter Space Partitioning 39

results between columns (i.e., models) neutralizes the effects of the priority rule. If the rule is

primarily responsible for differences in model behavior, then the results for both models should

be quite similar when the rule is and is not operational. If differences still remain, then structural

differences are also contributing to their diverse behaviors. In short, these analyses will tell us

whether Merge, without its priority rule, behaves like TRACE, and whether TRACE, with the

priority rule, mimics MERGE.

Table 5 here

The Frauenfelder et al. Data

If indirect word-to-phoneme activation is possible, then one would expect anomalous

word endings to slow down responses to those endings. Frauenfelder et al (1990, Experiment 3)

tested this prediction by having listener monitor for phonemes that occurred late in multisyllabic

words and nonwords. Three conditions are of interest in the present analysis. A word condition

(e.g., habit, with /t/ as the target phoneme) served as a lower bound on responding because

lexical and phonemic information should combine to yield fast RTs. A control nonword

condition (e.g., mabil, with /l/ as the target phoneme) served as a reference against which to

measure inhibition. Because mabil is not a word, there should be no top-down lexical facilitation

or inhibition when responding to /l/; responses should be based on sensory input alone. In the

third, inhibitory condition, listeners heard nonwords like habil, with l as the target phoneme. A

slowdown in RT relative to the control nonword condition is expected if there is in fact

inhibition. This is because the first part of the stimulus, habi, will excite habit, whose activation

should then feed back down and excite /t/, which will then inhibit /l/.

The RT slowdown in the inhibition condition was small and not reliable despite

significant effects in companion conditions and experiments. That this seemingly clear

Parameter Space Partitioning 40

prediction of TRACE was not borne out in the data has generally been interpreted as arguing

against word-to-phoneme excitation in TRACE. However, in simulations of indirect inhibition,

TRACE’s behavior is not cut and dry, with inhibition being more likely with longer than shorter

words (Norris et al, 2000). In contrast, the bottom-up priority rule in Merge guarantees that it

produces consistent performance that never yields inhibition. TRACE’s variable behavior is a

sign that it can generate more data patterns than Merge. If this is the case, is the absence of the

priority rule the main cause, or is it also due to structural differences between the models?

The PSP Analysis
Preliminaries

The design of the indirect inhibition experiment is much simpler than the subcategorical

mismatch experiment. There are only three conditions and only a single response (phonemic

decision). To simulate the experiment, the combination of so few conditions and a simple model

design (one lexical and two critical phoneme nodes) would yield so few potential data patterns

that the analysis might not provide satisfying answers to our question. We therefore added a

lexical decision response (word or nonword) to the design on the grounds that listeners would, if

asked, accurately categorize each stimulus as a word or nonword. The models should perform

similarly. This additional response permitted a more fine-grained analysis and comparison of the

models.

Input to the models consisted of three utterances: habit, mabil, habil. They were selected

to be moderately long (five phonemes) so that indirect inhibition would have a chance to

emerge. Both models were modified from the previous test to consist of only one lexical node

(habit) and the appropriate phoneme input/decision nodes, with /t/ and /l/ of most interest

because their activation functions were used to test for inhibition. With two classification

Parameter Space Partitioning 41

responses, each with two alternatives, and three stimulus conditions, there were a total of 64

possible data patterns (23 x 23).

To examine the effect of the BUP rule on model performance, phoneme activation

parameters were adjusted accordingly in each model prior to running the PSP algorithm. The

same two decision rules were again used to assess the generality of results. With two decision

rules and two priority rules, the algorithm was run four times on each model. The consistency of

the results for each analysis was ascertained by rerunning the algorithm five times. The averaged

data are presented. No more than seven minutes were required to find all patterns in any run.

Classification Analyses

The classification data are shown in column 3 of Table 6, with the first row containing

the comparison of the models as originally designed (TRACE without BUP and Merge with it).

The Venn diagram shows that the relationship between the models is opposite of that in the

subcategorical mismatch experiment (Table 4), with Merge now embedded in TRACE, and

TRACE producing three times as many data patterns as Merge (12 vs. 4). Both models are again

highly constrained in their behavior, producing nowhere near the 64 possible data patterns in the

experimental design.

Table 6 here

TRACE’s extra flexibility in this experimental setup agrees with Norris et al’s (2000)

observation of TRACE’s variable behavior in producing indirect inhibition. That this flexibility

is due to the absence of a BUP rule can be seen by examining the Venn diagrams in the

remaining rows. When the priority rules are swapped between models (row 2), their relationship

reverses as well. TRACE shrinks from twelve to four patterns while Merge grows from four to

twelve, embedding TRACE in Merge.

Parameter Space Partitioning 42

This reversal is not merely a reversal in the number of data patterns, but extends to the

actual data patterns themselves. That is, even though the models trade places in terms of their

relationship, the common and unique patterns remain the same. To see that this is the case, look

at the Venn diagrams in rows 3 and 4, where the priority rule is either on or off at the same time

in the two models. In both situations TRACE and Merge overlap completely, producing only

common patterns, four when the priority rule is on and 12 when it is off, which matches exactly

what was found in rows 1 and 2. The preceding observations can be neatly summarized by

noting that when the priority rule was on, the models always generated four patterns. When it

was off, they generated 12.

The isomorphism of the models with and without the priority rule is surprising. Within

this experimental design, their qualitative behaviors are identical in terms of the patterns they

can generate, and point to the priority rule itself as a primary determiner of behavioral

differences. As will be seen shortly, this interchangeability also shows up in the RT analyses.

Columns 4-7 in Table 6 contain volume measurements whose relationship between

models is somewhat different from that found in the subcategorical mismatch analyses. Although

both are again small, TRACE’s valid region of the parameter space is the same size as Merge’s.

This relationship changes little as a function of the priority rule. When common data patterns

occupy only a portion of the valid volume (rows 1 and 2), the region is larger for TRACE (72%)

than Merge (60%), indicating that the unique patterns occupy a smaller region in TRACE’s

parameter space. This outcome foreshadows what happens under the stringent threshold.

A quick glance down the last column of Table 6 (stringent threshold) shows the

isomorphism between the models no longer holds. This can be seen most clearly in the top cell,

where the embedding is the reverse of that found with the weak threshold. TRACE produced

Parameter Space Partitioning 43

only three of the 12 patterns, two of which are shared by Merge. In contrast, Merge produced the

same four patterns as found under the weak threshold. In rows 2-4, TRACE remains embedded

in Merge, always producing the same few patterns (never the empirical one). It appears that

under the stringent threshold, TRACE generated so few patterns to begin with that there was

little opportunity for the priority rule to alter model behavior. In contrast, Merge behaved just as

it did under the weak threshold, generating more patterns without the rule (rows 2 and 4) than

with it (rows 1 and 3). Notice that what changes most down this column is the number of unique

patterns generated by Merge.3

The reason for this asymmetric effect of threshold on the two models can be understood

by examining the volume measurements under the weak threshold in Figure 13. Region sizes are

shown for both models with and without the priority rule. Focus on the two “No BUP” bars.

Each slice of a vertical bar represents a different data pattern, except those denoted with gray

shading at the top of the bar, which represents the combined area of eight regions, most of which

are visible for Merge but not for TRACE. In fact, these eight bars together total less than 1% of

TRACE’s valid volume. These regions plus the empirical region are so small that they disappear

when the stringent threshold is applied, which is the cause of the sharp drop in the number of

data patterns. These same regions are much larger in Merge (only one is less than 1% of the

volume), and although they shrink in size, they do not disappear under the stringent threshold.

Figure 13 here

Further insight into the effects of the priority rule on model behavior can be obtained by

comparing the types of misclassification errors made by the models when the rule was on and

off. As in Figure 12, each slice of a vertical bar in Figure 13 is filled with a graphic pattern that

denotes the mismatch distance of the data pattern from the empirical data. In TRACE, the

Parameter Space Partitioning 44

empirical pattern (bottom row) itself occupies a small region in the parameter space that

increases slightly in size when bottom-up information is given priority. In Merge, however, not

only is this region much larger, but it increases in size when the priority rule is invoked,

occupying a full 27% of the valid volume. Although TRACE can produce the empirical pattern,

it is clearly a more central pattern in Merge. What is more, the priority rule enhances this

centrality.

Most of the mismatching patterns, especially those that occupied the largest regions,

rarely veered far from the empirical pattern, differing by one or two responses out of a possible

six. Comparison of the bars between models shows that the same biases exhibited by the models

in the subcategorical mismatch experiment are present here. A few patterns dominate the

parameter space in TRACE whereas the space is split more equitably among patterns in Merge.

This is most evident in the No BUP conditions, where a pattern with two mismatches occupies

almost half (47.6%) of TRACE’s volume. The errors in this instance are due to lexical

misclassifications in which the two nonwords (mabit and habil) were categorized as words.

Merge exhibits a much weaker tendency to do this (6.7%). Instead, the pattern occupying the

largest volume in Merge does just the opposite: habit is classified as a nonword. TRACE

produces this error as well. Application of the priority rule (bars 2 and 4) increases these

tendencies in both models (i.e., the regions increase in size).

Reaction Time Analyses

RT analyses were performed only on the weak threshold data because TRACE failed to

generate the human pattern under the stringent threshold. The region occupied by the empirical

pattern was probed for parameter sets that violated the ordering of mean participant response

times across the three conditions (habit < mabil = habil). Model behavior with and without the

Parameter Space Partitioning 45

priority rule was also examined.

The procedure was the same as that used in the subcategorical mismatch analysis.

Samples (10,000) were drawn from the uniform distribution over the region of the empirical

pattern and the model was run with each set of parameter values. The cycle at which phoneme

classification occurred was recorded across conditions. Because violations amount to a reversal

in cycle classification time between adjacent conditions, we calculated the difference in cycle

time of neighboring conditions, habit vs. mabil, and mabil vs. habil. Cycle times to mabil were

subtracted from those in the other two conditions. Distributions of these difference scores (over

all samples) are plotted in Figure 14. The top graphs contain the comparison of the models as

originally formulated (TRACE without BUP, Merge with BUP). In the bottom pair of graphs,

the priority rules were swapped across models. The left-hand graphs contain the habit-mabil

comparison and the right-hand graphs the more theoretically important, habil-mabil comparison.

Figure 14 here

In the upper left graph, both models produce the correct ordering, with phoneme

classification always being faster in a word (habit) than nonword (mabil) context. What differs

between the models are the shapes of the distributions, with TRACE’s being sharply peaked and

Merge’s more diffuse. In the right graph, the effects of the priority rule are visible, with Merge

always generating the correct prediction of identical classification times in the two conditions

(zero RT difference, a single point) and TRACE showing indirect inhibition, with recognition

times slightly longer to /l/ in habil than in mabil, hence the negative cycle difference score.

Although this effect is almost always small, it is clear from the shape of the distribution that

choice of parameter settings could lead to different conclusions, where on rare occasion the

effect would be large.

Parameter Space Partitioning 46

That equivalent classification times in the mabil and habil conditions are due to the

priority rule can be seen in the lower right graph, where TRACE was run with the BUP rule and

Merge without it. Just as in the classification data in Table 6, their performance reverses:

TRACE now produces no difference across conditions whereas Merge displays indirect

inhibition.

Finally, scanning across all four graphs, it is clear that the interactive architecture of

TRACE constrains differences in classification time more so than the integrative architecture of

Merge. Regardless of priority rule, both models show a tendency to produce small rather than

large differences scores, but TRACE more so than Merge given the height and location of the

peaks of the distributions.

Summary

This second comparison of TRACE and Merge was undertaken to learn how the bottom-

up priority rule can differentiate the two models and to demonstrate another way in which PSP

can be used to study model behavior. The PSP analyses under the weak and stringent threshold

showed that the priority rule reduces model flexibility and confirmed its necessity for simulating

the correct pattern of response times. By turning the priority rule on and off across models, we

learned that they can behave identically, producing qualitatively indistinguishable data patterns.

Only when the volumes of these patterns were inspected did performance differences due to

model architecture emerge. Merge’s integrative architecture is somewhat better suited for

mimicking human behavior in this experimental design. Not only is the empirical pattern more

central in Merge, but this was true regardless of whether the priority rule was in place. These

findings and conclusions are possible because of the global perspective on model behavior that a

PSP analysis provides.

Parameter Space Partitioning 47

General Discussion

Models are becoming increasingly useful tools for psychologists. To use them most

productively, it is important to have a thorough understanding of their behavior. Although a host

of methods have been developed with this purpose in mind (Figure 1), their applicability is

limited, in large part because of the diversity of models in psychology. To the extent that new

methods are introduced, it would be most helpful to understand model behavior at a level of

granularity that matches the qualitative predictions that are made when testing models

experimentally.

PSP was developed to meet these goals. A model’s ability to mimic human behavior is

evaluated in the context of the other data patterns that it can generate in an experimental design,

thereby providing a richer understanding of what it means for a model to account for an

experimental result. We specifically chose connectionist models to demonstrate PSP’s

versatility, as there are few methods available for analyzing these widely-used yet complex

models. The method is not limited to this class of models, however. It can be just as easily

applied to other types (e.g., algebraic), which makes comparison of models across classes a

relatively straightforward undertaking. PSP’s generality is even evident in the algorithm’s

implementation: A model is a module in the algorithm, making it possible to insert many types

of models.

The three example applications demonstrate only some of what can be learned with the

method. In the case of ALCOVE, PSP was used to perform a basic task in model analysis -

evaluate the model’s soundness in capturing an empirical result. Not only did the analysis inform

us about whether the model can mimic human performance (its local behavior), but much more

importantly, by studying the partitioned parameter space, we learned how representative this

Parameter Space Partitioning 48

behavior is of the model and how many other data patterns the model can produce. Some of

these were plausible alternative response patterns. Others occupied such a small region in the

parameter space that they should be considered spurious and uncharacteristic of the model.

In the second and third applications, PSP was used to study the behavioral consequences

of slight design differences between two localist connectionist models. To do this, data patterns

and their corresponding volumes in parameter space were compared across models in two

experimental settings that were intended to bring out design differences. Many more similarities

than differences were found in classification behavior. RT analyses of the region occupied by the

empirical data led to the same conclusion. Qualitatively, TRACE and Merge were

indistinguishable. Only in the volume analyses did differences emerge. These took the form of

biases in emphasizing some behaviors over others.

Although one might not be surprised by the models’ similarities, the PSP analysis

provides the evidence to solidify such a claim. Furthermore, the analyses suggest how difficult it

could be to find a situation in which they make different qualitative predictions that could be

tested in an experiment. That said, PSP is just the tool to assist in such an endeavor, by enabling

the researcher to essentially pretest an experiment to learn whether it could discriminate between

models. Once an experiment is designed, the models can be run through the PSP algorithm to

determine which data patterns are shared and unique. To the extent that participants are likely to

produce those in the latter category, the experiment has the potential to discriminate between the

models.

Of course, the meaningfulness of any such analysis depends on how a data pattern is

defined. Conclusions may be specific to a definition, which is why it is recommended to use

more than one. Because ordinal predictions dominate in most experimental work, the task of

Parameter Space Partitioning 49

defining a data pattern can be relatively straightforward. This is another reason why PSP is

widely applicable. It does not depend on quantitative fits.

PSP can also be of considerable use in model development by making the modeler aware

of the broader consequences of the choices made in model design. For example, there may be

four key experimental results that any model of memory must capture to be taken seriously. By

running the algorithm in each experimental setting, a comprehensive analysis of the model’s

design can be undertaken. Desirable and undesirable behaviors can be readily identified. The

model can then be refined on the basis of this knowledge and the entire process repeated. From

successive iterations, one can develop a clear understanding of the model’s inner workings (e.g.,

how parameters contribute to model behavior, whether there are redundancies across parameters,

the appropriateness of their ranges, and even optimal parameter values).

Figure 15 provides a glimpse of what can be learned from such detailed analyses. Shown

are distributions of parameter values for three of TRACE’s parameters that were obtained within

the empirical region of the parameter space in the indirect inhibition experiment (no BUP). Each

distribution contains 10,000 values and gives a sense of how the parameter contributes in

capturing the experimental result. For the phoneme excitation parameter, the distribution of

possible values is fairly broad, although there is a clear optimum. The phoneme-to-word

excitation parameter is much more tightly constrained, so much so that one might wonder

whether its range should be cut in half, from 0 to 0.5. The distribution for the phoneme-to-

phoneme inhibition parameter is essentially flat, suggesting a high degree of context sensitivity,

which goes along with Norris et al’s (2000) observations about the stability of indirect inhibition.

Analyses like these expose the modeler to tendencies and behaviors that can be difficult to

anticipate but crucial to know.

Parameter Space Partitioning 50

Figure 15 here

Not only can the modeler use this information to enhance the model itself, but it can also

be encorporated into the PSP analyses by, for example, setting prior distributions over parameter

ranges to emphasize reasonable behaviors and discount unreasonable ones. This was done in the

ALCOVE example, in which parameter values were restricted to permit only monotonic learning

curves because humans do not produce functions of other shapes.

Throughout the paper, the global perspective on model behavior that PSP provides has

been examined from the standpoint of the model to determine its flexibility or scope (Cutting,

2000). It can be equally productive to view the situation from the vantage point of the

experiment, by asking how much the experiment is likely to challenge the model. To the extent

that it can, the experiment has the potential to be a good, meaningful test of the model. In this

regard, one lesson that comes out of our applications of PSP is that the fewer the number of

conditions and the fewer the possible relationships between them, the less informative the test

may be.

The complementary nature of global and local model analysis runs through the preceding

discussion. Each informs the other and together they improve inference by providing a richer

understanding of the a model’s relationship to data. Qualitative and quantitative methods are

similarly complementary, particularly when examining local model behavior (Figure 1). Clear

model predictions can not only be tested in an experiment, but can further be evaluated by

assessing the model’s fit to data. The use of both can make a compelling case in favor of a

model. By going a step further and performing a global analysis using PSP, additional light can

be shed on the quality of the demonstration.

Although fairly general-purpose, the current version of PSP is not applicable to

Parameter Space Partitioning 51

nonstationary models, that is, those whose performance can change or adapt as a result of

feedback or learning (e.g., some distributed connectionist models, some algorithmic models). Of

the large set of models to which PSP is applicable, challenges in implementation exist on a few

fronts. One is in defining a data pattern. In some situations there may be no obvious "natural"

definition of a data pattern. A case in point is the power model of retention (forgetting). The

response probability y, representing proportion recall, is a continuous function of retention

interval t in the form of y = at-b where a and b (a, b > 0) are two parameters. Application of PSP

requires one to decide whether the retention curve associated with parameter values (a, b) = (1,

0.5) should be considered indistinguishable, in some defined sense, from the curve associated

with parameter values (a, b) = (1.1, 0.4). In the absence of a justifiable definition of a data

pattern in a situation like this, it would be preferable to use MDL or Bayesian methods when

possible. Alternatively, one could devise a “generic,” suitably interpretable definition of a data

pattern.

Another point to keep in mind when applying PSP are the generality of the two types of

analyses, counting and volume. A counting analysis is completely generalizable in the sense that

the results are independent of how the model is parameterized – a property known as

reparameterization-invariance in statistics. What this means is that the data-fitting abilities of

the model will remain unchanged despite different formulations of the model. To illustrate,

consider the functions and . These functions()1 1 2 2 3 3exp ()y a x a x a x= − + + 31 2
1 2 3

xx xy b b b=

are equivalent because the two are related through the reparameterization

 Therefore both functions will fit any give data set identically, andexp(), 1,2,3.i ib a i= − =

Parameter Space Partitioning 52

consequently, the counting analysis will yield the same number of qualitatively different patterns

with either parameterization. On the other hand, a volume analysis is not reparameterization

invariant, but specific to a particular parameterization. If each parameter were transformed in an

arbitrary way (e.g., ›i' = ›i + ›i
2), one would obtain a different volume analysis unless the

transformation were positively scaled (i.e., ›i' = "›i , " > 0), in which case the results would

remain the same.

Depending on the models and testing situation, this lack of invariance may be of little

practical importance, especially when a specific parameterization of a model is justified. This is

arguably a necessary condition to be considered a model of cognition (Estes, 2002). When

psychological constructs are associated with particular parameters, constraints can be imposed

that prevent arbitrary transformations. For instance, in the above example, if we assume the

parameters (a1, a2, a3) represent attention weights, then by definition they must satisfy the

constraints and therefore do not permit any reparameterization,1 2 3 10 , , 1, 1
i

a a a a< < =∑

because such a transformation would alter the interpretations associated with these parameters.

Finally, because PSP is a search problem, it is subject to many of the same difficulties

found in nonlinear function optimization and integration. Because there are no proven methods

for avoiding them, users must find work-arounds to minimize their impact, such as repeating the

simulation using different starting values. PSP is no different in this regard, and is why we

performed multiple runs in the analyses. They provide a measure of the stability and hence

accuracy of the results. To use PSP productively, the user must be aware of the difficulties faced

by search methods and have a good understanding of the model being analyzed. Appendix A

elaborates on these issues. For even more detail, visit the PSP web site

Parameter Space Partitioning 53

(http://quantrm2.psy.ohio-state.edu/injae/psp.html), which contains tutorials and Matlab code to

assist those in learning how to use the method.

In conclusion, analysis of the global behavior of a model can provide a wealth of

information that is useful for understanding a model’s performance in a particular testing

situation. PSP is a flexible and powerful method of global model analysis, as the examples

presented here attest, suggesting it has considerable potential to assist researchers in their quest

to model human behavior.

Parameter Space Partitioning 54

References

Box, G.E.P. (1976). Science and statistics. Journal of the American Statistical

Association, 71, 791–799.

Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology,

44, 108-132.

Chib, S., & Grennberg, E. (1995). Understanding the Metropolis-Hastings Algorithm.

The American Statistician, 49, 327-335.

Cowles, M. K. & Carlin, B. P. (1996). Markov chain Monte Carlo convergence

diagnostics: A comparative review. Journal of the American Statistical Association, 91, 883-904.

Cutting, J. (2000). Accuracy, scope, and flexibility of models. Journal of Mathematical

Psychology, 44, 3-19.

Dunn, J. C. & James, R. N. (2003). Signed difference analysis; Theory and application.

Journal of Mathematical Psychology, 47, 389-416.

Dawson, R.W., & Shamanski, K.S., (1994). Connectionism, confusion, and cognitive

science. The Journal of Intelligent Systems, 4, 215-262.

Estes, W.K. (2002). Traps in the route to models of memory and decision. Psychonomic

Bulletin & Review, 9, 3-25.

Feldman, J. (2000). Minimization of Boolean complexity in human concept learning.

Nature, 407, 630-633.

Frauenfelder, U.H., Segui, J., & Dijkstra, T. (1990). Lexical effects in phonemic

processing: Facilitatory or Inhibitory? Journal of Experimental Psychology: Human Perception

and Performance, 16, 77-91.

Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S.

Parameter Space Partitioning 55

Richardson, and D. J. Spiegelhalter (eds.), Markov Chain Monte Carlo in Practice, pp. 131-140.

Boca Raton, FL: Chapman & Hall/CRC.

Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in

Practice. Chapman & Hall.

Grunwald. P. (1998). The Minimum Description Length Principle and Reasoning Under

Uncertainty. PhD Thesis. ILLG Dissertation Series D5 1998-03. CWI. The Netherlands.

Grunwald, P., Myung, I.J., & Pitt, M.A. (in press). Advances in Minimum Description

Length: Theory and Application. Cambridge, MA: MIT Press.

Johansen, M. A. & Palmeri, T. J. (2002). Are there representational shifts during category

learning? Cognitive Psychology, 45, 482-553.

Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical

Association, 90, 773-795.

Kim, W., Navarro, D.J., Pitt, M. A., Myung, I.J. (2004). An MCMC-based method of

comparing connectionist models in cognitive science. Advances in Neural Information

Processing Systems, 16, (937-944). MIT Press

Kontkanen, P., Myllymäki, P., Buntine, W., Rissanen, J. & Tirri, H. (2005). An MDL

framework for data clustering. To appear in P. Grünwald, I. J. Myung & M. A. Pitt (Eds.)

Advances in Minimum Description Length: Theory and Applications. Cambridge, MA: MIT

Press.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category

learning. Psychological Review, 99, 22-44.

Kruschke, J. K. (1993). Three principles for models of category learning. The Psychology

of Learning and Motivation 29, 57–90.

Parameter Space Partitioning 56

Kruschke, J. K. & Erikson, M. A. (1995). Six principles for models of category learning.

Talk presented at the 36th Annual Meeting of the Psychonomic Society, 10 November 1995, Los

Angeles, CA.

Lee, M. D., & Navarro, D. J. (2002). Extending the ALCOVE model of category learning

to featural stimulus domains. Psychonomic Bulletin and Review, 9, 43-58.

Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. Bush, & E. Galanter

(Eds.), Handbook of Mathematical Psychology (Vol. 1, p. 103-190). New York, NY: Wiley.

McClelland, J.L., & Elman, J.L. (1986a). The TRACE model of speech perception.

Cognitive Psychology, 18, 1-86.

McCloskey, M. (1991). Networks and Theories: The Place of Connectionism in

Cognitive Science. Psychological Science,2, 387-395.

McQueen, J., Norris, D., Cutler, A. (1999). Lexical influence in phonetic decision

making: Evidence from subcategorical mismatches. Journal of Experimental Psychology:

Human Perception & Performance, 25, 1363-1389.

Marslen-Wilson, W., & Warren, P. (1994). Levels of perceptual representation and

process in lexical access: Words, phonemes, and features. Psychological Review, 101, 653-675.

Myung, I. J., Balasubramanian, V., & Pitt, M. A. (2000) Counting probability

distributions: Differential geometry and model selection. Proceedings of the National Academy

of Sciences USA, 97, 11170-11175.

Oden, G. C., & Massaro, D. W. (1978). Integration of featural information in speech

perception. Psychological Review, 85, 172-191.

Nosofsky, R. M. (1986). Attention, similarity and the identification-categorization

relationship. Journal of Experimental Psychology: General, 115, 39-57.

Parameter Space Partitioning 57

Navarro, D. J. & Lee, M. D. (2004). An application of minimum description length

clustering to partitioning learning curves. Manuscript submitted to The 2005 IEEE International

Symposium on Information Theory.

Navarro, D.J., Pitt, M.A., & Myung, I.J. (2004). Assessing the distinguishability of

models and the informativeness of data. Cognitive Psychology, 49, 47-84.

Norris, D., McQueen, J.M., & Cutler, A. (2000). Merging information in speech

recognition: Feedback is never necessary. Behavioral & Brain Sciences 23, 299-370.

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C. & Glauthier, P. (1994).

Comparing models of rule-based classification learning: A replication and extension of Shepard,

Hovland, and Jenkins. Memory & Cognition 22, 352–369.

Pitt, M.A., Myung,I.J., & Zhang, S. (2002). Toward a method of selecting among

computational models of cognition. Psychological Review, 109, 472-491.

Platt, J.R. (1964). Strong Inference, Science, 146, 347-353.

Rissanen, J. (1996). Fisher information and stochastic complexity. IEEE Transactions

on Information Theory 42, 40-47.

Rissanen, J. (2001). Strong optimality of the normalized ML models as universal codes

and information in data. IEEE Transactions on Information Theory 47, 1712-1717.

Robert, C. P. & Casella, G. (1999). Monte Carlo Statistical Methods. New York, NY:

Springer.

Roberts, S. & Pashler, H. (2000). How persuasive is a good fit? A comment on theory

testing. Psychological Review, 107, 358-367.

Shepard, R. N. (1987). Toward a universal law of generalization for psychological

science. Science, 237, 1317-1323.

Parameter Space Partitioning 58

Shepard, R. N., Hovland, C. L. & Jenkins, H. M. (1961). Learning and memorization of

classification. Psychological Monographs 75 (13), Whole No. 517.

Shiffrin, R., & Nobel, P. (1998). The art of model development and testing. Behavior

Research Methods, Instruments & Computers, 29, 6-14.

Shiffrin, R., & Steyvers, M. (1997). A model for recognition memory: REM - retrieving

effectively from memory. Psychonomic Bulletin & Review, 4, 145-166.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with

discussion). Journal of Royal Statistical Society, Series B, 36, 111-147.

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., & Iverson, G. J. (2004). Assessing model

mimicry using the parametric bootstrap. Journal of Mathematical Psychology, 48, 28-50.

Parameter Space Partitioning 59

Appendix A: The PSP Algorithm in Greater Detail

PSP is a search problem that attempts to answer the question, How does one determine

the range of data patterns a model can generate? The problem is addressed by first adopting a

particular definition of a data pattern. In doing so, one induces an unknown but finite partition on

the parameter space of a model, with each region corresponding to a data pattern. The goal is to

design a search procedure that visits each of these unknown regions at least once. Model

analyses follow from what is learned from the search.

Difficulties Inherent in a Sampling-based Approach

An intuitive approach for finding regions is to sample the parameter space enough times

to ensure that each region is sampled at least once. In this approach, one is effectively randomly

sampling parameter values from some distribution, and then checking to see if they produce a

new region. In a naive, Simple Monte Carlo (SMC), approach, this would be a uniform

distribution over the whole parameter space. As the number of samples drawn increases, this

procedure will uncover all regions of non-zero volume with probability 1. However, as the

dimensionality of the model increases, SMC becomes inefficient quite rapidly. An unreasonably

large number of samples is required for accurate estimation. This problem is commonly referred

to as the curse of dimensionality, and it force us to turn to more efficient search methods. In

essence, this amounts to finding a better probability distribution from which to sample.

One of the major inefficiencies in SMC search is that it takes no account of the fact that

some regions are much larger than others. With the goal of PSP being to visit each search region

at least once, it is inefficient to spend most of one's time in a few big regions, which is what

would happen using a uniform distribution. Thus, an ideal sampling distribution would be one

that assigns equal probability to every region in the partition. In short, a natural way to improve

Parameter Space Partitioning 60

on SMC would be to rescale the parameter space so that all regions are treated as being the same

size. Our PSP algorithm uses a Markov Chain Monte Carlo (MCMC) procedure to perform this

kind of rescaling.

PSP Sampling by MCMC: The Basic Idea

MCMC (Gilks et al, 1996) is a powerful method for sampling a complicated target

distribution, denoted f(2). The assumption is that we know how to calculate the value of f(2) ,

but have no simple method of sampling from it. The Metropolis-Hastings algorithm (see Chib &

Greenberg, 1995) provides such a method. One begins by specifying a jumping distribution

(described more fully below), denoted q(2k|2k-1), which is used to sample candidate points by

“jumping” around in the target distribution. With probability a= f(2k) q(2k|2k-1) / f(2k-1) q(2k-

1|2k), the next sampled point is 2k. However, with probability 1-a, we stay in the same spot (i.e.,

the next point is 2k-1). The ergodicity of the algorithm guarantees that the values of 2 converge

to samples from the target distribution.

Recall that our goal was to specify a target distribution that is uniform over the regions in

parameter space. Obviously it is impossible to specify this distribution directly, since the

partition itself is unknown. However, we can specify a series of approximations to this ideal

distribution that will eventually converge to it, under certain assumptions. At any given point in

the search, the PSP algorithm will have discovered some number of regions. In order to ensure

that each of the discovered regions is treated equally, we run a separate Markov chain employing

the Metropolis-Hastings algorithm for each of these regions, each with a different target

distribution that is uniform on that region (i.e. f(2) % co for some positive constant co if 2

belongs to the region, and f(2) = 0 otherwise). A uniform target distribution is used because we

want to generate a series of accepted points that are evenly sampled over the region. On any

Parameter Space Partitioning 61

given sampling trial, we randomly pick one of these chains from which to draw the next sample

(or systematically sweep through all of them in order to be more efficient), thereby ensuring that

samples are drawn from each of the discovered regions equally often irrespective of size. After

enough trials, this mixture of samples will approximate the target distribution over the regions.

“Growing” the Partition: How PSP finds regions

The procedure outlined above has the rather awkward property of converging to the ideal

target distribution (uniform on the regions) so long as the algorithm has already discovered all

the regions, which rather defeats the point of the search. In order to address this problem, we

need to ensure that the algorithm looks outside of the discovered regions often enough to ensure

that it finds new regions. Our approach to discovering new regions is based on the assumptions

that new regions will be found along the edges of old regions (“contiguity,” see below). It also

helps if adjacent regions are correlated in size. A natural way to find regions that satisfy this

assumption is to adapt the jumping distribution to ensure that the Markov chains jump outside of

these regions at an ideal rate. To understand why this approach succeeds, recall that the target

distribution for a given MCMC routine is uniform on a particular region, so points that lie

outside the region will always be rejected. If the parameter space meets the aforementioned

conditions, all regions will be found.

Another aspect of our approach is that, whenever a new region is encountered, the PSP

algorithm concentrates solely on that region until it has “caught up”' to the pre-existing regions

in terms of the number of samples drawn from it. (If multiple new regions are found, they are

queued until they all catch up.) The reason for this is that the discovery of a new region is

essentially a source of information about a potentially informative area of the parameter space

that has not yet been fully explored. Accordingly, since we wish to treat all regions equally, the

Parameter Space Partitioning 62

algorithm concentrates on a new region until it is on an equal footing with all the regions that

were previously discovered. By deliberately ensuring that the various chains frequently jump

outside their borders, the PSP algorithm is constantly ``looking'' for new regions. In sum, the

algorithm aggressively searches for new regions in the vicinity of a newly discovered region at a

level of granularity that is scaled to the size of the current region.

The Jumping Distribution

As the previous discussion should make clear, the choice of a jumping distribution is

critical to the success of the PSP algorithm, even though it is chosen independently of the target

distribution and serves only as the source from which to generate candidate points. We have

used a uniform distribution over a hypersphere centered on the current location in the parameter

space. The reason for using a hypersphere is that it is widely used in cases where the sampling

region is constrained and no prior information is available about the shape of the region; the

hyperspherical shape of a jumping distribution is least likely to favor a particular shape of the

sampling domain a priori.

In PSP, the size of the jumping distribution (i.e., the radius of the hypersphere) must

adapt to each region. If it is too small, almost all candidate points will be accepted, but every

jump will be so small that it will take too many jumps for an exhaustive search of a new region.

Also, rejected points, by which new regions outside the current region are being discovered, will

rarely be generated. In contrast, if the size of the jumping distribution is too large, candidate

points will be rejected too often, and the granularity of the jumps will not be small enough to

define the edges of a region, which requires a properly sized jumping distribution to succeed.

Unfortunately, unless one is dealing with a normal distribution, no theory exists that defines the

optimal jumping distribution.

Parameter Space Partitioning 63

With the PSP algorithm, we have found it best to adapt the size of the jumping

distribution so that the Markov chain on average accepts 20% to 25 % of the candidate points. In

other words, each chain spends 20-25% of its time moving around inside the region, and the rest

of its time searching for new regions just outside the borders. This range was identified

heuristically by testing the algorithm on real and toy models many times using jumping

distribution that varied widely in size. Two performance measures were used in these tests:

Search speed and the variance of the region’s volume estimates. The goal was to find an

acceptance rate for the jumping distribution that maximized search speed and minimized the

variance of volume estimates.

Formal Description of the PSP Algorithm

Having presented the main concepts underlying PSP, we are now in a position to define

the search algorithm formally.

Initialize. Given 2
1 and Pattern 1, set m = i = 1.

Step 1. Establish qm(A|A) by adapting the size of its hyperspherical domain. Go to step

2.

Step 2. Set i = mod(i, m) + 1. Go to step 3.

Step 3. Sample 2y from qi(A|2i). If 2y generates a new valid pattern, set m = m + 1,

set 2m= 2y, record the new pattern as Pattern m, and then go to step 1. If 2y

generates Pattern i, set 2i= 2y and go to step 2. Otherwise, go to step 2.

In the algorithm, qi(A|2i) denotes the jumping distribution of the region corresponding to

pattern i, centered at 2i. The subscript 1 # i # m indexes the region from which we are currently

sampling, and m represents the number of regions found so far. The algorithm terminates when a

preset number of search trials (i.e., size of an MCMC chain) is obtained for each of the

Parameter Space Partitioning 64

discovered regions. Several analytic methods are available to help determine how many search

trials must be used for the series to converge to the target distribution, and to determine the

number of initial draws, called ‘burn-ins, to discard from the analysis (Cowles & Carlin, 1996;

Gelman, 1996).

Note that the initial conditions (step 0) require an initial parameter set (i.e, point in

parameter space) in order to start the algorithm. These can be provided in one of two ways.

Firstly, we could run a preliminary SMC search to find a parameter set that yields a valid pattern.

Alternatively, if the modeler has good intuitions about which parameter sets generate valid data

patterns, these can be used as the initial starting values.

Assumptions when using PSP

For the PSP algorithm to succeed in finding all data patterns, some assumptions must be met.

They are:

1. Continuity. A data pattern occupies a single continuous region in the parameter space, such

that any two points that produce the pattern can be joined by a path that passes only

through points that produce that same pattern.

2. Contiguity. Regions are contiguous with one another in the sense that any two patterns can

be joined by a path that passes only through points that produce a valid data pattern.

3. Stationarity. Model behavior is stationary in the sense that a given parameter set always

generates a single, fixed data pattern. This means that the boundaries of the regions

are fixed, not varying every time the model generates a data pattern

Among these three conditions, the first two (continuity and contiguity) are key conditions

necessary for the algorithm to perform satisfactorily. That is, the assumption that the region is

continuous is implicit in Step 1, and the contiguity condition is necessary for Step 3. In the

Parameter Space Partitioning 65

following, we discuss how potential violations of all three can be detected and handled if

suspected.

The assumptions of continuity and contiguity are reasonable to make if the computational

model being analyzed is composed of mathematical functions that are known to exhibit these

properties (i.e., the functions are continuous and smooth). If these assumptions are suspected of

being violated (e.g., there are breaks in the range of a parameter), the modeler can check the

consistency of the PSP solution through multiple runs of the algorithm. Estimated center or mean

points and covariance matrices of discovered regions, which are outputted by the algorithm, will

reveal inconsistencies, such as discrepant volume estimates or the number of data patterns found.

Inspection of these values across multiple PSP runs should validate any suspicions and reveal the

nature of the inconsistency, if it exists.

For example, if one suspects the existence of noncontiguous regions in the parameter space,

creating “islands” of data patterns, then there are at least two remedies one can use to ensure PSP

finds them. One is to run the PSP algorithm supplied with different initial starting points. The

modeler, who is most familiar with the behavior of the model, should be able to provide

parameter values that generate typical patterns as well as less typical patterns that could come

from another region in the parameter space. The more parameter values the modeler can provide,

the more likely the algorithm will find the noncontiguous regions, if they are present. Another

method for finding noncontiguous regions is to use SMC. That is, randomly sample the

parameter space to find such islands. Large regions are of most importance because the data

from them could influence PSP performance. Fortunately, size works to the modeler’s advantage

in this circumstance because a reasonably long run of SMC should be able to find at least one

Parameter Space Partitioning 66

point in an island. Once this is done, the PSP algorithm can take over from there and find the

other elements of the partition that belong to the island.

To test this idea, we ran a simulation test in which islands of data patterns were placed in

various regions of the parameter space. The results showed that SMC worked quite well and

found all islands in a reasonable amount of time for models of up to seven dimensions. At higher

dimensions, the islands become such tiny specks in the model’s parameter space that

exponentially longer runs are needed to find them, which can quickly become impractical,

leading to a drop in the success rate. Work is currently under way to devise a more efficient

method for finding islands in higher dimensions.

These same two approaches to discovering noncontiguous regions can be used to identify

discontinuous regions that correspond to the same data pattern. Multiple runs with different

initial points or a preliminary SMC run can help detect such discontinuous regions, again,

especially if they occupy considerable individual volumes. Output analyses using estimated

center points, volumes, and the covariance matrix of discovered regions will reveal their

existence and location through discrepancies across repeated measurements.

The stationarity assumption implies that PSP is not applicable to simulation-based,

probabilistic models (e.g., distributed connectionist models, algorithmic models like REM,

Shiffrin & Steyvers, 1997). For this reason, a probabilistic model can be analyzed by PSP only if

its simulational component can be replaced with a closed-form probability density (or mass)

function, so that data patterns are defined on the space of probability distributions.

Implementation of an algorithm like PSP requires dealing with other issues as well. Many of

these are practical in nature, but have the potential to influence the results. For example, if

neighboring regions are similar in size, there is a good chance of finding them because the

Parameter Space Partitioning 67

probability of sampling from a similarly-sized region is higher than a much smaller region. If

one suspects that tiny regions are nestled between larger ones, then the best course of action is to

increase the sample size so that the likelihood of landing in these tiny regions is greater. The use

of multiple runs, as discussed above, will also help in this regard. Other pragmatic issues include

ensuring the parameter ranges are finite and defining appropriate stopping criteria. To assist the

user in addressing these and related issues when using PSP, Matlab source code of the current

algorithm and future updates, along with a tutorial that covers these topics in detail, can be found

at http://quantrm2.psy.ohio-state.edu/injae/psp.html.

 The preceding discussion is intended to alert potential users of PSP to the issues that must be

considered when applying it. Our sampling-based approach to partitioning the parameter space

makes it a powerful tool for model analysis, but like other numerical methods that work in high

dimensions, including MCMC and non-linear optimization, correct answers are not guaranteed

and cannot be proven in general settings, except for trivial cases. This is why heuristics must be

devised and used during application of the method to combat potential problems. Their purpose

is to minimize anomalous results and ensure that an answer is accurate and trustworthy.

Parameter Space Partitioning 68

Appendix B: A Test of the Accuracy of Volume Estimation

The ability to analyze the volumes of regions is an attractive feature of PSP. Nevertheless, it

must be recognized that it is nontrivial to estimate the volume of an arbitrary multidimensional

object with no closed-form shape and location. Volume estimation was performed in two steps,

both using sampling-based methods. In the first, a region’s border is approximated using an

ellipsoid defined by the estimated mean vector and covariance matrix of the MCMC sample of

the region. If we use the volume of this ellipsoid as a first approximation to the volume of the

region, the result should be biased towards overestimation because an ellipsoid is an "evenly

packed" object in every possible direction, and data patterns are not likely to have similarly

simple, compact shapes. Because of this, the amount of bias should be related to the degree to

which the region is concave (all or part of it). This bias can affect the volume analysis because

the degree of concavity may differ across regions being compared.

The second step of volume estimation adjusts for this bias via the Hit-or-Miss method of

Monte Carlo integration. First, a random sample of size n is drawn from the uniform distribution

over the ellipsoid. Next, the ratio of the number of sample points within the region (i.e., the

“hits”) to the total number of samples, n, is used as a factor of bias correction. This value is

then multiplied by the volume of the ellipsoid to obtain the final volume estimate of the region.

Our expectation in using this two-step procedure was that any bias of underestimation after

adjustment would be negligible compared to the overestimation before adjustment. Nonetheless,

it was necessary to assess the severity of the bias in order to determine how it might limit

analyses using the volume measure.

We therefore designed a very stringent simulation test to assess the accuracy of volume

estimation. A region in a multidimensional space was randomly generated in the following way.

Parameter Space Partitioning 69

On an evenly spaced grid in this space, a cell was selected as a starting point of the region. The

region was then expanded (i.e., grew) into one of its orthogonally neighboring cells in a random

direction, to form a two-celled region. The region was expanded again into a neighboring cell,

adjacent to any part of the region, not just the new cell. This process was repeated until this

randomly-shaped region, R, filled a preset number or cells. Its volume, VR, was estimated by PSP

using the equation:

 V k
n

V dR d
d= +(2) 2 1 2|S|

where Vd is the volume of a d-dimensional sphere of radius 1, S is the covariance matrix

estimated from the MCMC output, and k is the number of sample points in region R out of all n

points in the ellipsoid.

Accuracy was measured by comparing the estimated volumes of two of these arbitrarily-

shaped regions. The ratio of these two volumes was used as the measure of accuracy, for which

the known, true ratio served as the reference point. It is important to understand that it is not

appropriate to compare the estimated volume of a region with its “true” volume. The reason is

that the scale of the parameter space is arbitrary, so the value of a region’s volume is not

meaningful by itself. The value is meaningful only in comparison with another region’s volume,

which is how the measure was used in our three application examples, and how it was used in

this test.

The simulation was carried out using a two-factorial design that yielded a variety of

situations in which PSP’s volume estimation might be used in real applications. The number of

dimensions of the parameter space was the first variable. There were three levels (4, 7, 10),

Parameter Space Partitioning 70

which were chosen to cover a range of models in use in the discipline. The second factor was the

number of cells used to form each of the two randomly-shaped regions (3, 10, 30, 100). All four

levels were completely crossed (e.g., 3&10, 3&30, 3&100) to increase the diversity of possible

shapes being compared, which was meant to further increase the realism and difficulty of the

test. Note that because of the algorithm’s scale-adapting ability, as discussed in Appendix A, it

does not pose an obstacle to compare regions whose volumes comprise a different number of

cells (e.g., 3 vs 30). The two regions were simply scaled to have the same volume so that their

ratio should be one in all comparisons.

Because the region-generation method described above was highly unconstrained (requiring

only continuity between cells), the 10-, 30-, and 100-cell regions had the potential to have

extremely bizarre shapes (e.g., multi-pronged objects in various directions and dimensions). As a

result, conditions 3&30, 3&100, and 10&100 were likely to be the most challenging pairings.

The accuracy of volume estimation was pushed to the limits in these cases.

In each of the pairings across dimensionality, the region-generation and volume-estimation

and -comparison process was repeated 300,000 times. Regions were sampled 60,000 times (for

ellipsoid estimation) and 15,000 times (for the Hit-or-Miss adjustment) on each trial, which is

equivalent to the five multiple runs used in the Merge and TRACE analyses. A subset of the

results, which includes the most difficult cases, is shown in Figure 1A. Each panel shows the

distribution of volume ratio estimates for a given dimensionality, d, across the different cell-

number pairs. The ratio of the larger estimate to the smaller was used, so values greater than one

indicate the size of error in volume comparison.

Across most pairing trials, volume estimation was good, with the peaks of the distributions at

or near 1.0, and the tails falling off sharply so that few values exceeded 1.5, even when d=10.

Parameter Space Partitioning 71

Errors were greatest for the pairings in which cell numbers differed most (3&100, 10&100), and

this tendency was magnified with dimensionality. Nevertheless, the bias is surprisingly modest,

as the 3&100 comparison is a full order of magnitude larger than the 3&10 pairing, yet the

means for the two distributions differ by only 0.163 (1.234 and 1.071, respectively). When this

same test was performed without the Hit-or-Miss adjustment volume-adjustment step, biases

1 1.5 2 2.5
0

2

4

6

8

10

12
x 10

4

1 1.5 2 2.5
0

2

4

6

8

10

12
x 10

4

1 1.5 2 2.5
0

2

4

6

8

10

12
x 10

4

Volume Ratio (Error)

F
re

qu
en

cy
F

re
qu

en
cy

F
re

qu
en

cy

3 & 10
3 & 30
3 & 100
10 & 30
10 & 100

(a) d = 4

(b) d = 7

(c) d = 10

Figure 1A

Parameter Space Partitioning 72

were much more severe, with the peaks of error distributions far beyond 1.0, especially when

the number of dimensions and cells were large.

In sum, the results of this test demonstrate that although volume estimation can be biased, its

robustness across a wide range of region shapes indicates the method is reasonably accurate and

trustworthy most of the time. For the models used in the present study, volume differences

between regions were exponentially large. To view them all on the same graph, we had to plot

them on a log scale (e.g., Figure 8). Thus, it goes without saying that the volume estimation

method is more than sufficiently accurate to use rank-ordered estimates in analyzing the volumes

of parameter regions no matter what their shape. In most instances, comparison on an interval

scale is appropriate.

Parameter Space Partitioning 73

Appendix C: TRACE and Merge Parameters

Parameter TRACE Merge Range

Phoneme excitation V V (0,1)
Phoneme to word excitation V V (0,1)
Phoneme to word inhibition - V (0,1)
Phoneme to target excitation - V (0,1)
Phoneme decay V V (0,1)
Word to target excitation - V (0,1)
Word to phoneme excitation V - (0,1)
Word to word inhibition V V (0,1)
Word decay V V (0,1)
Target to target inhibition - V (0,1)
Target decay - V (0,1)
Target momentum - V (0,1)
Phoneme to phoneme inhibition V - (0,1)
Cycles per input slice V V Fixed

Note: The word-to-word inhibition parameter was used in the indirect inhibition example.

Parameter Space Partitioning 74

Author Notes

Mark A. Pitt, Woojae Kim, Jay I. Myung, Department of Psychology, Ohio State

University. Daniel J. Navarro, Department of Psychology, University of Adelaide.

This work was supported by research grant R01-MH57472 from the National Institute of

Mental Health, National Institute of Health. DJN was also supported by a grant from the Office

of Research at OSU.

Correspondence concerning this article should be addressed to Mark Pitt, Department of

Psychology, Ohio State University, 1885 Neil Avenue, Columbus, OH, 43210. Electronic mail

should be sent to Pitt.2@osu.edu

Parameter Space Partitioning 75

Footnotes

1 Indeed, equating the number of patterns with model complexity is a natural and well-justified

definition of complexity (Myung, Balasubramanian, & Pitt, 2000).

2 Subsequent analyses in this section are restricted to the weak-threshold data, in part because of

the paucity of common patterns. General conclusions do not change.

3 The four corresponding columns of percentages for the stringent threshold were omitted from

Table 6 because the values changed in the same ways as those in the analysis under the weak

threshold.

Parameter Space Partitioning 76

Table 1

 Search efficiency of the PSP algorithm and SMC as a function of the number of parameters and

data patterns. Shown in each cell is the mean proportion of patterns found based on ten

independent runs.

Number of

parameters

Number of patterns to find

20 100 500

PSP SMC PSP SMC PSP SMC

 5 1.00 0.85 1.00 0.78 1.00 0.87

 10 1.00 0.32 1.00 0.23 0.99 0.24

 15 1.00 0.09 1.00 0.02 0.99 0.03

Parameter Space Partitioning 77

Table 2

 The eleven largest data patterns predicted by ALCOVE, shown in descending rank order of

region size (largest to smallest). All are universal patterns.

Ranking Percentage

of VolumePattern Number 1 2 3 4 5 6

1 1 = 2 = 3 = 4 = 5 = 6 39

2 1 = 2 < 3 = 4 = 5 = 6 25

3 2 < 1 < 3 = 4 = 5 = 6 15

4 2 = 1 = 3 = 4 = 5 = 6 9.5

5 1< 2 = 3 = 4 = 5 < 6 5.4

6 1< 2 < 3 = 4 < 5 < 6 2.1

7 1 = 2 = 3 = 4 = 5 < 6 1.7

8 1 < 2 = 3 = 4 < 5 < 6 .84

9 1 < 2 < 3 = 4 = 5 < 6 .63

10 2 < 1 = 3 = 4 = 5 < 6 .54

11 (empirical) 1 < 2 < 3 = 4 = 5 < 6 .52

Parameter Space Partitioning 78

Table 3

 Design of the subcategorical mismatch simulation in Norris et al (2000). Underlined segments denote the sections of the utterances

that were excised and then combined. The condition names describe whether the cues to the final consonant in the first word matched

those of the second word. Reaction time data are from McQueen et al (1999). Response sets in each task in the simulations are shown

on the right. Asterisks denote listeners’ dominant response.

Condition Example Phonemic

categorization

Lexical

Decision

Phonemic

categorization

Lexical Decision

Word /b/ /g/ /z/ /v/ “job” “jog” nonword

1 matching cues job + job 668 340 * *

2 mismatching cues from word jog + job 804 478 * *

3 mismatching cues from

nonword

jov + job 802 470 * *

Nonword /b/ /g/ /z/ /v/ “job” “jog” nonword

4 matching cues joz + joz 706 na * *

5 mismatching cues from word jog + joz 821 na * *

6 mismatching cues from

nonword

jov + joz 794 na * *

Parameter Space Partitioning 79

Table 4

Classification results from the subcategorical mismatch test.

Threshold Pattern overlap

Percentage of

total volume

occupied by valid

patterns

Percentage of

valid volume

occupied by

common patterns

TRACE Merge TRACE Merge

Weak 4% 8% 100% 54%

Stringent 1% 2% 92% 23%

Parameter Space Partitioning 80

Table 5

Factorial combination of the PSP comparisons that were performed to determine whether the

difference bottom-up priority in the two models is what distinguishes their behaviors in the test

of indirect inhibition.

Model

Bottom-up

Priority Rule

TRACE Merge

Yes

No

Parameter Space Partitioning 81

Table 6

 Results from the PSP analyses of Merge and TRACE in the indirect inhibition test.

Bottom-up

Priority Rule

Pattern overlap

Weak Threshold

Percentage of

total volume

occupied by

valid patterns

Percentage of

valid volume

occupied by

common patterns

Pattern overlap

Stringent

Threshold

TRACE Merge TRACE Merge TRACE Merge

no yes 10% 10% 72% 100%

yes no 8% 9% 100% 60%

yes yes 8% 10% 100% 100%

no no 10% 9% 100% 100%

Parameter Space Partitioning 82

Figure Captions

Figure 1. The locations of methods of model analysis and comparison in a two-dimensional

space, defined by the degree to which the method evaluates quantitative vs. qualitative model

performance (horizontal axis) and whether the method focuses on local or global model behavior

(vertical axis).

Figure 2. The partitioned parameter space of two hypothetical two-parameter models in an

experiment with three conditions (A, B, C). M1 generates only three of the possible 12 patterns.

M2 generates nine, indicating it is more complex. See text for further details.

Figure 3. Illustrations of two initial steps in the PSP algorithm. Panel a shows the selection of a

point (black circle) in the parameter space and its accompanying jumping distribution (dashed

circle). The shaded circle represents a sample from within the distribution. Panel b shows a

region in parameter space that the algorithm has mapped out as generating the same data pattern

(enclosed area filled with black dots). The point outside the region (shaded circle), along with a

jumping distribution, denotes the start of a new search process to map out another region in the

parameter space.

Figure 4. Illustration of the two-parameter model used to test the PSP algorithm. The algorithm

had to find the 20 areas outlined in bold (valid patterns). The regions outside of this area

correspond to invalid data patterns. They should be viewed as distracting portions of the

parameter space and have the effect of increasing the difficulty of the search problem.

Parameter Space Partitioning 83

Figure 5. Search efficiency of the PSP algorithm compared to Simple Monte Carlo (random

search). 100 patterns had to be found in a ten parameter model.

Figure 6. The six fundamental category types for the Shepard et al. (1961) task (panel a), and the

learning curves for those types found by Nosofsky et al. (1994) in their replication (panel b). For

visual clarity, the curves in panel b are labeled using arabic numerals rather than the more

conventional roman numerals.

Figure 7. Means and standard errors for the rank of each category type in the data patterns

recovered by PSP. The rankings for universals do not differ strongly from the rankings of the

particulars.

Figure 8. Scatterplot of the log average-volume for each data pattern against the frequency with

which the pattern was recovered. Note that since volume is shown on a logarithmic scale, a few

universals (“major patterns”) occupy the vast majority of the parameter space. The empirical

pattern is indicated by the hollow circle in the upper right corner, the dashed horizontal line

designates the 1% volume threshold, and the dashed vertical line designates the 95% recovery

threshold.

Figure 9. Schematic diagrams of TRACE and Merge.

Figure 10. Similarity of all Merge and TRACE data patterns to the empirical (human) pattern

measured in terms of the number of mismatches to the empirical pattern. Data from the

Parameter Space Partitioning 84

application of the weak and stringent thresholds are shown separately. The dashed line

represents the distribution of mismatches for all patterns in the experimental design.

Figure 11. Proportion of mismatches by Merge and TRACE across the 12 conditions. Condition

number corresponds to that in Table 3. The two-letter sequences are shorthand descriptions of

the cross-spliced stimuli used in the conditions. The lowercase letter denotes the final phoneme

of the first word and the uppercase letter denotes the final phoneme of the second word.

Figure 12. Comparison of Merge and TRACE volumes in the subcategorical mismatch

experiment. Regions in the valid parameter space that correspond to data patterns that occupy

more than 1% of the volume. Each slice represents a different data pattern. Numerals in the

legend specify the mismatch distance of the pattern from the empirical (human) data.

Figure 13. Comparison of Merge and TRACE volumes in the indirect inhibition experiment.

Regions that correspond to data patterns of each model without (No BUP) and with (BUP) the

bottom-up priority rule. Each bar represents a different data pattern, whose shading specifies its

mismatch distance from the empirical pattern (see numerals in legend).

Figure 14. A comparison of model classification response times in the indirect inhibition

experiment. Differences in classification times (cycles) between adjacent experimental

conditions are plotted for each model, with the mabil vs habit comparison on the left, and the

mabil vs habil comparison on the right. In the top graphs, the models were run as originally

formulated (TRACE without BUP, Merge with BUP). In the bottom graphs, TRACE was run

Parameter Space Partitioning 85

with the priority rule and Merge without it.

Figure 15. Distributions of values of three TRACE parameters from 10,000 samples of the

region in parameter space corresponding to the empirical data pattern (without the priority rule).

Parameter names are listed inside each graph.

Parameter Space Partitioning 86

Figure 1

Parameter Space Partitioning 87

Figure 2

Parameter Space Partitioning 88

Figure 3

Parameter Space Partitioning 89

Figure 4

Parameter Space Partitioning 90

Figure 5

Parameter Space Partitioning 91

Figure 6

 (a) (b)

Parameter Space Partitioning 92

Figure 7

0 1 2 3 4 5 6 7
1

1. 5

2

2. 5

3

3. 5

4

4. 5

5

5. 5

6

Ty pe

M
ea

n
ra

nk

U niversa ls

Particulars

Parameter Space Partitioning 93

Figure 8

0 0.1 0.2 0. 3 0.4 0.5 0.6 0.7 0. 8 0.9 1
-40

-35

-30

-25

-20

-15

-10

-5

0

Probability of recov ery

Lo
g

 a
ve

ra
ge

-v
ol

um
e

up
on

 r
ec

ov
er

y

Parameter Space Partitioning 94

Figure 9

job jog

Word

B G Z V

J O B G Z V Phoneme
Input

Speech Input

Phoneme
Decision

TRACE Merge
Word

Speech Input

job jog

O B G Z VJ

Phoneme
Input and
Decision

Excitatory
Inhibitory

Parameter Space Partitioning 95

Figure 10

Parameter Space Partitioning 96

Figure 11

bB gB vB bZ gZ vZ bB gB vB bZ gZ vZ

Pr
op

or
tio

n
of

 M
is

m
at

ch
es

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

TRACE
Merge

Phoneme Identification Lexical Decision

g

1 2 3 4 5 6 1 2 3 4 5 6

Parameter Space Partitioning 97

Figure 12

Common Common Unique

Pr
op

or
tio

n
vo

lu
m

e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

MergeTRACE

0
 1
 2
3
 4
5

Human pattern

Parameter Space Partitioning 98

Figure 13

No BUP BUP No BUP BUP

P
ro

po
rti

on
 o

f v
ol

um
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Trace Merge

0
1
2
4
(1-3)

Human Pattern

.028 .049
.20

.27

Parameter Space Partitioning 99

Figure 14

habit - mabil

Cycle Difference

-10 -8 -6 -4 -2 0 2

Fr
eq

ue
nc

y

0

2000

4000

6000

8000

10000

12000

TRACE-No BUP
Merge-BUP

Cycle Difference

-10 -8 -6 -4 -2 0 2

Fr
eq

ue
nc

y

0

2000

4000

6000

8000

10000

12000

TRACE-BUP
Merge-No BUP

habil - mabil

Cycle Difference

-10 -8 -6 -4 -2 0 2
Fr

eq
ue

nc
y

0

2000

4000

6000

8000

10000

12000

TRACE-No BUP
Merge-BUP

Cycle Difference

-10 -8 -6 -4 -2 0 2

Fr
eq

ue
nc

y

0

2000

4000

6000

8000

10000

12000

TRACE-BUP
Merge-No BUP

Parameter Space Partitioning 100

Figure 15

Phoneme Excitation

Parameter Value

0.1 0.2 0.3 0.4 0.5 0.6

Fr
eq

ue
nc

y

0

500

1000

1500

2000

2500

3000

Phoneme to Word Excitation

Parameter Value

0.1 0.2 0.3 0.4 0.5 0.6

Fr
eq

ue
nc

y

0

500

1000

1500

2000

2500

3000

Phoneme to Phoneme Inhibition

Parameter Value

0.1 0.2 0.3 0.4 0.5 0.6

Fr
eq

ue
nc

y

0

500

1000

1500

2000

2500

3000

