What Are Observables in Hamiltonian
Theories? Testing Definitions with Empirical
Equivalence

J. Brian Pitts
University of Cambridge

November 2, 2016

Abstract

Change seems missing in Hamiltonian General Relativity’s observ-
ables. The typical definition takes observables to have 0 Poisson
bracket with each first-class constraint. Another definition aims to
recover Lagrangian-equivalence: observables have 0 Poisson bracket
with the gauge generator G, a tuned sum of first-class constraints.

FEmpirically equivalent theories have equivalent observables. That
platitude provides a test of definitions using de Broglie’s massive elec-
tromagnetism. The non-gauge “Proca” formulation has no first-class
constraints, so everything is observable. The gauge “Stueckelberg”
formulation has first-class constraints, so observables vary with the
definition. Which satisfies the platitude? The team definition does;
the individual definition does not.

Subsequent work using the gravitational analog has shown that
observables have not a 0 Poisson bracket, but a Lie derivative for the
Poisson bracket with the gauge generator G. The same should hold
for General Relativity, so observables change locally and correspond
to 4-dimensional tensor calculus.

Key words: gauge freedom, constrained Hamiltonian dynamics, theoreti-
cal equivalence, problem of time



1 Artificial Gauge Freedom

It is well known that many important physical theories have considerable de-
scriptive redundancy. The gauge theories for the four fundamental forces—
Maxwell’s electromagnetism, the Yang-Mills theories for the weak and strong
nuclear forces, and GTR-—display this descriptive redundancy. Though
gauge freedom arguably has a deep philosophical significance of some kind,
gauge freedom poses something of a challenge technically. In some contexts,
especially Maxwell’s electromagnetism or its quantum successor, it can be
useful to make a conventional choice of a specific gauge, make calculations in
a convenient fashion, and then show that the results did not depend on that
specific gauge choice (Weinberg 1995, p. 345). Unfortunately this simple
procedure tends to fail for Yang-Mills theories due to the Gribov ambigu-
ity (Sundermeyer 1982; Kaku 1993; Guay 2008); this failure can be relevant
when nonperturbative effects matter. A more elegant, but more abstract
and technically difficult procedure, is to work with a space of physically
distinct configurations by taking gauge equivalence classes; the resulting re-
duced phase space (in a Hamiltonian formalism) or other reduction to the
“true degrees of freedom” might be difficult to find or use explicitly, however.
These sorts of procedures take gauge freedom to be an obstacle to overcome.
Thus Freund, Maheshwari and Schonberg (FMS) discussed how the absence
of gauge freedom in their massive variant of GTR made it easier to quantize
than GTR (Freund, Maheshwari, and Schonberg 1969). One can take the
second-class constraints as identities for eliminating unnecessary field vari-
ables (Sundermeyer 1982; Weinberg 1995).

The pragmatic challenges in dealing with Dirac brackets and the progress
in handling gauge theories have led to a change of viewpoint. More recently
the view has appeared that gauge freedom is an asset and not so much a
liability. Thus technologies have been developed to take theories with con-
straints but no gauge freedom (such as Proca massive electromagnetisms) and
install gauge freedom artificially by adding extra fields and extra symmetries
ensuring that the extra fields make no empirical difference. One might call
such techniques forms of de-Ockhamization; de-Ockhamization turns out to
be more useful scientifically than philosophers might have expected (Quine



1975; Glymour 1977). The ad hoc Stueckelberg trick developed gradually in
the middle of the 20th century (Ruegg and Ruiz-Altaba 2004), and a paper
from the 1970s left the name “Wess-Zumino fields” for certain purposes (Wess
and Zumino 1971; Neto 2006), but the subject of installing artificial gauge
freedom reached a more mature form in the 1980s. What is most important
for present purposes is not an algorithm for installing gauge freedom, but the
result of doing so in massive electromagnetism. Then we will have two (em-
pirically equivalent) formulations of a theory, one with gauge freedom, one
without, or perhaps two empirically equivalent theories. Either classification
will serve my purposes.

2 Proca and Stueckelberg Formulations

The most compact and perspicuous way to begin a technical discussion of
a classical field theory is to exhibit its Lagrangian density, a function of
some fields and their derivatives, such that the space-time integral of the
Lagrangian density £, the “action” S of the theory, satisfies the principle of
least (or perhaps merely stationary) action. The source-free Maxwell field
equations (in manifestly Lorentz-covariant form) follow from a Lagrangian

density of the form
1 v
'C:_ZFMVF“ 5 (1)
where the indices are moved using the Lorentz metric diag(—1,1,1,1) and
F =de5 0,A, — 0,A, is the electromagnetic field strength. For Maxwell’s

theory, the vector potential A, admits the gauge transformation
Ap— A+ 0,0

for an arbitrary function ¢; this transformation makes no observable differ-
ence. This Lagrangian density is manifestly gauge invariant, because it is
built from the gauge-invariant field strength only. For the massive Proca
electromagnetisms, the Lagrangian density is
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Evidently the A? term breaks the gauge symmetry in the massive case.
Whereas Maxwell’s theory has 2 degrees of freedom at each spatial point
(written as 200® degrees of freedom), Proca’s theories have 300® degrees of
freedom.! The extra degree of freedom (at each point), however, is weakly
coupled for small photon masses and so is not readily noticed experimentally.
The treatment of the two using the Dirac-Bergmann constrained dynamics
formalism is straightforward and, in the Proca case, already known (Sunder-
meyer 1982; Gitman and Tyutin 1990). The approximate empirical equiva-
lence between Maxwell’s theory and Proca’s theories for small enough photon
masses is preserved under quantization: massive quantum electrodynamics
(QED) approximates the standard massless QED arbitrarily well (Belinfante
1949; Glauber 1953; Bass and Schrodinger 1955; Stueckelberg 1957; Boul-
ware and Gilbert 1962; Boulware 1970; Goldhaber and Nieto 1971; Slavnov
and Faddeev 1971; Boulware and Deser 1972; Slavnov 1972; Shizuya 1975;
Ruegg and Ruiz-Altaba 2004; Goldhaber and Nieto 2010; Pavel and Per-
vushin 1999). In thermal contexts, where one might expect the third degree
of freedom to be relevant, it decouples in the massless limit, so that the time
to reach equilibrium is inversely related to the photon mass. As the mass
goes to zero, a system takes forever to reach equilibrium; hence equilibrium
thermodynamic quantities based on three field degrees of freedom are physi-
cally irrelevant and unobservable (Bass and Schrédinger 1955; Goldhaber and
Nieto 1971). It follows that in a world with electromagnetism as the only
force, it would be impossible for finite beings to rule out all of the massive
electromagnetic theories empirically, and thus impossible to determine em-
pirically whether gauge freedom was a fundamental feature of the electromag-
netic laws. Thus one has permanent underdetermination between massless
and massive electromagnetism with only approximate empirical equivalence
(Pitts 2011).

Given the starring role playing by Maxwell’s electromagnetism, Yang-

!The reader will observe the importance of distinguishing 2003 from 3003, notwith-
standing rules for Cantorian transfinite arithmetic (Moore 1990). The lesson seems to be
that physical theories involve continuity properties of sets from which cardinality abstracts.
Evidently cardinality does not exhaust the useful notions of “same size” or counting for
infinite collections.



Mills theory, and Einstein’s gravity in contemporary physics, and conse-
quently the non-negligible importance of their massive cousins (whether those
theories are physically viable or not), it seems reasonable to seek a proce-
dure for converting non-gauge formulations into gauge formulations that is
as convenient as possible for massive electromagnetism, massive Yang-Mills
theory, and massive GTR. In the electromagnetic and gravitational cases, it
turns out that the gauge formulations were found in an ad hoc way without
the need for such elaborate conversion algorithms as have appeared in re-
cent decades. In the electromagnetic case, the answer is Stueckelberg’s trick,
which adds the gradient of a new scalar field to the vector field A, in the
mass term; adding such a term in the kinetic term —iFqu " would make
no difference because such a term, like a gauge transformation, has no ef-
fect on F,, = 0,A, — 0, A,. In massive quantum electrodynamics, unitary
is proven using what is in effect the Proca formulation, whereas renormaliz-
ability is proven by exploiting the Stueckelberg formulation having the true
degrees of freedom manifest, but proves renormalizability (getting rid of in-
finities) using the Stueckelberg formulation with gauge freedom (Peskin and
Schroeder 1995, pp. 738, 739)(Weinberg 1996, chapter 21)(Kaku 1993, chap-
ter 10). This commonplace in quantum field theory inspires a somewhat
analogous move in a classical Hamiltonian context: the Proca and Stueckel-
berg formulations are so closely related (at least empirically equivalent, if not
formulations of the same theory) that their observables must be equivalent
as well.

2.1 Non-Gauge Formulation: Proca

For the massive Proca electromagnetism, the Lagrangian density is (Sunder-
meyer 1982, pp. 183-186)
1 2
Ly = —7FuwF" ~ %AHA“.
Here as elsewhere I used the — 4+ ++ signature, letting Greek indices run
from 0 to 3 and Latin indices from 1 to 3. The primary constraint (at each

point) is
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Performing the Legendre transformation to get the canonical Hamiltonian
density (not a redundant term in the constrained dynamics literature (Sun-
dermeyer 1982)) gives

m? m?

1 1
Hpc = WQAQ(] — £p = —(Wa)2 + 7TaA0a + _FijFij + —(Al)z — —(A0)2.
’ 2 ’ 4 2 2
Using the canonical Hamiltonian [ d*xH,. (or the primary Hamiltonian—it
does not matter) to find the time evolution of 7° and to enforce its continued

vanishing gives
[7°9), [ EaHye(2)} = 70 (y) +m*Aoly) ~ 0.

Thus the secondary constraint is 7¢,, +m2Ay everywhere. Demanding that
the secondary constraint be preserved by the time evolution requires the use
of the primary Hamiltonian H,, = H,. + [ d*zv(z)7%(x), where v is a new
Lagrange multiplier. Preserving the secondary constraint (with the help of
an arbitrary test function to smear the Dirac delta functions from the fields’
Poisson brackets as needed) gives

{0 (y) +m*Ag(y), Hyp} = —m*Aiyi +mPv = 0,

fixing v and leaving no arbitrariness in the evolution of the system. The
Poisson brackets of the constraints among themselves are

{WO(I)> ™ +m2A0(y)} = _m25($> y)>

and
{m%, +m2A0(:E), 'y +m2A0(y)} =0.

The vanishing Poisson brackets here vanish without the use of the constraints
themselves. The matrix of Poisson brackets of constraints has non-vanishing
determinant, so the theory is indeed second-class as advertised. Because
there are no first-class constraints, all quantities in the theory have 0 Poisson
bracket with all first-class constraints (of which there are none) and with the
gauge generator (which also doesn’t exist or perhaps is just 0). Consequently,
0

everything is observable—at any rate everything that isn’t 0 as 7" is.



2.2 Gauge Formulation: Stueckelberg

How does the constrained dynamics treatment of the Stueckelberg gauge
formulation of massive electromagnetism differ? The Lagrangian density is?
1 m?

L, = = Ful" = T (A + 0,6)(A" + 0°).

Amusingly, it does not matter if the Stueckelberg scalar ¢ is varied or not.
The reason is that the gauge transformation formula for the Stueckelberg field
¢ is algebraic in the gauge parameters. If ¢ is not varied, then its erstwhile
equation of motion will still follow from the Fuler-Lagrange equation for
A, either using the generalized Bianchi identity or by simply taking the
divergence. But not varying that field would sit oddly with the spirit of the
theory, so let us vary it.
Turning to the Hamiltonian formalism, the primary constraint is
o 0L

pr— :0
LY

as before; the momenta for A; are also unchanged. The new momentum for

the new field ¢ is
0L

8¢70

so the vanishing of the new momentum (part of the BFT boundary condi-

P = = m2A0 + m2¢707

tion) and the vanishing of the new field’s time derivative (part of the new
boundary condition proposed here) are in general incompatible. Performing
the Legendre transformation to get the canonical Hamiltonian density gives
2 2

1 a\2 a 1 m 2 P 2 m2 2
Hoe = () 7" Aot FiFiy+ = (Ai) t5 2 Al tm Aidvi+=5-(0)"

Preserving the primary constraint yields the secondary constraint

7. +P =~ 0.

Preserving the secondary constraint gives neither a fixed Lagrange multi-
plier v nor a tertiary constraint. The primary constraint, being unchanged,

2Tt is sometimes useful to absorb one power of the photon mass m into the Stueckelberg
field ¢, but I have not done so here.



still Poisson-commutes with itself. The new secondary constraint also
Poisson-commutes with itself. Most importantly, {7°(x), 7%, +P(y)} = 0,
{7%=x),7%y)} = 0, and {7, +P(z), 7%, +P(y)} = 0, so the Stueckelberg
formulation is first-class, as advertised. This is the same Poisson bracket
algebra as in the Maxwell theory. One advantage of the Stueckelberg formu-
lation of massive electromagnetism over the Proca formulation is the ease of
taking the massless limit (Zinoviev 2007); the gauge freedom remains, while
the extra degree of freedom decouples as m — 0.

3 Testing Definitions of Observables

These familiar points within high-energy physics now let us do something
of considerable philosophical importance for canonical) quantum gravity,
namely, test definitions of “observables” in constrained Hamiltonian dynam-
ics. Observables are supposed to comprise the real gauge-invariant physi-
cal content of a theory. Remarkably, it has long appeared (going back to
(Bergmann and Goldberg 1955; Anderson 1962)) that the observables in
General Relativity do not change over time or vary with place (Torre 1993).
These claims are derived from the usual definition of observables as quantities
with 0 Poisson bracket with all first-class constraints (Bergmann 1961; Dirac
1964; Henneaux and Teitelboim 1992). That definition, in turn, is largely
due to the widespread idea that each first-class constraint generates a gauge
transformation, a change of description that leaves the world (or at least
the history of the world) unchanged. The implausibility of such results has
led to criticisms of this definition that were not accompanied by systematic
alternatives (Kuchai 1992; Smolin 2001).

A different view was present in some of the earliest works on constrained
Hamiltonian dynamics (Rosenfeld 1930; Anderson and Bergmann 1951), ac-
cording to which a tuned sum of first-class constraints generated a gauge
transformation, which was expected to be equivalent to the familiar La-
grangian transformations. Such as view has reappeared since c¢. 1980
(Mukunda 1980; Castellani 1982; Sugano, Saito, and Kimura 1986; ?; Sug-
ano, Kagraoka, and Kimura 1992; Pons, Salisbury, and Shepley 1997; Shep-
ley, Pons, and Salisbury 2000; Pons and Salisbury 2005). That tuned sum



has been called the “gauge generator” G, which by construction maps so-
lutions of Hamilton’s equations to other solutions of Hamilton’s equations.
Surely observables need not be preserved by transformations that are not
gauge transformations (such as separate first-class transformations in most
theories, according to this view). Instead one defines observables as quan-
tities with 0 Poisson bracket with the gauge generator . This is a looser
requirement, so observables are less scarce.

Which definition is correct? No one can doubt that the manifestly
Lagrangian-equivalent view is permissible. But is it required, or just an
option within a larger realm of good options? According to the separate
first-class constraints view (presently the majority), the richer class of trans-
formations generated by first-class constraints constitute a distinctive Hamil-
tonian sort of gauge freedom, but the view is supposed to be equivalent to
the Lagrangian for “observables” (Henneaux and Teitelboim 1992). But the
entities that are called “observables” depend on whether the individual first-
class constraint view or the team view is held. Clearly it is crucial to let the
mathematics, not stipulation, answer such questions. But can the mathe-
matics be made to speak clearly?

In fact the mathematics can be made to speak decisively, as long as
we agree that empirically equivalent theories have equivalent observables.
That requirement sounds almost too obvious to bother saying, but it does
need saying. If observables need not be equivalent for empirically equivalent
theories, then the word “observables” has become a technical term detached
from the intention of their main inventor, Peter Bergmann (Bergmann 1962,
p. 250). Then it is unclear why one cares about observables. To ensure
that observables are interesting and have some connection to their inventor’s
intention, let us assume that empirically equivalent theories have equivalent
observables.

Because the Proca formulation has no first-class constraints, everything
in the theory (at least everything that isn’t 0) is observable, including the
4-vector potential A, and the non-zero canonical momenta 7¢. (It doesn’t
matter whether one calls 7° observable because it is just 0.) The two defini-
tions agree on this point, because theories with no second-class constraints
trivially satisfy the condition that observables have 0 Poisson bracket with



(1) each first-class constraint (the right criterion on the individual view) and
with (ii) the gauge generator G (the right criterion on the team view).

The less trivial question is what the observables are for the Stueckelberg
formulation. Possibly the gauge generator has not been presented for Stueck-
elberg massive electromagnetism previously. But it should be similar to that
of Maxwell’s theory and should be tuned sum of the first-class constraints.
These constraints were found above to be 7° and 7%, +P ~ 0.

One can take an arbitrary sum of first-class constraints and restrict it so
that it leaves the action invariant (perhaps up to a boundary term). The re-
sult will be the gauge generator G (Pitts 2014b; Pitts 2014a); the requirement
is equivalent to the requirement of preserving Hamilton’s equations (Castel-
lani 1982). The calculation, though somewhat longer than the Maxwell case,
is straightforward. The Poisson bracket of the (smeared) primary constraint
with the canonical Lagrangian [ d®z(n%A; + P¢ — H,.) is just proportional
to the secondary constraint (not identically 0 or a total divergence). The
Poisson bracket of the (smeared) secondary constraint with the canonical
Lagrangian is also proportional to the secondary constraint. Adding the two
terms and demanding cancellation relates the arbitrary smearing functions,
so that one is the negative time derivative of the other. This is all analogous
to the Maxwell case, just with some extra terms (Pitts 2014b). Thus the
gauge generator is

G = /dgiE(—é(t,ZE)ﬂ'O + e[mt,; +P)).

It is very easy to see what the gauge generator G does to all the canonical
momenta: it leaves them alone, because their canonically conjugate coordi-
nates are absent from it. Thus all the (nonzero) momenta are observables
on either definition—both 7* and P. Finding what G does to the canonical
coordinates takes one line each:

Each of these results comes from a single nonzero Poisson bracket.

10



It is obvious by inspection that in the Stueckelberg formulation the quan-
tity A, + 0,¢ plays just the role that A, plays in the Proca formulation. A,
is observable in the Proca formulation, because everything is. Thus one
strongly suspects that A, 4+ 0,¢ should be an observable in the Stueckel-
berg formulation also. One could also say that gauge-fixing ¢ = 0 turns

the Stueckelberg formulation into the Proca formulation; in a Hamilton con-

OHse
or

calculate, not suspect, and see what happens.

text one would impose 0 as well, thus making ¢ vanish. But let us

The nontrivial fundamental Poisson brackets are

{Au(e), 7"(y)} = 6,62, ),
{o(x), P(y)} = 0(x, y);

the rest vanish. The smeared primary constraint by itself, acting on A,+0,¢,
immediately gives

[[ a0 (@), Auly) + Bu0(y)} = ~EW)3L,

which is not 0. The smeared secondary gives

{[ delt,a)la s (2) + P@)], Auly) + Ouly) =~

after a little cancellation and the use of the Anderson-Bergmann velocity
Poisson bracket (Anderson and Bergmann 1951) {q, F'} = %{q, F'} as needed.

For the separate first-class constraints definition of observables, it follows
that A, 4+ 0,¢ is not an observable; either one of these non-zero brackets
makes that point. But for the team view with the gauge generator, one
adds these two expressions and sets & = —¢é. Then they cancel, so A, + J,¢
1s observable according to the Pons-Salisbury-Sundermeyer definition using
the gauge generator G. These verdicts disagree, so one of these definitions
must be wrong, but which? Recalling that empirically equivalent theories
must have equivalent observables, it follows that the Stueckelberg and Proca
observables must be equivalent. That holds for the gauge generator definition
of observables, but fails for the separate first-class constraints view. Thus the
separate first-class constraints view has been falsified by calculation, using

11



the platitude that observables for empirically equivalent formulations are
equivalent.

What one be observed in massive electromagnetism in practice hasn’t
been terribly worrisome, but the resolution is important because it shows that
at least one aspect of the usual paradox-generating definition of observables,
that the constraints generate gauge transformations individually, is mistaken.
Consequently General Relativity and all other gauge theories inherit the same
lesson.? Thus observables in General Relativity must also be sought using the
gauge generator (G, not using separate first-class constraints. The condition
is weaker, so there might be more observables. It is, of course, possible that
external symmetries behave differently from internal symmetries (Kuchar
1992; Barbour and Foster 2008; Pitts 2014a). Thus one should entertain the
possibility that an adequate definition for General Relativity looks different,
not regarding the team ws. individual question, but on the issue of 0 Poisson
bracket (invariance) vs. some weaker condition yielding mere covariance.
Such matters can also be tested by calculation with suitable examples.

4 Appendix

Subsequent work using the gravitational analog has shown that observables
have not a 0 Poisson bracket, but a Lie derivative for the Poisson bracket
with the gauge generator G. The same should hold for General Relativity, so
observables change locally and correspond to 4-dimensional tensor calculus.
Thus requiring equivalent observables for empirically equivalent formulations
helps to address the problem of time. This work is described elsewhere (Pitts
2016).

3Special cases of certain theory formulations in which each first-class constraint does
generate a gauge transformation, because there are no secondary first-class constraints
and hence no teammates available, should not detain us. The standard formulations of
Maxwell, Yang-Mills, and General Relativity are certainly not in that category.

12
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