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Abstract

The questions of what represents space-time in GR, the status
of gravitational energy, the substantivalist-relationalist issue, and the
(non-)exceptional status of gravity are interrelated. If space-time
has energy-momentum, then space-time is substantival. Two extant
ways to avoid the substantivalist conclusion deny that the energy-
bearing metric is part of space-time or deny that gravitational energy
exists. Feynman linked doubts about gravitational energy to GR-
exceptionalism, as do Curiel and Duerr; particle physics egalitarianism
encourages realism about gravitational energy.

In that spirit, this essay proposes a third possible view about space-
time, one involving a particle physics-inspired non-perturbative split
that characterizes space-time with a constant background matriz (not
a metric tensor), a sort of vacuum value, thus avoiding the inference
from gravitational energy to substantivalism. On this proposal, space-
time is (M, n), where n = diag(—1,1,1,1) is a spatio-temporally con-
stant numerical signature matrix, a matrix already used in GR with
spinors. The gravitational potential, to which any gravitational en-
ergy can be ascribed, is g, () —n (up to field redefinitions), an affine
geometric object with a tensorial Lie derivative and a vanishing co-
variant derivative. This non-perturbative split permits strong fields,
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arbitrary coordinates, and arbitrary topology, and hence is pure GR
by almost any standard. This razor-thin background, unlike more fa-
miliar backgrounds (e.g., Rosen’s flat metric tensor field, Rosenfeld
and Mgller’s orthonormal tetrad, and Sorkin’s background connec-
tion), involves no extra gauge freedom and so lacks their obscurities
and carpet lump-moving.

After a discussion of Curiel’s GR exceptionalist denial of the local-
izability of gravitational energy and his rejection of energy conserva-
tion, the two traditional objections to pseudotensors, coordinate de-
pendence and nonuniqueness, are explored. Both objections are incon-
clusive and getting weaker. A literal interpretation involving infinitely
many energies corresponding by Noether’s first theorem to the infi-
nite symmetries of the action (or laws) largely answers Schrodinger’s
false-negative coordinate dependence problem. Bauer’s false-positive
objection has multiple answers. Non-uniqueness might be handled by
Nester et al.’s finding physical meaning in multiplicity in relation to
boundary conditions, by an optimal candidate, or by Bergmann’s iden-
tifying the non-uniqueness and coordinate dependence ambiguities as
one.

1 Four Inter-related Questions

This essay considers four inter-related questions that are not usually all ex-
plicitly considered simultaneously, but which have some subtle connections
worth uncovering.

e What represents space-time in GR?

e What is the status of gravitational energy(s) in GR?

e Substantivalism wvs. relationism: is space-time a substance?
e [s gravity exceptional, or just another field?

The first and third questions have been staples in philosophy for decades.
Gravitational energy, controversial in physics since 1918, has become a fash-
ionable topic in philosophy within the last decade. The fourth question, GR
exceptionalism vs. particle physics egalitarianism, has rarely been discussed
in philosophy or history (but see (Kaiser, 1998; Pitts, 2017; Pitts, 2020b)),
and is not often discussed explicitly in physics either, but disagreement on



it lies near the core of rival research programs in quantum gravity (Rovelli,
2002; Brink, 2006; Smolin, 2006, chapter 6). Given that particle physics
egalitarians rarely have been interested in philosophy until recently—the slo-
gan “shut up and calculate” and Weinberg’s chapter “Against Philosophy”
(Weinberg, 1992) come to mind—there might be some low-hanging fruit to
pick in applying the egalitarian perspective in relation to these other issues.
Feynman linked skepticism about gravitational energy to GR exceptionalism
(Feynman et al., 1995, pp. 219, 220). Curiel’s recent work, discussed be-
low, also suggests this connection from the opposite direction (Curiel, 2019).
Duerr also makes this connection (Duerr, 2021).

This essay proposes a particle physics-inspired answer to the question of
what is space-time in GR, relates that answer to (anti)realism about grav-
itational energy, and provides another way to make gravitational energy(s)
safe for relationism. This last conclusion coheres with some themes of the
dynamical view of space-time of Brown and (sometimes) Pooley (Brown and
Pooley, 2006; Brown, 2005). Previously I have found support in particle
physics for at least some of Brown’s project vis-a-vis space-time realist cri-
tiques (Freund et al., 1969; Pitts, 2011; Pitts, 2016¢; Pitts, 2019). The result
seems to be a coherent package of views that has not previously been seen
clearly as a whole and in detail, and perhaps illustrates the fruitfulness of
overcoming GR wvs. particle physics divide—a divide that philosophers and
historians have inherited, along with a GR exceptionalist bias, largely by
default (but see (Menon, 2021; Salimkhani, 2020)).

2 What Represents Space-time in GR?

The question of what represents space-time in GR has been a standard topic
in the philosophy since the 1980s. One obvious answer is (M, g, ), the man-
ifold with the metric. It is tempting, at least to philosophers, to think that
one first has a manifold with identifiable points, and then lays a metric on
top of it, a task that leaves freedom of choice. That path quickly leads to
the hole argument, however, and is not required (Einstein, 1961, p. 155)
(Pitts, 2012; Menon, 2019). (If the points have some sort of essence that re-
stricts the process of laying down the metric (Maudlin, 1989), that is another
matter.) Another influential answer to the question is the bare manifold M
(Earman and Norton, 1987). A bare manifold presumably does not get its
point individuation using promissory notes to be cashed out in terms of fields



(g, or otherwise) to be defined upon it. Point individuation appears to be
primitive, and the hole argument lurks again. It is easy to feel dissatisfied,
but harder to find an alternative. Iftime and Stachel’s proposal to define
space-time by projection down from a bundle deserves consideration (Iftime
and Stachel, 2006), as do old and new efforts to avoid individuals (Dasgupta,
2011).

Gravitational energy plays a key role in a foundational influential paper on
the hole argument (Earman and Norton, 1987), motivating the classification
of the metric as part of the contents of space-time, as akin to matter (not,
of course, in the technical GR sense of matter as non-gravitational).

The metric tensor now incorporates the gravitational field and
thus, like other physical fields, carries energy and momentum,
whose density is represented by the gravitational field stress-
energy pseudo-tensor.. .. [which| forces its classification as part
of the contents of spacetime. (Earman and Norton, 1987)

This is surprising and perhaps too violent, one might think: should not
one be able to think of space-time in the absence of gravity, perhaps as
something flat or trivial and in any case not energy-bearing, while energy-
bearing gravitational waves are ascribed to gravity and not to space-time—
to contents and not to the container, as it were? Earman and Norton have
considered that idea.

We might consider dividing the metric into an unperturbed back-
ground and a perturbing wave in the hope that the latter alone
can be classified as contained in spacetime. This move fails since
there is no non-arbitrary way of effecting this division of the met-
ric. (Earman and Norton, 1987)

Thus the claim that no principled split can be made plays a crucial role in
forcing all of the metric, not just some energetic perturbation from triviality
(flatness?), out of the space-time category and into the material category
for Earman and Norton. If a sufficiently principled split exists, then one
might have an intermediate option between space-time as the manifold and
space-time and the manifold with the metric.

The claimed non-existence of a non-arbitrary split into background and
perturbation may suggest GR exceptionalist sympathies: distaste for back-
ground structures, for things that arguably act without being acted upon,



along with a strong inductive claim over the trajectory of scientific progress.
On the other hand, the background structures that one typically sees put for-
ward as potentially formalisms to be interpreted (as opposed to mere math-
ematical conveniences), such as a background metric (Rosen, 1940) or an
orthonormal basis (Mgller, 1964) or even a background connection (Sorkin,
1988), have the disadvantage of introducing mathematical structure over and
above what g,, requires (whether g, is primitive or as derived), along with
a new gauge ‘group’ (perhaps a Brandt groupoid) denying quantitative sig-
nificance to (most of) this extra structure and (in the case of a background
metric or connection) bearing a striking resemblance to the coordinate free-
dom of GR. Such background structures were proposed to improve the status
of gravitational energy in GR, but the Pickwickian character of the improve-
ment, however, was not always adequately recognized: the advertised tenso-
rial (coordinate-covariant) quality of the result was achieved at the expense
of a less advertised new, comparably bad gauge dependence. What the right
hand gives, the left takes away (Band, 1942; Pinto-Neto and Trajtenberg,
2000). With gravitational energy, the lump in the carpet has only been
moved from coordinate dependence to gauge dependence.

This paper, following a trajectory (Pitts, 2010; Pitts, 2016a), avoids
such traditional background structures and seeks a middle path. The back-
ground can be taken to be the constant scalar numerical matrix n =4
diag(—1,1,1,1) (up to trivial notational variants such as diag(1, —1,—1,—1)
or diag(—1,—1,—1,1)). This matrix encodes a sort of ‘vacuum’ value for
space-time geometry, what remains (it is proposed) when not only all the
fields standardly regarded as material are abstracted away, but also the grav-
itational field (in a sense to be made clearer). In special relativistic theories
without gravity, or even with gravity as described by certain theories (such as
massive scalar gravity (Pitts, 2011; Pitts, 2016¢)), diag(—1,1,1,1) encodes
the space-time geometry in the absence of gravity, as expressed in coordi-
nates that are as good as any—I avoid the word “preferred” advisedly. In
General Relativity this matrix often appears in weak-field expansions of GR
and, more relevantly, in particle physics literature on quantum gravity in the
tradition of covariant perturbation theory.! Neither the matrix’s constancy

!That covariant perturbation theory as a means of quantization did not work due to
nonrenormalizability (infinities not removable without an infinite number of additional
parameters) is not very relevant. Moreover, after its apparent demise in the 1970s, a
possible revival in supergravity emerged (Bern et al., 2007; Bern et al., 2009). In any case
one gets a quite satisfactory effective field theory (Donoghue, 2012).



nor its being a scalar obviously makes its being a physical field problematic,
unless perhaps one objects to things that ‘act without being acted upon’
(Pitts, 2006; Pooley, 2013). This same matrix also standardly appears in
GR with spinors, where no one seems to find it objectionable or thinks that
it radically changes the character of the theory relative to tensorial mat-
ter fields. (In James L. Anderson’s analysis of absolute objects as amended
and extended by Thorne, Lee, and Lightman, 7 is a confined object, not an
absolute object (Thorne et al., 1973): it does not constitute the basis of a
faithful representation of the manifold mapping group, or perhaps one should
say, of coordinate transformations.) From these angles, n as a background
representing space-time in GR is neither very novel nor very objectionable.
From a particle physics egalitarian perspective, i plays a somewhat sim-
ilar role to what g¢,, plays in a GR-exceptionalist view. In the latter, one
can imagine abstracting away everything material (i.e., everything besides
guv), and then seek to ‘build’ a Lagrangian by coupling matter to g, so
as to give a dynamics to space-time and to matter coupled to space-time
(guv); the Lagrangian should be a scalar density (up to a coordinate di-
vergence) under coordinate transformations to give tensorial Euler-Lagrange
equations when all fields are varied. For the particle physics egalitarian, the
matter-like aspects of gravity (having energy-momentum, etc., also empha-
sized by Rovelli, no particle physics egalitarian (Rovelli, 1997, p. 193)) call
for abstracting away one more field after the GR-exceptionalist stops: one
abstracts away the gravitational potential out of g, leaving only 7. 7, being
numerically constant, does not individuate space-time points; one has mul-
tiplicity without identity. (There might be an interesting resonance with the
thin substantivalism of Dasgupta (Dasgupta, 2011) and the Ramsification
entertained briefly by Maudlin (Maudlin, 1989).) It might help to think of
the world as akin to some device held together with screws, in which almost
every piece (all but one or two, analogous to the matter fields as listed by the
GR exceptionalist) is screwed into some base in multiple places (analogous
to coupling to g,,). The particle physics egalitarian claims that this base
(analogous to g, ) is itself composite: the gravitational potential 7, is one
more matter-like field that can be unscrewed from the true base, which (to
continue the analogy) is the matrix n = diag(—1, 1,1, 1). Detailed features of
the gravitational potential explain why it couples to everything in a universal
way—why the other parts/fields ‘screw into’ both the gravitational potential
and the base in the same fashion. If one imagines (re)assembling the world
(or in any case its laws) by devising a suitable Lagrangian density, one has

6



the space-time background n = diag(—1,1,1,1), the gravitational potential
Yuw, and the (non-gravitational) matter fields as ingredients and needs to
construct a Lagrangian density invariant (up to a divergence) under coor-
dinate transformations. Why seek a Lagrangian density of that sort given
these ingredients? The particle physics spin 2 derivations of Einstein’s equa-
tions (with citations in (Duff, 1975; Pitts, 2016a; Salimkhani, 2020)) provide
rather compelling guidance from very weak premises about avoiding violent
instability, locality, (at least) Poincaré invariance, and the empirical fact of
the bending of light.

The proposal about the gravitational potential overlaps a bit with a foot-
note by Pooley, who also raises several important challenges to taking the
idea seriously. His view is that the best candidate (such as it is) for being
the “gravitational field” is the

deviation of the metric from flatness: hgy, where gop = Nap + hap-
That this split is not precisely defined and does not correspond
to anything fundamental in classical GR underscores the point
that, in GR, talk of the “gravitational field” is at best unhelp-
ful and at worst confused. The distinction between background
geometry and the graviton modes of the quantum field propagat-
ing against that geometry is fundamental to perturbative string
theory, but this is a feature that one might hope will not survive
in a more fundamental “background-independent” formulation.
(Pooley, 2013, footnote 34, p. 539)*

In what sense is this split not precisely defined? Two senses come to mind.
One sense, at least if 7,, is intended to be a flat metric tensor (not a nu-
merical matrix), is the extra gauge freedom that arises in relating the two
metrics (Grishchuk et al., 1984), a gauge freedom that takes over much of the
interesting role that coordinate transformations play in orthodox GR, thus
separating the freedom to use spherical coordinates from notions of inertia
and the like. Moving the lump in the carpet does not flatten the carpet,
however; hence I propose not a flat metric tensor, but a numerical matrix
diag(—1,1,1,1), leaving the coordinate freedom of GR to play its classic
role. A second sense in which the deviation of the metric from flatness is
not precisely defined involves field redefinitions. Why should we take the
gravitational field (though I use the term “potential”) to be the deviation

2The referee provided a timely reminder of this passage.



Gab — Nap, and not ¢g®® — n?® (suppressing factors involving Newton’s con-
stant)? There is no compelling reason. Indeed the freedom to define the
gravitational potential in different ways, many of them rather exotic (such
as arbitrary powers of the metric, its inverse, or densitized relatives thereof—
and beyond!) has been used as a resource to derive both Einstein’s equations
and infinitely many massive variants thereof (Ogievetski; and Polubarinov,
1965; Freund et al., 1969; Pitts and Schieve, 2007; Pitts, 2016d) and to
render the GR Lagrangian polynomial using either (—g)% g — (—77)15_877“”
or (—g)_%gw, - (—77)‘%77“,, (DeWitt, 1967). Ambiguity, however, is also
present to some degree in geometrical GR. Why should we take the field
variable to the metric g,,,* rather than g"” (as one occasionally sees), or
more plausibly g" (= \/—gg""), which has pride of place in writing wave
equations (Papapetrou, 1948; Bruhat, 1962) and simplifies the Lagrangian
(Goldberg, 1958)7 Hence the problem of field redefinitions arises also in GR.
Admittedly the various choices seem more natural and more closely related
through natural matrix operations such as inverse and determinant, as op-
posed to power series expansions of (say) (—g)Zg" — (—n)2n™ in terms of
Gy — My or vice versa. (I use bimetric notation, but the simplification to
n = diag(—1,1,1,1) is obvious.) Viewing field redefinitions as choices of
coordinates on a fiber might be an elegant approach for either the geomet-
rical or the perturbative approach. The geometrical view also might render
more natural the Riemannian signature of g, as a law, though perhaps nuts-
and-bolts (quantum?) physics would prevent degeneracy or signature change
from a particle physics standpoint. On the other hand, it remains unclear
on what grounds one should or even can postulate ‘equal-time’ or space-like
commutation relations without a background notion of causality (Pitts and
Schieve, 2004). Finally, while the gravitational potential is uniquely defined
only up to field redefinitions, the background matrix 7 is unique (up to a
conventional overall sign and a conventional choice to put ‘time’, i.e., the
sign that differs from the other three, first or last). Hence the ambiguity in

3The abstract index notation, often associated with lower-case Latin letters for four-
dimensional quantities, has been claimed to have “all the advantages of the component
notation” while avoiding the disadvantage of obscuring the distinction between tensorial
equations and equations for their components in some particular basis (perhaps adapted to
the symmetries of some problem) (Wald, 1984, p. 24). But what of expressive adequacy?
Non-integral weight densities in the abstract index notation appear to be an unresolved
problem—to say nothing of nonintegral powers of the metric (Ogievetsky and Polubarinov,
1965)—which in turn tends to restrict what can be thought.



defining the gravitational potential does not infect space-time.

While one might see the appeal of a background of constant curvature
(thus admitting a cosmological constant A), it might seem needlessly re-
strictive to specify a flat background. A background of constant curvature,
however, apparently requires either explicit dependence on space-time coordi-
nates (unlike diag(—1,1, 1, 1,)), which seems arbitrary, patchy (not attractive
globally), and at best ugly, or the use of tensor calculus with a background
metric tensor and consequent duplication of the gauge freedom. Is represent-
ing space-time with the matrix diag(—1,1,1,1) hence too fragile? Perhaps
it isn’t, because Gia Dvali and collaborators argue that the need to accom-
modate theories requiring S-matrix formulations, including string theory,
mandates a flat background, not one of constant (positive) curvature (Dvali
and Gomez, 2016; Dvali, 2020). Hence there are modern independent plau-
sible physical reasons for thinking that flat space-time plays a fundamental
role. If so, why shouldn’t gravitational energy refer to it somehow?

3 Space-time Energy Implies Substantivalism?

Plausibly, if space-time has energy-momentum, space-time is substantival
(Earman and Norton, 1987; Hoefer, 2000). This claim has been shared by
Earman and Norton, who affirm gravitational energy’s reality (but not local-
izability) and seem prima facie attracted to substantivalism (while encoun-
tering objections to it), and Hoefer, who denies gravitational energy and sees
relationism-friendliness as an important benefit. Earman & Norton deny that
guw is part of space-time to avoid space-time energy.

[GR] has made most compelling the identification of the bare
manifold with spacetime. For in that theory geometric struc-
tures, such as the metric tensor, are clearly physical fields in
spacetime. [footnote suppressed] The metric tensor now incorpo-
rates the gravitational field and thus, like other physical fields,
carries energy and momentum. . .in a way that forces its classifi-
cation as part of the contents of spacetime. (Earman and Norton,
1987)

In partial contrast, Hoefer denies gravitational energy and saves relationism:

But if 7% = 0 ‘empty space’ can carry genuine energy-
momentum of the gravitational field, then it (the empty space)

9



should be counted as real also, and spacetime itself as represented
by ¢ should be considered substantial and real. (Hoefer, 2000)
If empty spacetime need not be thought to possess genuine energy,

at least one reason for considering it to be a substance is deflected.
(Hoefer, 2000)

While granting the inference from space-time energy to substantivalism, the
view proposed here affirms gravitational energy, while denying that gravi-
tational energy is space-time energy. Thus one finds another way to avoid
an argument for substantivalism from gravitational energy. One should con-
sider, however, whether 1 savors of absolute space(time) before settling on a
verdict about substantivalism (c.f. (Brown and Pooley, 2006)).

It should be noted that the inference from space-time energy to space-
time substantivalism is intended to flow in only one direction. While authors
of diverse views (noted above) seem to accept that space-time energy is or
would be sufficient for space-time realism, there is no claim of a necessary
condition. Duerr articulates a view in which space-time is real without space-
time energy, because for Duerr (like Hoefer), gravitational energy does not
exist (Duerr, 2020).

4 Particle Physics Egalitarianism vs. GR Ex-
ceptionalism

Partly by default the philosophy of space & time since the late 1970s has
leaned toward GR exceptionalism. Given the indifference (at best) of many
particle physicists to philosophy, the only physicists who seemed relevant
must have been general relativists. But the very community identification
of general relativists—the sign on the door indicates that one is attached to
a particular theory of a particular force, akin to identifying with Weberian
electrodynamics—reflects and inculcates GR exceptionalism. GR exception-
alism vs. particle physics egalitarianism is rarely explicitly debated (but see
(Feynman et al., 1995; Duff, 1975; Kaiser, 1998; Rovelli, 2002; Smolin, 2006;
Brink, 2006; Pitts, 2017; Pitts, 2020b)), but is clearly implicit in decades-
long research programs in quantum gravity. Thus canonical quantum gravity
was not merely intended by GR exceptionalists to use Hamiltonian methods
to merge quantum mechanics and GR, but also to leave ample room for rev-
olutionary and nonperturbative consequences not expected or even accom-
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modated using particle physicists’ perturbative techniques (Salisbury, 2020).
This section aims both to illustrate the two attitudes and to indicate how the
particle physics egalitarian attitude might affect discussions of gravitational
energy.

Feynman taught a course at CalTech in 1962-3 in which he approached
gravity as just another physical field, assumed like the others a priori except
where empirical facts implied a distinction.

...[M]eson theorists ...have gotten used to the idea of fields,
so that it is not hard for them to conceive that the universe
is made up of twenty-nine or thirty-one other fields all in one
grand equation; the phenomena of gravitation add another such
field to the pot, it is a new field which was left out of previous
considerations, and it is only one of the thirty or so; explaining
gravitation therefore amounts to explaining three percent of the
total number of known fields. (Feynman et al., 1995, p. 2)

Feynman, like various other authors (Gupta, 1954; Kraichnan, 1955; Wein-
berg, 1964; Deser, 1970; Pitts and Schieve, 2001; Pitts, 2016a), showed how
to derive Einstein’s equations with considerable rigor from very weak, plau-
sible field theoretic postulates and a few empirical facts (such as the bending
of light). The rigor greatly exceeds, say, Einstein’s arguments about rotation
and misconceptions about conservation laws in his process of discovery (Pitts,
2016b). One might expect that many physicists over decades would do better
than one physicist in a few years having to invent many of the relevant tools.
But the “spin 2”7 derivations of Einstein’s equations still seem not to get the
attention that they deserve in philosophy, at least until recently (Salimkhani,
2020). It was noticed recently that the spin 2 derivations make crucial use of a
form of Noether’s converse Hilbertian assertion, that the energy-momentum
complex’s being the sum of a term vanishing with the field equations and
a term with automatically vanishing coordinate divergence implies general
covariance (Pitts, 2016a).

Feynman explained later how his particle physics egalitarian views af-
fected the debate on gravitational energy.

What is the power radiated by such a [gravitational] wave? There
are a great many people who worry needlessly at this question, be-
cause of a perennial prejudice that gravitation is somehow myste-
rious and different—they feel that it might be that gravity waves
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carry no energy at all. We can definitely show that they can in-
deed heat up a wall, so there is no question as to their energy con-
tent. The situation is exactly analogous to electrodynamics. . ..
(Feynman et al., 1995, pp. 219, 220)

Feynman seems never to have given any very definite response to the usual
worries about gravitational energy, but he seems committed to the existence
of gravitational energy and to quasi-localization avant la lettre: heating up
a wall implies that energy can be localized into small regions.

Curiel’s recent work underlines the connection between GR exception-
alism and doubts about gravitational energy. As will be discussed below,
his GR exceptionalism motivates giving up on the idea of conservation alto-
gether (Curiel, 2019). On the other hand, one might reconcile realism about
gravitational energy with general relativist sympathies following Rovelli:

A strong burst of gravitational waves could come from the sky
and knock down the rock of Gibraltar, precisely as a strong burst
of electromagnetic radiation could. Why is the first “matter” and
the second “space”? Why should we regard the second burst as
ontologically different from the second? (Rovelli, 1997, p. 193)

His book elaborates on matter-like aspects of gravity (Rovelli, 2004, p. 77).

5 Three Questions about Gravitational En-
ergy and a Neglected Option?

Recalling the views of Earman & Norton and of Hoefer on gravitational
energy, one might consider three questions. First, is gravitational energy real?
Second, should the (formal) gravitational (pseudo-?)energy be attributed just
to gu, not to something else in addition or instead? Third, is g, part of
what represents space-time? Four interesting sets of answers (perhaps among
others) are:

e Gravitational energy is real and attributable just to g,,, which is part
of space-time. (Yes, yes, and yes)

e Gravitational energy is real and attributable just to g,,, but g, is not
part of space-time; only M is (Earman and Norton, 1987). (Yes, yes
and no)
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e Gravitational energy is not real, but gravitational pseudo-energy is at-
tributable just to g, which is part of space-time (Hoefer, 2000). (No,
yes and yes)

e Gravitational energy is real, but it is attributable to the gravitational
field and not to g,,. g is a composite entity made partly of non-
energetic space-time ingredient(s) and partly of the physical-material
gravitational field. (Yes, no and no)

Something like the fourth view was contemplated briefly by Earman &
Norton; has the view been set aside deservedly? Let us recall:

We might consider dividing the metric into an unperturbed back-
ground and a perturbing wave in the hope that the latter alone
can be classified as contained in spacetime. This move fails since
there is no non-arbitrary way of effecting this division of the met-
ric. (Earman and Norton, 1987)

While they do not provide an argument there, arguments had been given
before and are provided elsewhere by Norton. A flat background metric
introduces a whole new gauge ‘group’ changing the flat background tensor
while leaving the effective curved metric alone (Band, 1942; Grishchuk et al.,
1984; Norton, 1994; Pinto-Neto and Trajtenberg, 2000; Petrov and Pitts,
2019). Even specifying a flat background metric isn’t nearly enough to re-
move arbitrariness. But this paper proposes not a background metric tensor,
but a scalar matrix diag(—1, 1,1, 1), the same at every point in every coordi-
nate system—the matrix to which one could reduce the components of a flat
background metric by adapting coordinates. The matrix diag(—1,1,1,1),
however, is just Os, 1s, and a —1. Absent a cosmological constant, this split
crops up in weak field problems in GR and in perturbative treatments of
gravity more generally, classical or quantum. This razor-thin background
provides most benefits of a background metric or connection, with hardly
any of the disadvantages. One has pure GR, or something extremely close.
One can make sense of the background and the gravitational potential by re-
calling some lesser-known parts of the classical theory of geometric objects.

6 From Tensors to Geometric Objects

Differential geometry generalized from tensors to “geometric objects” (Nijen-
huis, 1952; Schouten, 1954; Yano, 1955; Aczél and Gotab, 1960; Anderson,
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1967; Friedman, 1973; Pitts, 2006; Pitts, 2012; Read, 2022), a literature
that made interesting progress into the 1960s. While more general notions
existed, the basic idea was to generalize the tensor transformation law to
any local algebraic transformation law built using derivatives of one coordi-
nate system with respect to another. The transformation rule could involve
higher derivatives (seen already with Christoffel symbols), be affine rather
than linear (also seen with Christoffel symbols), or even be nonlinear. Ap-
proximately zero interesting examples of nonlinear or even affine geometric
objects (except the connection or its projective and trace/volume pieces)
were presented, however. That was historically contingent, because particle
physicists were reinventing largely the same ideas at the same time (affine
and nonlinear group realizations) and applying them to spinors in space-time
(Seligman [DeWitt], 1949; DeWitt, 1950; Ogievetsky and Polubarinov, 1965;
Ogievetskii and Polubarinov, 1965; Pitts, 2012). For present purposes, the
relevant post-tensorial geometric objects are affine with only first derivatives.

I suggest that the main culprit with the background structures tradition-
ally used, is not the flatness or the background character, but the tensor char-
acter. How about a constant scalar background matrix n = diag(—1,1,1,1)7
This quantity has been common in covariant perturbation theory (Gupta,
1952; Feynman, 1963; Ogievetsky and Polubarinov, 1965; Ogievetski; and
Polubarinov, 1965; Veltman, 1981).* To consider a scalar background ma-
trix in differential geometry, one can explore transformation rules beyond

O = f(aaf;:/)O (Tashiro, 1950; Nijenhuis, 1952; Yano, 1955; Aczél and Gotab,
1960; Szybiak, 1963). Affine geometric objects have some nice properties:
non-tensorial behavior gets excised various contexts. The tensorial Lie deriva-
tive of a connection is a somewhat familiar but complicated example with
second derivatives. A less familiar example is a tensor (or tensor density)
minus some constant(s), perhaps such as a ‘vacuum’ value. Splitting g, into
a background matrix 7 and a gravitational potential +,, (or building it from
them, depending on what one takes to be primitive) provides a physically
interesting example: the gravitational potential 7,,. One could as easily
put the indices up as down, and/or give any density weight, integral or not
(Ogievetsky and Polubarinov, 1965; Pitts, 2016d).

Assuming a metric g,,, we can define a gravitational potential (or “per-

4Actually much of that work used for the background matrix I = diag(1,1,1,1) and
x* = ict, which is even more striking, but a bridge too far, restricting the coordinates or

admitting only a clumsy generalization.
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turbation,” though there is no assumption of smallness) by subtracting 7, a
sort of vacuum value, not necessarily in the QFT sense, but the default value
when nothing interesting is happening and descriptive simplicity is employed.
This procedure is routine in testing for stability, whether in the Higgs mech-
anism or in applied mathematics (Khazin and Shnol, 1991). Choosing the
normalization to give the Lagrangian standard (non-geometric) dimension-
ality and depend on the gravitational potential in the standard way, one has
Y = (g —n)/V32wG (or the like under algebraic field redefinitions involv-
ing g" —n, etc., reasonable choices agreeing in their lowest order traceless
parts in approximately Cartesian coordinates given suitable normalization
(Ogievetsky and Polubarinov, 1965)). I (usually) avoid writing n as 7,, to
avoid the notational suggestion that 7 is a tensor; it is a matrix-valued scalar.

Before delving further into the technicalities, one can avert some tempt-
ing misconceptions. First, this definition is non-perturbative because 7,
is not assumed small; neither the physics nor the coordinates are assumed
‘mild’; one could use spherical coordinates falling into a black hole or use
approximately Cartesian coordinates in a ‘wrong’ order such as (z,t,y, 2)
(albeit with a large effect on the gravitational potential value). No series
expansion or restriction to achieve convergence is used. Second, unlike a flat
background metric tensor, the matrix 1 imposes no topological restrictions.
It is merely part of a change of variables: one takes the components of the
metric tensor (or some similar quantity) and subtracts —1, 1 or 0. Third,
the coordinates are completely arbitrary; no gauge fixing or coordinate con-
dition, whether involving equations or inequalities (such as for time for a
Hamiltonian) is employed. Fourth, the success or failure of quantum gravity
programs that made use of this expansion perturbatively is irrelevant. The
use is not intrinsically quantum, and one could quantize canonically or with
a path integral or perhaps on some other way. This is pure GR, or within
a hair’s breadth thereof, with an innocent change of variables. Fifth, there
is no extra gauge freedom, only the traditional coordinate freedom of GR.
Nothing, or nearly nothing extra has been introduced, and no new gauge
freedom to deny its physical meaning is present or needed. n appears in GR
with spinors anyway and so cannot be very bad. There is little or no ontology
for this razor-thin background. These remarks and those above are doubtless
not the last word needed, but they might prime the pump.

With such misconceptions averted, we can explore the classical differential
geometry of affine geometric objects. From v, = (g, —1)/V327G and the
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tensor transformation rule

;o oz Oz
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one has:
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This is a local geometric object, with components at every point in every
coordinate system covering that point and a transformation rule relating any
two coordinate systems covering that point. It is an affine, first-differential-
order geometric object, falling in between tensors and connections. Affine
geometric objects have linearly transforming Lie derivatives (Tashiro, 1950;
Nijenhuis, 1952; Yano, 1955): the non-tensorial part of the transformation
rule is shaven off, making the Lie derivative a tensor:
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Thus symmetries of the metric (Killing vector fields) are readily expressed
as symmetries of the gravitational potential.

What of covariant differentiation? There is a little known formula for the
covariant derivative of any first-order (even nonlinear) geometric object w’

(Szybiak, 1963):
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Thus VoY = Yuwsa — 355 (UayGurs + Fgug,{y), which agrees with the metric’s
covariant derivative up to a constant factor: V,v,, = \/ﬁvagw,. If the
covariant derivative is taken using a g,,-compatible connection I';;,, the result
vanishes. Thus 7,,’s Lie and covariant derivatives stand in for g,,’s, as
expected because I'%, can be built from 7,, and 1, and any derivative of n
vanishes. One could do all of Riemannian geometry in terms of 7,, and 7.
Likewise one could derive the Euler-Lagrange equations and the gravitational
energy-momentum pseudotensor(s) for GR in terms of v, and 7.

The matrix 7 is no newcomer to gravitational energy, because both mod-

ern and classical works on gravitational energy have in some cases made use
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of a reference configuration. Such modern work includes Nester and collab-
orators (Chang et al., 2000; Nester, 2004) and overlapping teams including
Grishchuk, Petrov, Katz, Bicdk and Lynden-Bell (Grishchuk et al., 1984;
Katz et al., 1997; Petrov and Katz, 2002). One then faces the question
of the gauge freedom in relating the two metrics. On the other hand, the
background matrix diag(—1, 1,1, 1) is unique up to conventional choices (ac-
tually diag(—1,—1,—1,1)) in the Papapetrou-Belinfante pseudotensor (Pa-
papetrou, 1948).5 Papapetrou’s interpretive concerns about his pseudotensor
formalism, I suggest, are largely addressed via affine geometric objects (ad-
dressing his concerns about a “system of some ‘auxiliary numbers’ ) and the
multiplicity of gravitational energies (addressing gauge dependence) (Pitts,
2010). Papapetrou’s eventual introduction of a flat metric tensor instead
of a numerical matrix—the opposite of the move that I suggest—motivated
him to gauge-fix the relation between the two metrics in order to avoid an
infinity of distinct results, an infinity strikingly resembling coordinate de-
pendence. But his gauge fixing differs only formally from Fock-style fixation
of the coordinates with the harmonic condition in a single-metric formalism
(Fock, 1959). If gauge-fixing is a satisfactory solution, then why not just fix
harmonic coordinates in GR and declare gravitational energy to be localized
in the true (e.g., harmonic) coordinates? It seems to me advantageous to ac-
commodate diag(—1,1,1,1) and the metric perturbation within differential
geometry and keep the coordinate freedom as it was.

7 What Represents Space-Time: A Proposal

Now one can make more sense of the particle physics-inspired proposal for
what represents space-time. In between the standard suggestions of (M, g,,.)
and just M, is the proposal: space-time is (M, 7). This suggestion might
ring a bell by now: “We might consider dividing the metric into an un-
perturbed background and a perturbing wave in the hope that the latter
alone can be classified as contained in spacetime.” (Earman and Norton,
1987) I suggest that a non-arbitrary division is g, = n + V32rGy, (mu-
tatis mutandis with field redefinitions for the gravitational potential); hence
n is the unperturbed background and 7,, (or some equivalent entity) is the

SPresumably no one will think that the matrix (diag(—1, 1,72, 72sin?0), for example, is
a plausible candidate to appear in laws of nature, although it is also, like diag(—1,1,1, 1),
a matrix of components of a flat metric tensor in certain coordinates.

17



perturbing ‘wave’ (not necessarily wavy) contained in space-time. Is this the
golden mean, the Goldilocks zone? On this proposal, much of the metric
is part of space-time, as one might prefer. If nothing much is happening
(weak fields), and coordinates are adapted to this situation (not far from
Cartesian and with time in the temporal slot (Bilyalov, 2002; Pitts, 2012)),
then the value of g, is approximately 7. On the other hand, 7 savors of
Minkowski space-time, which by some lights is a relationism-friendly “glori-
ous non-entity” (Brown and Pooley, 2006), though one might also consider
a resemblance to traditional absolute space(time). Gravitational energy is
not due to space-time (though 1 might appear in it), but due to the grav-
itational potential 7,,, likely quadratic in its first derivatives and possibly
having some second derivatives (especially spatial or mixed). If gravitational
energy is not space-time energy, then one can believe in gravitational energy,
even in infinitely many localized gravitational energies, with no pressure to-
ward affirming substantivalism from such energy. With gravitational energy
ascribed to 7., not space-time, one can do justice to the sensibility that the
gy 1s in many ways like a matter field (Rovelli, 2004, p. 77) (Brown, 2005,
chapter 9)—an idea linked to Rovelli’s gravitational energy realism (Rovelli,
1997). As Hoefer said, “[iJf empty spacetime need not be thought to possess
genuine energy, at least one reason for considering it to be a substance is
deflected.” (Hoefer, 2000) Now this conclusion can be reached in another
way, accepting gravitational energy but denying space-time energy.

8 Curiel on Gravitational Energy

The idea of gravitational energy has received philosophical attention recently
from the GR exceptionalist perspective as well. Curiel has underscored the
non-existence of a local gravitational stress-energy tensor given certain as-
sumptions and has suggested giving up the usual idea of conservation in favor
of fungibility.

I prove that, under certain natural conditions, there can be no
tensor whose interpretation could be that it represents gravita-
tional stress-energy in general relativity. It follows that gravita-
tional stress-energy, such as it is in general relativity, is necessarily
non-local. (Curiel, 2019)
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For Curiel the inference from non-tensoriality (or perhaps more generously,
not being a geometric object) to non-localizability is rather direct. A local
but non-tensorial object, such as the Noether operator (Schutz and Sorkin,
1977; Sorkin, 1977) or the closely related and more pedestrian pseudoten-
sor(s), is not a candidate because it is not a physical quantity (Curiel, 2019,
p. 97).

The fact that integrals over pseudotensors depend only on coordinates at
the boundary (Chang et al., 1999) indicates that the temperature in Curiel’s
coffee is less coordinate-dependent than one might have feared. His concern
about using a pseudotensor to ascertain how much a gravitational wave partly
absorbed by a piezoelectric stick would warm his coffee, is unclear to me.
If the concern is that it can be used but would give different answers in
different coordinate systems, that seems unlikely because physical objects,
such as coffee and thermometers, are not sensitive to a choice of coordinates.
The piezoelectric stick does not need to ““know’ which of Pitts’s ‘localized
energies’ it should draw on” because any of them will do. Recalling that a
pseudotensor conservation law is logically equivalent to Einstein’s equations
(Anderson, 1967; Pitts, 2010), the conservation law is a way of expressing the
content of GR that shows that a sum of material energy and gravitational
(pseudo-7)energy satisfies the continuity equation.

Curiel has not specified the wavelength of the gravitational wave in ques-
tion, but the ratio of this wavelength to the cup-detector affects the analysis
(Schutz and Ricci, 2001). For wavelengths small compared to the detector,
the problem is largely included in Schutz and Ricci’s treatment. After dis-
cussing how one can treat gravitational waves on a gently varying background
as a type of matter and use Isaacson’s averaging over a few wavelengths to
get a localization to that scale, they comment:

In the textbooks you will find discussions of pseudotensors,. . . of
Noether theorems and formulas for energy, and so on. None of
these are worse than we have presented here, and in fact all of
them are now known to be consistent with one another, if one
does not ask them to do too much. In particular, if one wants
only to localize the energy of a gravitational wave to a region of
the size of a wavelength, and if the waves have short wavelength
compared to the background curvature scale, then pseudotensors
will give the same energy as the one we have defined here.
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Astrophysically plausible gravitational waves will tend to have wavelengths
longer than a coffee cup, however, and a fundamental treatment ought to
be able to handle all cases. Hence not all of Curiel’s question is answered
by Schutz and Ricci. My sense is that the question, if not already answered
somewhere, is more like a puzzle than an anomaly (to borrow some Kuhnian
concepts for an idea that hardly constitutes a paradigm sociologically): the
question is worth answering, and there is no good reason to doubt that it
can be answered.

Strikingly, symmetries of the action and Noether’s theorem play no role
for Curiel. Neither does the continuity equation appear, so Curiel does not
entertain anything that could yield results such as E = constant. This
absence is not an oversight, but a principled inference from the premises
adopted.

The formulation of the First Law [of thermodynamics] I rely on
is somewhat unorthodox: that all forms of stress-energy are in
principle ultimately fungible—any form of energy can in principle
be transformed into any other form [footnote suppressed]—mnot
necessarily that there is some absolute measure of the total energy
contained in a system or set of systems that is constant over time.

(Curiel, 2019)

If coordinate-free GR doesn’t have it, Curiel doesn’t need it. Hence he does
not need energy conservation, a view that some will consider bold, but a
coherent view that, used carefully,® will never yield a false prediction (unless
lower-brow approaches to GR would also).

One might wonder, however, whether fungibility is an adequate version
of, or substitute for, the First Law of Thermodynamics. In the multi-trillion-
dollar foreign exchange market, of which the most obvious manifestations at
airports offer the clearest insights, one is given the opportunity to convert
(say) USD to GBP at one rate, or the reverse at a very different rate. At
airports this “spread” is enormous, so one could convert USD to GBP and
back, leaving with far fewer USD than one started with, however. Hence mere
fungibility, with no chance of recovering one’s starting point, is not clearly a
version of the First Law. Possibly it is something like a combination of the

SElsewhere I have discussed how the supposed absence of conservation laws in GR
encourages some people to object spuriously to the theory and others to think that energy
non-conserving processes are thereby licensed (Pitts, 2010; Pitts, 2020a).
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First and Second Laws at best: even if perhaps money is conserved, your
money tends to decrease. But a clear analog of the First Law only is not to
be found in mere fungibility without quantitative bookkeeping implying that
the starting configuration is in some respects preserved.

One might also question the mathematical basis for requiring a symmetric
covariant stress-energy tensor for gravity, in tension with what Lagrangian
field theory offers. For a scalar field, Noether methods offer for the stress-
energy a mized (1,1) weight 1 tensor density T to give JH[¢] = THEY. A
displacement vector yields a conserved current that is a tangent vector den-
sity of weight 1, thus such that V,J* = 0,3" = 0. Given that only a partial
divergence 9,3* = 0 has a chance of integration to E = constant (Weyl,
1922, pp. 236, 269-271) (Landau and Lifshitz, 1975, p. 280) (Misner et al.,
1973, p. 465) (Lord, 1976, p. 139) (Stephani, 1990, p. 141), this is the
ideal case, so requiring in advance something different (a symmetric stress-
energy tensor) shows a lack of interest in getting conserved quantities, the
obtaining of which usually have been considered a core part of the issue.
As noted earlier, conservation of angular momentum requires not symmetric
stress-energy, but only rotational symmetry of the action, because angular
momentum needn’t be z[*T#" (Bergmann and Thomson, 1953; Forger and
Romer, 2004); there can be a spin contribution. For vector matter, similar
Noether methods give a current J*[£] that is tensorial but not algebraic in £”.
Hence one cannot peel off the vector field £# and get a stress-energy tensor, as
one can with a scalar field. For GR, J#[¢] either is non-tensorial or has higher
derivatives, depending on which Lagrangian density one uses (Sorkin, 1977).
If one asks GR what the Noether mathematics means instead of imposing
requirements by hand, it (mostly?) makes sense: the Noether operator gen-
eralizing J*[¢], depending differentially on &*, yields a pseudotensor if one
sets & = (1,0,0,0). Abstaining from this sort of mathematics to remain
pure of coordinates leads to giving up conservation laws that do exist. A
criterion for physical quantities that excludes the Noether operator is not
obviously appropriate.

It is also obscure what the rules are in Curiel’s admittedly utopian quest
for a gravitational stress-energy tensor S,,. This hypothetical entity is sup-
posed to be symmetric (S, = 0) and to have vanishing covariant divergence
(V,S* =0). If that were true, then one could add it to the material stress-
energy tensor as follows:

Vu(V=gS" +/=gT") = 0,(v=gS"" + /=gT") 4 (V—=gS"* +/—gT"*)T}.,

21



+(V=9S" + V/=gT*" )%, — (V=95 +/—gT" )",

(using the covariant derivative of a density of weight 1 for the last term
(Anderson, 1967))

= 0,(V/ TGS + VTGT™) + (VTGS + /TG = .

This result is incompatible with the continuity equation

0u(V—gS" + /—gT"") 20

because (SH* + TH)I | # 0 typically. Hence the resulting equation would
prohibit the existence of a conserved energy E = constant. What Curiel
seems to regard as desirable given his heuristics but, alas, impossible would
in fact be disastrous. Fortunately GR does permit £ = constant for asymp-
totically flat metrics because it admits the continuity equation, albeit for
a quantity of which Curiel does not approve. Thus S, wouldn’t fit GR.
Curiel agrees, but for different reasons involving his proof, which depend on
premises not following from Einstein’s equations.

The existence of a gravitational stress-energy tensor, however,
would necessarily entail that we modify our understanding and
formulation of general relativity. That is why this argument is
only ex hypothesi, and not meant to be one that would make sense
in general relativity as we actually know it. (Curiel, 2019)

If the discussion both assumes the supposed ‘spirit’ of GR and contradicts
GR’s laws, it is unclear what the rules are or what proprietary question is
being addressed instead of the usual gravitational energy localization problem
in GR. I am not convinced that one should heed guidance from such an
antinomian spirit.

9 Two Standard Worries about Gravitational
Energy

I turn now to the two standard objections to pseudotensors and argue that
both have gotten weaker in the last 20+ years. The two standard objections
are that a pseudotensor depend essentially on coordinates, which nothing
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physically real would do, and that the pseudotensor is nonunique, which is
also incompatible with physical reality. Pseudotensors relate weirdly to coor-
dinates in at least two ways: false positives and false negatives. Schrodinger
presented an early false-negative objection: Einstein’s gravitational energy-
momentum pseudotensor vanishes outside a round heavy body in some coor-
dinates, but surely there should be gravitational energy outside a round heavy
body, and whether there is gravitational energy should not depend on coor-
dinates (Schrodinger, 1918; Cattani and De Maria, 1993). Bauer presented
a mirror-image objection that same year, a false positive: Minkowski space-
time in (unimodular) spherical coordinates has a nonzero energy density and
even infinite total energy (Bauer, 1918; Cattani and De Maria, 1993). The
nonuniqueness objection is that there are many comparably good candidates,
and they cannot all be real, so plausibly none of them is real. The coordinate
dependence objection goes back to the 1910s, though there was interesting
activity (such as by Mgller among others) in the late 50s-early 60s, while the
nonuniqueness objection seems to have become serious in the 1950s with the
Landau-Lifshitz pseudotensor (Landau and Lifshitz, 1975), Goldberg’s infin-
ity of pseudotensors (Goldberg, 1958), and others. Thus most people have
long since given up on localization. Some reject gravitational energy outright
in light of its apparently inconsistent properties (Hoefer, 2000; Duerr, 2019).
This is a principled view that makes at least as much sense as the standard
view (Misner et al., 1973) that gravitational energy exists but is not local-
izable, a claim that Norton also finds obscure (Norton, 2014). I argue that
both worries are inconclusive and getting weaker recently. I also note Read’s
recent functionalist defense of gravitational energy (Read, 2020).

I have explained previously how asking Noether’s first theorem how many
conserved energies to expect—one for each rigid symmetry of the action,
hence infinitely many (Bergmann, 1958)—resolves Schrodinger’s false-negative
objection (Pitts, 2010). Lacking a coordinate transformation is not a bug
(Read, 2022). In fact it is a feature: it permits the expression of infinitely
many energies with only 10 or 16 components (Pitts, 2010).

To give an analogy, one might be puzzled by the inequivalence under
translation (analogous to lack of a coordinate transformation rule) between
“Maria es alta” (tall) and “Mary is short”—unless Marfa # Mary, in which
case there is no reason to expect equivalent heights. If the comparative and
context-dependent nature of “tall” and “short” are objectionable, then one
can change the example to involve different unit systems. Perhaps Maria is
n meters tall (in Spanish) and Mary is « feet y inches tall. But most of us
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cannot make such conversions sufficiently accurately without calculation, so
the contradiction is not evident. Inequality implies 12z + y %.

Bauer’s false positive objection can be criticized on various technical
grounds. First, it is unclear that unimodular spherical coordinates (or garden-
variety spherical coordinates, for that matter) should be regarded as cover-
ing the whole manifold; by modern standards they don’t. Second, such
coordinates make Finstein’s I' — I" action diverge. If the field equations
and the canonical energy-momentum pseudotensor are derived from the ac-
tion, and this coordinate system makes the action diverge, why admit them?
Third, there is a little-recognized nonuniqueness in the Lagrangian density
which renders the Einstein pseudotensor optional as the canonical energy-
momentum pseudotensor even given metric variables (not to mention non-
canonical pseudotensors). In Maxwell’s electromagnetism, one could include
the contraction (9,A")? in the Lagrangian by adding a total divergence, and
thus can write down a 1-parameter family of equivalent Lagrangian densities
differing by a total divergence. GR admits a similar ambiguity at least lin-
early (Ohanian and Ruffini, 1994, p. 647). This ambiguity seems to disappear
in an exact treatment in metric variables, but it surfaces using an orthonor-
mal basis, as in Mgller’s work. If one wishes, one can gauge-fix the tetrad
into the symmetric square root of the metric (DeWitt and DeWitt, 1952;
Moller, 1964; Ogievetsky and Polubarinov, 1965; Pitts, 2010; Pitts, 2012),
which depends in a nonlinear way on the metric and on 7. As long as one
does not try to put a time coordinate in a spatial place or vice versa (roughly)
(Pitts, 2012), one has an alternative GR Lagrangian built out of the metric
and 7 with only first derivatives. Hence there is an apparently previously
unrecognized 1-parameter ambiguity of GR Lagrangians in metric variables,
leading to a similar 1-parameter ambiguity of canonical energy-momentum
complexes, including the (gauge-fixed) Mgller tetrad complex. But it gives
0 energy for Minkowski space-time (Mgller, 1964). Thus it is unclear that
Bauer has used admissible coordinates, especially given his (Einstein I' —I')
action, and unclear that he has used the correct action, because an action
exists that avoids Bauer’s false positive objection even in his unimodular
spherical coordinates. Recall that Mgller’s tetrad energy-momentum expres-
sion is tensorial (not a pseudotensor) under changes of coordinates, though
dependent on the local Lorentz gauge. The local Lorentz gauge freedom can
be fixed using the symmetric tetrad gauge condition to give a metric for-
malism with help from n (Pitts, 2010); some other ways of fixing the local
Lorentz gauge give unreasonable results for the mass-energy (Mikhail et al.,
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1993). One might also take the view, already familiar for spherical symmetry,
that one should make use of symmetries when they exist (Misner et al., 1973,
p. 603). A plausible generalization is that one should adapt one’s coordi-
nates as far as possible to the largest set of commuting Killing vector fields
when it is unique (Pitts, 2010). Then one should use Cartesian coordinates
for Minkowski space-time, which would resolve Bauer’s objection even given
the Einstein pseudotensor. Hence there are several resolutions of Bauer’s
objection.

Pseudotensoriality occurs in ordinary life, as in the colors of flags. In most
places where English is the main language, “the flag is red, white and blue” is
true. This claim admits translation into a true statement in France, because
the French flag has the same colors. But it fails when translated into German
or Spanish (at least in Spain) or most other languages. Failure of translation
here is not mysterious: one is naturally referring to one’s own national flag, so
the statement in different languages has different referents (using the nation-
state approximation to make the analogy vivid: one flag per language, which
is more accurate in some places than others). In advanced countries, no
normal person older than perhaps 5 years is unaware of the existence of other
countries, so it is difficult not to know of the multiplicity of flags, so “the”
flag will mean our flag. But if one somehow managed not to know that,
while knowing multiple languages—perhaps one is part of an educational
experiment in a totalitarian country—then one might only know of one flag
and think that there is only one flag. Then one might read (perhaps due
to a gap in censorship) apparently plausible but apparently incompatible
statements such as “Die Flagge ist schwarz, rot und gold” and “the flag is
red, white, and blue.” The paradox would be resolved by learning that there
are different countries with different flags. Flags and languages have a (more
or less natural) relationship.” Perhaps energies and coordinate systems do
as well, such as coordinates in which the corresponding displacement takes
the form (1,0,0,0) or the like.

Above it was noted that pseudotensors are economical: one is enabled to
say infinitely many distinct things with a 10- or 16-component entity; the
economy of pseudotensorial policies also has real-world examples, including
the publishing industry and some multilingual academic writing. Whereas

"Obviously politically fraught real-world issues are glossed over for the sake of the
analogy. No views are intended about independence movements, recognition of minority
languages/dialects, etc.
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tensor calculus says the same old thing infinitely many times using the ten-
sor transformation rule, no publisher feels obliged to publish translations of
all of its books in every language. (‘Coordinate-free’ publication in terms
of propositions or the language of thought, as opposed to publication in a
language, is only science fiction at this stage.) In some academic fields, such
as ancient or medieval philosophy, one finds untranslated Greek or Latin text
in an article written in (usually) French, German or English, with along with
untranslated quotations from the other two modern languages. While the au-
dience able to appreciate such work fully is not large, it does exist. Perhaps
gravitational energy also involves a sort of multilingualism to accommodate
the natural connections between energies and coordinate systems.

10 Nonuniqueness Objection and 3 or 4 Pos-
sible Answers

One would expect the pseudotensor to be unique if it represents real gravi-
tational energy. But there are infinitely many candidates. So the pseudoten-
sor does not represent real gravitational energy. This seems to be how the
nonuniqueness objection runs. There are, however, four interesting replies to
this objection.

An initial reply, which appeals to the widespread acceptance of mate-
rial energy T, is a tu quoque response (Pitts, 2010): gravitational energy
is not qualitatively worse off than supposedly unproblematic material en-
ergy. Even a scalar field in flat space-time suffers from nonuniqueness due
to a multiplicity of comparably plausible candidates, due to the “improved”
energy-momentum tensor, which has certain advantages (Callan et al., 1970).

A second reply comes from the work of Nester et al., according to whom
different pseudotensors describe different quasi-localizations with physical
meaning tied to boundary conditions (Chang et al., 2000; Nester, 2004).
Thus different pseudotensors are right in different contexts. Why should the
same one be required in every context, given the close relationship between
pseudotensors and boundaries?

A third reply is that there is a best One True pseudotensor. Perhaps it
is the Papapetrou-Belinfante pseudotensor or a higher-tech relative thereof
(Petrov and Katz, 2002). Clearly this third reply is incompatible with the
second, but one can simply offer their disjunction, or even parts of each:
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maybe some pseudotensors are always wrong, but others are right in one
context or another.

A fourth reply is rooted in old work of which the full import was perhaps
not recognized (Bergmann, 1958): nonuniqueness is not a distinct objection,
but only a repeat of coordinate dependence. Bergmann, perhaps working
with a restricted class of pseudotensors, noted that “the totality of all con-
servation laws ...in one coordinate system is equivalent to one of them,
stated in terms of all conceivable coordinate systems.” (Bergmann, 1958).
The “totality of all conservation laws” refers to different pseudotensors. He
shows how to find the Einstein and the Landau-Lifshitz pseudotensors in
his expression by choosing dx? = k% (where k7 is a set of constants) or
0z’ = g°“k,. Especially if one has a reply to the coordinate dependence
objection in terms of infinitely many energies, reducing the nonuniqueness
objection to the coordinate dependence objection helps.

11 Conclusion

Given modern progress, there seems to be no reason to regard gravitational
energy realism as doomed. If gravitational energy is real and localized, then
material 4 gravitational energy-momentum is conserved: 9,(%¢+t4) = 0, re-
ally (not just formally), which for isolated systems can give £ = constant. If
space-time is (M, ), gravitational energy(s) isn’t space-time energy(s) and so
do(es)n’t imply substantivalism. Some classic and modern works on gravita-
tional energy call for a reference configuration, while some work on quantum
gravity argues that a (nonnegative) constant curvature background geometry
must be flat (Dvali, 2020). Given 5, it is plausible to split g,, into v,, and 7.
Hence there is coherence between the space-time metric split and promising
local representations of gravitational energy. This package of views seems
plausible given particle physics egalitarianism, an option traditionally rarely
entertained in philosophy or conceptual discussions of GR.
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