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Abstract

Suppose it is possible to make approximate interpersonal comparisons of welfare
gains and losses. Thus, if w, x, y, and z are personal psychophysical states (each
encoding all ethically relevant information about the physical and mental state of
a person), then it sometimes possible to say, “The welfare gain of the state change
w ❀ x is greater than the welfare gain of the state change y ❀ z.” We can represent
this by the formula “(w ❀ x) � (y ❀ z)”, where (�) is a difference preorder: an
incomplete preorder on the space of all possible personal state changes. A social

state change is a bundle of personal state changes. A social difference preorder

(SDP) is an incomplete preorder on the space of social state changes, which satisfies
Pareto and Anonymity axioms. The minimal SDP is the natural extension of the
Suppes-Sen preorder to this setting; we show it is a subrelation of every other SDP.
The approximate utilitarian SDP ranks social state changes by comparing the sum
total utility gain they induce, with respect to all ‘utility functions’ compatible with
(�). The net gain preorder ranks social state changes by comparing the aggregate
welfare gain they induce upon various subpopulations. We show that, under certain
conditions, all three of these preorders coincide.

Many rules for measuring social welfare or making collective choices rely on interper-
sonal comparisons of wellbeing. These interpersonal comparisons are fraught with difficul-
ties, both philosophical and practical (Elster and Roemer, 1991; Fleurbaey and Hammond,
2004), and have sometimes been rejected as impossible or even meaningless (Robbins, 1935,
1938, for example). However, many of these problems arise from an insistence on ‘precise’
interpersonal comparisons. Such precision may be impossible, but it is also unnecessary.
Sen (1970a, 1972 and Ch.7* of 1970b), Fine (1975), Blackorby (1975), Basu (1980, Ch.6),
Baucells and Shapley (2006, 2008) and Pivato (2010a,b,c) have shown that it is often pos-
sible to make rough social evaluations using only ‘approximate’ interpersonal comparisons
of utility. The present paper extends this approach.

Every person has both a ‘physical’ state (e.g. her health and wealth) and a ‘psycholog-
ical’ state (e.g. her beliefs, desires, and personality). Like Pivato (2010a,b,c), this paper
supposes that both physical states and the psychological states are mutable, and hence,
potential targets of individual or collective choice. (For example: economic policies and
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safety regulations influence people’s physical states. Policies which subsidize or regulate
education, arts and cultural industries, mental health care, and psychopharmaceuticals
influence people’s psychological states.) Interpersonal comparisons rank the welfare of
different psychophysical states —either of different people, or of the same person at differ-
ent moments in time. Not all interpersonal comparisons are possible, but some certainly
are (otherwise even individual intertemporal choice would be impossible).

Formally, let X be a space of ‘psychophysical states’. An element x ∈ X encodes
all information about an individual’s psychology (i.e. her personality, mood, knowledge,
beliefs, memories, values, desires, etc.) and also all information about her personal physical
state (i.e. her health, wealth, personal property, physical location, consumption bundle,
sense-data, etc.).1 Any person, at any moment in time, resides at some point in X . Pivato
(2010a,b,c) supposes that it is (sometimes) possible to compare the welfare levels of different
psychophysical states: there is an (incomplete) preorder (�) on X , such that, for any
x, y ∈ X , the statement “x � y” means that the welfare level of psychophysical state x is
at least as high as that of y. 2

The present paper, in contrast, supposes we can compare not absolute welfare levels,
but rather, welfare changes. Thus, we can (sometimes) make sense of the statement:3

“The welfare improvement in moving from psychophysical state x1

to state x2 is greater than the welfare improvement in moving from
state y1 to y2.”

(1)

We can represent this with an (incomplete) preorder (�) on the Cartesian product X ×X .
We will write an ordered pair (x1, x2) ∈ X × X as “x1 ❀ x2” to emphasize that it
represents a change from x1 to x2. Then statement (1) is represented by the formula
“(x1 ❀ x2)≻ (y1 ❀ y2)”.

A social policy will change the psychophysical states of many people; some will gain in
welfare, while others will lose. Using the preorder (�), this paper shows how to compare
and aggregate the welfare costs and benefits imposed upon different people, and identify
the social policy which causes the greatest aggregate welfare enhancement. The paper is
organized as follows. Section 1 introduces notation and terminology. Section 2 axiomatizes
and discusses difference preorders: preorders on X × X which encode statements like (1).
Section 3 then defines a social difference preorder (SDP) to be a preorder on the space of
social state changes which satisfies weak versions of the Pareto and Anonymity axioms.
A key examples is the family of quasiutilitarian SDPs, which rank two state changes by

1Unlike Pivato (2010a), this model does not assume it is possible to cleanly separate someone’s ‘psycho-
logical’ state from her ‘physical’ state. Indeed, if the mind is a function of the brain, then her psychological
state is simply one aspect of her physical state.

2For example, (�) could represent the ‘extended preferences’ of Harsanyi (1955, fn.16 on p.316; 1977b,
p.53 of §4.2), Sen (1970a, p.152 of §9*1) and Arrow (1977), or it could represent the ‘fundamental prefer-
ences’ of Kolm (1994a,b, 1995, 2002)

3For example, a ‘preferencist’ interpretation of this statement would be that a (1

2
, 1

2
) lottery between

outcomes y1 and x2 is preferable to a (1

2
, 1

2
) lottery between x1 and y2. Note that it is not necessary to

have a complete system of von Neumann-Morgenstern preferences over lotteries to make such judgements;
it is only necessary to have reasonably consistent preferences over ( 1

2
, 1

2
) lotteries —e.g. the ‘quasicardinal’

utility functions of (Basu, 1980, Ch.6).
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comparing their utilitarian sums with respect to some list of utility functions compatible
with (�). Our first main result (Theorem 3.2) says that these are the only SDPs which can
be represented by social welfare functions. Section 4 introduces the minimal SDP, which
is a subrelation of every other SDP (Proposition 4.1). Our second major result (Theorem
4.2) says that, under certain conditions, the minimal SDP is the approximate utilitarian
SDP —the quasiutilitarian SDP defined by the list of all utility functions compatible with
(�). Next, Section 5 introduces the net gain preorder, which is also a subrelation of every
SDP (Proposition 5.2). The third main result, Theorem 5.1, says that, under certain
hypotheses, the net gain preorder is the minimal SDP.

Section 6 applies the SDP concept to a simple model of redistributive wealth transfers.
Section 7 discusses necessary and sufficient condition for an ‘empathy’ hypothesis which
appears in Theorems 4.2 and 5.1. Appendix A contains the proofs of all results. Appendix
B discusses complete extensions of difference preorders; it provides counterexamples to the
analogues of Szpilrajn’s Lemma and the Dushnik-Miller theorem.

Previous literature. Alt (1936, 1971), Suppes and Winet (1955), Scott and Suppes
(1958), Debreu (1958), Pfanzagl (1968) and Krantz et al. (1971) used (complete) difference
preorders to construct cardinal utility representations for individual preferences. Later,
Dyer and Sarin (1978, 1979a,b), Harvey (1999) and Harvey and Østerdal (2010) studied
the utilitarian aggregation of such individual difference preorders into a (complete) social
difference preorder.4 Theorem 3.2 of this paper is roughly comparable to these earlier
results. However, the main goal of this paper is to grapple with imperfect interpersonal
comparability, in the spirit of Sen (1970a,b, 1972), Fine (1975), Blackorby (1975), Basu
(1980), Baucells and Shapley (2006, 2008) and Pivato (2010a,b,c). Thus, all the results
are formulated in terms of incomplete difference preorders, and many do not assume the
existence of a cardinal utility representation.

1 Preliminaries

Let S be a set. A preorder on S is a binary relation (�) which is transitive (for all r, s, t ∈ S,
(r � s � t) =⇒ (r � t)) and reflexive (for all s ∈ S, s � s), but not necessarily
complete or antisymmetric. The symmetric part of (�) is the relation (≈) defined by
(s ≈ t) ⇔ (s � t and t � s). The antisymmetric part of (�) is the relation (≻) defined by
(s ≻ t) ⇔ (s � t and t 6� s). The preorder (�) is complete if, for all s, t ∈ S, either s � t

or t � s. Most of the preorders considered in this paper are incomplete.
Let ( D

1
) and ( D

2
) be two binary relations on S. We say that (D

2
) extends ( D

1
) if, for

all s, t ∈ S, we have (s D
1

t) =⇒ (s D
2

t). (If we represent ( D
1

) and ( D
2

) as subsets of S ×S

in the standard way, this just means (D
1

) ⊆ ( D
2

).) Let ( 1̂ ) be the symmetric part of (D
1

),

and let ( ⊲
1
) be its antisymmetric part. We say that (D

2
) refines ( D

1
) if, for all s, t ∈ S,

we have (s ⊲
1
t) =⇒ (s ⊲

2
t), while (s 1̂ t) =⇒ (s D

2
t or sE

2
t). If ( ⊲

1
) and ( ⊲

2
) are partial orders

4I am grateful to Lars Peter Østerdal for making me aware of this prior literature, when I presented
this paper at New Directions in Welfare (OECD, Paris, July, 2011).
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(i.e. antisymmetric, transitive relations), then ( ⊲
2
) extends ( ⊲

1
) if and only if ( ⊲

2
) refines

( ⊲
1
). However, in general the two concepts do not coincide.

2 Difference preorders

Let (�) be a preorder on X ×X , intended to compare the welfare gains or losses imposed
by different psychophysical state changes. Thus, the formula “(x1 ❀ x2)≻ (y1 ❀ y2)”

translates into statement (1) above. The preorder (�) must satisfy four consistency con-
ditions:

(DP0) For all x, y ∈ X , we have (x ❀ x) ≈ (y ❀ y).

(DP1) For all x1, x2, y1, y2 ∈ X , if (x1 ❀ x2) � (y1 ❀ y2), then (x2 ❀ x1) � (y2 ❀

y1).

(DP2) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0 ❀ x1) � (y0 ❀ y1) and (x1 ❀ x2) �
(y1 ❀ y2), then (x0 ❀ x2) � (y0 ❀ y2).

(DP3) For all x0, x1, x2 and y0, y1, y2 ∈ X , if (x0 ❀ x1) � (y1 ❀ y2) and (x1 ❀ x2) �
(y0 ❀ y1), then (x0 ❀ x2) � (y0 ❀ y2).

A preorder on X ×X satisfying conditions (DP0)-(DP3) will be called a difference preorder

on X . Condition (DP0) means that all ‘null changes’ are equally worthless. Condition
(DP1) says that if one change is better than another, then the reversal of the first change
is worse than the reversal of the second. Condition (DP2) prevents ‘composition inconsis-
tencies’, where the composition of two apparently superior small changes yields an inferior
large change. Condition (DP3) says that the logic of (DP2) is commutative: when aggre-
gating the net gain of two state changes, the order doesn’t matter.5

Example 2.1. Let V be a collection of real-valued (‘utility’) functions on X . For any
x1, x2, y1, y2 ∈ X , define (x1 ❀ x2)�

V
(y1 ❀ y2) if and only if v(x2)− v(x1) ≥ v(y2)− v(y1)

for all v ∈ V. Then (�
V

) is a difference preorder on X . ♦

We will now generalize the construction of Example 2.1. A linearly ordered abelian group

is a triple (R, +, >), where R is a set, + is an abelian group operation on R, and > is
a complete, antisymmetric, transitive binary relation on R such that, for all r, s ∈ R, if
r > 0, then r + s > s. (Here, 0 denotes the identity element of R.) For example: the
set R of real numbers is a linearly ordered abelian group (with the standard ordering and
addition operator). So is any subgroup of R (e.g. the group Q of rational numbers). For

5This is not equivalent to having a ‘zero discount rate’. When comparing the transition (x0 ❀ x2) to
the transition (y0 ❀ y2), the preorder (�) treats them both as if they occur over a single time step; the
fact that (x0 ❀ x2) can be decomposed into (x0 ❀ x1) followed by (x1 ❀ x2) does not imply that we must

treat (x0 ❀ x2) as a ‘two-step’ transition. (Indeed, there may be many ways to decompose (x0 ❀ x2) into
transition chains of various lengths.)
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any n ∈ N, the space Rn is a linearly ordered abelian group under vector addition and the
lexicographic order.

A weak utility function is a function u : X−→R (for some linearly ordered abelian group
R) such that, for all x1, x2, y1, y2 ∈ X ,

(
(x1 ❀ x2) � (y1 ❀ y2)

)
=⇒

(
u(x2) − u(x1) ≥ u(y2) − u(y1)

)
. (2)

(For example, let V and (�
V

) be as in Example 2.1; then any element of V is a weak utility

function for (�
V

).) If (�) is a complete difference preorder, then the “=⇒” in (2) becomes

“⇐⇒”. In this case, Dyer and Sarin (1978, 1979a,b) call u a measurable value function for
(�), while Harvey (1999) and Harvey and Østerdal (2010) call it a worth function.

There are three reasons for allowing utility functions to range over arbitrary linearly
ordered abelian groups, rather than restricting them to the real numbers. First, at a
technical level, this significantly extends the generality of our results, and simplifies many
proofs. Second, at a philosophical level, it allows for ‘non-Archimidean’ or ‘lexicographical’
preferences, where some desires are given infinite priority over other desires. (We do
not take a descriptive or normative stance on whether people can or should have such
preferences, but nor do we wish to exclude them a priori.) Finally: non-real-valued utility
functions arise naturally in the setting of infinite-horizon intertemporal choice and choice
under uncertainty (Pivato, 2011).

Let U(�) be the set of all weak utility functions for (�). We say (�) has a multiutility

representation if there is some subset U ′ ⊆ U(�) such that, for all x1, x2, y1, y2 ∈ X ,
(
(x1 ❀ x2) � (y1 ❀ y2)

)
⇐⇒

(
u(x2) − u(x1) ≥ u(y2) − u(y1), ∀ u ∈ U ′

)
. (3)

For example, the preorder (�
V

) in Example 2.1 obviously admits a multiutility representa-

tion (set U ′ := V). Clearly, we can always assume U ′ = U(�) in (3); however, sometimes
it will be convenient to use a smaller set of utility functions.

If (�) is a complete difference preorder, then any multiutility representation for (�)
can be reduced to a utility representation for (�): a single function u : X−→R such that
“⇐⇒” holds in formula (2). Sufficient conditions for the existence of (real-valued) utility
representations of complete difference preorders have been given by Alt (1936, 1971),6 Sup-
pes and Winet (1955, §5), Scott and Suppes (1958, pp.121-122), Debreu (1958), Pfanzagl
(1968, Ch.9) and Krantz et al. (1971). Suppose {�

ℓ
}ℓ∈L is a collection of such complete

difference preorders on X (where L is some indexing set), and suppose, for all ℓ ∈ L, that uℓ

is a utility representation for (�
ℓ

) (perhaps obtained using the aforementioned literature).

If (�) is the intersection of {�
ℓ
}ℓ∈L, then (�) is an (incomplete) difference preorder, with

a multiutility representation given by U ′ := {uℓ}ℓ∈L.
A strong utility function for (�) is a function u : X−→R which satisfies condition (2),

and also such that, for all x1, x2, y1, y2 ∈ X , we have
(
(x1 ❀ x2) ≻ (y1 ❀ y2)

)
=⇒

(
u(x2) − u(x1) > u(y2) − u(y1)

)
.

6See also (Camacho, 1980, §3) for a summary of Alt’s model.

5



Proposition 2.2 If a difference preorder has a multiutility representation (3), then it has
a strong utility function.

Not all difference preorders admit a multiutility representation (3), or even a strong
utility function. See Appendix B for details.

3 Social difference preorders

Let I be a finite or infinite set, indexing a population. A social state is an element x ∈ X I ,
which assigns a psychophysical state xi ∈ X to each i ∈ I.7 Suppose the current social
state is x0. Any policy will result in a change to some other social state; to decide on the
best policy, the social planner must be able to compare the social value of one social state

change (x0
❀ x1) with another social state change (x0

❀ x2). Or suppose the society splits
into two subgroups of equal ethical importance (both indexed by I). Call these groups Ex
and Wy, and suppose they are initially in states x0 and y0, respectively. One policy will
change Ex to state x1 and leave Wy unchanged. The other policy will change Wy to state
y1 and leave Ex alone. Which policy is better? (Alternately, suppose there is only one
population, but the initial state is unknown, so the planner faces a risky decision. Now let
Ex and Wy represent two equally probable states of nature). To answer these questions,
the social planner needs a difference preorder on the space X I of social states.

A finitary permutation of I is a bijection π : I−→I admitting some finite subset J ⊆ I
such that π(i) = i for all i ∈ I \ J . Let Π be the group of all finitary permutations of
I. (If I is finite, then every permutation is finitary; then Π is simply the group of all
permutations of I.) For any π ∈ Π and x ∈ X I , we define π(x) := [xπ(i)]i∈I ∈ X I . Given
an interpersonal difference preorder (�) on X , a (�)-social difference preorder (SDP) is a
preorder (D ) on X I which satisfies the following axioms:8

(WPar) For any x1,x2,y1,y2 ∈ X I , if (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I, then
(x1

❀ x2) D (y1
❀ y2).

(Anon) For any x ∈ X I and π ∈ Π, (x ❀ x) ̂ (x ❀ π(x)).

(DP0D) For all x,y ∈ X I , we have (x ❀ x) ̂ (y ❀ y).

7Obviously, the living population of finite universe will always be finite. But we allow I to be infinite
to accommodate variable populations, risk, and/or intergenerational justice. For example, we could set
I := P × T , where P is a finite set of placeholders, and where T is an infinite set of time periods (to
model nondiscounted, infinite-horizon intertemporal social choice), or where T is an infinite of equally
probable ‘states of nature’ (to model risk). An element of X I thus assigns a psychophysical state xp,t to
each placeholder p, in every time/state t. Allowing I to be infinite thus greatly extends the scope of the
model. But it also increases the technical complexity to some of the definitions and proofs. It may be
helpful to simply assume I is finite during a first reading.

8Not all social states or all social state changes are feasible, of course. But a normative theory can
make ethical judgements even about non-feasible alternatives. Thus, we define the SDP (D ) on all of

X I ×X I , and not just on some feasible subset.
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(DP1D) For all x1,x2,y1,y2 ∈ X I , if (x1
❀ x2) D (y1

❀ y2), then (x2
❀ x1) E (y2

❀

y1).

(DP2D) For all x0,x1,x2 and y0,y1,y2 ∈ X I , if (x0
❀ x1) D (y0

❀ y1) and (x1
❀

x2) D (y1
❀ y2) then (x0

❀ x2) D (y0
❀ y2).

(DP3D) For all x0,x1,x2 and y0,y1,y2 ∈ X I , if (x0
❀ x1) D (y1

❀ y2) and (x1
❀

x2) D (y0
❀ y1) then (x0

❀ x2) D (y0
❀ y2).

Axioms (DP0D)-(DP3D) are the analogs of (DP0)-(DP3), reflecting the fact that (D )

compares the social value of social state changes, rather than the social states themselves.
Axiom (WPar) is a weak Pareto axiom. We will sometimes consider SDPs which also
satisfy the ‘Strong Pareto’ axiom:

(SPar) For any x1,x2,y1,y2 ∈ X I , if (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I, and
(x1

i ❀ x2
i )≻ (y1

i ❀ y2
i ) for some i ∈ I, then (x1

❀ x2) ⊲ (y1
❀ y2).

Axiom (Anon) is a weak form of ‘anonymity’ or ‘impartiality’, which reflects the fact that
the elements of I are merely ‘placeholders’, with no intrinsic psychological content. All
information about the ‘psychological identity’ of individual i is encoded in xi. Thus, for any
x,y ∈ X I and i, j ∈ I, if xi = yj, then xi and yj are in every sense the same person (even
though this person has different indices in the two social alternatives). Thus, x and π(x)
represent the ‘same’ social alternative: permuting the indices is ethically irrelevant. Thus,
(Anon) asserts that a social state change which simply permutes indices is no different
than no change at all.9 If I is finite, then axiom (Anon) applies to all permutations of
I. However, if I is infinite, then (Anon) is restricted to ‘finitary’ permutations. This
restriction is necessary: requiring (� ) to be invariant under all permutations of I leads

to a contradiction with axiom (SPar).10

Quasiutilitarian SDPs. Let V ⊆ U(�) be a nonempty set. For any x1,x2,y1,y2 ∈ X I ,
we define (x1

❀ x2) D
V

(y1
❀ y2) if, for all v ∈ V there exists some finite subset Jv ⊆ I

such that:

(AU1)
∑

j∈Jv

(
v(x2

j) − v(x1
j)
)

≥
∑

j∈Jv

(
v(y2

j ) − v(y1
j )
)
; and

(AU2) (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ Jv.

9See (Pivato, 2010b, §3) for further discussion of the normative significance of (Anon).
10For example, suppose X = R with the usual (complete) ordering, let I = Z, and define x,y, z ∈ X I

as follows: xi := i − 1, yi := i, and zi := i + 1 for all i ∈ X I . Thus, the transition (y ❀ z) strictly
improves every person’s state, whereas (y ❀ x) strictly worsens every person’s state. Define π : Z−→Z

by π(i) := i + 1. Then π(x) = y and π(y) = z, so if (�) was π-invariant, then we would have (y ❀

x) ̂ (y ❀ y) ̂ (y ❀ z), which is both intuitively absurd, and logically inconsistent with axiom (SPar).
See Basu and Mitra (2003, 2006) and Fleurbaey and Michel (2003; Theorem 1) for further analysis of the
Pareto/anonymity conflict.
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In particular, we define the approximate utilitarian SDP ( D
u

) by setting V := U(� ). (Note:

If J ′ ⊆ I is any finite set with Jv ⊆ J ′, then (AU1) is also true if we replace Jv with J ′

(because (AU2) implies that v(x2
j) − v(x1

j) ≥ v(y2
j ) − v(y1

j ) for all j ∈ J ′ \ Jv). Thus, we
can make Jv arbitrarily large in (AU1). In particular, if I is finite, then we can simply set
Jv := I for all v ∈ V; then statement (AU2) becomes vacuous.)

Proposition 3.1 Let (�) be a difference preorder on X .

(a) If ∅ 6= V ⊆ U(�), then ( D
V

) is an (�)-SDP on X I.

(b) If V contains a strong utility function for (�), or V yields a multiutility repre-
sentation for (�), then ( D

V
) satisfies axiom (SPar).

(c) If ∅ 6= V ⊆ W ⊆ U(�), then ( D
V

) extends and refines ( D
W

).

(d) In particular, every quasiutilitarian SDP extends and refines ( D
u

).

(e) If (�) has any strong utility functions, then ( D
u

) satisfies axiom (SPar).

In general, U(�) will be large, and (D
u

) will be incomplete. By restricting to a smaller set

V ⊂ U(�), we can obtain a more complete SDP (D
V

). We might do this for technical reasons

or normative reasons. At a technical level, perhaps we only wish to consider elements of
U(�) which satisfy certain ‘regularity’ conditions. (For example, if X is a topological
space, we might only be interested in the continuous elements of U(�).) At a normative
level, perhaps some of the utility functions in U(�) encode information which we think is
‘ethically irrelevant’ and should be ignored. Or perhaps we wish to give some information
more ‘weight’ than other information. For example, let u1, u2, . . . , uN : X−→R be a set of
functions measuring N components of ‘quality of life’, such as health, education, security,
liberty, social participation, consumption of various commodities, etc. Let U ′ be the set of
all positive linear combinations of u1, . . . , uN . If u1, . . . , uN ∈ U(�), then U ′ ⊆ U(�). But
perhaps we want to give component 1 twice the weight of component 2, and six times the
weight of component 3, while excluding components 4 and 5 altogether. We could do this
with the quasiutilitarian SDP (D

V
), where V := {6u1 + 3u2 + u3, u6, u7, . . . , uN}.

When is an SDP quasiutilitarian? Let (D ) be a (�)-SDP, and let (R, +, >) be a linearly

ordered abelian group. An R-valued social welfare function (SWF) for (D ) is a function

W : X I−→R which is a weak utility function for (D ). That is: for any x1,x2,y1,y2 ∈ X I ,

we have
(
(x1

❀ x2) D (y1
❀ y2)

)
=⇒

(
W (x2) − W (x1) ≥ W (y2) − W (y1)

)
. (4)

A collection W of SWFs yields a multiwelfare representation for ( D ) if, for any x1,x2,y1,y2 ∈

X I , we have
(
(x1

❀ x2) D (y1
❀ y2)

)
⇐⇒

(
W (x2) − W (x1) ≥ W (y2) − W (y1), ∀ W ∈ W

)
. (5)
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We now come to our first major result.

Theorem 3.2 Let I be finite. An (�)-SDP on X I admits a multiwelfare representation
if and only if it is quasiutilitarian.

For example, suppose (�) and ( D ) are complete difference preorders, and can be repre-

sented by a single real-valued utility function u and a single real-valued SWF W , respec-
tively. Then Theorem 3.2 says that W (x) =

∑
i∈I u(xi), so that (D ) is equivalent to the

classic utilitarian social welfare order. This conclusion is very similar to Theorem 1 of Dyer
and Sarin (1979a), Theorem 6 of Harvey and Østerdal (2010), or the main result of Harvey
(1999). However, Theorem 3.2 also applies to incomplete preorders and non-real-valued
utility functions.

Theorem 3.2 is only applicable when I is finite. Also, not all SDPs admit a multiwel-
fare representation. The rest of this paper investigates the behaviour of SDPs when the
hypotheses of Theorem 3.2 are not necessarily satisfied.

4 The minimal SDP

An (�)-SDP is not necessarily a complete preorder on X I ×X I . Furthermore, there may
be many different (�)-SDPs, based on different ethical principles, which disagree on how
to trade off between the interests of different individuals. It is thus desirable to find the
common ground between these different SDPs. It is easy to see that the intersection of
two or more SDPs is also an SDP. Let SDP be the set of all (�)-social difference preorders
on X I (we will see soon that this set is always nonempty). Define the minimal SDP:

( D
∗

) :=
⋂

(D)∈SDP

(D). In other words, for any x1,x2,y1,y2 ∈ X I , we have

(
(x1

❀ x2) D
∗

(y1
❀ y2)

)
⇐⇒

(
(x1

❀ x2) D (y1
❀ y2) for every (D ) ∈ SDP

)
. (6)

Proposition 4.1 Let (�) be a difference preorder on X , and let ( D ) be an (�)-SDP.

(a) ( D ) extends ( D
∗

).

(b) ( D ) satisfies (SPar) if and only if ( D ) refines ( D
∗

) and ( D
∗

) satisfies (SPar).

(c) If (�) has a strong utility function, then ( D
∗

) satisfies (SPar).

Unfortunately, definition (6) is nonconstructive, and thus, not very useful in practice. We
now provide a more explicit and practical characterization of the minimal SDP (D

∗
). Say

(�) is empathic if, for any x1, x2, y1 ∈ X , there exists y2 ∈ X such that (x1 ❀ x2)≈(y1 ❀

y2). In other words: for any possible state transition facing a person currently in state x1,
a person in state y1 can imagine an exactly analogous transition for herself. (Necessary
and sufficient conditions for empathy are given in §7.) Here is our second major result.
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Theorem 4.2 Suppose (�) is empathic, and has a multiutility representation (3) given by
some subset V ⊆ U(�). If either I is finite or V is finite, then ( D

V
) = ( D

u
) = ( D

∗
).

Example 4.3. Suppose X = RN , where the different coordinates represent different
quantitative measures of well-being (e.g. health, education, etc.). For any x1, x2, y1, y2 ∈ X ,
suppose (x1 ❀ x2) � (y1 ❀ y2) if and only if (x2 − x1) ≥ (y2 − y1) (where “≥” is the
coordinatewise dominance relation). Then (�) is empathic. Furthermore, the N coordinate
projections on RN provide a finite multiutility representation for (�); thus, Theorem 4.2
says that (D

u
) is the ‘core’ of every other (�)-SDP on X I .

In particular, if N = 1 (i.e. X = R), then (�) is a complete order on X × X . In this
case, U(�) is simply the set of affine increasing functions from R to itself, so that (D

u
) is

equivalent to the classic utilitarian social welfare order:

(
(x1

❀ x2) D
u

(y1
❀ y2)

)
⇐⇒

(∑

i∈I

(
x2

i − x1
i

)
≥
∑

i∈I

(
y2

i − y1
i

))

(if I is finite). In this case, Theorem 4.2 implies that (D
u

) is the unique SDP on X I

satisfying axiom (SPar).11 ♦

For any x ∈ X , z ∈ X I , and j ∈ I, we define ( xj

z−j
) ∈ X I by setting ( xj

z−j
)j := x, while

( xj

z−j
)i := zi for all i ∈ I \ {j}. Let ( D ) be a (�)-SDP. We say that (D ) exhibits no extra

hidden interpersonal comparisons if the following holds:

(NEHIC) For all x, x′, y, y′ ∈ X and z ∈ X I ,

(
(x ❀ x′) � (y ❀ x′)

)
⇐⇒

(((
xj

z−j

)
❀

(
x′

j

z−j

))
D

((
yj

z−j

)
❀

(
y′

j

z−j

)))
.

Note that the “=⇒” direction of (NEHIC) follows immediately from axiom (WPar). The
real content of (NEHIC) lies in the “⇐=” direction. Intuitively, if (( xj

z−j
) ❀ ( x′

j

z−j
)) D (( yj

z−j
) ❀

( y′
j

z−j
)), then ( D ) is implicitly making an interpersonal comparison that (x ❀ x′) is a greater

welfare gain than (y ❀ y′). Axiom (NEHIC) says that (D ) can only make such judgements

when they are justified by the underlying difference preorder (�).

Theorem 4.4 Suppose I is finite and (�) is empathic, and let ( D ) be an (�)-SDP. If

( D ) has a multiwelfare representation (5) and satisfies (NEHIC), then ( D ) = ( D
u

) = ( D
∗

).

Not all difference preorders are empathic or admit a multiutility representation, so
Theorems 4.2 and 4.4 are not always applicable. Indeed, if U(�) = ∅, then it is not even

11Proof sketch. (D
u

) is a complete preorder on RI ×RI . Theorem 4.2 says that any other SDP (D ) on

RI is an extension of (D
u

), which means (D ) is obtained by ‘thickening’ some of the indifference curves

of (D
u

). But if (D ) satisfies (SPar), then it cannot have any ‘thick’ indifference curves; thus, (D ) = (D
u

).
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clear that the set SDP is nonempty; hence it is not clear that the minimal SDP (D
∗

) is

well-defined. We will now provide an alternative, inductive definition of (D
∗

). First, define

an equivalence relation ( ân ) on X I ×X I by:

(
(x1

❀ x2) ân (y1
❀ y2)

)
⇐⇒

(
y1 = x1, and ∃ π ∈ Π with y2 = π(x2)

)
.

Let ( D
par

) be the Pareto preorder. That is:

(
(x1

❀ x2) D
par

(y1
❀ y2)

)
⇐⇒

(
(x1

i ❀ x2
i ) � (y1

i ❀ y2
i ) for all i ∈ I

)
.

Let ( D
∗

) be the closure of the relation ( ân ) ∪ ( D
par

) under transitivity, (DP2), and (DP3).

That is: for any x0,x2, z0,y2 ∈ X I , we recursively define (x0
❀ x2) D

∗
(z0

❀ z2) if either

(∗1) (x0
❀ x2) ân (z0

❀ z2); or

(∗2) (x0
❀ x2) D

par
(z0

❀ z2); or

(∗3) There exist y0,y2 with (x0
❀ x2) D

∗
(y0

❀ y2) and (y0
❀ y2) D

∗
(z0

❀ z2); or

(∗4) There exist x1, z1 with (x0
❀ x1) D

∗
(z0

❀ z1) and (x1
❀ x2) D

∗
(z1

❀ z2); or

(∗5) There exist x1, z1 with (x0
❀ x1) D

∗
(z1

❀ z2) and (x1
❀ x2) D

∗
(z0

❀ z1).

Conditions (∗1)-(∗3) correspond to a social preorder proposed by Suppes and Sen.12 Con-
ditions (∗4) and (∗5) ensure satisfaction of axioms (DP2D) and (DP3D).

Proposition 4.5 The relation ( D
∗

) defined using rules (∗1)-(∗5) is the minimal SDP de-

fined by formula (6).

5 Net Gain

For any x1,x2,y1,y2 ∈ X I , and any finite subsets J ,K ⊆ I with J := |J | and K := |K|,
we write “(x1

❀ x2) D
J ,K

(y1
❀ y2)” if there exist w0, w1, . . . , wJ ∈ X and z0, z1, . . . , zK ∈ X

and bijections α : J−→[1 . . . J ] and β : K−→[1 . . . K] such that:

(JK1) (x1
j ❀ x2

j) � (wα(j)−1 ❀ wα(j)) for all j ∈ J ;

(JK2) (zβ(k)−1 ❀ zβ(k)) � (y1
k ❀ y2

k), for all k ∈ K; and

(JK3) (w0 ❀ wJ) � (z0 ❀ zK).

12See Suppes (1966), Sen (1970b, §9*1-§9*3, pp.150-156), Saposnik (1983) and Pivato (2010b, §3.1).
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Intuitively, w0 ❀ wJ aggregates the net welfare gain of the chain w0 ❀ w1 ❀ w2 ❀ · · · ❀

wJ . Thus, (JK1) implies that net welfare gain for the J -population induced by the change
x1

❀ x2 is at least as large as the net welfare gain of w0 ❀ wJ . Meanwhile, (JK2) implies
that the net welfare gain for the K-population induced by y1

❀ y2 is at most as large as
z0 ❀ zK . Thus, if (JK3) holds, then the J -population, in aggregate, gains more welfare
from x1

❀ x2 than the K-population gains from y1
❀ y2

Let I0 ⊆ I be a finite subset. A partition of I0 is a collection {Jℓ}ℓ∈L of disjoint subsets

of I0 (where L is some indexing set), such that I0 =
⊔

ℓ∈L

Jℓ. We define the net gain relation

( D
ng

) as follows. For any x1,x2,y1,y2 ∈ X I , define (x1
❀ x2) D

ng
(y1

❀ y2) if there exists

some finite I0 ⊆ I and two partitions {Jℓ}ℓ∈L and {Kℓ}ℓ∈L of I0 (with the same indexing
set L), such that:

(NG1) (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ I0.

(NG2) For all ℓ ∈ L, we have (x1
❀ x2) D

Jℓ,Kℓ

(y1
❀ y2).

Intuitively, condition (NG2) means we can split up I0 into disjoint subsets such that, for
each ℓ ∈ L, the ‘net welfare gain’ induced by x1

❀ x2 for Jℓ is demonstrably larger than
the ‘net welfare gain’ induced by y1

❀ y2 for Kℓ (as argued in the previous paragraph).
Thus, if we aggregate over all ℓ ∈ L, then the ‘net welfare gain’ over all of I0 must be
greater for x1

❀ x2 than it is for y1
❀ y2. Meanwhile, condition (NG1) ensures that

the people in I \ I0 unanimously prefer x1
❀ x2 over y1

❀ y2. (If I is finite, then we
can simply set I0 := I, in which case condition (NG1) becomes vacuous.) Our last major
result characterizes the minimal SDP (D

∗
) without assuming I is finite, or assuming the

existence of any utility functions for (�). Here is the last major result of the paper.

Theorem 5.1 If (�) is empathic, then ( D
ng

) = ( D
∗

), and satisfies (SPar).

Note that Theorem 5.1 does not require (�) to have any utility functions, much less a
multiutility representation. (This is important, given the results of Appendix B.)

In general, if (�) is not empathic, then (D
ng

) itself might not even be an SDP. However,

it will still be the case that every SDP extends (D
ng

), as the next result describes.

Proposition 5.2 (a) The relation ( D
ng

) is reflexive, and satisfies axioms (WPar),

(Anon), (DP0D), and (DP1D).

(b) If ( D ) is any (�)-SDP on X I, then ( D ) extends ( D
ng

). Furthermore, if ( D ) also

satisfies (SPar), then ( D ) also refines ( D
ng

).

6 Application: Redistributive transfers

Suppose X = P ×R+, where P is a set of ‘personality types’, and where the state 〈p, r〉 ∈
P×R+ represents a p-type person holding r dollars. We suppose p encodes all psychological
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or physical characteristics which influence the marginal welfare which money provides
for a p-type person. The social planner can only approximately compare the marginal
welfare of money for different personality types. However, we assume everyone obtains
qualitatively similar benefits from money, which we model using a nondecreasing ‘benefit
function’ β : R+−→R. Formally, for any p1, p2 ∈ P, we suppose there is some constant
C = C(p1, p2) ≥ 1 such that, for any r1 < s1 and r2 < s2 in R+, we have

(
β(s1) − β(r1)

β(s2) − β(r2)
> C

)
=⇒

(
(〈p1, r1〉 ❀ 〈p1, s1〉) ≻ (〈p2, r2〉 ❀ 〈p2, s2〉)

)
. (7)

(Of course, C(p, p) = 1 for all p ∈ P). We will use this simple model to investigate the
social benefit of wealth redistribution. For simplicity, suppose I contains {1, 2} (‘Juan’ and
‘Sue’), and fix p ∈ PI . Let C := C(p1, p2), and consider a social state 〈p, r〉 ∈ PI × RI

+,
where r1 < r2 (so Juan is poorer than Sue). A redistributive transfer is a change 〈p, r〉 ❀

〈p, s〉, where ri = si for all i 6∈ {1, 2}, and r1 ≤ s1 ≤ s2 ≤ r2, and where s1 + s2 ≤ r1 + r2.
(The gap (r1 + r2) − (s1 + s2) represents the efficiency loss caused by the transfer —due
to labour disincentive effects on Juan and Sue, the costs of managing and enforcing the
necessary system of taxes and subsidies, and/or waste and corruption in the government.)13

The ‘status quo’ option is simply the ‘null’ transfer 〈p, r〉 ❀ 〈p, r〉. Under what conditions
is redistribution socially superior to the status quo?

Proposition 6.1 Suppose there exists r′2 ≥ r2 with
β(s1) − β(r1)

β(r′2) − β(s2)
> C.14 If ( D ) is any

(�)-SDP on X I, then for all q ∈ RI
+, we have (〈p,q〉 ❀ 〈p, s〉) D (〈p,q〉 ❀ 〈p, r〉). In

particular, (〈p, r〉 ❀ 〈p, s〉) D (〈p, r〉 ❀ 〈p, r〉).

Furthermore, if r′2 > r2, and ( D ) satisfies (SPar), then (〈p,q〉 ❀ 〈p, s〉) ⊲ (〈p,q〉 ❀

〈p, r〉) (and hence, (〈p, r〉 ❀ 〈p, s〉) ⊲ (〈p, r〉 ❀ 〈p, r〉)).

Example 6.2. Suppose β(r) = log2(r) for all r ∈ R+, and let C := 2 in statement (7). Let
r1 := 128 and r2 := 2047. Let s1 := 513 and s2 := 1024. Thus, the transfer 〈p, r〉 ❀ 〈p, s〉
taxes $1023 from Sue, and gives $385 to Juan (we suppose the other $638 is lost due to
inefficiencies). Let r′2 := 2048. Then r′2 > r2, and

log2(s1) − log2(r1)

log2(r
′
2) − log2(s2)

=
log2(513) − log2(128)

log2(2048) − log2(1024)
>

9 − 7

11 − 10
= 2 = C.

Thus, any SDP will say that this wealth transfer is socially superior to the status quo,
despite the large efficiency loss and the imprecise interpersonal utility comparisons. ♦

13Some transfers, such as public education or public vaccination campaigns, subsidize activities with
positive externalities, so that, in effect, s1 + s2 ≥ r1 + r2. But we will ignore this possibility.

14Note: since r′
2
− s2 ≥ r2 − s2 ≥ s1 − r1, and C ≥ 1, this inequality means that the average slope of β

between r2 and s2 is smaller than its average slope between r1 and s1. This is consistent with the standard
assumption that the marginal benefit of wealth is declining.
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7 Empathy

Theorems 4.2, 4.4, and 5.1 illustrate the importance of empathy. What are necessary and
sufficient conditions for a difference preorder to be empathic?

Let J be an indexing set (possibly infinite), let {Rj}j∈J be a collection of linearly
ordered abelian groups, and for all j ∈ J , let uj : X−→Rj. Let U ′ := {uj}j∈J , and suppose
(�) has a multiutility representation (3). Define R :=

∏
j∈J Rj (with the product group

structure), and define u : X−→R by u(x) := (uj(x))j∈J for all x ∈ X . Let u(X ) := {u(x);
x ∈ X} (a subset of R). Recall that u(X ) is a coset in R if there is some subgroup S ⊆ R

and some r ∈ R such that u(X ) := r + S.

Proposition 7.1 Suppose (�) has a multiutility representation (3), and define u : X−→R

as above. Then (�) is empathic if and only if u(X ) is a coset in R.

Example 7.2. (a) Suppose (�) is a complete difference preorder on X , defined by a single
utility function u : X−→R so that (x1 ❀ x2) � (y1 ❀ y2) if and only if u(x2) − u(x1) ≥
u(y2)−u(y1). Then (�) is empathic if u(X ) is a subgroup of R —in particular, if u(X ) = R.

(b) Let v1, v2, . . . , vN : X−→R be real-valued functions. Let V := {v1, . . . , vN} and define
(�

V
) as in Example 2.1. If the set {(v1(x), . . . , vN(x)); x ∈ X} is an affine subspace of

RN , then (�
V

) is empathic. ♦

An endomorphism of (�) is a function α : X−→X such that, for all x1, x2 ∈ X , if
y1 := α(x1) and y2 := α(x2), then (x1 ❀ x2)≈(y1 ❀ y2). Psychologically speaking, α

defines a perfect analogy (in terms of welfare gains) between all state changes available to
x1 and those available to y1.

The composition of two endomorphisms is also an endomorphism. Thus, if End(�) is
the set of all endomorphisms of (�), then End(�) is a monoid.15 We say that End(�) acts
transitively on X if, for any x, y ∈ X , there exists α ∈ End(�) such that α(x) = y.

Proposition 7.3 Let (�) be a difference preorder. Then (�) is empathic if and only if
End(�) acts transitively on X .

Conclusion

It is reasonable to suppose that we can make at least approximate comparisons between the
welfare gains and losses which different people experience under changes in the social state.
Using even such an approximate interpersonal comparison scheme, it is possible to define
a nontrivial (albeit incomplete) ranking of social state changes. This allows the social
planner to judge that some state changes are clearly better than others (although there
may be no unique optimum). In particular, even a very incomplete system of interpersonal

15An invertible endomorphism is called an automorphism; the set of automorphisms forms a group. But
not all endomorphisms are necessarily invertible.
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comparisons can be enough to show that some wealth transfers improve social welfare
relative to the status quo (Proposition 6.1).

We have defined three social ranking schemes. One, (D
u

), is a straightforward general-

ization of the classic utilitarian social welfare order. Another, ( D
∗

), is a generalization of

the Suppes-Sen ordering, and forms the logical core of every social ranking system com-
patible with our axioms (Proposition 4.1). The third, (D

ng
), ranks social state changes by

comparing the aggregate costs/benefits they impose upon different sub-populations in a
‘quasi-utilitarian’ fashion; it is a sub-relation of (D

∗
) (Proposition 5.2(b)). Under reason-

able hypotheses, all three schemes are in fact equal (Theorems 4.2 and 4.4). This makes
the approximate utilitarian scheme (D

u
) attractive as a basis for social choice. We end

with some open questions.

• The ‘empathy’ hypothesis of Theorems 4.2, 4.4 and 5.1 is somewhat restrictive. Do
the conclusions hold under a weaker condition?

• Aside from ( D
∗

) and ( D
u

), are there any interesting and natural SDPs admitting

axiomatic characterizations?
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Appendix A: Proofs

Proof of Proposition 2.2. Let J be an indexing set (possibly infinite), let {Rj}j∈J be a
collection of linearly ordered abelian groups, and for all j ∈ J , let uj : X−→Rj. Let
U ′ := {uj}j∈J , and suppose (�) has a multiutility representation (3).

Let (≫) be a well-ordering of J . Let R :=
∏

j∈J Rj, and let (+) be the componentwise
addition operator on R. Let r, s ∈ R, with r 6= s. Since (J ,≫) is well-ordered, the
set {j ∈ J ; rj 6= sj} has a minimal element; call this element j∗(r, s). Define the
lexicographical order (>) on R as follows: for any r 6= s ∈ R, if j = j∗(r, s), then r > s
if and only if rj >j sj (where (>j) is the order on Rj). It is easy to verify that (R,+,>)
is a linearly ordered abelian group.

Now, define u : X−→R by u(x) := (uj(x))j∈J for all x ∈ X . I claim that u is a strong
utility function. If (x1 ❀ x2) � (y1 ❀ y2), then (3) says that u(x2)−u(x1) ≥ u(y2)−u(y1)
for all u ∈ U ′. Thus, u(x2) − u(x1) ≥ u(y2) − u(y1).

Furthermore, if (x1 ❀ x2) ≻ (y1 ❀ y2), then (x1 ❀ x2) 6� (y1 ❀ y2), so the contraposi-
tive of (3) says that it is false that u(x2) − u(x1) ≤ u(y2) − u(y1) for all u ∈ U ′. Thus,
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u(x2)−u(x1) > u(y2)−u(y1) for some u ∈ U ′. But then u(x2)−u(x1) > u(y2)−u(y1),
as desired. ✷

Proof of Proposition 3.1. (a) The reflexive property follows from axiom (WPar), which,
in turn, follows immediately by setting Jv := ∅ for all v ∈ V, and applying (AU2) to
every element of I.

(Anon) Let π ∈ Π. Let J ⊆ I be a finite subset such that π(i) = i for all i ∈ I \ J . Let
x ∈ X I , and let x′ = π(x). Then for all v ∈ V, we have

∑

j∈J

(
v(x′

j) − v(xj)
)

=
∑

j′∈J

v(x′
j′) −

∑

j∈J

v(xj)

(∗)

∑

j∈J

v(xj) −
∑

j∈J

v(xj) =
∑

j∈J

(
v(xj) − v(xj)

)
.

Here, (∗) is by the change of variables j′ := π(j) (because π : J−→J bijectively). If we
set Jv := J , then this verifies (AU1) in both directions. Meanwhile, we obviously have
(xi ❀ x′

i) = (xi ❀ xi) for all i ∈ I \ J . This verifies (AU2) in both directions. Thus
(x ❀ x′) V̂ (x ❀ x), as desired.

Transitive. Suppose (x0
❀ x1) D

V
(y0

❀ y1) and (y0
❀ y1) D

V
(z0

❀ z1); we must show that

(x0
❀ x1) D

V
(z0

❀ z1). Let v ∈ V, and suppose v : X−→R, where R is some linearly

ordered abelian group. By hypothesis, there exist finite subsets J ′
v,J

′′
v ⊆ I such that

∑

j∈J ′
v

(
v(x1

j) − v(x0
j)
)

≥
∑

j∈J ′
v

(
v(y1

j ) − v(y0
j )
)

, (A1)

∑

j∈J ′′
v

(
v(y1

j ) − v(y0
j )
)

≥
∑

j∈J ′′
v

(
v(z1

j ) − v(z0
j )
)

, (A2)

(x0
i ❀ x1

i ) � (y0
i ❀ y1

i ), for all i ∈ I \ J ′
v, (A3)

and (y0
i ❀ y1

i ) � (z0
i ❀ z1

i ), for all i ∈ I \ J ′′
v . (A4)

Let Jv := J ′
v ∪ J ′′

v . Then

∑

j∈Jv

(
v(x1

j) − v(x0
j)
)

≥
∑

j∈Jv

(
v(y1

j ) − v(y0
j )
)

, (A5)

∑

j∈Jv

(
v(y1

j ) − v(y0
j )
)

≥
∑

j∈Jv

(
v(z1

j ) − v(z0
j )
)

, (A6)

(x0
i ❀ x1

i ) � (y0
i ❀ y1

i ), for all i ∈ I \ Jv, (A7)

and (y0
i ❀ y1

i ) � (z0
i ❀ z1

i ), for all i ∈ I \ Jv. (A8)

Here, (A5) is obtained by combining (A1), (A3), and (2). Likewise, (A6) is obtained by
combining (A2), (A4), and (2). Next, (A7) follows from (A3), because (I\Jv) ⊆ (I\J ′

v)

16



(because Jv ⊇ J ′
v). Likewise, (A8) follows from (A4), because (I \ Jv) ⊆ (I \ J ′′

v )
(because Jv ⊇ J ′′

v ). We conclude that

∑

j∈Jv

(
v(x1

j) − v(x0
j)
)

≥
∑

j∈Jv

(
v(z1

j ) − v(z0
j )
)

(A9)

and (x0
i ❀ x1

i ) � (z0
i ❀ z1

i ), for all i ∈ I \ Jv. (A10)

Here, (A9) is obtained be combining (A5) and (A6) using the transitivity of the ordering
on R. Meanwhile (A10) is obtained by combining (A7) and (A8), using the transitivity
of (�).

Now, (A9) verifies (AU1), while (A10) verifies (AU2). We can do this for any v ∈ V;
thus, (x0

❀ x1) D
V

(z0
❀ z1), as desired.

(DP2D) The argument is closely analogous to the proof of Transitivity. Suppose (x0
❀

x1) D
V

(y0
❀ y1) and (x1

❀ x2) D
V

(y1
❀ y2); we must show that (x0

❀ x2) D
V

(y0
❀ y2).

Let v ∈ V, with v : X−→R. By hypothesis, there exist finite subsets J ′
v,J

′′
v ⊆ I such

that
∑

j∈J ′
v

(
v(x1

j) − v(x0
j)
)

≥
∑

j∈J ′
v

(
v(y1

j ) − v(y0
j )
)

, (A11)

∑

j∈J ′′
v

(
v(x2

j) − v(x1
j)
)

≥
∑

j∈J ′′
v

(
v(y2

j ) − v(y1
j )
)

, (A12)

(x0
i ❀ x1

i ) � (y0
i ❀ y1

i ), for all i ∈ I \ J ′
v, (A13)

and (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ), for all i ∈ I \ J ′′
v . (A14)

Let Jv := J ′
v ∪ J ′′

v . Then

∑

j∈Jv

(
v(x1

j) − v(x0
j)
)

≥
∑

j∈Jv

(
v(y1

j ) − v(y0
j )
)

, (A15)

∑

j∈Jv

(
v(x2

j) − v(x1
j)
)

≥
∑

j∈Jv

(
v(y2

j ) − v(y1
j )
)

, (A16)

(x0
i ❀ x1

i ) � (y0
i ❀ y1

i ), for all i ∈ I \ Jv, (A17)

and (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ), for all i ∈ I \ Jv. (A18)

Here, (A15) is obtained by combining (A11), (A13), and (2). Likewise, (A16) is obtained
by combining (A12), (A14), and (2). Next, (A17) follows from (A13), because (I \Jv) ⊆
(I \ J ′

v) (because Jv ⊇ J ′
v). Likewise, (A18) follows from (A14), because (I \ Jv) ⊆

(I \ J ′′
v ) (because Jv ⊇ J ′′

v ). We conclude that

∑

j∈Jv

(
v(x2

j) − v(x0
j)
)

=
∑

j∈J

(
v(x2

j) − v(x1
j)
)

+
∑

j∈J

(
v(x1

j) − v(x0
j)
)

≥
(∗)

∑

j∈J

(
v(y2

j ) − v(y1
j )
)

+
∑

j∈J

(
v(y1

j ) − v(y0
j )
)
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=
∑

j∈Jv

(
v(y2

j ) − v(y0
j )
)

, (A19)

and (x0
i ❀ x2

i ) � (y0
i ❀ y2

i ), for all i ∈ I \ Jv. (A20)

Here, (∗) comes from combining (A15) and (A16) and using the compatibility between
the ordering and the addition operator on R. Meanwhile (A20) comes from combining
(A17) and (A18), and using axiom (DP2) for (�).

Now, (A19) verifies (AU1), while (A20) verifies (AU2). We can do this for any v ∈ V;
thus, (x0

❀ x2) D
V

(y0
❀ y2), as desired.

(DP3D) The proof is very similar to (DP2D).

(DP0D) For any v ∈ V, set Jv := ∅, and observe that (xi ❀ xi) ≈ (yi ❀ yi) for all i ∈ I \ Jv,
by (DP0). Thus, (AU2) is satisfied in both directions, so (x ❀ x) V̂ (y ❀ y), as desired.

(DP1D) Let v ∈ V. If (x1
❀ x2) D

V
(y1

❀ y2), then there exists some finite Jv ⊆ I such

that
∑

j∈Jv

(
v(x2

j) − v(x1
j)
)

≥
∑

j∈Jv

(
v(y2

j ) − v(y1
j )
)
, while (x1

i ❀ x2
i ) � (y1

i ❀ y2
i ) for all

i ∈ I \Jv. But then
∑

j∈Jv

(
v(x1

j) − v(x2
j)
)

≤
∑

j∈Jv

(
v(y1

j ) − v(y2
j )
)
. Also, since (�) itself

satisfies (DP1), we get (x2
i ❀ x1

i ) � (y2
i ❀ y1

i ), for all i ∈ I \ Jv. Thus, (AU1) and
(AU2) are satisfied. This holds for all v ∈ V; we conclude that (x2

❀ x1)E
V
(y2

❀ y1).

(b) Suppose (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I, and (x1
j ❀ x2

j)≻ (y1
j ❀ y2

j ) for some j ∈ I.

Axiom (WPar) implies that (x1
❀ x2) D

V
(y1

❀ y2), To show that (x1
❀ x2) ⊲

u
(y1

❀

y2), we must show that (x1
❀ x2) 6E

V
(y1

❀ y2).

First suppose V contains a strong utility function v0. Thus v0(x
2
i ) − v0(x

1
i ) ≥ v0(y

2
i ) −

v0(y
1
i ) for all i ∈ I, and v0(x

2
j)− v0(x

1
j) > v0(y

2
j )− v0(y

1
j ). We will show that there is no

finite subset J ⊆ I which satisfies (AU1) and (AU2) for v0 in the way required to show
that (x1

❀ x2)E
V
(y1

❀ y2).

If j ∈ J , then
∑

j∈J

(
v0(x

2
j) − v0(x

1
j)
)

>
∑

j∈J

(
v0(y

2
j ) − v0(y

1
j )
)
, so (AU1) is not satisfied.

If j 6∈ J , then j ∈ I \ J , and (x1
j ❀ x2

j)≻ (y1
j ❀ y2

j ), so (AU2) is not satisfied.

Thus, there exists at least one v ∈ V (namely v0) such that (AU1) and (AU2) cannot
both be satisfied. Thus, (x1

❀ x2) 6E
V

(y1
❀ y2), as desired.

The proof in the case when V provides a multiutility representation is similar.

(d) follows immediately from (c), which in turn follows from the definitions of ( D
V

) and ( D
W

).

Finally, (e) follows from (b). ✷

The Proof of Theorem 3.2 uses the following result, which is of independent interest.
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Proposition A.1 Let I be finite, and let ( D ) be a (�)-SDP on X I. If W : X I−→R is

a SWF for ( D ), then there exists some u ∈ U(� ) and some constant C ∈ R such that

W (x) = C +
∑

i∈I

u(xi) for all x ∈ X I.

Proof: Let J ,K ⊂ I be disjoint subsets, with I = J ⊔ K. For x,y ∈ X I , we define
(xJ

yK
) ∈ X I by setting (xJ

yK
)j := xj for all j ∈ J , while (xJ

yK
)k := yk for all k ∈ K. Fix

some o ∈ X , and define o ∈ X I by oi := o for all i ∈ I. Now fix k ∈ I, and define
u : X−→R by setting u(x) := W ( xk

o−k
)−W (o) for all x ∈ X . (It follows that u(o) = 0.)

Claim 1: For any x, y ∈ X , z ∈ X I , and j ∈ I, we have W ( yj

z−j
) − W ( xj

z−j
) =

u(y) − u(x).

Proof: We have
(

xj

z−j

❀
yj

z−j

)
(̂∗)

(
xj

o−j

❀
yj

o−j

)
(̂†)

(
xk

o−k

❀
yk

o−k

)
. (A21)

Here, (†) is by (Anon), and (∗) is by (WPar), along with the fact that (DP0) says
(zi ❀ zi)≈(o ❀ o) for all i ∈ I \ {j}. Combining (4) with (A21), we obtain

W

(
yj

z−j

)
− W

(
xj

z−j

)
= W

(
yk

o−k

)
− W

(
xk

o−k

)

= W

(
yk

o−k

)
− W (o) + W (o) − W

(
xk

o−k

)
= u(y) − u(x),

as desired ✸ Claim 1

Claim 2: u ∈ U(�).

Proof: Let x, x′, y, y′ ∈ X . Then
(
(x ❀ x′) � (y ❀ y′)

)
(∗)
=⇒

((
xk

o−k
❀

x′
k

o−k

)
D

(
yk

o−k
❀

y′
k

o−k

))

(†)
=⇒

(
W
(

x′
k

o−k

)
− W

(
xk

o−k

)
≥ W

(
y′

k
o−k

)
− W

(
yk

o−k

))
.

⇐
(⋄)
⇒

(
u(x′) − u(x) ≥ u(y′) − u(y)

)
,

as desired. Here, (∗) is by (WPar), (†) is by statement (4), and (⋄) is by Claim 1.
✸ Claim 2

Without loss of generality, suppose I = [1 . . . I]. Let C := W (o). Then for all x ∈ X I ,

W (x) − C = W (x) − W (o)

= W (x) − W

(
o1

x[2...I]

)
+ W

(
o1

x[2...I]

)
− W

(
o{1,2}

x[3...I]

)
+ · · · + W

(
o[1...I−1]

xI

)
− W (o)

(∗)
u(x1) − u(o) + u(x2) − u(o) + · · ·u(xI) − u(o) = u(x1) + u(x2) + · · ·u(xI).

Here, (∗) is by Claim 1. Thus, W (x) = C +
∑

i∈I

u(xi), as claimed. ✷
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Proof of Theorem 3.2. Let ( D ) be a (�)-SDP on X I .

“⇐=” Clearly, if (D ) is quasiutilitarian, it admits a multiwelfare representation.

“=⇒” Let W be a collection of SWFs yielding a multiwelfare representation for (D ).

For all W ∈ W, Proposition A.1 yields some v
W

∈ U(�) such that, for all x1,x2 ∈ X I ,
we have W (x2)−W (x1) =

∑
i∈I v

W
(x2

i )−
∑

i∈I v
W

(x1
i ). Let V := {v

W
; W ∈ W}. Then

for all x1,x2,y1,y2 ∈ X I , formula (5) implies that (x1
❀ x2) D (y1

❀ y2) if and only if

(AU1) holds (with Jv := I) for all v ∈ V. Thus, ( D ) = ( D
V

). ✷

The proofs of Proposition 4.1(b,c) use the next result.

Lemma A.2 Let ( D
1

) and ( D
2

) be two preorders on X I × X I. If ( D
2

) satisfies (SPar),

and ( D
2

) extends ( D
1

), then ( D
1

) satisfies (SPar) also.

Proof: Suppose (x1
i ❀ x2

i )�(y1
i ❀ y2

i ) for all i ∈ I, and (x1
i ❀ x2

i )≺ (y1
i ❀ y2

i ) for some

i ∈ I; we must show that (x1
❀ x2) ⊳

1
(y1

❀ y2). Since ( D
1

) satisfies (WPar), we have

(x1
❀ x2) E

1
(y1

❀ y2). We must show (x1
❀ x2) 6D

1
(y1

❀ y2).

By contradiction, suppose (x1
❀ x2) D

1
(y1

❀ y2). Then (x1
❀ x2) D

2
(y1

❀ y2),

because ( D
2

) extends ( D
1

). But (x1
❀ x2) ⊳

2
(y1

❀ y2) because ( D
2

) satisfies (SPar).

Contradiction. ✷

The proofs of Proposition 4.1(b,c), Theorem 4.2 and Lemma A.5 (below) all depend on
the next result.

Lemma A.3 Let (�) be a preorder on X × X which satisfies (DP1) and (DP2). Let
x0, x1, . . . , xN , y0, y1, . . . , yN ∈ X .

(a) Suppose (xn−1 ❀ xn) � (yn−1 ❀ yn) for all n ∈ [1 . . . N ]. Then (x0 ❀ xN) �
(y0 ❀ yN).

(b) Suppose (xn−1 ❀ xn) � (yn−1 ❀ yn) for all n ∈ [1 . . . N ], and (xn−1 ❀

xn) ≻ (yn−1 ❀ yn) for some n ∈ [1 . . . N ]. Then (x0 ❀ xN) ≻ (y0 ❀ yN).

Now let α : [1 . . . N ]−→[1 . . . N ] be a permutation, and suppose (�) also satisfies (DP3).

(c) Suppose (xn−1 ❀ xn) � (yα(n)−1 ❀ yα(n)) for all n ∈ [1 . . . N ]. Then (x0 ❀

xN) � (y0 ❀ yN).

(d) Suppose (xn−1 ❀ xn) � (yα(n)−1 ❀ yα(n)) for all n ∈ [1 . . . N ], and (xn−1 ❀

xn) ≻ (yα(n)−1 ❀ yα(n)) for some n ∈ [1 . . . N ]. Then (x0 ❀ xN) ≻ (y0 ❀ yN).
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Proof: Part (a) follows from inductive application of (DP2). Part (c) follows from a similar
inductive application of both (DP3) and (DP2).

It suffices to prove part (b) in the case N = 2; the proof for longer chains can then be
derived by applying the case N = 2 and performing induction on chain length. There
are two cases.

First, suppose (x0 ❀ x1) � (y0 ❀ y1) and (x1 ❀ x2) ≻ (y1 ❀ y2). We must show

that (x0 ❀ x2) ≻ (y0 ❀ y2). Axiom (DP2) implies that (x0 ❀ x2) � (y0 ❀ y2), so it

suffices to show that (x0 ❀ x2) 6� (y0 ❀ y2).

By contradiction, suppose (x0 ❀ x2) � (y0 ❀ y2). Then (DP1) implies that (x2 ❀

x0) � (y2 ❀ y0). This, together with hypothesis (x0 ❀ x1) � (y0 ❀ y1) and (DP2),

implies that (x2 ❀ x1) � (y2 ❀ y1). Then (DP1) implies that (x1 ❀ x2) � (y1 ❀ y2).

But this contradicts the hypothesis that (x1 ❀ x2) ≻ (y1 ❀ y2).

A similar proof applies if (x0 ❀ x1) ≻ (y0 ❀ y1) and (x1 ❀ x2) � (y1 ❀ y2).

The proof of part (d) is similar to part (b), but using (DP3) as well as (DP2). ✷

The proof of Proposition 4.1(a) follows immediately from defining formula (6). The proofs
of Proposition 4.1(b,c) require Proposition 4.5, so we prove that first.

Proof of Proposition 4.5. Let ( D
∗

) be the SDP defined inductively by rules (∗1)-(∗5).

Let ( D
◦

) be the SDP defined by formula (6). We must show that (D
∗

) = ( D
◦

).

“⊇” By Proposition 4.1(a), it suffices to show that (D
∗

) is an (�)-SDP. It is easy to

check that ( ân ) is reflexive and satisfies axioms (Anon) and (DP1D). Likewise, ( D
par

) is

reflexive and satisfies axioms (WPar), (DP0D), and (DP1D). Thus, the binary relation
( ân )∪( D

par
) is reflexive and satisfies axioms (Anon), (WPar), (DP0D), and (DP1D). Thus,

( D
∗

) will also satisfy these properties, and will also be transitive and satisfy (DP2D) and

(DP3D) by definition. Thus, ( D
∗

) is an (�)-SDP.

“⊆” We will show that (D
∗

) is a subrelation of every other (�)-SDP; in particular, this

implies that ( D
∗

) ⊆ ( D
◦

).

Let ( D ) be another (�)-SDP, and let x0,x2, z0,y2 ∈ X I . Suppose (x0
❀ x2) D

∗
(z0

❀

z2); we must show that (x0
❀ x2) D (z0

❀ z2). The proof is by induction, using the

recursive definition of (D
∗

).

(∗1) If (x0
❀ x2) ân (z0

❀ z2), then (x0
❀ x2) ̂ (z0

❀ z2) because ( D ) satisfies

(Anon).

(∗2) If (x0
❀ x2) D

par
(z0

❀ z2), then (x0
❀ x2) D (z0

❀ z2), because ( D ) satisfies

(WPar).
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(∗3) Suppose there exist y0,y2 with (x0
❀ x2) D

∗
(y0

❀ y2) and (y0
❀ y2) D

∗
(z0

❀ z2).

By induction, suppose we have already shown that (x0
❀ x2) D (y0

❀ y2) and

(y0
❀ y2) D (z0

❀ z2). Then (x0
❀ x2) D (z0

❀ z2), because ( D ) is transitive.

(∗4) Suppose there exist x1, z1 with (x0
❀ x1) D

∗
(z0

❀ z1) and (x1
❀ x2) D

∗
(z1

❀ z2).

By induction, suppose we have already shown (x0
❀ x1) D (z0

❀ z1) and (x1
❀

x2) D (z1
❀ z2). Then (x0

❀ x2) D (z0
❀ z2), because ( D ) satisfies (DP2D).

(∗5) Suppose there exist x1, z1 with (x0
❀ x1) D

∗
(z1

❀ z2) and (x1
❀ x2) D

∗
(z0

❀ z1).

By induction, suppose we have already shown (x0
❀ x1) D (z1

❀ z2) and (x1
❀

x2) D (z0
❀ z1). Then (x0

❀ x2) D (z0
❀ z2), because ( D ) satisfies (DP3D).

By induction, we have (x0
❀ x2) D (z0

❀ z2). ✷

Proof of Proposition 4.1(b). “⇐=” If ( D
∗

) satisfies (SPar) and (D ) refines ( D
∗

), then

clearly ( D ) also satisfies (SPar).

“=⇒” ( D ) extends ( D
∗

), by part (b). Thus, if (D ) satisfies (SPar), then Lemma A.2

says that (D
∗

) satisfies (SPar).

It remains to show that (D ) refines ( D
∗

). Suppose (x0
❀ x2) ⊲

∗
(z0

❀ z2). Then

(x0
❀ x2) D

∗
(z0

❀ z2) through some sequence of applications of Steps (∗1)-(∗5), but the

same sequence does not yield (x0
❀ x2)E

∗
(z0

❀ z2). This means that in some application

of Step (∗2), we must have a strict “ ⊲
par

” rather than “ D
par

”. Thus, we augment the proof

of Proposition 4.5 “⊆” with the following additional observations:

(∗2) (x0
❀ x2) ⊲

par
(z0

❀ z2), then (x0
❀ x2) ⊲ (z0

❀ z2), because (�) satisfies (SPar).

(∗3) Suppose there exist y0,y2 with (x0
❀ x2) ⊲

∗
(y0

❀ y2) and (y0
❀ y2) D

∗
(z0

❀ z2).

By induction, suppose we have already shown that (x0
❀ x2) ⊲ (y0

❀ y2) and

(y0
❀ y2) D (z0

❀ z2). Then (x0
❀ x2) ⊲ (z0

❀ z2), because ( D ) is transitive.

Likewise, if (x0
❀ x2) D

∗
(y0

❀ y2) and (y0
❀ y2) ⊲

∗
(z0

❀ z2), then (x0
❀

x2) ⊲ (z0
❀ z2).

(∗4) Suppose there exist x1, z1 with (x0
❀ x1) ⊲

∗
(z0

❀ z1) and (x1
❀ x2) D

∗
(z1

❀ z2).

By induction, suppose we have already shown that (x0
❀ x1) ⊲ (z0

❀ z1) and

(x1
❀ x2) D (z1

❀ z2). Then (x0
❀ x2) ⊲ (z0

❀ z2) by Lemma A.3(b), because

( D ) satisfies (DP2D).

Likewise, if (x0
❀ x1) D

∗
(z0

❀ z1) and (x1
❀ x2) ⊲

∗
(z1

❀ z2), then (x0
❀

x2) ⊲ (z0
❀ z2).
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(∗5) Suppose there exist x1, z1 with (x0
❀ x1) ⊲

∗
(z1

❀ z2) and (x1
❀ x2) D

∗
(z0

❀ z1).

By induction, suppose we have already shown that (x0
❀ x1) ⊲ (z1

❀ z2) and

(x1
❀ x2) D (z0

❀ z1). Then (x0
❀ x2) ⊲ (z0

❀ z2) by Lemma A.3(d), because

( D ) satisfies (DP3D).

Likewise, if (x0
❀ x1) D

∗
(z0

❀ z1) and (x1
❀ x2) ⊲

∗
(z1

❀ z2), then (x0
❀

x2) ⊲ (z0
❀ z2).

By induction, we conclude that (x0
❀ x2) ⊲ (z0

❀ z2).

(c) If (�) has a strong utility function, then Proposition 3.1(e) says that ( D
u

) satisfies

(SPar). Now part (b) implies that (D
∗

) also satisfies (SPar). ✷

The proofs of Theorem 4.2 and Proposition 6.1 depend upon Proposition 5.2(b). Likewise,
the proof of Theorem 5.1 depends on Proposition 5.2, so we will prove that first.

Proof of Proposition 5.2(a). Reflexive follows immediately, by setting y1 = x1 and y2 = x2

in (WPar).

(WPar) Let x1,x2,y1,y2 ∈ X I , and suppose that (x1
i ❀ x2

i )� (y1
i ❀ y2

i ) for all i ∈ I. Set

I0 := ∅, so condition (NG2) is vacuous. Meanwhile, condition (NG1) is satisfied by
hypothesis. Thus, (x1

❀ x2) D
ng

(y1
❀ y2).

(Anon) Let x ∈ X I and π ∈ Π; we must show that (x ❀ π(x)) n̂g (x ❀ x). Since π is finitary,
there exists some finite I0 ⊆ I such that π(i) = i for all i ∈ I \ I0.

The π-orbits of distinct points in I0 are either identical or disjoint; thus, they form
a partition of I0. Thus, there is some finite indexing set L such that I0 =

⊔
ℓ∈L Jℓ,

where for each ℓ ∈ L, we have Jℓ = {iℓ, π(iℓ), π
2(iℓ), . . . , π

Jℓ−1(iℓ)} for some iℓ ∈ I0 with
πJℓ(iℓ) = iℓ. For all ℓ ∈ L, define Kℓ := Jℓ.

Claim 1: For all ℓ ∈ L, we have (x ❀ π(x)) Ĵℓ,Kℓ
(x ❀ x).

Proof: We will construct w0, w1, . . . , wJℓ
, z0, z1, . . . , zKℓ

∈ X and bijections αℓ : Jℓ−→[1 . . . Jℓ]
and βℓ : Kℓ−→[1 . . . Kℓ] verifying properties (JK1)-(JK3) in the definition of ( D

Jℓ,Kℓ

).

For all n ∈ [0 . . . Jℓ], let wℓ
n := xπn(iℓ), and define αℓ : Jℓ−→[1 . . . Jℓ] so that, for all

j ∈ Jℓ, if j = πn(iℓ), then αℓ(j) := n + 1. Thus, (xj ❀ xπ(j)) = (wℓ
αℓ(j)−1 ❀ wℓ

αℓ(j)
)

for all j ∈ Jℓ, thereby verifying (JK1).

Fix z ∈ X . For all ℓ ∈ L, define βℓ := αℓ : Kℓ−→[1 . . . Kℓ], and define zℓ
0 = zℓ

1 = zℓ
2 =

· · · = zℓ
Kℓ

:= z. Then

(zℓ
βℓ(k)−1 ❀ zℓ

βℓ(k)) = (z ❀ z) ≈
(DP0)

(xk ❀ xk),

for all k ∈ Kℓ, thereby verifying (JK2).
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Finally, note that wℓ
Jℓ

= xπJℓ (iℓ)
= xiℓ = wℓ

0 (because πJℓ(iℓ) = iℓ by hypothesis). Thus

(wℓ
0 ❀ wℓ

Jℓ
) = (xiℓ ❀ xiℓ) ≈

(DP0)
(z ❀ z) = (zℓ

0 ❀ zℓ
Kℓ

),

thereby verifying (JK3).

This construction shows that (x ❀ π(x)) D
Jℓ,Kℓ

(x ❀ x). But the exact same construc-

tion can be read backwards to show that (x ❀ π(x)) E
Jℓ,Kℓ

(x ❀ x). ✸ Claim 1

Now, for all i ∈ I \ I0, we have π(x)i = xi, so (xi ❀ π(x)i) ≈ (xi ❀ xi), verifying
(NG1). Meanwhile, Claim 1 verifies (NG2). We conclude that (x ❀ π(x)) n̂g (x ❀ x).

(DP0D) Let x,y ∈ X I . We must show that (x ❀ x) n̂g (y ❀ y). Let I0 := ∅, so that (NG2)
is vacuous. To verify (NG1), observe that, for all i ∈ I, we have (xi ❀ xi)≈(yi ❀ yi),

because (�) satisfies (DP0). Thus, (x ❀ x) n̂g (y ❀ y).

(DP1D) Let I0 ⊆ I be finite, and let {Jℓ}ℓ∈L and {Kℓ}ℓ∈L be partitions of I0, such that
(x1

❀ x2) D
ng

(y1
❀ y2) via these partitions. I claim that (x2

❀ x1)E
ng

(y2
❀ y1) via the

same partitions. To prove this, we must check (NG1) and (NG2).

(NG1) For all i ∈ I \ I0, we have (x1
i ❀ x2

i )� (y1
i ❀ y2

i ); thus, (DP1) implies that

(x2
i ❀ x1

i )�(y2
i ❀ y1

i ).

(NG2) Now fix ℓ ∈ L. Find w0, w1, . . . , wJℓ
, z0, z1, . . . , zKℓ

∈ X and bijections α :
Jℓ−→[1 . . . Jℓ] and β : Kℓ−→[1 . . . Kℓ] satisfying conditions (JK1)-(JK3) to verify the
relation (x1

❀ x2) D
Jℓ,Kℓ

(y1
❀ y2). By applying (DP1) to (JK1)-(JK3), we get:

(1KJ) (x2
j ❀ x1

j) � (wα(j) ❀ wα(j)−1) for all j ∈ Jℓ;

(2KJ) (zβ(k) ❀ zβ(k)−1) � (y2
k ❀ y1

k), for all k ∈ Kℓ; and

(3KJ) (wJℓ
❀ w0)�(zKℓ

❀ z0).

Now define w′
j := wJℓ−j for all j ∈ [0 . . . Jℓ] and and α′(j) := Jℓ −α(j) + 1 for all j ∈ Jℓ.

Likewise, define z′k := zKℓ−k for all k ∈ [0 . . . Kℓ] and and β′(k) := Kℓ − β(k) + 1 for all
k ∈ Kℓ. Then assertions (1KJ)-(3KJ) become:

(JK1′′) (x2
j ❀ x1

j) � (w′
α′(j)−1 ❀ w′

α′(j)) for all j ∈ Jℓ;

(JK2′′) (z′β′(k)−1 ❀ z′β′(k)) � (y2
k ❀ y1

k), for all k ∈ Kℓ; and

(JK3′′) (w′
0 ❀ w′

Jℓ
)�(z′0 ❀ z′Kℓ

).

Thus, (x2
❀ x1) E

Jℓ,Kℓ

(y2
❀ y1). We can do this for all ℓ ∈ L, thereby verifying (NG2).

We conclude that (x2
❀ x1)E

ng
(y2

❀ y1). ✷
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Proof of Proposition 5.2(b). Let x1,x2,y2,y2 ∈ X I . Let I0 ⊆ I be a finite subset, and
let {Jℓ}ℓ∈L and {Kℓ}ℓ∈L be partitions of I0. Suppose (x1

❀ x2) D
ng

(y1
❀ y2) via these

partitions. We will show that (x1
❀ x2) D (y1

❀ y2).

For all ℓ ∈ L and n = 1, 2, let xn
Jℓ

:= (xn
j )j∈Jℓ

∈ X Jℓ and yn
Kℓ

:= (yn
k )k∈Kℓ

∈ XKℓ . Since
I0 =

⊔
ℓ∈L Jℓ, we can write (x1

I0
❀ x2

I0
) as an L-indexed structure (x1

Jℓ
❀ x2

Jℓ
)ℓ∈L.

Likewise, since I0 =
⊔

ℓ∈L Kℓ, we can write (y1
I0

❀ y2
I0

) as an L-indexed structure
(y1

Kℓ
❀ y2

Kℓ
)ℓ∈L.

For all ℓ ∈ L, condition (NG2) says (x1
❀ x2) D

Jℓ,Kℓ

(y1
❀ y2). So, let Jℓ := |Jℓ|

and Kℓ := |Kℓ|, and let wℓ
0, w

ℓ
1, . . . , w

ℓ
Jℓ

∈ X and zℓ
0, z

ℓ
1, . . . , z

ℓ
K ∈ X and bijections αℓ :

Jℓ−→[1 . . . Jℓ] and βℓ : Kℓ−→[1 . . . Kℓ] satisfy conditions (JK1)-(JK3) in the definition
of ( D

Jℓ,Kℓ

). For all ℓ ∈ L, suppose we write Jℓ := {j(ℓ, 1), j(ℓ, 2), . . . , j(ℓ, Jℓ)}, such that

αℓ[j(ℓ, n)] = n for all n ∈ [1 . . . Jℓ]. Then

(x1
I0

❀ x2
I0

) = (x1
Jℓ

❀ x2
Jℓ

)ℓ∈L (A22)

=




x1
j(ℓ,1) ❀ x2

j(ℓ,1)

x1
j(ℓ,2) ❀ x2

j(ℓ,2)

x1
j(ℓ,3) ❀ x2

j(ℓ,3)
...

...
...

x1
j(ℓ,Jℓ)

❀ x2
j(ℓ,Jℓ)




ℓ∈L

D
par




wℓ
0 ❀ wℓ

1

wℓ
1 ❀ wℓ

2

wℓ
2 ❀ wℓ

3
...

...
...

wℓ
Jℓ−1 ❀ wℓ

Jℓ




ℓ∈L︸ ︷︷ ︸
(wI0 ❀ w′

I0
)

ân




wℓ
0 ❀ wℓ

Jℓ

wℓ
1 ❀ wℓ

1

wℓ
2 ❀ wℓ

2
...

...
...

wℓ
Jℓ−1 ❀ wℓ

Jℓ−1




ℓ∈L︸ ︷︷ ︸
(wI0 ❀ w′′

I0
)

,

where “ D
par

” is by (JK1), and “ ân ” is via the (finitary) permutation π : I0−→I0 defined

by π[j(ℓ, 1)] := j(ℓ, Jℓ) and π[j(ℓ, n)] := j(ℓ, n − 1) for all ℓ ∈ L and n ∈ [2 . . . Jℓ]. If
wI0 , w′

I0
, and w′′

I0
are the elements of X I0 defined as indicated above, then formula

(A22) can be rewritten: (x1
I0

❀ x2
I0

) D
par

(wI0 ❀ w′
I0

) ân (wI0 ❀ w′′
I0

). Thus, if

I∁
0 := I \ I0, then we have

(x1
❀ x2) =

(
x1
I0

❀ x2
I0

x1
I∁
0

❀ x2
I∁
0

)
D
par

(
wI0 ❀ w′

I0

x1
I∁
0

❀ x2
I∁
0

)
ân

(
wI0 ❀ w′′

I0

x1
I∁
0

❀ x2
I∁
0

)
.

Thus, since the SDP ( D ) satisfies axioms (WPar) and (Anon), we deduce that

(x1
❀ x2) =

(
x1
I0

❀ x2
I0

x1
I∁
0

❀ x2
I∁
0

)
D

(
wI0 ❀ w′

I0

x1
I∁
0

❀ x2
I∁
0

)
̂
(

wI0 ❀ w′′
I0

x1
I∁
0

❀ x2
I∁
0

)
. (A23)

Next, for all ℓ ∈ L, suppose we write Kℓ := {k(ℓ, 1), k(ℓ, 2), . . . , k(ℓ,Kℓ)}, such that
βℓ[k(ℓ, n)] = n for all n ∈ [1 . . . Kℓ]. Then

(y1
I0

❀ y2
I0

) = (y1
Kℓ

❀ y2
Kℓ

)ℓ∈L (A24)
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=




y1
k(ℓ,1) ❀ y2

k(ℓ,1)

y1
k(ℓ,2) ❀ y2

k(ℓ,2)

y1
k(ℓ,3) ❀ y2

k(ℓ,3)
...

...
...

y1
k(ℓ,Kℓ)

❀ y2
k(ℓ,Kℓ)




ℓ∈L

E
par




zℓ
0 ❀ zℓ

1

zℓ
1 ❀ zℓ

2

zℓ
2 ❀ zℓ

3
...

...
...

zℓ
Kℓ−1 ❀ zℓ

Kℓ




ℓ∈L︸ ︷︷ ︸
(zI0 ❀ z′I0

)

ân




zℓ
0 ❀ zℓ

Kℓ

zℓ
1 ❀ zℓ

1

zℓ
2 ❀ zℓ

2
...

...
...

zℓ
Kℓ−1 ❀ zℓ

Kℓ−1




ℓ∈L︸ ︷︷ ︸
(zI0 ❀ z′′I0

)

,

where “E
par

” is by (JK2), and “ ân ” is via the (finitary) permutation π : I0−→I0 defined

by π[k(ℓ, 1)] := k(ℓ,Kℓ) and π[k(ℓ, n)] := (ℓ, n − 1) for all ℓ ∈ L and n ∈ [2 . . . Kℓ]. If
zI0 , z′I0

, and z′′I0
are the elements of X I0 defined as indicated above, then formula (A24)

can be rewritten: (y1
I0

❀ y2
I0

)E
par

(zI0 ❀ z′I0
) ân (zI0 ❀ z′′I0

). Combining this with the

I∁
0 -coordinates, and recalling that (D ) satisfies axioms (WPar) and (Anon), we obtain

(y1
❀ y2) =

(
y1
I0

❀ y2
I0

y1
I∁
0

❀ y2
I∁
0

)
E

(
zI0 ❀ z′I0

y1
I∁
0

❀ y2
I∁
0

)
̂
(

zI0 ❀ z′′I0

y1
I∁
0

❀ y2
I∁
0

)
. (A25)

Now, I0 = H′
1 ⊔H′

2 = H′′
1 ⊔H′′

2, where

H′
1 := {j(ℓ, 1) ; ℓ ∈ L}; H′

2 := {j(ℓ, n) ; ℓ ∈ L and n ∈ [2 . . . Jℓ]},
H′′

1 := {k(ℓ, 1) ; ℓ ∈ L} and H′′
2 := {k(ℓ, n) ; ℓ ∈ L and n ∈ [2 . . . Kℓ]}.

Clearly, |H′
1| = |L| = |H′′

1|, and |H′
2| = |I0| − |L| = |H′′

2|. Define bijection θ1 : H′′
1−→H′

1

by θ1[k(ℓ, 1)] := j(ℓ, 1) for all ℓ ∈ L. Let θ2 : H′′
2−→H′

2 be any bijection. Let θ :=
θ1 ⊔ θ2 : I0−→I0. Then θ is a (finitary) permutation of I0. For all ℓ ∈ L, we have

θ(wI0 ❀ w′′
I0

)k(ℓ,1) = (wI0 ❀ w′′
I0

)θ(k(ℓ,1)) = (wI0 ❀ w′′
I0

)j(ℓ,1) = (wℓ
0 ❀ wℓ

Jℓ
)

�
(∗)

(zℓ
0 ❀ zℓ

Kℓ
) = (zI0 ❀ z′′I0

)k(ℓ,1), (A26)

where (∗) is by condition (JK3). Meanwhile, for any ℓ, ℓ′ ∈ L, and any n ∈ [2 . . . Kℓ],
and n′ ∈ [2 . . . Jℓ′ ], if θ(k(ℓ, n)) = j(ℓ′, n′), then

θ(wI0 ❀ w′′
I0

)k(ℓ,n) = (wI0 ❀ w′′
I0

)θ(k(ℓ,n)) = (wI0 ❀ w′′
I0

)j(ℓ′,n′) = (wℓ′

n′ ❀ wℓ′

n′)

≈
(∗)

(zℓ
n ❀ zℓ

n) = (zI0 ❀ z′′I0
)k(ℓ,n), (A27)

where (∗) is by (DP0). Combining (A26) and (A27) over all ℓ ∈ L and n ∈ [2 . . . Kℓ],
we conclude that θ(wI0 ❀ w′′

I0
) D

par
(zI0 ❀ z′′I0

). Meanwhile, condition (NG1) says that

(x1
I∁
0

❀ x2
I∁
0

) D
par

(y1
I∁
0

❀ y2
I∁
0

). Thus,

(
wI0 ❀ w′′

I0

x1
I∁
0

❀ x2
I∁
0

)
ân

(
θ(wI0 ❀ w′′

I0
)

x1
I∁
0

❀ x2
I∁
0

)
D
par

(
zI0 ❀ z′′I0

y1
I∁
0

❀ y2
I∁
0

)
(A28)

and thus,

(
wI0 ❀ w′′

I0

x1
I∁
0

❀ x2
I∁
0

)
̂

(
θ(wI0 ❀ w′′

I0
)

x1
I∁
0

❀ x2
I∁
0

)
D

(
zI0 ❀ z′′I0

y1
I∁
0

❀ y2
I∁
0

)
, (A29)

26



because the SDP ( D ) satisfies axioms (WPar) and (Anon). Combining (A23), (A25)

and (A29) through transitivity, we conclude that (x1
❀ x2) D (y1

❀ y2), as desired.

Refinement. Now suppose ( D ) satisfies (SPar); we must show that (D ) refines ( D
ng

).

Suppose (x1
❀ x2) ⊲

ng
(y1

❀ y2). In other words, (x1
❀ x2) D

ng
(y1

❀ y2), but (x1
❀

x2) 6E
ng

(y1
❀ y2). Then there are three cases. Either

(i) (x1
I∁
0

❀ x2
I∁
0

) ⊲
par

(y1
I∁
0

❀ y2
I∁
0

), or

(ii) one of the “ D
par

” in formulae (A22) or (A24) is actually “ ⊲
par

”; or

(iii) one of the preferences “�
(∗)

” in formula (A26) is actually a “≻
(∗)

”.

(If none of these three cases are satisfied, then we would have (x1
I∁
0

❀ x2
I∁
0

) p̂ar (y1
I∁
0

❀ y2
I∁
0

)

and (x1
❀ x2) Ĵℓ,Kℓ

(y1
❀ y2) for all ℓ ∈ L; which would imply that (x1

❀ x2) n̂g (y1
❀

y2), contradicting our hypothesis.)

In case (ii), (SPar) yields a strict social preference in formulae (A23) or (A25). In case
(i) or (iii), the “ D

par
” in formula (A28) becomes a “ ⊲

par
”; then (SPar) yields a strict social

preference in formula (A29). Either way, when we combine (A23), (A25) and (A29)
through transitivity, we conclude that (x1

❀ x2) ⊲ (y1
❀ y2), as desired. ✷

Proof of Theorem 4.2. We will show that ( D
V

) ⊆ ( D
ng

). Then Proposition 5.2(b) implies

that every SDP is an extension of (D
V

), which means that (D
V

) = ( D
∗

). In particular,

this will mean that (D
V

) ⊆ ( D
u

) But Proposition 3.1(c) says that (D
V

) ⊇ ( D
u

), so this

will imply that (D
V

) = ( D
u

).

Now, let x1,x2,y1,y2 ∈ X I , and suppose (x1
❀ x2) D

V
(y1

❀ y2). We must show that

(x1
❀ x2) D

ng
(y1

❀ y2). For any v ∈ V, there exists some Jv ⊆ I satisfying (AU1) and

(AU2) for v. Let J :=
⋃

v∈V

Jv; then J ⊆ I satisfies (AU1) and (AU2) for all v ∈ V.

Note that J is finite, because either V is finite, or I itself is finite, by hypothesis.

Suppose J := {j1, j2, . . . , jN}. Fix w0 ∈ X . Applying empathy repeatedly, find
w1, w2, . . . , wN ∈ X such that

(JK1′) (x1
jn

❀ x2
jn

) ≈ (wn−1 ❀ wn) for all n ∈ [1 . . . N ].

Fix z0 ∈ X . Applying empathy repeatedly, find z1, z2, . . . , zN ∈ X such that

(JK2′) (zn−1 ❀ zn) ≈ (y1
jn

❀ y2
jn

), for all n ∈ [1 . . . N ].

Claim 1: (w0 ❀ wN) � (z0 ❀ zN).
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Proof: For any v ∈ V, we have

v(wN) − v(w0) =
N∑

n=1

(
v(wn) − v(wn−1)

)
(⋄)

N∑

n=1

(
v(x2

jn
) − v(x1

jn
)
)

=
∑

j∈J

(
v(x2

j) − v(x1
j)
)

≥
(∗)

∑

j∈J

(
v(y2

j ) − v(y1
j )
)

=
N∑

n=1

(
v(y2

jn
) − v(y1

jn
)
)

(†)

N∑

n=1

(
v(zn) − v(zn−1)

)
= v(zN) − v(z0).

Here, (⋄) is by (JK1′) and formula (2). Next, (∗) is by (AU1). Finally, (†) is by (JK2′)
and formula (2).

Thus, v(wN) − v(w0) ≥ v(zN) − v(z0) for all v ∈ V. Thus, the multiutility represen-
tation (3) yields (w0 ❀ wN) � (z0 ❀ zN). ✸ Claim 1

Now, let L := {1} and set I0 := J1 := K1 := J . Then observations (JK1′) and
(JK2′) and Claim 1 together imply that (x1

❀ x2) D
J1,K1

(y1
❀ y2); this yields (NG2).

Meanwhile, (AU2) implies that (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ I0; this yields
(NG1). Thus, (x1

❀ x2) D
ng

(y1
❀ y2). ✷

The proof of Theorem 4.4 uses the next result.

Lemma A.4 Let V ⊆ U(�). Then ( D
V

) satisfies (NEHIC) if and only if V yields a

multiutility representation for (�).

Proof: Let w,w′, z, z′ ∈ X . Let x := ( wj

o−j
), x′ := ( w′

j

o−j
), y := ( zj

o−j
), and y′ := ( z′j

o−j
). For

all v ∈ V, we have:

∑

i∈I

v(x′
i)−

∑

i∈I

v(xi) = v(w′)−v(w) and
∑

i∈I

v(y′
i)−

∑

i∈I

v(yi) = v(z′)−v(z). (A30)

“=⇒” Suppose ( D
V

) satisfies (NEHIC). Then:

(
v(w′) − v(w) ≥ v(z′) − v(z), for all v ∈ V

)

⇐
(∗)
⇒

(∑

i∈I

v(x′
i) −

∑

i∈I

v(xi) ≥
∑

i∈I

v(y′
i) −

∑

i∈I

v(yi), for all v ∈ V
)

(†)
=⇒

(
(x ❀ x′) D

V
(y ❀ y′)

)
⇐

(⋄)
⇒

(
(w ❀ w′) � (z ❀ z′)

)
.

Here, (∗) is by formula (A30), (†) is by definition of (D
V

), and (⋄) is by (NEHIC).

This holds for all w,w′, z, z′ ∈ X ; Thus, V yields a multiutility representation for (�).
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“⇐=” Suppose V yields a multiutility representation for (�). Then

(
(x ❀ x′) D

V
(y ❀ y′)

)

⇐
(†)
⇒

(∑

i∈I

v(x′
i) −

∑

i∈I

v(xi) ≥
∑

i∈I

v(y′
i) −

∑

i∈I

v(yi), for all v ∈ V
)

⇐
(∗)
⇒

(
v(w′) − v(w) ≥ v(z′) − v(z), for all v ∈ V

)
⇐

(⋄)
⇒

(
(w ❀ w′) � (z ❀ z′)

)
.

Here, (†) is by definition of (D
V

) (recall that I is finite). Meanwhile, (∗) is by formula

(A30), and (⋄) is because V yields a multiutility representation for (�).

This holds for all w,w′, z, z′ ∈ X . Thus, ( D
V

) satisfies (NEHIC). ✷

Proof of Theorem 4.4. If ( D ) has a multiwelfare representation, and I is finite, then

Theorem 3.2 says (D ) = ( D
V

) for some V ⊆ U(�). If ( D
V

) satisfies (NEHIC), then

Lemma A.4 says V yields a multiutility representation for (�). Then Theorem 4.2 says
that (D

V
) = ( D

u
) = ( D

∗
). ✷

Proof of Proposition 6.1. Set x1 = y1 = y2 := 〈p, r〉 and x2 := 〈p, s〉. Because of
Proposition 5.2(b), it suffices to show that (x1

❀ x2) D
ng

(y1
❀ y2).

Let I0 := {1, 2}; then condition (NG1) holds because ri = si for all i ∈ I \ {1, 2}. It
remains to check (NG2). Let L := {1} and let J1 := K1 := I0; we will show that
(x1

❀ x2) D
J1,K1

(y1
❀ y2), by verifying conditions (JK1)-(JK3).

Define α(1) := 2 and α(2) := 1. Define w0 := 〈p2, r2〉 ( = x1
2), w1 := 〈p2, s2〉 ( = x2

2) and
w2 := 〈p2, r

′
2〉. Then (wα(2)−1 ❀ wα(2)) = (w0 ❀ w1) = (x1

2 ❀ x2
2). Meanwhile,

(wα(1)−1 ❀ wα(1)) = (w1 ❀ w2) = (〈p2, s2〉 ❀ 〈p2, r
′
2〉)

≺
(∗)

(〈p1, r1〉 ❀ 〈p1, s1〉) = (x1
1 ❀ x2

1),

which verifies (JK1). Here (∗) is by formula (7), because
β(s1) − β(r1)

β(r′2) − β(s2)
> C.

Now define β(1) := 1, β(2) := 2, and let z0 = z1 = z2 = 〈p2, r2〉 ( = y1
2 = y2

2). Then

(zβ(2)−1 ❀ zβ(2)) = (z1 ❀ z2) = (〈p2, r2〉 ❀ 〈p2, r2〉) = (y1
2 ❀ y2

2),

and (zβ(1)−1 ❀ zβ(1)) = (z0 ❀ z1) = (〈p2, r2〉 ❀ 〈p2, r2〉)

≈
(∗)

(〈p1, r1〉 ❀ 〈p1, r1〉) = (y1
1 ❀ y2

1).

which verifies (JK2). Here, (∗) is by (DP0). To check (JK3), observe that

(w0 ❀ w2) = (〈p2, r2〉 ❀ 〈p2, r
′
2〉) �

(∗)
(〈p2, r2〉 ❀ 〈p2, r2〉) = (z0 ❀ z2), (A31)
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where (∗) is because r′2 ≥ r2.

Thus, (〈p, r〉 ❀ 〈p, s〉) D
ng

(〈p, r〉 ❀ 〈p, r〉). Thus, if (�) is any social difference preorder

then Proposition 5.2(b) says (〈p, r〉 ❀ 〈p, s〉) D (〈p, r〉 ❀ 〈p, r〉).

Furthermore, if r′2 > r2, then the relation “�
(∗)

” in eqn.(A31) becomes “≻
(∗)

”. Thus,

(〈p, r〉 ❀ 〈p, s〉) ⊲
ng

(〈p, r〉 ❀ 〈p, r〉). Thus, if ( D ) satisfies (SPar), then Proposition

5.2(b) says that (〈p, r〉 ❀ 〈p, s〉) ⊲ (〈p, r〉 ❀ 〈p, r〉). ✷

Let ( D
tng

) be the transitive closure of (D
ng

). In other words: for any a1, a2, z1, z2 ∈ X I , we

have (a1
❀ a2) D

tng
(z1

❀ z2) if there exist b1,b2, c1, c2, . . . ,y1,y2 ∈ X I such that

(a1
❀ a2) D

ng
(b1

❀ b2) D
ng

(c1
❀ c2) D

ng
· · · D

ng
(z1

❀ z2). (A32)

The proof of Theorem 5.1 uses the following result:

Lemma A.5 Suppose (�) is empathic. For any x1,x2,y1,y2 ∈ X I, the following are
equivalent:

(a) (x1
❀ x2) D

tng
(y1

❀ y2).

(b) (x1
❀ x2) D

ng
(y1

❀ y2).

(c) There exists a finite subset N0 ⊆ I such that, for any finite N ⊆ I with N0 ⊆ N :

(NG1′) (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ N ,

(NG2′) (x1
❀ x2) D

N ,N
(y1

❀ y2).

Proof: “(b)=⇒(a)” is clear, because ( D
tng

) is the transitive closure of (D
ng

).

“(c)=⇒(b)” If we set I0 := N , set L := {1}, and set J1 := K1 := N ; then (NG2′) implies
(NG2), while (NG1′) implies (NG1). Thus, (x1

❀ x2) D
ng

(y1
❀ y2).

“(a)=⇒(c)” Case 1. Suppose (x1
❀ x2) D

ng
(y1

❀ y2) by some finite subset I0 ⊆ I and via

the partitions {Jℓ}ℓ∈L′ and {Kℓ}ℓ∈L′ of I0, satisfying conditions (NG1) and (NG2) (for
some indexing set L′). Let N0 := I0.

Claim 1: For any finite N ⊆ I, if N0 ⊆ N , then there exists a finite set L ⊇ L′

and partitions {Jℓ}ℓ∈L and {Kℓ}ℓ∈L of N which satisfies conditions (NG1) and (NG2)
for (x1

❀ x2) D
ng

(y1
❀ y2).

Proof: Let M := N \ I0, and suppose without loss of generality that M is disjoint
from L′. Let L := L′ ⊔ M. For all ℓ ∈ L′, define Jℓ and Kℓ as before. For all
m ∈ M, axiom (NG1) says that (x1

m ❀ x2
m) � (y1

m ❀ y2
m). Thus, if we introduce

singleton partition elements Jm := {m} and Km := {m}, then we automatically have
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(x1
❀ x2) D

Jm,Km
(y1

❀ y2). Do this for all m ∈ M; then the collections {Jℓ}ℓ∈L and

{Kℓ}ℓ∈L are partitions of N , and satisfy (NG2).

Meanwhile, for all i ∈ I\N , we have (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ), because (I\N ) ⊆ (I\I0),
because N ⊇ I0. ✸ Claim 1

(NG1′) follows from (NG1) in Claim 1. It remains to verify (NG2′). We must construct
bijections α, β : N−→[1 . . . N ] and w0, . . . , wN , z0, . . . , zN (where N := |N |) such that:

(JK1′) (x1
n ❀ x2

n) � (wα(n)−1 ❀ wα(n)) for all n ∈ N ;

(JK2′) (zβ(n)−1 ❀ zβ(n)) � (y1
n ❀ y2

n), for all n ∈ N ; and

(JK3′) (w0 ❀ wN) � (z0 ❀ zN).

Without loss of generality, suppose L = [1 . . . L] for some L ∈ N. For all ℓ ∈ [1 . . . L],
let J ′

ℓ := |Jℓ| and K ′
ℓ := |Kℓ|. Let bijections αℓ : Jℓ−→[1 . . . J ′

ℓ] and βℓ : Kℓ−→[1 . . . K ′
ℓ]

and states wℓ
0, w

ℓ
1, . . . , w

ℓ
J ′

ℓ
, zℓ

0, z
ℓ
1, . . . , z

ℓ
K′

ℓ
∈ X satisfy the conditions (JK1)-(JK3) in the

definition of ( D
Jℓ,Kℓ

). Define J1 := K1 := 0, and for all ℓ ∈ [2 . . . L+1], define Jℓ :=

J ′
1 + · · ·+ J ′

ℓ−1 and Kℓ := K ′
1 + · · ·+ K ′

ℓ−1. Then define α(j) := αℓ(j) + Jℓ for all j ∈ Jℓ,
and β(k) := βℓ(k) + Kℓ for all k ∈ Kℓ. Then α, β : N−→[1 . . . N ] are bijections.

Note that α(j) = α1(j) for all j ∈ J1 (because J1 = 0). Define wn := w1
n for all

n ∈ [0 . . . J ′
1]. Then for all j ∈ J1, we have (w1

α1(j)−1 ❀ w1
α1(j)) = (wα(j)−1 ❀ wα(j)).

Thus, (x1
j ❀ x2

j) � (wα(j)−1 ❀ wα(j)), as required by (JK1′).

Now, let ℓ ∈ [2 . . . L], and suppose inductively that we have obtained w0, . . . , wJℓ
∈ X

satisfying property (JK1′) for all n ∈ J1 ⊔ J2 ⊔ · · · ⊔ Jℓ−1. Let j1 ∈ Jℓ be such that
αℓ(j1) = 1. Thus, α(j1) = Jℓ + 1. Empathy yields some wJℓ+1 ∈ X such that (wℓ

0 ❀

wℓ
1)≈(wJℓ

❀ wJℓ+1). Thus, since (x1
j1

❀ x2
j1

) � (wℓ
αℓ(j1)−1 ❀ wℓ

αℓ(j1)
) = (wℓ

0 ❀ wℓ
1)

(by (JK1)), and (wJℓ
❀ wJℓ+1) = (wα(j1)−1 ❀ wα(j1)) (by definition of α), we obtain

(x1
j1

❀ x2
j1

) � (wα(j1)−1 ❀ wα(j1)).

Next, let j2 ∈ Jℓ be such that αℓ(j2) = 2. Thus, α(j2) = Jℓ + 2. Empathy yields
some wJℓ+2 ∈ X such that (wℓ

1 ❀ wℓ
2)≈(wJℓ+1 ❀ wJℓ+2). Thus, since (x1

j2
❀ x2

j2
) �

(wℓ
αℓ(j2)−1 ❀ wℓ

αℓ(j2)) = (wℓ
1 ❀ wℓ

2) (by (JK1)), and (wJℓ+1 ❀ wJℓ+2) = (wα(j2)−1 ❀

wα(j2)) (by definition of α), we obtain (x1
j2

❀ x2
j2

) � (wα(j2)−1 ❀ wα(j2)).

Proceeding in this way, repeated application of empathy yields a collection {wα(j); j ∈
Jℓ} ⊂ X such that for all j ∈ Jℓ, we have (wℓ

αℓ(j)−1 ❀ wℓ
αℓ(j)

) ≈ (wα(j)−1 ❀ wα(j)), and

hence (x1
j ❀ x2

j) � (wα(j)−1 ❀ wα(j)), as required by (JK1′).

By induction, we obtain w0, . . . , wN ∈ X satisfying property (JK1′). An identical con-
struction yields z0, . . . , zN ∈ X satisfying property (JK2′).

For all ℓ ∈ [1 . . . L], every link in the chain wJℓ
❀ w1+Jℓ

❀ w2+Jℓ
❀ · · · ❀ wJℓ+1

is indifferent to the corresponding link in the chain wℓ
0 ❀ wℓ

1 ❀ wℓ
2 ❀ · · · ❀ wℓ

J ′
ℓ

(by construction), so Lemma A.3(a) yields (wJℓ
❀ wJℓ+1

) ≈(wℓ
0 ❀ wℓ

J ′
ℓ
). Likewise,
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(zℓ
0 ❀ zℓ

K′
ℓ
) ≈ (zKℓ

❀ zKℓ+1
). Thus,

(wJℓ
❀ wJℓ+1

) ≈ (wℓ
0 ❀ wℓ

J ′
ℓ
) �

(∗)
(zℓ

0 ❀ zℓ
K′

ℓ
) ≈ (zKℓ

❀ zKℓ+1
),

where (∗) is by (JK3) for the relation (x1
❀ x2) D

Jℓ,Kℓ

(y1
❀ y2). Thus, applying Lemma

A.3(a) to the chains w0 = wJ1 ❀ wJ2 ❀ wJ3 ❀ · · · ❀ wJL+1
= wN and z0 = zK1 ❀

zK2 ❀ zK3 ❀ · · · ❀ zKL+1
= zN yields (JK3′).

We conclude that (x1
❀ x2) D

N ,N
(y1

❀ y2), thus verifying (NG2′).

Case 2. Let a1, a2, z1, z2 ∈ X , and suppose (a1
❀ a2) D

tng
(z1

❀ z2) via a chain like

(A32). Let Ia,b ⊆ I be a finite subset satisfying (NG1) and (NG2) for the relation
(a1

❀ a2) D
ng

(b1
❀ b2). Likewise define Ib,c, Ic,d, . . . , Iy,z ⊆ I. Finally, let N0 :=

Ia,b ∪ Ib,c ∪ · · · ∪ Iy,z. Then N0 is a finite subset of I, and for any finite N ⊆ I which
contains N0, Claim 1 shows that N satisfies (NG1) and (NG2) for all of the relations in
the chain (A32).

Applying the argument of Case 1 to each link in the chain (A32), we get elements
A′

0, A
′
1, . . . , A

′
N , B0, B1, . . . , BN , B′

0, B
′
1, . . . , B

′
N , C0, C1, . . . , CN , C ′

0, C
′
1, . . . , C

′
N , . . . . . .,

Y0, Y1, . . . , YN , Y ′
0 , Y

′
1 , . . . , Y

′
N , and Z0, Z1, . . . , ZN in X , and bijections α, β, β′, γ, γ′, . . .,

υ, υ′, and ζ from N into [1 . . . N ], such that, for all n ∈ N , we have:

(a1
n ❀ a2

n) � (A′
α(n)−1 ❀ A′

α(n));

(Bβ(n)−1 ❀ Bβ(n)) � (b1
n ❀ b2

n) � (B′
β′(n)−1 ❀ B′

β′(n));

(Cγ(n)−1 ❀ Cγ(n)) � (c1
n ❀ c2

n) � (C ′
γ′(n)−1 ❀ C ′

γ′(n));
...

...
...

...
...

(Yυ(n)−1 ❀ Yυ(n)) � (y1
n ❀ y2

n) � (Y ′
υ′(n)−1 ❀ Y ′

υ′(n));

(Zζ(n)−1 ❀ Zζ(n)) � (z1
n ❀ z2

n).

(A33)

The left-hand relations in (A33) are by (JK2′); the right-hand relations in (A33) are by
(JK1′). Meanwhile, (JK3′) yields

(A′
0 ❀ A′

N) � (B0 ❀ BN);
(B′

0 ❀ B′
N) � (C0 ❀ CN);

...
...

...
and (Y ′

0 ❀ Y ′
N) � (Z0 ❀ ZN).

(A34)

The transitivity of (�) collapses all but the first and last rows of (A33) into

(Bβ(n)−1 ❀ Bβ(n)) � (B′
β′(n)−1 ❀ B′

β′(n)), for all n ∈ N ;

(Cγ(n)−1 ❀ Cγ(n)) � (C ′
γ′(n)−1 ❀ C ′

γ′(n)), for all n ∈ N ;
...

...
...

and (Yυ(n)−1 ❀ Yυ(n)) � (Y ′
υ′(n)−1 ❀ Y ′

υ′(n)), for all n ∈ N .

(A35)
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Define β′′ := β′ ◦ β−1, γ′′ := γ′ ◦ γ−1, . . ., υ′′ := υ′ ◦ υ−1. Then β′′, γ′′, . . . , υ′′ are all
permutations of [1 . . . N ]. Applying a change of variables to each line in (A35) yields

(Bm−1 ❀ Bm) � (B′
β′′(m)−1 ❀ B′

β′′(m)), for all m ∈ [1 . . . N ];

(Cm−1 ❀ Cm) � (C ′
γ′′(m)−1 ❀ C ′

γ′′(m)), for all m ∈ [1 . . . N ];
...

...
...

and (Ym−1 ❀ Ym) � (Y ′
υ′′(m)−1 ❀ Y ′

υ′′(m)), for all m ∈ [1 . . . N ].

(A36)

Applying Lemma A.3(c) the relations in (A36) yields

(B0 ❀ BN) � (B′
0 ❀ B′

N);
(C0 ❀ CN) � (C ′

0 ❀ C ′
N);

...
...

...
and (Y0 ❀ YN) � (Y ′

0 ❀ Y ′
N),

(A37)

Now, consider A′
0, A

′
1, . . . , A

′
N and Z0, Z1, . . . , ZN . The first row of (A33) says that

A′
0, A

′
1, . . . , A

′
N satisfies (JK1′) with respect to (a1

❀ a2). The last row of (A33) says
that Z0, Z1, . . . , ZN satisfies (JK2′) with respect to (z1

❀ z2). Finally, combining (A34)
and (A37) with transitivity, we get (A′

0 ❀ A′
N) � (Z0 ❀ ZN), thus verifying (JK3′).

We conclude that (a1
❀ a2) D

N ,N
(z1

❀ z2), which verifies (NG2′). Meanwhile, for all

i ∈ I \ N , we have i ∈ I \ Ia,b, i ∈ I \ Ib,c, . . . and i ∈ I \ Iy,z. Thus, we deduce that
(a1

i ❀ a2
i ) � (z1

i ❀ z2
i ), by applying transitivity and invoking the hypothesis (NG1) for

each link in the chain (A32). This verifies (NG1′). ✷

Proof of Theorem 5.1. ( D
ng

) ⊆ ( D
∗

) by Proposition 5.2(b). We must show that (D
ng

) ⊇ ( D
∗

).

It is equivalent to show that (D
∗

) ⊆ ( D
tng

), because Lemma A.5 says (D
ng

) = ( D
tng

), because

(�) is empathic. To show that (D
∗

) ⊆ ( D
tng

), it suffices to show that ( D
tng

) is an (�)-SDP

on X I , and then apply Proposition 4.1(a).

Now, ( D
tng

) is transitive by definition. Also, ( D
tng

) is reflexive and satisfies axioms (DP0D),

(DP1D), (WPar) and (Anon) because (D
ng

) has these properties, by Proposition 5.2(a).

It remains to verify axioms (DP2D), (DP3D), and (SPar).

(SPar) Suppose that

∀ i ∈ I, (x1
i ❀ x2

i )�(y1
i ❀ y2

i ), and ∃ i0 ∈ I : (x1
i0

❀ x2
i0
)≺ (y1

i0
❀ y2

i0
). (A38)

We must show that (x1
❀ x2) ⊳

tng
(y1

❀ y2). Since ( D
tng

) satisfies (WPar), we have

(x1
❀ x2) E

tng
(y1

❀ y2). We must show (x1
❀ x2) 6D

tng
(y1

❀ y2).

By contradiction, suppose (x1
❀ x2) D

tng
(y1

❀ y2). Then Lemma A.5 yields some finite

subset N ⊆ I, with i0 ∈ N , satisfying (NG1′) and (NG2′). Let N := |N |. Then (NG2′)
yields some w̃0, w̃1, . . . , w̃N , z̃0, z̃1, . . . , z̃N ∈ X and bijections α, β : N−→[1 . . . N ] such
that
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(J̃K1) (x1
n ❀ x2

n) � (w̃α(n)−1 ❀ w̃α(n)) for all n ∈ N ;

(J̃K2) (z̃β(n)−1 ❀ z̃β(n)) � (y1
n ❀ y2

n), for all n ∈ N ; and

(J̃K3) (w̃0 ❀ w̃N) � (z̃0 ❀ z̃N).

Without loss of generality, assume that N = [1 . . . N ]. Fix w0, z0 ∈ X arbitrarily.
Repeated application of empathy yields w1, w2, . . . , wN , z1, z2, . . . , zN ∈ X such that

(JK1′) (x1
n ❀ x2

n) ≈ (wn−1 ❀ wn) for all n ∈ [1 . . . N ]; and

(JK2′) (zn−1 ❀ zn) ≈ (y1
n ❀ y2

n), for all n ∈ [1 . . . N ].

Thus, transitivity and hypothesis (A38) imply that (wn−1 ❀ wn)�(zn−1 ❀ zn) for

all n ∈ [1 . . . N ], while (wn−1 ❀ wn)≺ (zn−1 ❀ zn) for some n ∈ [1 . . . N ] (because

i0 ∈ N ). Thus, applying Lemma A.3(b) to the chains w0 ❀ w1 ❀ · · · ❀ wN and
z0 ❀ z1 ❀ · · · ❀ zN , we get

(JK3′) (w0 ❀ wN) ≺ (z0 ❀ zN).

Meanwhile, combining (JK1′) and (J̃K1) yields

(J̃K1′) (wn−1 ❀ wn) � (w̃α(n)−1 ❀ w̃α(n)) for all n ∈ [1 . . . N ].

Likewise, combining (JK2′) and (J̃K2) yields

(J̃K2′) (z̃β(n)−1 ❀ z̃β(n)) � (zn−1 ❀ zn), for all n ∈ [1 . . . N ].

Thus, we have

(w0 ❀ wN) �
(∗)

(w̃0 ❀ w̃N) �
(⋄)

(z̃0 ❀ z̃N) �
(†)

(z0 ❀ zN). (A39)

Here, (∗) is by applying Lemma A.3(c) to the relations in (J̃K1′), and (†) is by applying

Lemma A.3(c) to the relations in (J̃K2′). Finally (⋄) is by (J̃K3).

Equation (A39) implies that (w0 ❀ wN) � (z0 ❀ zN). But this contradicts (JK3′). By
contradiction, (x1

❀ x2) 6D
tng

(y1
❀ y2), as desired.

(DP2D) Let x0,x1,x2,y0,y1,y2 ∈ X I , and suppose (x0
❀ x1) D

tng
(y0

❀ y1) and (x1
❀

x2) D
tng

(y1
❀ y2). We must check that (x0

❀ x2) D
tng

(y0
❀ y2).

Since (x0
❀ x1) D

tng
(y0

❀ y1), Lemma A.5 yields some finite subset N0 ⊆ I such that

any superset of N0 satisfies (NG1′) and (NG2′) for (x0
❀ x1) and (y0

❀ y1). Likewise,
Lemma A.5 yields some finite subset N1 ⊆ I such that any finite superset of N1 satisfies
(NG1′) and (NG2′) for (x1

❀ x2) and (y1
❀ y2). Thus, if N := N0 ∪ N1, then N

satisfies (NG1′) and (NG2′) for both. This means that

(NG1′) (x0
i ❀ x1

i ) � (y0
i ❀ y1

i ) for all i ∈ I \ N ; and
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(NG1′′) (x1
i ❀ x2

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ N .

Furthermore, there exist elements w′
0, w

′
1, . . . , w

′
N , z′0, z

′
1, . . . , z

′
N ∈ X (where N := |N |)

and bijections α′, β′ : N−→[1 . . . N ] such that

(JK1′) (x0
n ❀ x1

n) � (w′
α′(n)−1 ❀ w′

α(n)), for all n ∈ N ;

(JK2′) (z′β′(n)−1 ❀ z′β′(n)) � (y0
n ❀ y1

n), for all n ∈ N ; and

(JK3′) (w′
0 ❀ w′

N) � (z′0 ❀ z′N).

Likewise, there exist elements w′′
0 , w

′′
1 , . . . , w

′′
N , z′′0 , z

′′
1 , . . . , z

′′
N ∈ X and bijections α′′, β′′ :

N−→[1 . . . N ] such that

(JK1′′) (x1
n ❀ x2

n) � (w′′
α′′(n)−1 ❀ w′′

α′′(n)), for all n ∈ N ;

(JK2′′) (z′′β′′(n)−1 ❀ z′′β′′(n)) � (y1
n ❀ y2

n), for all n ∈ N ; and

(JK3′′) (w′′
0 ❀ w′′

N) � (z′′0 ❀ z′′N).

Finally, empathy means that we can assume without loss of generality that w′′
0 = w′

N

and z′′0 = z′N , so (JK3′′) can be rewritten as (w′
N ❀ w′′

N) � (z′N ❀ z′′N). We can use
(DP2) to combine this with (JK3′) and obtain:

(w′
0 ❀ w′′

N) � (z′0 ❀ z′′N). (A40)

Assume without loss of generality that N := [1 . . . N ]. Let w0 := w′
α′(1)−1, and let

w 1
2

:= w′
α′(1). Empathy yields some w1 ∈ X such that (w 1

2
❀ w1)≈(w′′

α′′(1)−1 ❀ w′′
α′′(1)).

Then empathy yields some w 3
2
∈ X such that (w1 ❀ w 3

2
)≈(w′

α′(2)−1 ❀ w′
α′(2)), and some

w2 ∈ X such that (w 3
2

❀ w2)≈(w′′
α′′(2)−1 ❀ w′′

α′′(2)).

Inductively, let n ∈ [1 . . . N ], and suppose we have constructed w0, w 1
2
, w1, w 3

2
, . . . , wn−1 ∈

X . Empathy yields some wn− 1
2
∈ X such that (wn−1 ❀ wn− 1

2
)≈(w′

α′(n)−1 ❀ w′
α′(n)); then

empathy yields some wn ∈ X such that (wn− 1
2

❀ wn)≈(w′′
α′′(n)−1 ❀ w′′

α′′(n)). Thus, for

all n ∈ [1 . . . N ], we have:

(x0
n ❀ x1

n) �
(JK1′)

(w′
α′(n)−1 ❀ w′

α′(n)) ≈ (wn−1 ❀ wn− 1
2
)

and (x1
n ❀ x2

n) �
(JK1′′)

(w′′
α′′(n)−1 ❀ w′′

α′′(n)) ≈ (wn− 1
2

❀ wn),

and thus, (x0
n ❀ x2

n) � (wn−1 ❀ wn), by (DP2).





(A41)

Thus, if we let α : N−→[1 . . . N ] be the identity map, then w0, w1, w2, . . . , wN verify
property (JK1) for transition (x0

❀ x2)

In a similar way, empathy yields z0, z 1
2
, z1, z 3

2
, . . . , zN ∈ X such that (zn−1 ❀ zn− 1

2
)≈(z′β′(n)−1 ❀

z′β′(n)), and (zn− 1
2

❀ zn)≈(z′′β′′(n)−1 ❀ z′′β′′(n)) for all n ∈ [1 . . . N ]. Thus, for all

n ∈ [1 . . . N ], we have:

(y0
n ❀ y1

n) �
(JK2′)

(z′β′(n)−1 ❀ z′β′(n)) ≈ (zn−1 ❀ zn− 1
2
)

and (y1
n ❀ y2

n) �
(JK2′′)

(z′′β′′(n)−1 ❀ z′′β′′(n)) ≈ (zn− 1
2

❀ zn),

and thus, (y0
n ❀ y2

n) � (zn−1 ❀ zn), by (DP2).





(A42)
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Thus, if we let β : N−→[1 . . . N ] be the identity map, then z0, z1, z2, . . . , zN verify
property (JK2) for transition (y0

❀ y2).

Finally, every step in the chain

w0 ❀ w 1
2

❀ w1 ❀ w 3
2

❀ · · · ❀ wN

is indifferent (by construction) to a specific step in the chain

w′
0 ❀ w′

1 ❀ w′
2 ❀ · · · ❀ w′

N = w′′
0 ❀ w′′

1 ❀ w′′
2 ❀ · · · ❀ w′′

N ,

thus, applying Lemma A.3(c) in both directions implies that (w0 ❀ wN)≈(w′
0 ❀ w′′

N).

Likewise, (z0 ❀ zN)≈(z′0 ❀ z′′N). Combining these observations with equation (A40),

we have (w0 ❀ wN) � (z0 ❀ zN), thereby verifying (JK3).

Setting L := {1}, J1 := K1 := N and α := β := identity map, we have (x0
❀

x2) �
J1,K1

(y0
❀ y2), verifying (NG2). Meanwhile, (NG1) follows from observations

(NG1′) and (NG1′′), and axiom (DP2). Thus (x0
❀ x2)�

ng
(y0

❀ y2), and thus

(x0
❀ x2) �

tng
(y0

❀ y2).

(DP3D) Let x0,x1,x2,y0,y1,y2 ∈ X I , and suppose (x0
❀ x1) D

tng
(y1

❀ y2) and (x1
❀

x2) D
tng

(y0
❀ y1). We must check that (x0

❀ x2) D
tng

(y0
❀ y2).

The argument is very similar to the proof of (DP2D); we will simply point out the
differences. Formulae (JK1′), (JK3′), (JK1′′) and (JK3′′) remain exactly as before, but
formulae (NG1′), (NG1′′), (JK2′), and (JK2′′) now become:

(NG1′) (x0
i ❀ x1

i ) � (y1
i ❀ y2

i ) for all i ∈ I \ N ;

(NG1′′) (x1
i ❀ x2

i ) � (y0
i ❀ y1

i ) for all i ∈ I \ N ;

(JK2′) (z′β′(n)−1 ❀ z′β′(n)) � (y1
n ❀ y2

n), for all n ∈ N ; and

(JK2′′) (z′′β′′(n)−1 ❀ z′′β′′(n)) � (y0
n ❀ y1

n), for all n ∈ N .

We use empathy to construct w0, w 1
2
, w1, w 3

2
, . . . , wN ∈ X verifying statements (A41)

exactly as before. However, the construction of z0, z 1
2
, z1, z 3

2
, . . . , zN ∈ X now changes

so that the statements in (A42) become:

(y0
n ❀ y1

n) �
(JK2′′)

(z′′β′′(n)−1 ❀ z′′β′′(n)) ≈ (zn−1 ❀ zn− 1
2
)

and (y1
n ❀ y2

n) �
(JK2′)

(z′β′(n)−1 ❀ z′β′(n)) ≈ (zn− 1
2

❀ zn),

and thus, (y0
n ❀ y2

n) � (zn−1 ❀ zn), by (DP2).

Thus, if we let α, β : N−→[1 . . . N ] be the identity maps, then w0, w1, w2, . . . , wN verify
property (JK1) for transition (x0

❀ x2), while z0, z1, z2, . . . , zN verify property (JK2)
for transition (y0

❀ y2). The rest of the proof proceeds as before. ✷
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Let (R, +) be an abelian group. Recall that a subset C ⊆ R is a coset if there is some
subgroup S ⊆ R and some r ∈ R such that C := r + S := {r + s; s ∈ S}.

Lemma A.6 Let (R, +) be an abelian group, and let C ⊆ R. Then C is a coset if and
only if, for all c1, c2, c3 ∈ C, we have (c1 − c2 + c3) ∈ C.

Proof: “=⇒” Suppose C := r+S for some subgroup S ⊆ R and some r ∈ R. Then for any
c1, c2, c3 ∈ C, there exist s1, s2, s3 ∈ S such that c1 = r + s1, c2 = r + s2, and c3 = r + s3.
Thus, c1 − c2 + c3 = (r + s1) − (r + s2) + (r + s3) = r + (s1 − s2 + s3) = r + s, where
s := s1−s2+s3 is an element of S (because S is a group). Thus, (c1−c2+c3) ∈ r+S = C,
as desired.

“⇐=” Fix r ∈ C, and define S := {c − r; c ∈ C}.

Claim 1: S is a subgroup of R.

Proof: Let s1, s2 ∈ S; we must show that s1−s2 ∈ S. By definition, there exist c1, c2 ∈ C
such that s1 = c1 − r and s2 = c2 − r. But then s1 − s2 = (c1 − r)− (c2 − r) = c1 − c2.
Now, if c := c1 − c2 + r, then c ∈ C by hypothesis. Thus, c1 − c2 = c − r ∈ S, as
desired. ✸ Claim 1

Claim 2: C = r + S.

Proof: “⊆” Let c ∈ C; we must show that c ∈ r + S. If s := c − r, then s ∈ S. Thus,
c = r + s ∈ r + S, as desired.

“⊇” Let s ∈ S; we must show that r + s ∈ C. By definition, there exists c ∈ C such
that s = c − r. But then r + s = c. ✸ Claim 2

It follows that C is a coset in R. ✷

Proof of Proposition 7.1. Let {Rj}j∈J and U ′ := {uj}j∈J and u : X−→R be defined as
prior to Proposition 7.1.

“=⇒” Let c1, c2, c3 ∈ u(X ). By Lemma A.6, it suffices to show that c1−c2 +c3 ∈ u(X )
also. By definition, there exist x1, x2, x3 ∈ X such that cn = u(xn) for n ∈ {1, 2, 3}.
Since (�) is empathic, there exists some x4 such that (x1 ❀ x2) ≈ (x3 ❀ x4). But
then the multiutility representation (3) implies that u(x2) − u(x1) = u(x4) − u(x3) for
all u ∈ U ′. In other words, u(x2) − u(x1) = u(x4) − u(x3). Thus, if c4 := u(x4), then
we have c4 ∈ u(X ), and c4 = c1 − c2 + c3, as desired.

“⇐=” Let x1, x2, x3 ∈ X ; we must construct x4 ∈ X such that (x1 ❀ x2) ≈ (x3 ❀ x4).
Let cn = u(xn) for n ∈ {1, 2, 3}, and let c4 := c1 − c2 + c3. Now, cn ∈ u(X ) for
n ∈ {1, 2, 3}, and u(X ) is a coset by hypothesis, so Lemma A.6 says that c4 ∈ u(X )
also. Thus, there exists some x4 ∈ X such that c4 = u(x4). This means u(x2)−u(x1) =
u(x4) − u(x3). In other words, u(x2) − u(x1) = u(x4) − u(x3) for all u ∈ U ′. But then
the multiutility representation (3) implies that (x1 ❀ x2) ≈ (x3 ❀ x4), as desired. ✷
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Proof of Proposition 7.3. “⇐=” Let x1, x2, y1 ∈ X . Since End(�) acts transitively
on X , there is some α ∈ End(�) such that α(x1) = y1. Let y2 := α(x2). Then
(x1 ❀ x2)≈(y1 ❀ y2), as desired.

“=⇒” Fix x0, y0 ∈ X . We must construct some α ∈ End(�) such that α(x0) = y0.
For all x1 ∈ X , empathy yields some y1 ∈ X (not necessarily unique) such that (x0 ❀

x1)≈(y0 ❀ y1). So, define α(x1) := y1.

It remains to show that α ∈ End(�). Let x1, x2 ∈ X . Let y1 := α(x1) and y2 := α(x2); we
must show that (x1 ❀ x2)≈(y1 ❀ y2). By definition of α, we have (x0 ❀ x1)≈(y0 ❀ y1).

Thus, axiom (DP1) says
(x1 ❀ x0) ≈ (y1 ❀ y0). (A43)

By definition of α, we also have

(x0 ❀ x2) ≈ (y0 ❀ y2). (A44)

Combining statements (A43) and (A44) via (DP2), we get (x1 ❀ x2)≈(y1 ❀ y2), as

desired. ✷

Appendix B: Complete extensions

Szpilrajn’s Lemma (1930) says that every partial order on a set can be extended to a linear

order (a complete, antisymmetric, transitive relation). A result of Dushnik and Miller
(1941) says that every partial order is the intersection of all its linear extensions. By
analogy, we will say that a difference preorder (�) is Szpilrajn if it is extended and refined
by some complete difference preorder. We will say that (�) is Dushnik-Miller if it is the
intersection of all the complete difference preorders which extend it.

These properties are closely related to the existence of strong utility functions and
multiutility representations. To see this, let R be a linearly ordered abelian group, and let
u : X−→R be any function. We can define a complete difference preorder (�

u
) on X as

follows. For all x1, x2, y1, y2 ∈ X ,
(
(x1 ❀ x2)�

u
(y1 ❀ y2)

)
⇐⇒

(
u(x2) − u(x1) ≥ u(y2) − u(y1)

)
. (B1)

If (�) is another difference preorder on X , then u is a (strong) utility function for (�) if
and only if (�

u
) extends (and refines) (�). Thus, the existence of a strong utility function

implies that (�) is Szpilrajn. Furthermore, if (�) has a multiutility representation (3),
then (�) is Dushnik-Miller.

Not all difference preorders are Dushnik-Miller. For example, let X := {x0, x1, x2, y0, y1, y2},
and define the preorder (�) on X × X as follows. Begin with all the 36 ‘trivial’ relations
implied by (DP0) (e.g. “(x0 ❀ x0)≈(y1 ❀ y1)”, etc.). To this set, add the three relations

“(x0 ❀ x1)≈(x1 ❀ x2)”, “(y0 ❀ y1)≈(y1 ❀ y2)”, and “(x0 ❀ x2) ≻ (y0 ❀ y2)”, along
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with their ‘reversals’ under (DP1). This yields a system of 42 relations, which is closed
under the application of (DP2) and (DP3). Thus, it is a difference preorder on X . Note
that (�) cannot compare (x0 ❀ x1) with (y0 ❀ y1). However, if (�

c
) is any complete dif-

ference preorder which extends (�), then (DP2) implies that (x0 ❀ x1)�
c

(y0 ❀ y1). Thus,

if ( �
DM

) is the intersection of all the complete difference preorder extensions of (�), then

we must have (x0 ❀ x1) �
DM

(y0 ❀ y1). Thus, ( �
DM

) 6= (�), so (�) is not Dushnik-Miller.

It follows that (�) does not have a multiutility representation.
Likewise, not all difference preorders are Szpilrajn. For example, let X := {x0, x1, . . . , x7,

y0, y1, . . . , y7, z0, z1, . . . , z7}, and define the preorder (�) on X ×X as follows. Begin with
all |X |2 = 576 ‘trivial’ relations implied by (DP0). To this set, add the following relations,
for all n,m, n′,m′ ∈ [0 . . . 7]:

(a) (xn ❀ xm)≈(xn′ ❀ xm′) and (yn ❀ ym)≈(yn′ ❀ ym′) and (zn ❀ zm)≈(zn′ ❀ zm′) if

and only if n − m = n′ − m′.

(b) (xn ❀ xm) ≻ (yn′ ❀ ym′) if and only if n − m = n′ − m′ > 0 and is divisible by 3.

(c) (yn ❀ ym) ≻ (zn′ ❀ zm′) if and only if n − m = n′ − m′ > 0 and is divisible by 5.

(d) (z0 ❀ z7) ≻ (x0 ❀ x7).

Also add the (DP1)-reversals of the sets of relations described in (b), (c) and (d) (the set
(a) is already closed under (DP1)). Observe that the four relation sets described in (a)-(d)
are each separately closed under the application of (DP2) and (DP3). Also, there is no
way to combine a relation from one of these sets (e.g. (b)) with one from another (e.g. (c))
using (DP2) or (DP3). Thus, the entire system is closed under (DP2) and (DP3); thus, it
is a difference preorder. We claim it is not Szpilrajn.

By contradiction, suppose that (�
c

) is a complete difference preorder on X which

extends and refines (�). Then (a), (b) and (DP2) imply that (x0 ❀ x1) ≻ (y0 ❀ y1).
Likewise, (a), (c) and (DP2) imply that (y0 ❀ y1) ≻ (z0 ❀ z1). Finally, (a), (d) and (DP2)
imply that (z0 ❀ z1) ≻ (x0 ❀ x1). Thus, we have an cycle of strict preferences, yielding
a contradiction. It follows that (�) is not Szpilrajn. Thus, (�) cannot have any strong
utility functions.

The interpretation of these counterexamples depends upon whether we believe the in-
completeness of (�) to be epistemic or metaphysical in origin. According to the ‘epistemic’
account, precise interpersonal comparisons are meaningful in principle; we simply lack
the necessary information to make these comparisons in practice. The incomplete differ-
ence preorder (�) reflects our incomplete knowledge of some unknown, complete difference
preorder (�

∗
), which encodes the ‘true’ interpersonal comparisons. Thus, (�) should be

Szpilrajn. Furthermore, if (�) is not Dushnick-Miller, then it can and should be extended
to its ‘Dushnik-Miller completion’, because the extra interpersonal comparisons encoded
in this completion must be part of (�

∗
).

According to the ‘metaphysical’ account, however, certain interpersonal comparisons
are not meaningful, even in principle. Thus, there is no reason to expect (�) to be Szpilrajn.
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If (�) is not Szpilrajn, and we have good reason to regard (�) as our ‘best possible model’
of interpersonal comparisons, then this provides evidence for the metaphysical account.

Nevertheless, we suspect that most ‘natural’ difference preorders are both Szpilrajn and
Dushnik-Miller. Are there simple sufficient conditions for these properties? If ( D ) is an

(�)-SDP, then what is the relationship between the Szpilrajn/Dushnik-Miller properties
of (�) and those of (D )? Finally, we have:

Conjecture. Let (�) be a complete difference preorder on X . Then there exists a linearly
ordered abelian group R and utility function u : X−→R, such that (�) = (�

u
), as defined

by formula (B1).

If true, this conjecture would imply that any Dushnik-Miller difference preorder has
a multiutility representation (3). In particular, any Dushnik-Miller SDP would have a
multiwelfare representation (5), and thus would be quasiutilitarian (by Theorem 3.2(b)).
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