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Abstract

The paper develops a theory of branching spatiotemporal histories
that accommodates indeterminism and the insights of general relativ-
ity. A model of this theory can be viewed as a collection of overlapping
histories, where histories are defined as maximal consistent subsets
of the model’s base set. Subsequently, generalized (non-Hausdorff)
manifolds are constructed on the theory’s models, and the manifold
topology is introduced. The set of histories in a model turns out to
be identical with the set of maximal subsets of the model’s base set
with respect to being Hausdorff and downward closed (in the manifold
topology). Further postulates ensure that the topology is connected,
locally Euclidean, and satisfies the countable sub-cover condition.

1 Introduction

In 1992 Nuel Belnap put forward the branching space-times theory (BST1992)
that offered a unified treatment of rudimentary relativistic spacetimes and
indeterminism.! Building on earlier works on a more frugal theory of branch-
ing time (BT'), BST1992 represents indeterminism by means of a collection of
overlapping histories; in contrast to the linear histories of the former, how-
ever, histories are complex objects in BST1992. As a consequence, there
are models of BST1992, in which histories are isomorphic to the Minkowski
spacetime (see Placek and Belnap (2012)). BST1992 can be used to model
quantum experiments with non-local correlations (Placek, 2010). Further-
more, a branching reading can be given to the consistent histories formulation
of quantum mechanics (see Miiller (2007)).

This bright picture, however, has been marred by a tension between
BST1992 and general relativity (GR). There are serious obstacles to accom-
modating GR in the branching framework, the most important of which, I
believe, is a difference in spirit. The great perception of GR is that coordinal-
ization works by patches: this theory permits the assignments of coordinates

!This paper owes much to Nuel Belnap who spent days listening to my frequently
confused arguments, pointing out my mistakes, suggesting corrections, or repairs. I would
like to thank Juliusz Doboszewski for reading the proofs of this paper. I also gratefully
acknowledge the support of the research grant 668/N-RNP-ESF/2010/0 of the (Polish)
Ministry of Science and Higher Education. Author’s address: Philosophy Department,
Jagiellonian University, 52 Grodzka, 31-044 Krakéw; email: Tomasz.Placek@uj.edu.pl.



(elements of R™) to subsets (patches) of the totality of events, with the pro-
viso that the patches cover the totality of events. Local coordinalization by
patches is to be contrasted with a global coordinalization, as provided by
a mapping of a whole spacetime on R"™. Patches, if sufficiently small, have
familiar and desirable properties. In essence, they look like subspaces of
Minkowski spacetime,? which in turn permits a definition of a partial order-
ing on a patch. Typically these nice properties do not transform to a GR
spacetime as a whole, however.

In contrast, BST1992 does not work in terms of local patches. This
theory assumes a partial ordering on its base set, and defines history (aka
BST spacetime) as a maximal upward directed subset of the base set. With
some extra assumptions added, a BST1992 history can be mapped on R"™.
Even if one wants to do coordinalization in a piecemeal way, there is no
structure in BST1992 that could play the role of patches.

Apart from this difference in spirit, there are technical issues as well:
First, the ordering assumed in BST1992 is partial, whereas the natural or-
dering of a GR spacetime, defined in terms of geodesics, is not necessarily
so: it allows for a failure of anti-symmetry. Second, the BST1992 criterion
for historicity (or, belonging to one BST spacetime), i.e., being maximally
upward directed, flies in the face of some well-studied GR spacetimes, like
the Schwarzschild spacetime or the de Sitter cosmological model. The crite-
rion rules out as well some intuitive, although non-physical, candidates for a
spacetime since it implies that for two events x and y to belong to some one
spacetime, there should be a “later witness”, that is, some z such that x < z
and y < z. Consequently, an open square or an open half-plane R~ x R, both
with Minkowskian ordering, cannot be BST1992 spacetimes.®> A sought-for
generalization of BST1992 should thus modify the criterion for historicity ap-
propriately. (For a discussion as to how one can modify the BST1992 notion
of history, see Miiller (2013).)

The first attempt to overcome the tensions between GR and BST1992 is
Miiller (2011). The present paper continues this work in a somewhat different
way, by first generalizing BST1992 appropriately, then defining generalized
manifolds on models of generalized BST and, finally, by producing tangent
vector spaces.

2Strictly speaking, these are properties of tangent spaces rather than of subsets of
events.

3This ordering <y is defined on R” by putting z <y y iff z1 < yy and Y7, (2, —y;)? <
(x1 — y1)?, where x; is the time coordinate and x5, ..., x, are spatial coordinates.



Although the main aim of this paper is to offer a GR-friendly generaliza-
tion of BST1992, I begin by addressing an objection to BST1992. As John
Norton once said, physical theories do not offer the kind of branching that
BST1992 assumes.? Indeed, the pattern of branching implied by the axioms
of BST1992 is particular: If a maximal chain in a base set passes through
a maximal element in the overlap of some two histories, then obviously the
segment of the chain contained in the overlap has a maximum and, hence, a
supremum. But if a maximal chain does not pass through a maximal element
in the overlap, the chain’s segment contained in the overlap does not have
a supremum, but rather two history-relative suprema. Instead of addressing
the objection head-on, I argue that a slight modification of BST1992 axioms
yields another pattern of branching, which appears to be better suited for
a GR-friendly version of BST. In this discussion I introduce choice pairs, a
valuable tool for the generalized BST, described in later sections.

The paper is organized as follows. Section 2 puts forward a version of
branching space-times that yields a different pattern of branching histories.
Section 3 discusses how BST1992 should be generalized: its basic idea is that
topological features of BST1992 should be preserved by the generalization.
To this end, this section offers a summary of the topological properties of
BST1992 models. Sections 4.1, 4.2, and 4.3 put forward a three-tiered con-
struction of (1) generalized BST models, then (2) generalized manifolds built
on these models, and finally, (3) vector spaces of tangent vectors. The next,
section 5, addresses some paradoxical issues concerning generalized manifold.
Section 6 concludes the paper with an overview of the paper’s result.

2 BST with a new PCP

Let us recall the basic definitions of BST1992:

A model of BST1992 is a nonempty partial order W = (W, <) that satisfies
the axioms below, with histories in W defined as maximal upward directed
subsets of W. The axioms are as follows:

1. W has no maximal elements;

2. < is dense;

4After my lunch talk at the Center for the Philosophy of Science of the University of
Pittsburgh in February 2008.



3. every lower bounded chain has an infimum in W;

4. every upper bounded chain has a supremum in every history that con-
tains it;

5. for a chain C' in W: if C' C h/K, then there is a maximal element in
hO R strictly below C' (such a maximal element is called a choice point
for h and A’; this axiom is called Prior Choice Principle—PCP).

We say that two histories, h, i’ are divided at e if e is a maximal element of the
intersection h N A'. And we say that two histories, h, h’ are undivided at e if
e € hNh' but is not a maximal element of hNA'. Provably undividedness at e
is an equivalence relation on the set of histories containing e. The equivalence
classes with respect to this relation are called “elementary possibilities open
at e”.

A particular pattern of branching mentioned above (aka passive indeter-
minism or indeterminism without choice—see Placek and Belnap (2012)) is
a consequence of PCP. To illustrate, consider a two-history model, with a
single choice point ¢, and with histories identified with planes (i.e., R?), the
ordering being Minkowskian. PCP then dictates, first, that the “wings” of
the choice point ¢, that is, the set of events space-like related to ¢, are in the
overlap of the two histories. Second, it prohibits points on the future light
cone above ¢ to belong to the overlap; otherwise ¢ would not be maximal in
the overlap, i.e., not a choice point.

Our idea is thus to replace PCP by a somewhat different principle, while
keeping intact all the other axioms of BST1992.° Our new principle postu-
lates the existence of minimal pairs of a particular kind rather than maximal
elements in the overlap of histories. As we will see, it enforces a different
pattern of branching.

Pairs supreme, hot pairs, and choice pairs. In what follows, we as-
sume tentatively the notion of BST1992 models, with PCP removed.

Definition 1 (pairs supreme). For s, s’ € W, we say that {s,s'} is a pair
supreme for histories h,h', to be written as {s,s'} € &(h,n’), iff 3C (C #
DANC ChNh'As=sup,(C)As =sup,(C)), where C is an upper bounded

51 learned of the idea to formulate the choice principle in terms of pairs of points rather
than of choice points from Nuel Belnap in January 2010, who encouraged me to work it
out.



chain in W.
{s,5'} is a pair supreme simpliciter, to be written as {s,s'} € &, iff {s,s'} €
S(h, k') for some histories h, '

Note that the definition allows for a pair supreme {s, s’} with identical
elements, i.e., s = s, as well as for a pair supreme with distinct elements.
To capture the latter case, we define ‘hot pairs’

Definition 2 (hot pair). For s1,s2 € W, {s1, 2} is a hot pair for histories
h, B, to be written as {s1, s2} € H(h1, he), iff {s1,52} € S(h, k') and sy # sa.
And we say that {s,s'} is a hot pair simpliciter, to be written as {s,s'} € 9,
iff {s,s'} € 9(h,h') for some histories h and h'.

Hot pairs decide between histories in the sense that an event above an
element of a hot pair for two histories cannot belong to both these histories.

Fact 3. If {s1, 82} € $(h1, hs) and s; < e for some i = 1,2, then e & hyNhs.

Proor: Obvious. Since histories are downward closed, e € hy N hy and s; < e

imply s; € hy N hg, which implies s; = so: a contradiction with {s1, s2} being

a hot pair. ([l
We next define an ordering of pairs supreme (simpliciter):

Definition 4 (ordering of pairs supreme). Let s,t € &, where s = {s1, 52}
and t = {t1,to}. We define s Rt iff 3 jeq,2y5 < tj A sy < b5, where the tilde
function means that n =1 or 2 iff n =2 or 1, resp. s <t means that s X t
but s # t.

We need to persuade ourselves that < is a partial ordering.
Fact 5. < is a reflexive, anti-symmetric, and transitive relation on &(hy, hs).

Proor: Let s,t,u € &, where s = {s1,82}, t = {t1,t2}, and v = {uy, us}.
It is immediate to see that s < s (reflexivity). To prove anti-symmetry, let
s Xt and t X s, which entails s; < t; A s; < t5 and t,, < s, Aty < 55, for
some i, j,m,n € {1,2}. If j = m, then s; < t; < s, and since s; < s, implies
8; = Sn, we get s; = t;. We also have j = m, which implies, by a similar
argument, that s; = t;. Putting the two together, we get {s1, s2} = {t1,t2}.
If j #% m, then j =m, so s; < t,, < Sp, hence s; = s,, and then t,, = s,,. But
also j = m, so s; < ty < Si, and hence t5 = s5. Thus {s1, s2} = {t1,t2}.

Turning to transitivity, let s < ¢, t < u, and these relations be witnessed by
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s; <tjAs; < tjand t,, < u, Aty < ug, for some i, j,m,n € {1,2}. If j =m
(and hence 7= m), it follows that s; < t; < u, and also s; < t; < u;, whence
s X u. And, if j # m (and hence j = m and j = m), we get s; < t; < Uy,
and s; < t; < ug, s0 s; < u, and s; < up, whence s X . O

We next use this ordering to define choice pairs for histories:

Definition 6 (choice pairs). For sisy € W, {s1,s2} is a choice pair for
histories hy, ha, to be written as {s1, se} € €(hq, hs), iff {s1, s2} is a minimal
element (wrt <) in the set $(h1, ha) of hot pairs for hy and hy. We say
that {s1, so} is a choice pair simpliciter iff there are histories hy, ho such that

{Sl, 82} S @(hl, hg)

Having the required notions, we now introduce a substitute for the prior
choice principle of BST1992, and we will refer to it by PCP*:

Postulate 7 (PCP*). If C is a chain in W and C' C hy\hy for some histories
hi, hy, then there is a choice pair {s1,s2} € €(hy, hy) such that s; < C.°

PCP* postulates choice pairs, where the old PCP postulated choice points.
Observe that in contrast to PCP, we need the weak ordering in s; < C' above.
If C' is a one-element chain, i.e, C' = {e} for some e € W, and {e, €'} is a
choice pair for h; and hg, there is clearly no choice pair for hy, hy strictly
below {e,€'}.

In the rest of this section we will work with a modified version of BST1992,
which results from the definition of models of BST1992, with PCP replaced
by PCP*. We call this modified version: BST*1992.

Let us next define in BST*1992 the notions of dividedness and undivid-
edness of histories:

Definition 8 (dividedness and undividedness). Let {s, s’} be a pair supreme
(simpliciter). Then histories hy and he divide at {s,s'}, hy Lsg ho, iff {s,s'}
is a choice pair for hy, hy, i.e., {s,s'} € €(hy, hg).

Histories hy and hy are undivided at {s,s'}, hy =g¢ hg iff s € hy N hy or
s € hyNhy or{s,s'} is a hot pair for hq, hy, but not a choice pair for hy, hs.

The first line of the above definition decides a category of objects at
which histories are divided or undivided: at pairs supreme simpliciter. Note

6Where s; < C means Ve € C s1 < e.



an asymmetry, however: for two histories to be divided at a pair supreme,
this pair supreme must be a choice pair for these histories. In contrast, two
histories may be undivided at a pair supreme, which is not a pair supreme
for these histories. Clearly, |, and L4 denote the same relation, and this
is also true about =,y and =4,. To spell out the definition of =y, it says
that two histories are undivided at a pair supreme {s, s’} in exactly three
cases: (1) {s, s’} is not a pair supreme for these two histories, but one of its
elements is shared by the two histories, or (2) {s, s’} is a pair supreme for
these histories, but not a hot pair for these histories, or (3) it is a hot pair
but not a maximal hot pair for the two histories. In case (2), a pair supreme
is of the form {s, s}, so s € hy N hy. Case (3) is interesting, as we will see
it in a proof below. We prove that =4 is an equivalence relation on the set
Hs) U H(yy of histories containing s or s'.

Fact 9. =,y is a (1) reflexive, (2) symmetric, and (3) transitive relation on
Hg) U Hyy.

Proor: (1) Pick an h € H(,) U H(yy and assume s € h. (The case with s € h
is symmetrical). Clearly, s € hNh, so h =z h.

(2) Let hy =49 ho. If s or & belong to hy N hy, we immediately get hy =,y
hy. Suppose thus that {s,s'} € 9(hy, hy), but it is not a minimal element
of 9(hy1,hy). By the definitions of pairs supreme and hot pairs, {s,s'} €
9(hy, he) iff {s,s'} € H(ha, hy). Accordingly {s, s’} € $(ha, hy), but it is not
a minimal element of $)(hs, hy), and hence hy =4 hy.

(3) For transitivity, let (1) h1 =55, ho and (1) he =45, h3, and assume the
convention that for ¢ = 1,2, 7 = 2,1, resp. The argument goes by cases,
depending on which of the histories: hy, ha, hs, s; belongs to (i = 1,2):

(a) s; € hy N hs. Then hy =, hs.

(bl) s; € hy \ hs and s; € hy. Then by (1) s; € hs and {s152} € H(ha, h3) \
C(ha, hs). It follows that s; # sa, s0 {s152} € H(hy, hs). It also follows that
there is {x122} € $H(ha, h) such that {z1,x2} < {s1,s2}. Let z; < s; and
x; < 8; (case x; < s; and z; < s; is analogous). Since histories are downward
closed, x; € hy and x; € hs, and since x; # z7: {x122} € $H(hy, h3), so
{8182} € f)(hl, hg) \ Q:(hl, hg), whence h S hs.

(b2) s; € hy \ hs and s; & hy. By (1), s; € hg N hs. Hence by (1), {s152} €
H(h1, ha) \ €(hq, ha), so there is {122} € H(hy1, he) such that {z1, 25} <
{s1,82}. Let x; < s; and z; < s; (the case with z; < s; and x; < s; is
analogous). Since histories being downward closed, z; € hy and z; € hs, and

since x; # x;7, we get {z122} € $H(h1, hs), and hence {s;so} & €(hy, hs). But
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since s1 # s9, {s152} € H(hy, hs). Thus, hy =, hs.
(c) s; € hs \ hy. Asin cases (bl) and (b2) above.
(d) s; € hy Uhg. By (f) s; € hy and by (f): s; € hs, hence hy =5, hs. O

With the last result, we define elementary possibilities open at a pair
supreme, which is analogous to a BST1992 notion of elementary possibilities
open at a point event:

Definition 10. Let {s, s'} be a pair supreme (simpliciter). Then the set Hgy
of elementary possibilities open at {s,s'} is defined as the set of equivalence
classes on H;UH g with respect to the relation =4 of undividedness at {s, s'}.

We next argue that all the action lies at choice pairs, modally speaking:

Fact 11. Only choice pairs have non-trivial sets of elementary open possi-
bilities.

Proor: Let {s,s'} be a pair supreme. If s = ¢, i.e., {s,s'} is not a hot pair,
then for any pair h,h' € H,U Hy, s € hN R, and hence h =, }'.

If s # &, then {s,s'} is a hot pair; let us assume it is not a choice pair.
however. Then for some h,h' € H; U Hy, there is {z,2'} € H(h,h’) such
that (1) z < s,2’ < §’. Pick now arbitrary two histories hy, hy € Hy U Hy.
If hi,hy € H, or hy,hy € Hy, we immediately obtain h; =,¢ he. Suppose
thus that hy € Hy \ Hy and hy € Hy \ Hy (the other case is analogous).
Since histories are downward closed, (1) implies * € hy and ' € hy. And,
because x # ', {x,2'} € H(hy, he), which together with (1) entail {s,s'} €
(1, he) \ €(hy, he). Whence hy =54 hs.

Finally, if {s, s’} is a choice pair, there are histories h, h’ € H;U Hy such that
h 1. h'; these two histories determine two elementary possibilities open at
the pair. O

Our next fact says that hot pairs abounds:

Fact 12. Let W have two histories hy and hy. Let also t be a maximal chain
in W such that t' ==t N hyNhy # 0 and t N (hy \ he) # 0. Then (1) t' is
upper bounded and (2) sup,,, (t') # sup,, (t').

Proor: (1) We claim that any (1) e € t” := t N (hy \ h2) upper bounds .
Otherwise, since each element of ¢ and e are comparable, we would have
e < x for some x € t'. Since x € hy N hy and histories are downward closed,
e € hy N hy, contradicting (7).

(2) The above result implies, via the axiom of history-relative suprema, that

9



t' has history-relative suprema. Observe that sup, (') = inf(t"). But t” €
hy \ hg, so by PCP*, there is (i) {s1,$2} € €(hy, hy) such that (ii) s; < ¢”.
Thus (iii) s; < inf(t") = supy,, (¢'). Further, (ii) entails (iv) s; € k. Finally, it
follows from (iii), (iv), and Fact 3 that sup,, (t') & he, and hence sup,,, (t') #
supy, (). O

Our last fact of this section says the following:

Fact 13. (1) Every two histories of BST*1992 overlap and (2) for every two
histories, their overlap has no mazximal element.

Proor: Ad. (1) For two histories h, h’, there must be a chain C C h\ /.
By PCP*, there must be a choice pair s, s’ for these two histories. By the
definition of choice pairs and pairs supreme, there is a chain C* C h N A/,
Ad. (2) This is an immediate consequence of Fact 12 (2). O

The last two facts tell us that indeed the new version of BST1992 prescribes
a different pattern of branching histories.

A still different pattern of branching is a consequence of a frugal branching
framework I worked out with T. Kowalski (Kowalski and Placek, 1999). This
pattern consists in that every chain contained in the overlap of two histories
has a maximum in the overlap.”

The upshot of this section is that BST is versatile: if physics tells us
how alternative possible courses of events are different, we can modify BST
accordingly.

3 How to generalize BST19927

In section 1 we argued for a generalization of BST1992 that would accommo-
date the insights of GR. But how should we do that? We will join a “happy
coincidence” as works in different areas point to a similar idea of defining a
GR spacetimes as a maximal subset of a generalized manifold with respect
to being Hausdorff (and perhaps having some additional property as well).
A topology 7 (X) is called ‘Hausdorff’ if for every two distinct =,y € X
there are two non-overlapping open sets containing x and y, respectively.

7 Here I do not report on this framework any further, since it clashes with the central
idea of this paper that histories are to be identified with maximal subsets of a base set
satisfying the Hausdorff property—see Section 5.2. The framework’s pattern of branching
implies that the Hausdorff property is satisfied on an entire base set, a consequence being
that every model of this theory has a single generalized history.

10



Non-Hausdorff spacetimes were investigated in physics in the 1970’s. Impor-
tantly, Hajicek (1971) proved the existence theorems for sub-manifolds max-
imal with respect to being Hausdorff and connected. Nevertheless, in later
years a consensus emerged among physicists that a GR spacetime should be
Hausdorff. This sentiment is embodied in the dramatic outcry of Penrose
(1979, p. 595): “I must ...return firmly to sanity by repeating to myself
three times: ‘spacetime is a Hausdorff differentiable manifold; spacetime is
a Hausdorff ...”".% For a survey of the consequences of allowing for non-
Hausdorff spacetimes, see Earman (2008).

In a similar spirit, building on Hé&jicek’s results, Miiller (2011) defines
a history in his generalized BST as a subset of a base set maximal with
respect to being Hausdorff and connected. Finally, there is the following
result about a natural topology for BST1992, the so-called Bartha topology:
given a natural assumption, a BST1992 history is a maximal Hausdorff and
downward closed subset of a base set W (see Fact 57).

Thus, our target is to define a candidate for a GR spacetime as a subset
of a base set of a generalized BST model maximal with respect to being
Hausdorft.

Our second desiderata says that our generalization should be “topolog-
ically conservative” with respect to BST1992, that is, the resulting models
and histories in these models should have similar topological properties as
models and histories of BST1992. What are then the topological facts about
BST19927 BST1992 comes with a natural topology on the entire base set as
well as with a natural topology on each history in the model.” Both kinds of
the topologies are defined by the following condition, known as “the Bartha
condition”:

Definition 14 (the diamond topology). Let W = (W, <) be a BST1992
model and X stand either for W, or for a history h in W.

Z is an open subset of X, Z € T(X), iff Z = X or for every e € Z and
for every mazximal chain t in X containing e there are e, es € t such that
ep<e<esand{reW e <zx<e} CZ.

Main topological facts about 7 (W) and 7 (h), where h is a history in W, are
as follows:

8This is quoted by Earman (2008).
9For an argument that these topologies are natural, see Placek et al. (2013).
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1. T (h) is connected and (given some natural assumptions) Hausdorff;'"

2. T (h) is maximally Hausdorff in this sense: modulo some natural as-
sumptions, the Bartha condition applied to any proper superset of h
yields a non-Hausdorff topology (see Fact 57).

3. for some history h, 7 (h) is locally Euclidean, and for some other history
h', T (h') is not locally Euclidean (see Fact 58).

4. T (W) is connected and non-Hausdorff (unless W contains one history
only);!!

5. h & T(W) (unless h = W)—see Placek et al. (2013).

6. 7 (W) is not locally Euclidean (unless W = h for some history h and
7 (h) is locally Euclidean (see Fact 58)).

In what follows, we will construct a manifold topology on generalized
BST, and, in an attempt to be conservative with respect to BST1992, we
will see to it that the topology on a generalized history is Hausdorff, and
moreover, maximally so. We will also secure that each generalized history is
locally Euclidean. In contrast, we will initially allow that the topology on the
whole model be not locally Euclidean and non-Hausdorff, and that a history
is not open in this topology. In a sequel, we will face a dilemma, however. If
we want to construct spaces of tangent vectors (which are needed for the GR
equations to make sense), we need to impose a certain restriction on the gen-
eralized BST models. The restriction implies that a generalized BST model
(as a whole) is locally Euclidean, and that generalized histories are open in
the manifold topology. Thus, if we want to have tangent vectors spaces, our
resulting construction is not conservative with respect to BST1992, after all.

4 Construction

Our construction proceeds in three steps: First, we will generalize BST1992,
second we will construct a generalized differential manifold on a generalized

10The “connected” part is the topic of Fact 53; for a proof of the “Hausdorff” part, see
Placek et al. (2013).

' The “connected” part is the theme of Fact 54; for a proof of the “non-Hausdorff” part,
see Placek et al. (2013).
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BST model (at this stage we will equip BST models with a topology). Third,
we will construct tangent vector spaces, needed for the formulation of GR
equations. Our construction is not orthodox in the sense that, in contrast to
GR, a base set for a (generalized) differential manifold has some structure: it
is assumed to be pre-ordered (i.e., reflexive and transitive, but not necessarily
anti-symmetric) and satisfy a few postulates.

4.1 BST generalized

We take courage from the following theorem of GR.? For every event p in an
arbitrary GR spacetime there exists a convex normal neighborhood of p, that
is, an open set U with p € U such that for every ¢, € U there is a unique
geodesics connecting ¢ and r, and staying entirely in U. Since geodesics
fall into three classes, of time-like, space-like, and null-like geodesics, the
uniqueness of connectability means that the geodesics can be used to define
a partial ordering < on U: ¢ < r iff ¢ is connectible to r by a future directed
time-like or null-like geodesics. A sufficiently small convex normal set can
be charted on an open subset of R”. In the spirit of this theorem, we will
construct a manifold topology such that every element of a base set W has
an open neighborhood (“patch”), which is partially ordered. We further
postulate that each patch is like a small BST1992 model. As a consequence,
in contrast to GR patches, our patches may be modally inconsistent, i.e.,
containing objects that are not contained in a single spacetime. (So we
really “take courage” from the above theorem, it is not a premise of our
construction.) Without further ado, let us introduce some terminology and
then turn to the definitions:

1. MC(X) is the set of maximal chains in X, where X is a non-empty
pre-ordered set;

2. MC(X;e)={te MC(X) | e € t};

3.t ={z€t|z<uz}, wheret € MC(X) and z € X; t<* is the initial
segment of ¢ below z (tS%, 7%, and t7* are similarly defined).

Definition 15 (generalized BST model). Where W # (), < is a pre-order
on W, and O CP(W), a triple W = (W, =<,0) is a generalized BST model

12Gee Wald (1984, Thm. 8.1.2).
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(9enBST model), iff for every e € W there is a set O, C O (of patches)
around e such that for every O € O,:

1. e€ Oy
2. (O, X0) is a nonempty dense partial order satisfying the following:

(a) V' €eOVte MC(W;e') Jz,yetnO (x<j0€ <oy ANt7"NtYCO);
(b) every lower bounded chain in (O,=X0) has an infimum in O;

(c) if a chain C in (O,=X0) is upper bounded by b € O, then B =
{reO|C=RporxAz=X0pb} has a unique minimum,"

(d) if v,y € O and x X z Ry, then z € O; and
3. Upew Oc = 0O;
4. If x,y € ONO', where O,0" € O, then x X0 y iff v X0/ y.
Let us next put together some facts about patches:

Fact 16 (about patches). Let W = (W, <, O) be a generalized BST model.
Then:

(i) a subset of O, where O € O, does not necessarily belong to O;

(i) the union of O,0" € O does not necessarily belong to O, but

(i1) if ONO" # 0, where O,0" € O, then ONO" € O.

Proor: (i) A subset of O € O can fail to satisfy any of the conditions
(2a)—(2d). (ii) The ordering <|ouos on the union of O,0" € O may fail to
be anti-symmetric; also (2d) can fail on O U O'. (iii) (O N O', Xonor) is a
nonempty dense partial ordering because, by the assumption, O N O" # ()
and each <o and <o is a dense partial ordering. It is easy to check that
(ONO', R pnor) satisfies (2a) and (2d). To argue for (2b), let C' be a chain
in (ONO',X0n0r), lower bounded by b € ONO'. Then C has info(C) in O
and iIlfol(O) in O'. Since b 4|O’ iIlfO/<C) 4|O’ C and b 4|O lnfo(C) %|O C,
by Def. 15 (2d) info(C) € O N O’ and info/(C) € ONO'. By the definition
of infimum, info(C) KXo info/(C) and info/ (C) KXo info(C). By Def 15 (4)
info(C) = info/(C) := infono (C). To prove (2¢), suppose there is a chain
C C ON O upper bounded by b € O N O'. Then, by Def. 15 (2d) and (4)
{eeO|CRpanz=Xpb}and {x €O |C X xAx X b} are identical.

Be<eiffe=Xe bute#e.
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Thus, a unique minimal element of one must be identical to a unique minimal
element of the other, and must belong to O N O'. O

Generalized BST models allow for causal loops in this sense: x,y,z € W
with 2,y € O, 22 O, y,z€ O, x € O and x,z € O", y € O” and such that
T X0y, Yy Rjor 2, and z X|on T.

The idea of this paper is that the Hausdorff property will decide whether
a subset of W is contained in a spacetime, or not. We do not have a topology
yet, so an appeal to Hausdorffness remains on an intuitive level, to be justified
later, when we define a topology. But, in spacetime theories, a bifurcating
path, whose trunk has no maximal element indicates a failure of the Hausdorff
property. Minimal elements of two upper arms of such a structure will be
called “splitting pair”.

Definition 17 (splitting pairs). Let W = (W, <, 0) be a generalized BST
model and O € O. We say that e, e’ € O form a splitting pair in O, {e,e'} €
Yo, iff e # € and there is a chain C in (O,=0) and b,b" € O such that
C=Rob C=Xobande =min{fe € O | C Xp x Az X0 b} and ' =
min{z € O | C Xpx Az X b'}.

We then define the set'Y of splitting pairs of W as Y = Uy Yo-

One may wonder how global pre-ordering < mesh with splitting pairs.
Our postulates do not exclude the following situation:

(*) Events e, ¢’ € O have a common upper bound with respect to
=, but are above a splitting pair {x,z'} € Yy in the sense that
r Xpeand 2’ Xp €.

We would like to prohibit (*): events separated by a splitting pair cannot
be connected by causal curves to an event in their (common) future, as they
do not have a common future. This intuition goes back to our reading of a
splitting pair as a seed of modal inconsistency. Hence this condition:

Condition 18 (Hausdorff separation). If there is a pair {x,2'} € Y, then
—dzeW (zXzAa' X 2).

Note the interplay between local and global notions: if z and z’ are separated
by a splitting pair in some patch O, then x and 2’ have no common upper
bound, no matter how far we go along <, possibly outside O. We next define
consistency:
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Definition 19 (consistency). e, e’ € W are consistent iff there is no splitting
pair {x,x'} € Y such that x < e and 2’ X €.
A C W is consistent iff Ve,e' € A: e and €' are consistent.

Definition 20 (inconsistency). e, e’ € W are inconsistent iff there is a split-
ting pair {z,2'} € Y suchxz < eNa' X €.

We claim next that there are maximal consistent subsets of W.
Lemma 21. There is at least one maximal consistent subset of W.

Proor: The proof goes by the Zorn lemma. Observe first that for every
e € W, the singleton {e} is a consistent set, since x < e, 2’ < e and
{z,2'} € Y contradict Condition 18. Consider then the set of consistent
subsets of W, partially ordered by inclusion. To check if a premise of the
Zorn lemma is satisfied, pick a chain C' = Ay, As, ..., A,,... of consistent
subsets of W. Let suppose |JC is not consistent. Then there must be
e, € JC and z, 2" such that {z,2'} € Y and = < e and 2’ <X €. Thus, for
some (3,3t e € Ag and €' € Ay, where Ag, Ay € C. Since Az and Ay are
comparable by C, for £* = max(f, #') we have e, e’ € Ag., and hence Ag- is
not consistent. Contradiction. 0

What are the properties of maximal consistent subsets of W7 The fact
below list some of them:

Fact 22 (about maximal consistent subsets of W). Let A, A" be mazimally
consistent subsets of W, where W is a base set of a gen BST model. Then:
(1) A is downward closed.

(2) Let ¢ € A"\ A. Then there is a “hot pair” {z,x'} for A and A, i.e.,
there is a a chain C C ANA’, such that v = sup4(C), ' = supa (C), v # o,
and x' <X €.

(3) If e;e’;e* € W and e X e* and ¢ X e*, then there is a maximally
consistent subset A* of W such that e, €', e* € A*.

Proor: (1) For a reductio, let us assume that A is not downward closed,
which means that there are some e, e’ € W such that (i) e < €, (ii) € € A,
but (iii) e ¢ A. Since A is a maximal consistent subset, (iii) implies that e
must be inconsistent with some e* € A, which means that there is a slitting
pair z,x* € W such that (iv) z < e and (v) 2* < e*. By (ii) €’ is consistent
with e*, which taken with (v) implies (vi) =(x < ¢€’). But (i) and (iv) we
have z < ¢/, which contradicts (vi).
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(2) Let €/, A, and A’ be as in the premise. Then ¢’ is inconsistent with
some e € A, from which it follows that there is O € O and a splitting pair
{z,2"} € Yo such that z < e and 2/ < ¢’. By item (1) of this Fact, z € A
and 2’ € A’. By Def. 17 of splitting pairs, © # 2’ and there is a chain C' in
(O,X|0) and b,b" € O such that C' X|p b, C o V' and (1) 2 = min{y € O |
C o yNy Rjo b} and 2’ = min{y € O | C Xjp yAy X0 b'}. Item (1) of this
Fact entails that C' C A and C' C A’. To prove that x = sup4(C) we argue
as follows. Consider the set U of upper bounds of C'in A. By condition (2a)
of Def. 15, (i) for every upper bound u € U of C there is v’ € UNO such that
C <o v’ X u. (Just connect C' with u by a maximal chain in W and apply
(2a).) We may thus restrict our attention to the set U of upper bounds of C'
in ONA. Since U" C A, U’ is consistent, and hence there are no two upper-
bound-relative minima of this kind: z; = min{y € O | C Ko y Ay X0 w1}
and 2z, = min{y € O | C X0 y Ay X|0 uz}, where uj,up € U'. Otherwise
z1 and zo would constitute a splitting pair below u; and us, respectively,
yielding u; and wuy inconsistent, which contradicts uy,us € A. Thus, there
is a unique minimum below (in the sense of X|p) all u € U’, namely z,
which, taken together with (i), proves that x = sup4(C'). An argument that
x' = supa (C) is analogous.

(3) By the Zorn lemma, there is a maximally consistent A C W such that
e* € A. By item (1) of this Fact, e, e’ € A. O

Fact 22 points out to a striking resemblance between histories of BST1992
and maximal consistent subsets of W of a generalized BST model. We take
this resemblance to be a good enough justification for calling maximal con-
sistent subsets of W “generalized histories” (or g-histories, for short).

Definition 23 (g-histories). Let W = (W, <, O) be a generalized BST model.
We say that H is a generalized history (g-history) of W iff H is a mazimal
consistent subset of W. We denote the set of g-histories by gHist.

At this point one may wonder if g-histories extend to the future, as
BST1992 histories do. Unfortunately, it is not excluded at this stage that a
g-history has a maximal element. This situation will be ruled out, however,
in the generalized BST models that admit a manifold structure—see Fact 35.
A similar worry concerns PCP. We proved above that there is a hot pair for
any two g-histories. A PCP-pair version, however, requires minimal hot pairs
for any two histories; we do not know if the latter exist for g-histories.
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As a next topic, let us ask what is an intersection of a g-history H C W
with a patch O € O7 The answer is given by this fact:

Fact 24. Let W = (W, X, O) be a generalized BST model, H be a g-history of
W, and O € O. Then if HNO # 0, HNO is consistent and (HNO, X gno)
is a nonempty partial order that satisfies conditions (2b)-(2d) of Def. 15.

Proor: It is left to the reader. O

Note that if a model allows for maximal elements in the intersections of
histories, ON H does not satisfy clause (2a) of Def. 15, and hence ONH is not
a patch. This might be a motivation for banning such maximal elements.**
Observe also that every patch O € O is divided between g-histories of W,
i.e Vo € O 3JA € gHist (x € A). Of course, there might be an element of O
shared by a few g-histories; there might also be g-history A and a patch O
such that ANO = (.

The final question for this section is: does generalized BST extend BST1992
or BST*1992 of Section 2, i.e., is genBST worth its name? Since BST1992
and BST*1992 permit models with minimal elements, which generalized BST
rules out, the latter does no generalize the former two, strictly speaking. Sec-
ond, there is a discrepancy between histories of BST1992 and g-histories: the
upper fork, extending indefinitely up and down, and with a maximal element
in the trunk, is a two-history model of BST1992, but has only one g-history,
as there is no splitting pair in it. Still, this fork is a model of generalized
BST. Thus, we have the following, qualified, verdict concerning generaliza-
tion (note that this result does not entail that histories and g-histories are
to be identified):

Lemma 25. Let (W, <) have no minimal element and be a model of either
BST1992 or BST*1992. Then (W, <, {W}) is a model of generalized BST.

SKETCH OF A PROOF: Since a generalized BST model in question has only one
patch, W itself, the axioms of BST1992/BST*1992 immediately imply that
(W, <jw) is nonempty dense partial order. The axiom of no maximal elements
together with the premise of this lemma, no minimal elements, imply clause
(2a) of Def. 15. Axioms of infima and history-relative suprema imply clauses
(2b) and (2c) of this definition. The remaining clauses, that is, (1), (2d), (3),
and (4) are trivially satisfied. O

MFor what we think to be a more serious reason for this move, see Section 4.3.
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4.2 Generalized differential manifolds and matters topo-
logical

The aim of this subsection is to set up a (generalized) differential manifold on
the base set of a generalized BST model. This is the crux of the construction
since, after all, GR spacetimes are differential manifolds of some kind. We
do not imply that every generalized BST model can be equipped with the
manifold structure—in the sequel we will consider only those that do.

This section generalizes an elegant construction of GR manifolds, due
Geroch (1972) and Malament (2012), to modally inconsistent contexts. We
will first define n-dimensional generalized charts on W, in short n-g-charts,
and say what it means that such charts are compatible.

Definition 26 (n-g-chart). An n-g-chart on a generalized BST model W =
(W, =X,0), is a pair (O, @), where O € O is a patch in W and ¢ : O — R"
satisfies, for every H € gHist:

IfONH #0, then

1. @jonm s injective (i.e., one-to-one),
2. o[ONH] is an open subset of R™ (in the standard topology on R™), and

3. Ve,el € ONH e <0 € & ple) <u p(€), where <y is a (strict)
Minkowskian ordering.

The generalization consists in restricting the chart function to a modally
consistent context, that is, to O N H. Furthermore, the orthodox approach
has no analogue of (3).

Definition 27 (compatibility of n-g-charts). Two n-g-charts on an genBST
model W, (O1, 1) and (Os, ps), are called compatible iff for every H € gHist
either O1NOsNH =0 or O, NOyNH # 0 and these two conditions obtain:
(1) 9;[01 N Oy N H| (i =1,2) are open subsets of RY | and

(2) ooyt 0[O N Oy N H] — R™ and o105+ 02]01 N Oy N H] — R™ are
both smooth.

A function from R" to R" is called smooth if it has a continuous deriva-
tive of any order. The generalization (with respect to the Geroch-Malament
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approach) consists in our appeal to histories and considering intersections
01 N Oy N H rather than intersections O; N Oy.19

It is easy to see that compatibility is reflexive and symmetric; for an
argument that it is not transitive, adapt an argument of Malament (2012) p. 2
appropriately. Following the Geroch-Malament definition of n-dimensional
manifold, I define next a smooth n-dimensional generalized manifold, n-g-
manifold for short.

Definition 28 (n-g-manifold). An n-g-manifold is a pair (W,C), where VW =
(W,=,0) is a generalized BST model and C is a set of n-g-charts on W
satisfying these conditions:

(M1) Any two n-g-charts in C are compatible.
(M2) For every p € W there is (O, ) € C such that p € O.

(M3) C is mazimal in the sense that every n-g-chart on W that is compatible
with each n-g-chart in C belongs to C.

The definition mimics Malament’s definition, but it drops the requirement
of the Hausdorff property. That a maximal collection of n-g-charts (in the
sense of (M3)) exists, can be proved by the Zorn lemma. This would leave
open the question of what n-g-manifolds look like. This worry is addressed by
the following lemma that gives a simple recipe of how to build n-g-manifolds:
find first a collection Cy of n-g-charts on W satisfying (M1) and (M2), and
then add to it the set C; of all n-g-charts on W that are compatible with
every n-g-chart in Cy.

Lemma 29. Let W = (W, X, O) be a generalized BST model and Cy be a set
of n-g-charts on W satisfying conditions (M1) and (M2). Let Cy be the set

of all n-g-charts on W that are compatible with every n-g-chart in Cy. Then
(W, CoUCy) is an n-g-manifold.

Proor: Since Cp satisfies (M2), so does Cyp U Cy. To verify (M1), we need
to show that any (O, ¢),(0',¢') € C; are compatible. Pick an arbitrary
H € gHist, and since O N O’ N H = () confirms compatibility of the two
charts, assume O NO' N H # (.

15 Tn their approach, the part beginning with “iff” reads: “iff either O1 N Oy = 0
or if Oy N Oy # 0, then (1) p;[O; N O3] (i = 1,2) are open subsets of RY, and (2)
<p2<p1_1 : p1[01 N O2] — R™ and <p1<p2_1 : p2[01 N O3] — R™ are both smooth.
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We first show that ¢[O N O’ N H] is open (an argument that ¢'[O N O' N H]|
is open is similar). Pick p e ONO’' N H, so ¢(p) € p|ONO"' N H]. By (M1)
there is (O*, ¢*) € Cy such that p € O* hence p € ONO' N O*N H and
o(p) € p[ONO' N O* N HJ|. Since (O, p) is compatible with (O*, ¢*) and
(0, ¢') is compatible with (O*, ¢*), ¢*[O N O* N H| and ¢*[O' N O* N H]
are open. Accordingly, their intersection is open, and since ¢* restricted to
H is injective, o*[O* N O N H|Ne* [O*NO' NH| = [O"NONO" N H]|.
Observe next that p[O* N O N O’ N H] is open because it is a pre-image of
an open set *[0* N O N O N H] under a continuous (because smooth) map
0ot plONO*NH] — R". Thus, for any p € ONO'N H, there is an open
set p[O*NONO’'NH] C p[ONO'N H]| such that p(p) € p[O*NONO" N H].
Thus, ¢[O N O’ N H] is open.
Second, we verify that (i) o'~ : ¢'[ONO'NH] — R™ and (ii) ¢'¢ ' : o[ON
O'NH| — R™ are smooth. To argue (i), note that for every z € ¢'[ONO'NH]|,
one can find (O*, p*) € Cy such that ©'~'(z) € O*. Then we re-write (i) as
the composition ¢p* ~Lop*' ™! of two smooth maps, ¢*¢' ™! : ¢'[ONO'NO*N
H] — ¢*[ONO'NO*NH] and pp* ~! : o* [ONO'NO*NH| — p[ONO'NO*NH].
Because a composition of smooth maps is smooth and domains and counter-
domains match, the conclusion follows. The argument for (ii) is analogous.
Finally, to prove (M3), note that since a chart not in C; must be incompatible
with some chart in Cy, C; U Cy is maximal. [
Before we proceed to define topology on W by using n-g-charts, we es-
tablish an auxiliary fact:

Fact 30. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W,X,0) and (O,¢) € C. Then if O' € O and O’ C O, then (O, ¢j0) € C.

Proor: We need to show that, first, (1) (O', ¢|or) is an n-g-chart and, second,
that (f) it is compatible with every chart in C. As for (}), observe that a
restriction of an injection is an injection. Note also that since ¢ preserves the
ordering on O N H, it preserves the ordering on O’ N H, for any H € gHist
such that O'NH # (). It remains to show that p[O’'NH] is open, if O'NH # ().
Let us pick an arbitrary € € ¢[O’ N H]. Our aim is to find an open set in
©[O'NH] containing é. Let us take a “vertical” maximal chain ¢ € MC({¢[ON
H], <), €)% and transform it into t = ¢~ 1(f). Since ¢ is injective and order
preserving on ONH, t is a maximal chain in (ONH, <o) and o~ 1(¢é) := e € t.
Recall that O’ C O is a patch as well, so by Def 15 (2a), t must extend up

16This means that only the time coordinate of £ changes.
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and down e in O', that is, there are z,y € t N O’ such that z X0/ e Xjor ¥
and t719" N ¢710Y C O'. Since t C H, t710'" N ¢710'Y C O’ N H, moreover.
Transforming ¢710'" N =10V to R?, we find £ >MZ N{<MI = (710" N ¢T10Y) C
©[O' N H], with & = p(x), § = (y) such that Z,7 € t and T <p; € <us 7.
There are thus &', € t such that & <j; & <a € <a ¥ <um §. Accordingly,
7,7 € p|O'NH]| and moreover the “diamond” d ={Z e R" | ¥/ <y 2 <y 7'}
is contained in p[O’ N H] (because z = ¢~ (2) is between 2’ and ¢/ in O' N H,
thanks to Def. 15 (2d) and histories being downward closed). By removing
from d its borders in R", we construct the borderless diamond b containing
& (because the diamond’s vertices &' and 7' belong to the vertical chain ¢
passing through €). Clearly, b C p[O N H] and is open, and hence we proved
that (O', ¢|or) is a chart.

To prove (), i.e., compatibility of (O', p|o/) with any (O*,¢y*) € C, it is
enough to consider only such (O*,¢*) and H € gHist that O'NO*NH # ().
As we just showed, ¢[O' N H] is open. Since (O, ) is compatible with
(O*,¢*), p|[ONO*NH] is open. And p|[ONO*NH|Np[O'NH]| = ¢|O'NO*NH],
because ¢ is an injection. Thus, p[O'NO* N H] = ¢o/[0O'NO*N H] is open.
Finally, since (O, @) and (O*, 1*) are compatible, *p~! : p[ONO*NH] — R
is smooth. And, as shown above, ¢o/[O'NO* N H] is open. Thus, by making
the required restrictions, we see that zﬁ*gofol, Lo [0'N O N H] — R™ s
smooth. An argument that ¢o90* =1 : ¢*[0' N O* N H] — R™ is smooth is
analogous. O

Since the intersection of two patches is a patch (Fact 16), the fact above
has an immediate corollary, which will be needed to define a topology:

Corollary 31. Let (W,C) be an n-g-manifold and W = (W, =<, 0) be a
generalized BST model. Then:
if (0,9),(0,¢") € C and ONO" # 0, then (O N O, pono) and (O N
o, 901000/> belong to C as well.

Definition 32 (g-manifold topology). Let (W,C) be an n-g-manifold on a
generalized BST model W = (W, X,0). We say that S C W is open in the
g-manifold topology, S € T (W), iff

VpeS 3 (0,p)eC(pe ONO CS).
We need to check that this definition indeed defines a topology on W.

Fact 33. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W,=,0). Then:

22



(1) 0 e T(W);

(2) WeT(W);

(3) if S,S' € T(W), then SN S" € T(W) as well;
(4) if S1,S2,...,Sa,... € T(W), then US, € T(W).

Proor: It is easy to see that (1) and (2) are true. To prove (3), let p €
S NS’ since S and S’ are open, there are (O, p), (O, ¢') € C, such that
peEOANOCSandpe O'ANO' CS'. Hence ONO' # B, so by Corollary 31,
(ONO,pono) €C. Sincepe ONO" and ONO" CSNS', SNS is open.
To verify (4), let us pick p € |, Sa. Thus, for some 3, p € Sz € T(W).
Accordingly there is an n-g-chart(Og, ¢g) such that p € Oz and Oz C Sz C
U, Sa- Thus, U, Sa € T(W). O

We next observe the following fact about a base for this topology.

Fact 34. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W,=X,0). Then the base for topology T(W) is By := {0 € O | (O, p)
C for some ¢ : O — R"}.

m

Proor: It is immediate to see that every element of By, is open. From the
definition, if A € T (W), then Vpe A 3 (O,¢)eC (p € ONO C A), which
implies that By, is the basis of this topology. O

By equipping a generalized BST model with a manifold topology, we
impose some new properties on histories, not derivable in generalized BST
alone.

Fact 35. Let (W,C) be an n-g-manifold on a generalized BST model VW =
(W, =<,0) and H be a g-history in W. Then H has no mazimal elements.

Proor: Let e be a maximal element of H. There is (O, ) € C such that
e € O. Then ¢[O N H] is an open subset of R". Since pjony respects the
ordering, ¢(e) is a maximal element in ¢[O N H]. But then ¢[O N H] is not
open, and hence (O, ¢) ¢ C. Contradiction. O

At this stage we do not know if g-histories are open, or whether they
satisfy PCP. However, as a consequence of the fact above, we have that the
openness of g-histories rules out PCP, point-like version:
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Lemma 36. Let (W,C) be an n-g-manifold on a generalized BST model
W= (W,X,0) and H be a g-history in W. Then:
H € T(W) iff for every H' € gHist there is no maximal element in H N H'.

Proor: To the right: For reductio, let H € 7 (W) and (f) e* be a maximal
element of H N H' for some H' € gHist. Thus, for every e € H, and hence
for e* as well, there is (O, ) € C such that e € O and O C H. These
last conditions imply that every maximal chain passing through e* should
have some nonempty segment above e* contained in O, and hence in H. By
the Fact above, however, ¢* is not a maximal element of H'. Moreover, it
is a maximal element in H N H’. Hence some nonempty chains above e*
are contained in H’ rather than H, no matter how short these chains are.
Contradiction.

To the left: We need to show that for every e € H there is O € 7 (W) such
that O C H. Let us pick an arbitrary e € H. By Def. 28 there is (O, p) € C
such that e € O'. We claim that the sought-for O = O’ N H. Observe that
(1) if O € O, we would have by Fact 30 (since O C O’) that O € T(W), as
required. We thus need to prove that O € O, which amounts to checking if
O satisfies clause (2) of Def. 15.

First, since e € O' N H and (O, X|o) is a nonempty partial order, (O, X|0)
is a nonempty dense partial order as well.

Second, we need to prove that for every ¢’ € O and every t€ MC(W;¢') there
are z,y €t N O such that z<|p€’ <py and 7" Nt*¥ CO. Since e’ € O' € O,
there are 2,y € t N O’ such that ' <o €’ <oy and (i) 7% Nt=¥ C O
Since histories are downward closed and ¢’ € H, (ii) t7* Nt=¢ C H. There
must also exist y” € ¢ such that (iii) ¢’ <0 y” <jo0ry’ and y” € H (hence (iv)
t=¢ Nt=v" C H) . Otherwise, for every z € t such that ¢’ < z we would have
z & H. But since z € H' for some g-history, and hence ¢/ € H’, it would
follow that e’ is a maximal element in H N H’, contradicting the Lemma’s
premise. By (i), (ii), (iii), and (iv): t7* Nnt*¥"CO' N H = O.

Third, every lower bounded chain in (O, X|p) has an infimum in O because
it is lower bounded in (O’, X|¢o/), so it has infimum in O’, and since histories
are downward closed, this infimum is in H as well.

Forth, by a similar argument, if a chain C' in (O, <o) is upper bounded by
be O, then B:={r €O, |C Xpx Az X|p b} has a unique minimum. For,
since b € H, every x X|or b is in H as well.

Finally, since histories are downward closed, if x,y € O and x < z < y, then
z €.
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These five observations prove that O = O' N H € O, and hence, by (1),
O € T(W). Moreover, e € O and O C H. As this is true for an arbitrary
e € H, we showed that H € T(W). O

4.2.1 The Hausdorff property

Before we turn to a discussion of the Hausdorff property in the g-manifold
topology defined above, it is helpful to establish an auxiliary fact:

Fact 37. Let (W,C) be an n-g-manifold on a generalized BST model VW =
(W,=X,0). Then for any S € T(W), if p € S, then for any mazimal chain
t € MC(W;p), there are z,y € t, x < p <y such that t7*"=¥ C S, where
tmh={z et <z <y}

Proor: Let p € S € T(W) and let t € MC(W;p) be an arbitrary maximal
chain. There is thus a patch O € O such that p € O and O C S. By
Def. 15 (2a), there must be x,y € t, x < p < y such that t~*"=¥ C O. By
Def. 15 (2d), for every z € t7*"=¥ ~ € O and since O C S, it follows that
t>~m/\<y C S |:|

Theorem 38 (no Hausdorff property). Let (W, C) be an n-g-manifold on a
generalized BST model W = (W, =<, O) which has more than one g-history.
Then the g-manifold topology on W does not satisfy the Hausdorff property.

Proor: Since W has more than one g-history, there must be some inconsistent
e, € € W, which is equivalent to the existence of a splitting pair {z, 2’} such
that © < e A 2/ < €. This means that = # 2’ and there is a patch O € O
and a chain C' in (O, <o) and b,0" € O such that C' %o b, C' X|p V/ and z =
min{z € O | C Xp 2 Az X|p b} and 2’ =min{z € O | C o 2Nz X0 V'}.
Pick next arbitrary U, U’ € T (W) such that € U and 2’ € U’. Pick also
te MC(W;z)and t' € MC(W;x') such that C C tNt' and z € t and 2’ € t'.
By Fact 37, there are z € t,2' € t/, 2 < x, 2/ < 2/ such that ~*"=* C U and
t=#'"=2" C U, Accordingly, there is 2* € C such that z < z* and 2/ < z*. It
follows that z* € t7*=* C U and z* € ""'"=* C U’, and hence z* € UNU".
Since U and U’ are arbitrary, this proves that the Hausdorff property fails in
the g-manifold topology on a model with more than one g-history. U

Having established that the topology on a genBST model with more than
one g-history is non-Hausdorff, let us now ask if g-histories are Hausdorff.
More precisely, we ask if the subspace topology Z7cw (H) has the Hausdorff
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property, where H is a g-history and the ambient topology is 7 (W). To
recall the concept of a subspace topology, given (ambient) topology 7 (W)
and a nonempty subset A C W, the subspace topology on A is Ty (A) =
{ANU | U € T(W)}. To proceed, we need an auxiliary fact and a definition,
however.

Fact 39. Lete; € O € O and ey,e5 € H € gHist and suppose that t=°2 # ()
and t=e X0 e1 for somet € MC(W;e). Thenm X ey, where m = min{z €
O | ez R0 2 ANz X e}

Proor: Clearly, t¥°2 % ¢,. By Def. 15 (2¢) there is m/ = min{z € O |
e X0 2 Az R|p e2}. Clearly, m’ X e,. By the same definition, there also
exists m = min{z € O | 72 X5 2 Az Zp e1}. If m # m/, then the two
form a splitting pair and such that m < e; and m’ <X ey, yielding e; and ey
inconsistent, which contradicts ey, eo € H. Thus, m = m’ < es. O

Before the next definition, let us introduce some notation. For e € W,
we will write (>=.) == {¢’ € W | e < €'}. Also, for £ € R", flc(Z) denote the
set of points in R™ lying on the brim of the future light-cone of 7.

Definition 40. Let (W,C) be an n-g-manifold on a generalized BST model
W= (W,%,0), (0O,p) €C, and x € O. We define:

o() = Unnegriade [0 0 H 0 (=] \ fle(p(@))] | 00 H # 0}

M(z) :={z e W |z #& 2z} and Mo(z) := M(z) N O.

Fact 41. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W,X,0), (0,9) €C, and x € O. Then

(1) Vo(z) € O and (2) (Vo(z), yo@) €C.

Moreover, if Mo(z) # 0, then (3) Mo(z) € O and (4) (Mo(2), Pmo()) € C-

SkeTcH OF A PrROOF: The proof of (1) and (3) relies on the observation that
the image of \7o(z) N H by ¢ is the inside of the future light cone of ¢(x) and
the image of Mo (z) N H is the outside of the future light cone of ¢(z), where
both these images are open in the standard topology on R". The argument
then relies on noting that properties analogous to those required by Def. 15
(2) obtain in the latter topology, and then transforming these properties, by
gofolm 7 to generalized BST. Then (2) and (4) follow by Fact 30. O

Fact 42. Let (W,C) be an n-g-manifold on a generalized BST model VW =
(W,=X,0), e1,eo € H, H € gHist, and e; £ e3. Then there is O € O and
x € O such that e; € \Jo(x) and x & ey, hence ey € M().
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Proor: Pick n-g-chart (O,¢) € C such that e; € O so (i) e € ON H.
Accordingly, 0 # ¢][ONH] and is open in R", so there is a “vertical” maximal
chain in  C ([0 N H], <y) that contains &, = (e;) and extends (at least
slightly) below and above é;. Clearly, t = gofolmH[f] CONH and e; € t.

Consider next t=¢2. If it is empty, pick any z € t~0°'; then x <0 €1 and
x 2 e
But if ¢3¢ # (), then =2 is upper bounded by e; (because e; € t and e; % es),
so by clause (2c) of Def. 15, there is m = min{z € O | 72 Zp 2 Az L €1},
so m =< e;. By Fact 39, m < ey, so m # e, and hence m < e;. Pick now
x € t such that m < x < e;. It follows that x # e, because otherwise
z € %2 50 m would not be an upper bound of t3¢2. Thus, there is z € W
such that (ii) = %0 e; and (iii) « # es. Next, “verticality” of { assures that
é, & fle(z), where & = p(z), and this result together with (i) and (ii) implies
e1 € Vo(z). On the other hand, (iii) implies e; € M(z)

O

Theorem 43. Let (W,C) be an n-g-manifold on a generalized BST model
W= (W,X,0) and H € gHist of W. Then Tcw (H) is Hausdorff.

Proor: Let us take distinct e, e; € H; either e; # e, or e5 & e1. Suppose the
former is true (the latter is proved similarly). By Fact 42, there is O; € O
and x € O; such that e; € o,(z) and e2 € M(z). Pick next Oy € O
such that ey € Oy. Accordingly, ex € M(z) N Oy = Mo, (), so by Fact 41,
(V0,(2), ¥50,)) € C and (Mo,(T), Puo, ) € C. It follows that o, (z)
and Mo, (z) are open in the manifold topology, yet, by the construction,
(1) Vo, (x) N Mo,(z) = 0. Moreover, e; € H N Vo,(x) € Tcw(H) and
es € HNMo,(x) € Tcw(H), which together with (1) show that 7oy (H) is
Hausdorff. O

The next topic of this section is maximality properties. It is a desirable
goal that a g-history be not only Hausdorff, but maximally so. Similarly,
it is desirable that every subset of base set W maximal with respect to
the Hausdorff property be identical to some g-history. The facts below do
not fully achieve this goal, as they refer to maximality with respect to the
joint property: the Hausdorff property plus being downward closed. This
structure is similar to Miiller’s (2011) maximality results, which refer to the
conjunction: Hausdorff plus connectedness.

Let us begin with this observation:
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Fact 44. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W,X,0) and T (W) be its manifold topology. There is a subset of W that
is maximal with respect to having the joint property of being Hausdorff and
downward closed.

Proor: Left for the reader. Recall that a g-history is downward closed
(Fact 22) and has the Hausdorff property (Theorem 43); then apply the
Zorn lemma. ([l

Fact 45. Let H be a g-history in a generalized BST model W = (W, <, O)
and (W,C) be an n-g-manifold on W. Then H is a mazimal subset of W
with respect to being Hausdorff and downward closed.

Proor: The Fact claims that a subspace topology on any subset A C W such
that H C A is either not Hausdorff or A is not downward closed. To prove it,
we pick an arbitrary downward closed A such that A 2 H and show that it
does not have the Hausdorff property. Since H is maximally consistent, there
are y' € H, y € A\ H such that y,y’ are not consistent. Accordingly, there
is a splitting pair (x,z’) € Y such that x < y and 2’ < y/. Since g-histories
are downward closed and A is assumed to be downward closed, ' € H and
x € A, and hence {z,2'} C A. Accordingly, there is a chain C' C A (because
A is downward closed) that has two subsets of upper bounds, with x and z’
being their respective minima. Then every open set U € Ty (A) with z € U
contains some nonempty upper segment C~* of C', and similarly, every open
set U’ € Tew(A) with 2/ € U’ contains some nonempty upper segment C”*
of C. Thus, every intersection of such U and U’ contains some nonempty

*

segment C~*", 2z* = max{z,2'}, which shows that the subspace topology
Tew (A) is not Hausdorft. O

Note a striking similarity between the above fact and a property of
BST1992 histories (see Fact 57). Next, we have a converse result:

Fact 46. Let (W,C) be an n-g-manifold on a generalized BST model W =
(W, =,0) and T (W) be its manifold topology. Then if A is a maximal subset
of W with respect to being Hausdorff and downward closed, then A € gHist.

Proor: Let us assume that A is as in the premise and, as a reductio hypoth-
esis, that A is not a g-history. Accordingly, either (i) A is not maximally
consistent, i.e., A C H for some g-history H, or (ii) A is not consistent. If
(i), since H has a joint property of being Hausdorff and downward closed, A
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is not maximal with respect to this property, which contradicts the premise.
Turning to (ii), there is a splitting pair {z, 2’} below some two elements of
A, which is generated by some chain C'. Since A is assumed to be downward
closed, r,2' € A and C' C A. By an argument analogous to that in the last
proof, Zcy (A) is not Hausdorff, which contradicts the Fact’s premise. O

4.2.2 The local Euclidean property

Let us recall the concept of a locally Euclidean topological space. A topolog-
ical space is called locally Euclidean if there is n € N such that every element
of the space has an open neighborhood homeomorphic to an open set of R"
(in the standard topology of reals). The (standard) definition of differential
manifold requires its topology to be locally Euclidean. We should thus learn
if our manifold topology 7 (W) and the subspace topologies Zcyw (H), where
H is a g-history, are locally Euclidean.

Lemma 47. Let (W,C) be an n-g-manifold on a generalized BST model
W = (W,X,0) and H € gHist. Then the subspace topology Tcw (H) is
locally Fuclidean.

Proor: We need to show that every e € H has an open neighborhood A €
Tcw(H), e € Asuch that A is homeomorphic to B, where B is an open subset
of R™. By Def. 28, there is (O, ¢) € C such that e € O and ¢[O N H] = B,
where B is an open subset of R" and ¢jong : O N H — B is an injection. By
Def. 32, O € T(W),so ONH € Tcw(H). Putting A = O N H, we need to
show that ¢ : A — B is a homeomorphism.

First, consider an open set B’ C B and ask if ¢~![B'] is open? Take an
arbitrary e’ € ¢ ![B]; then ¢ = ¢(¢’) € B’. Since B’ is open, there is a
borderless diamond bd* C B’ such that ¢ € bd®. We put next bd™¥ :=
e~ [bd™]. Clearly, bd™ C ¢ '[B'] C A and x = ¢ 1(Z), and y = ¢ (7).
Since ¢ respects the ordering, bd™ is a borderless diamond in (A, %|p). We
next define:

z€0'iff ze6ON(z€H —2€bd™)N(z¢ H— 32 €bd™ N2 R0 2)

It can be shown (but we leave the proof to the reader) that O’ € O. Then,
since O’ C O, Fact 30 implies that O’ € 7 (W), from which we get O' N H €
Tcw(H). Since O' N H = bd™, it follows that ¢ € bd™ € Tcw(H) and
bd* C o [B']. Since this is true about every ¢ € ¢ !'[B'], we get that
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o B € Tew(H).

Second, pick an arbitrary set A’ C A, A" € Tcyw (H) and ask if ¢[A'] is open.
The premise means that A’ = A” N H for some A” € T(W). Accordingly,
A" = J b, where b, are elements of the base for 7 (W )—see Fact 34. Thus,
o[A'] = ¢[J(b, N H)] which is equal to |J¢[(ba N H)] (because ¢ restricted
to A is injective). Since b,’s are domains of the chart maps (see the same
Fact), ¢[(bo N H)] are open subsets of R™, and hence | p[(bs N H)] = ¢[A']
is open as well. O

Lemma 48. Let (W,C) be an n-g-manifold on a generalized BST model
W = (W,X,0). Then topology T (W) is not locally Fuclidean, if there are
g-histories H', H? in W whose intersection H' N H? has a maximal element.

SKETCH OF A PROOF: Let e be a maximal element in H' N H? and assume, as a
reductio hypothesis, that 7 (W) is locally Euclidean. Then there is some b—
an element of the base for 7 (W) such that e € b, and a homeomorphism 1 :
b — B, where B is an open subset of R™. Clearly, B\{¢(e)} is an open subset
of R™, and hence (since 1 is a homeomorphism), b \ {e} € T(W). Again,
since ¢ is a homeomorphism, it preserves a number of maximal connected
components. B\ {¢(e)} has two maximal connected components if m = 1
and one maximal connected component if m > 1 (see Munkres (2000, p.165).
We have a contradiction since b\ {e} has at least three maximal connected
components:'” the trunk M,(e) = {z € b | e }; 2} and two “rimless futures”
Vi and 77 of e, defined as follows (for i = 1,2):

vi= U {0z ebnH e < 23]\ fle((e)] | H ~ H'},

H*egHist
where H* ~ H' iff 3¢’ (¢/ € H'N H* Ne <, €'),

and fle(Z) is the set of points in R” that lie on the rim of the future light-cone
of Z. O

Lemma 36 and the lemma above show the price that is to be paid for
allowing that the intersection of two g-histories has a maximal element (or for
assuming PCP, point-like version): g-histories are not open in the topology
7 (W) and this topology is not locally Euclidean.

1Tt has more if e is a maximal element of the intersection of some other histories, not
merely of H' and H?.
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4.2.3 Two further postulates

To ensure some desirable topological or differentiability properties in a man-
ifold topology, we need two additional postulates:

Postulate 49. Let W = (W, =X,0) be a generalized BST model. Then for
every g-history H of W there are no Oy,05 € O such that Oy N H # (),
OQQH%Q) and (01U02)HH:H

Postulate 50. Let W = (W,<X,0) be a generalized BST model. Then O
contains a countable sub-cover O* of W, i.e., O* C O and is countable, and
Ve e W30 € O*e € O.

The first postulate ensures that our topologies Tcy (H) are connected. The
second postulate is needed for the existence of affine connections.

4.3 Tangent vectors

Although we have already constructed a generalized (non-Hausdorff) mani-
fold, whose subsets maximal with respect to being Hausdorff and downward
closed are very much like spacetimes of general relativity, we need to equip
it with even more structure. GR equations are tensor equations, and tensors
need vector spaces to operate. Accordingly, in GR one associates to each
element e of a manifold a vector space of vectors tangent at that point e. We
thus need to add vector spaces to our generalized manifolds. That is, for each
e € W, where W is a generalized BST model that admits an n-g-manifold
(W,C) (and possibly satisfies Postulates 49 and 50), we will construct the
space V' (e) of tangent vectors at e.

To recall the GR construction, one begins with the set S(e) : O — R of
smooth maps, where O is some open set containing e, or another. Since O is
generally not a subset of R™, the concept of smoothness needs an explanation:
A function « from an open set O to R is said to be smooth iff for every chart
(O, p) € C such that ONO" # 0, ap™ : R®™ — R has derivatives of an
arbitrary order and is continuous. Finally, a vector in V(e) is defined as a
map from S(e) to R that satisfies some three conditions.'®

A red light should already blink at this junction since, in the present
framework, a chart function ¢ is not necessarily injective, which makes ¢!

18 1f ¢ € V(e), it should satisfy, for arbitrary functions fi, fo € S(e): (i) C(f1 + f2) =
C(f1) +¢(f2), (i) C(f1f2) = f1(€)C(f1) + f2(e)C(f1) and (iii) if f1 is constant, ((f1) = 0.
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undefined. However, each chart function ¢ of (O,¢) € C is injective if
restricted to any g-history H such that HNO # (). A natural remedy thus is
to require that O occurring in the definition of set S(e) should be contained
in a g-history.!® With this remedy, V' (e) will not depend on g-histories. Also,
if e and ¢’ belong to one g-history, the vector spaces V' (e) and V' (¢’) are to be
connected in exactly the same way as in GR, that is, by the parallel transport.
Finally, if e and €’ do not share a g-history, no connection between V'(e) and
V(e') is postulated.

Unfortunately, the remedy is not going to work if the intersection of some
two g-histories H and H' in W has a maximal element, say m. Each open
set in 7 (W) containing m must extend upward along every path passing
through m, and hence must contain some elements of H \ H' as well as some
elements of H' \ H.

We thus are driven to outright prohibit maximal elements in intersections
of g-histories by imposing the following postulate on generalized BST models:

Postulate 51. Let W = (W, X, 0) be a generalized BST model. Then:
Vee W 3H € gHist 30 € O (e ONO C H).

Postulate 51 has the following consequence:

Fact 52. Let W = (W, =<, 0) be a generalized BST mode that satisfies Pos-
tulate 51. Then
(1) there are no two g-histories in YW whose intersection has a maximal ele-

ment,
(2)¥Ye e W30 € T(W) 3H € gHist (e e ONO C H)

Proor: A proof of (1) is immediate. As for (2), observe that for every e € W
there is a chart () (O', ¢) € C such that e € O' (by Def. 28) and an O” € O
such that (e € O”" AN O” C H) (by Postulate 51). By Fact 34, (f) implies
O € O, hence O := 0O'NO" € O. Since O C O, by (}) Facts 30 and 34,
O € T(W). Moreover, e € O since e € O" and e € O” and O C H since
OCO"CH. O

Postulate 51 permits a sought-for modification of the construction of tan-
gent vector spaces. The set S(e) is now defined as a set of smooth maps from
some O € T (W) to R, where O is is any open set containing e and contained

19A modified definition will read S(e) : O — R is the set of of smooth maps, where O is
some open set containing e and O C H for some g-history H.

32



in some g-history. A vector in V(e) is defined as before, as a map from S(e)
to R that satisfies the three conditions listed in the Footnote 18 above.

Postulate 51 comes at a price: generalized BST does not generalize
BST1992 (though it generalizes BST*1992—in the sense of Lemma 25). Nev-
ertheless, the bonuses outweigh the cost: The Postulate assures that there
are tangent vector spaces (as required by GR), that g-histories are open in
the topology 7 (W) (see Lemma 36), and that 7 (W) is locally Euclidean (see
Lemma 48 and Postulate 51(1)).%

5 Discussion

In this sections we address two issues that look troublesome for the general-
ized BST.

5.1 Hajicek-Miiller quasi-history

Following Héjicek (1971), Miiller (2011) discusses an odd subset of a branch-
ing model. His tentative definition (which he amends accordingly) takes a
history to be a subset of a base set that is maximal with respect to the joint
property of being open, connected, and Hausdorff. The subset mentioned
above satisfies this definition, but appears to be modally inconsistent (intu-
itively speaking). The branching model M is the union of two 2-dimensional
Minkowski spacetimes M; and M, each with Minkowskian ordering, and
pasted below and in the wings of the origin point 0 = (0,0), so that the
differences of the two Minkowskian spacetimes are the following:

M\ M, = J+H(0) x {1}, M, \ M, = J*(0) x {2},

where J(0) = {{t,z) | 0 <ps (t,z)}. That is, M; and M, share neither the
point of origin nor its future light cone.

To construct the troublesome subset A of M; U Ms, we subtract from the
latter the “left” part of J; and the “right” part of J,, that is,

A=M\ (J; x {1} U J, x {2}),

where J;:={{(t,z) € JT(0) | z <py 0} and J.:={(t,x) € J*(0) | = > 0}.
Note that A contains no choice pairs, as the “doubled rim” (including (0, 1)

20 Tt further allows for a simplification of our definitions of charts and of compatibility
of charts, Defs. 26 and 27.

33



and (0,2)) has been removed from A. For an argument that A is Hausdorff
as well as open and connected, see Miiller (2011).

From the perspective of the present framework, M with the usual ordering
and a single patch, namely M itself, is a model of genBST. However, A
turns out to be inconsistent, the witness being any pair e, es € A such that
e; € (JT\ J)) x {1} and e € (JT\ J.) x {2}. Clearly, e, is above (0, 1)
and e, is above (0,2), and (0, 1), (0, 1) constitute a splitting pair. Thus, A is
not a g-history (recall that g-history = maximal consistent subset of a base
set). This diagnosis agrees with the verdict delivered by Miiller’s (2011) final
definition of histories, which additionally requires, for each subset C' C h of
history h that if C # (), then h N IC # () as well.

5.2 Borders in the overlap.

I have already warned against a branching model VW that has more than one
maximal upper directed subset (i.e., a BST1992 history) and in which every
upper bounded chain has a supremum.?! Figuratively, in W the border of the
overlap of two BST1992 histories is contained in the overlap. Since a model of
this kind does not contain any splitting pair in the sense of Def. 17, from the
perspective of the generalized BST WV has a single g-history only, namely, the
model itself. As we will now argue, this implies that no generalized manifold
in the sense of Def. 28 can be constructed on W. As a reductio hypothesis,
let us assume that there is g-manifold constructed on V. Since VW has one
g-history only, by Lemma 47 the manifold topology 7 (W) must be locally
Euclidean. Since upper bounded chains in W are assumed to have suprema,
the intersection hy; N hy must have a maximal element ¢’. By an argument
analogous to that given in the proof of Lemma 48, ¢’ does not have an open
neighborhood homeomorphic to an open subset of R™ for any natural number
n, which contradicts local Euclidicity.

The moral of this argument is that a generalized manifold cannot be
constructed on a genBST model that has more than one maximal upper
directed subset and in which every upper bounded chain has a supremum.

21 Some years ago Tomasz Kowalski and I advocated such a theory, see Kowalski and
Placek (1999).
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6 Conclusions

We have developed in this paper a branching theory that captures the in-
sights of general relativity. To pave the way towards this construction, in Sec-
tion 2 we modified BST1992 by replacing its Prior Choice Principle (stated
in terms of maximal points) with a pair-like version of this principle. As a
consequence, the intersection of any two histories has no maximal element in
the resulting theory (termed BST*1992). The construction of the branching
theory then proceeded in three stages. In Section 4.1 we defined general-
ized BST models, the underlying idea being that locally, that is, around any
element of a base set, the model is similar to BST1992, although the base
set is not necessarily partially ordered. Generalized histories are defined as
maximally consistent subsets of a base set, where consistency is spelled out
in terms of splitting points. In the second stage, in Section 4.2 we defined
generalized non-Hausdorff manifolds on generalized BST models. The main
result of this section is that a generalized history (aka spacetime) turns out
to be a subset of a manifold’s base set that is maximal with respect to being
Hausdorff and downward closed. And, vice versa, every subset of a manifold’s
base set maximal with respect to being Hausdorff and downward closed is
identical to some generalized history. Two postulates (49 and 50) of this sec-
tion ensure that the manifold topology on a generalized history is connected
and that it has a countable sub-cover. We can thus identify a generalized his-
tory with a single GR spacetime, and a generalized BST model with a bundle
of GR spacetimes. In the third stage (Section 4.3), in order to define tangent
vector spaces on a generalized history, we had to assume Postulate 51, which
comes with significant consequences. First, it prohibits maximal elements in
the intersections of generalized histories, making generalized histories similar
to histories of BST*1992 rather than to histories of BST1992. On a positive
side, it implies that a generalized BST model is (as a whole) locally Euclidean
and that a generalized history is open in the manifold topology. We wrapped
up this paper with a discussion (Section 5) of two potentially troublesome
issues: we showed that the present framework delivers an intuitively ade-
quate verdict concerning an odd structure discussed by Miiller (2011) and
we argued that generalized manifold cannot be constructed on the branching
models advocated by Kowalski and Placek (1999).
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7 Appendix: topological facts about BST1992

Let W = (W, <) be a BST1992 model. To simplify the proofs below, we
introduce the concept of “diamond oriented by maximal chain ¢ with vertices
e1 and ey”, to be written as d,*“*:

A7 ={yeW e <esNep <y <eal,
where ¢ is a maximal chain in W and ey, ey € t.

Fact 53. The Bartha topology T (h) on a history h in a BST1992 model is
connected.

Proor: We need to show that the only subsets of history h that are both
closed and open, are () and h itself. To assume to the contrary is to assume
that there are open nonempty subsets A C h and B = h \ A. Consider thus
x € A and y € B. Since histories are upward directed there is in h an upper
bound z of z and y, and either (i) z € A, or to (ii) z € B. If (i), we consider
a maximal chain ¢ € M C(h) such that y,z € t. (If (ii), consider a maximal
chain ¢ € MC(h) such that z,z € t'.) By the BST axiom of infima and
maximality of ¢, there is in ¢ an infimum f = inf (¢ N A). (Analogously, there
is in ¢ an infimum f" = inf (¢ N B).) If f € A, then there is no diamond
containing f and oriented by ¢ that is a subset of A, so A is not open. But
also, if f € B = h\ A, then there is no diamond containing f, oriented by ¢,
and a subset of B, so B is not open. We similarly arrive at a contradiction
if we ask whether f’is in A, or not. O

Fact 54. The Bartha topology T (W) is connected.

Proor: Note that in the proof above, to show that 7' (h) is connected, we
used a maximal chain t € M C(h) that intersects both A and h\ A. Now, if
we only know that there is at least one t € MC(W) that intersects A C W
and B := W \ A, where each A and B is open and nonempty, we could
use the same trick as above to prove that 7 (W) is connected. Thus, let
us assume for an arbitrary pair of A, B of the sort described above that (f)
Vte MC(W)t C AVt C B. Let us then pick some ¢t C A (there must be
one since A # (). Clearly, for some history h, t € MC'(h). Suppose now that
(i) there is some x € h N B. Then we pick some y € t, produce an upper
bound z of x and y. If z € A, there is a maximal chain containing z and
x, and if z € B there is a maximal chain containing z and y, where each of
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these chains intersects A and B—this contradicts (). Let us thus suppose
that (ii) h N B = (), which entails h C A. Then, for any x € B, we must
have = & h, but x € b’ for some history A’. By PCP, there is a choice point
¢ such that ¢ < x and h L. h'. It follows that any maximal chain containing
¢ and z intersects with A and B since x € B and ¢ € h C A, which again
contradicts (7). O

Fact 55. For every A C W, the Bartha condition applied to A yields topology
T(A).

Proor: Rearrange Facts 8 and 9 of Placek et al. (2013) by replacing h by A.
O

Our next fact appeals to continuous branching, which is defined as below:

Definition 56 (continuous branching surface). Histories h and h' branch
along a continuous branching surface iff there is © € h \ h' such that for
every upper bounded chain t € h N h': supy, (t) = sup,, (t)).

Note that € h\ I/ entails (by PCP) that there is some 2’ € h N A’ and
below x, which in turn ensures that some chains containing x pass through
this intersection.

Fact 57. Let A be a proper superset of some history h of W (i.e., h C

A). Let also A be downward closed and there is no continuous branching
surface for any two histories in W. Then T (A) does not satisfy the Hausdorff

property.

Proor: Let (i) h € A. Pick some = € A\ h; hence z € I’ for some h' € Hist.
Since h and h’ do not branch along a continuous branching surface, there
is a chain (ii) t* € h N A/ such that (iii) ¢t* < = and sup,, (t*) # sup,, (t)).
By (iii) and downward closure of A, supy, (t*), sup,, (t*)) € A. Consider then
an arbitrary pair of open sets O,0" € T(A) containing s = sup, (t*) and
s’ = sup (t*), respectively. This means that for every pair of maximal
chains ¢,t' such that s € t, € t and y < s < z, ¢y < § < 7/, there
are oriented diamonds d}* C O and dty,lzl C O'. Picking t and t' such that
t* C tNt', we obtain that max{y,y'} € d/* N df,lzl # (). Accordingly, any
0,0’ € T(A) containing s, s', respectively, must overlap.

Lemma 58. (1) There are BST histories such that T (h) is not locally Eu-
clidean (in the Bartha topology).
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(2) T (W) is not locally Fuclidean (unless W = h for some history h);
(3) There are BST models such that, for every history h of such a model,
T (h) is locally Euclidean (again, in the Bartha topology).

Proor: As an example for (1), consider a downward fork, with its upper
arm having a minimal element—this a one-history BST model. For reductio,
suppose there is homeomorphism f between a neighborhood u of the vertex
e and an open ball b C R", for some n € N. Clearly, b\ {f(e)} is open
in standard topology on R" so u \ e must be open in the Bartha topology.
However, u \ {e} has three connected components (two lower arms and the
top arm), whereas b\ {f(e)} has two if n = 1, or one (itself) if n > 1. Thus,
f cannot be a homeomorphism.??

As for (2), the above construction shows that any W containing a choice
point (that is, having more than one history) is not locally Euclidean;

For (3), take a history in a Minkowskian Branching Structure®>—it is locally
(and globally) Euclidean since it is isomorphic to R™. O

22Gee Munkres (2000, p.150 and 159). Some other examples of locally non-Euclidean
histories involve a dimension change, like Miiller’s (2005) history, one part of which is
homeomorphic to a half-line, and the other part — to the half-plane.

2For a theory of Minkowskian Branching Structures, see Placek and Belnap (2012).
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