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Abstract
Emotions are a central aspect of communication. Consequently, emotion analysis (EA) is a rapidly growing field
in natural language processing (NLP). However, there is no consensus on scope, direction, or methods. In this
paper, we conduct a thorough review of 154 relevant NLP publications from the last decade. Based on this review,
we address four different questions: (1) How are EA tasks defined in NLP? (2) What are the most prominent
emotion frameworks and which emotions are modeled? (3) Is the subjectivity of emotions considered in terms of
demographics and cultural factors? and (4) What are the primary NLP applications for EA? We take stock of trends
in EA and tasks, emotion frameworks used, existing datasets, methods, and applications. We then discuss four
lacunae: (1) the absence of demographic and cultural aspects does not account for the variation in how emotions are
perceived, but instead assumes they are universally experienced in the same manner; (2) the poor fit of emotion
categories from the two main emotion theories to the task; (3) the lack of standardized EA terminology hinders gap
identification, comparison, and future goals; and (4) the absence of interdisciplinary research isolates EA from
insights in other fields. Our work will enable more focused research into EA and a more holistic approach to modeling
emotions in NLP.

Keywords: emotion analysis, survey, trends, gaps.

1. Introduction

Emotions perfume our every experience and in-
teraction, playing a key role in human cognition
and relationships. In recent decades, research on
emotion has become popular in numerous fields,
including psychology, humanities, and social sci-
ences. In natural language processing (NLP), inter-
est in emotion mostly translates as emotion anal-
ysis (EA), whose growth has been most notable
since 2018 (Strapparava and Mihalcea, 2008; Mo-
hammad et al., 2018; Klinger et al., 2018; Nis-
sim et al., 2020; Mohammad, 2021; Barnes et al.,
2022).

We survey1 over 150 ACL papers (2014-2022)2

on EA to address four questions: (1) How are EA
tasks defined in NLP? (2) What are the most promi-
nent emotion frameworks, and which emotions are
modeled? (3) Is the subjectivity of emotions consid-
ered in terms of demographics and cultural factors?
(4) What are the primary NLP applications for EA?

We find a lack of consensus in terms of the scope,
direction, and methods in the current studies, which
raises three important concerns:

1. The absence of demographic and cultural as-

1Note that our main goal is not a complete snapshot
of the EA field but rather a snapshot of specific method-
ological issues within EA in NLP.

2For our selection criteria, see Section 3.
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Figure 1: Variation in emotion annotation based
on demographics. Annotators with distinct demo-
graphic profiles, a 60-year-old male and a 20-year-
old male, exhibit varying interpretations of the emo-
tions evoked.

pects does not account for the variation in how
emotions are presented and perceived but as-
sumes they are universally experienced in the
same manner. There is a general lack of en-
gagement with recent work on how emotions
are racialized (Judd, 2019), gendered (Camp-
bell, 1994), etc. In other words, who produces
the data matters (see Figure 1) and who anno-
tates it.

2. The poor fit of emotion categories to the task
poses a significant challenge. The commonly
used predefined emotion categories may not ad-
equately capture the nuances required for the
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downstream task.
3. The lack of a common systematic nomenclature

in EA obscures gaps, limits comparison, and,
therefore, future objectives. For example, our
survey shows that ‘prediction’ is synonymous
with ‘classification.’ In other areas of NLP, these
two terms are used for distinct tasks.

4. The dearth of interdisciplinary research means
progress in other fields does not inform EA. A
main problematic area is at the level of task de-
sign: NLP still predominantly relies on the work
of Paul Ekman (Ekman and Friesen, 1981). Ek-
man’s work addressed the question of basic emo-
tions, not to provide a comprehensive account
of emotions nor to define the most ‘helpful’ emo-
tions. Thus, the categories this theory provides
are too broad and oversimplified to be useful
across tasks and languages (De Bruyne, 2023).
Emotions are crucial in real-life applications. This

paper also explores the diverse range of emotion
applications, focusing on dialogue emotion recog-
nition as the most prominent and widely used. We
analyze widely used datasets tailored for this pur-
pose, highlighting their key characteristics.

Unlike previous surveys in the field, ours focuses
on unexplored questions, revealing critical gaps in
the EA field that require community attention. We
aim to connect these gaps, fostering focused re-
search and nuanced emotion modeling in NLP. We
conclude with recommendations and suggestions
for future work.

2. Related Work

EA has attracted considerable research interest.
Various surveys provide a comprehensive overview
of the state of the field (Canales and Martínez-
Barco, 2014; Yadollahi et al., 2017; Garcia-Garcia
et al., 2017; Mäntylä et al., 2018; Kim and Klinger,
2018a; Saxena et al., 2020; Acheampong et al.,
2020). Recent surveys (Murthy and Kumar, 2021;
Kusal et al., 2022b; Singh Tomar et al., 2023) have
primarily focused on the identification of datasets,
models, detection techniques, affective computing
modalities (visual, vocal, textual, etc.), and appli-
cations in the literature. While these surveys ac-
knowledge certain limitations in EA, such as the
scarcity of labeled datasets, data imbalance, the
dominance of English, and the performance of NLP
methods, most of them do not address the signifi-
cant gaps we discuss. Specifically, most disregard
the significance of demographic factors in their anal-
ysis (with a brief mention of the work by Sailunaz
et al. (2018)), aggregation methods for collecting
annotator perspectives, or the importance of inter-
disciplinarity.

Mohammad (2022) conducted a comprehensive
analysis of AI Ethics and Emotion Recognition liter-

ature, synthesising 50 ethical considerations rele-
vant to automatic emotion recognition. His work pro-
vides valuable ethics pointers that consider some
topics we covered here, such as the crucial consid-
eration of demographic factors and the modeling
of annotators’ perspectives during dataset creation.
The gaps we identified demonstrate the inherent
connection between ethics and advancements in
NLP for EA.

3. Survey of Emotion Analysis in NLP

In this section, we present our survey of papers
from the ACL Anthology3. To ensure a compre-
hensive selection of studies on EA, we focused on
identifying papers whose titles or abstracts include
keywords associated with EA NLP tasks in the field.
They are ‘emotion analysis’, ‘emotion prediction’,
‘emotion classification’, ‘emotion detection’, ‘emo-
tion recognition’, ‘emotion polarity classification’,
and ‘emotion cause detection.’4 As EA increased in
frequency after 2018, we doubled the time horizon
to consider papers published in the last ten years.
We removed duplicates and papers from shared
task participants, resulting in 438 studies. We ap-
plied additional criteria to ensure the inclusion of
influential and relevant works in our survey. Specifi-
cally, we opted for papers with a citation count from
Semantic Scholar surpassing the median average
(excluding self-citations). However, we adjusted
this threshold to at least 1 citation for papers pub-
lished in the last and current year. Following this
selection process, our final analysis set contains
154 papers5. Among these, 119 are published in
main conferences, 31 in workshops, 3 in Findings,
and 1 in other venues. For each paper, we col-
lected the following information: Emotions used,
emotion model type, emotion model, language, re-
source (dataset, lexicon), data source, presence
of multimodality (yes, no), nomenclature used, and
applications. If a paper focuses on dataset cre-
ation, we also determined whether the annotators’
demographics were considered.

Figure 2 provides an overview of the 154 papers
by year and keyword. There is a clear trend in the
number of papers from 2014 to 2022, with 2018
marking a significant increase in the appearance of
EA studies. This jump indicates a growing interest
in the field during the last five years.

3At the time of this study (September 2023), the ACL
Anthology contained 88,294 papers, including those from
non-ACL events like LREC.

4While we acknowledge the existence of other rel-
evant terms in EA, most papers pertinent to our core
questions use predominantly these terms.

5We provide the survey data on GitHub:
https://github.com/MilaNLProc/emotion_
analysis_survey.

https://github.com/MilaNLProc/emotion_analysis_survey
https://github.com/MilaNLProc/emotion_analysis_survey


Figure 2: Distribution of papers considered in our
survey by year and keyword.

3.1. Nomenclature

Figure 2 also provides an overview of the com-
monly used terms to describe EA tasks. The term
‘emotion recognition’ stands out as the most fre-
quently used (42.48%), followed by ‘emotion analy-
sis’ (28.10%), emotion classification (13.07%), and
‘emotion detection’ (12.41%). ‘Emotion prediction’
and ‘emotion cause detection’ are the least used
terms.

However, during our analysis, we note that
these terms are not used in isolation. Figure 3
highlights the most prevalent pairs of terms used
across different papers to refer to these tasks.
The most frequent pair, ‘classification-recognition,’
is used interchangeably across the papers, fol-
lowed by ‘classification-analysis’ and ‘classification-
detection.’ This variation indicates a lack of stan-
dardized terminology for EA tasks.

Given the lack of uniformity, providing definitions
for each term is challenging. We have chosen EA
as the broad category that demarcates any emotion-
related tasks in NLP. It should be distinguished
from sentiment analysis or opinion mining. There is
consensus in the literature that sentiment analysis
refers to identifying whether someone expresses a
positive or negative attitude (Yadollahi et al., 2017).
Sentiments are differentiated from emotions by the
duration in which they are experienced (Munezero
et al., 2014). In contrast, EA is primarily interested
in specific emotions such as anger or joy. In the
literature reviewed, the task of emotion recogni-
tion/detection/classification/prediction refers to the
goal of identifying a specific emotion expressed by
the author of a particular utterance or set of utter-
ances (Mohammad et al., 2018; Chatterjee et al.,
2019). In some cases, it refers to the task of identi-
fying the cause of emotions in a broader context,

for example, how speakers affect each other’s emo-
tional state in a conversation (Liu et al., 2022; Zhan
et al., 2022). We discuss in Section 4.2 the issues
that arise from the lack of consistent terminology.

3.2. Emotion models and frameworks
Several conceptual models from psychologists and
neuroscientists have emerged to categorize and in-
terpret emotions. Notably, three prominent models
stand out: the discrete or categorical model, the
dimensional model, and the componential model.
They are described in the following:

• Discrete or categorial model: Emotions are
categorized into distinct classes and cate-
gories in this model. Each emotion is treated
as independent and separate from others.
This model includes well-known frameworks
such as Ekman’s model (Ekman and Friesen,
1981) consisting of six basic emotions (anger,
fear, sadness, joy, disgust and sur-
prise) and Plutchik’s model (Plutchik, 1982),
which encompasses eight primary emotions
(anger, anticipation, disgust, fear,
joy, sadness, surprise, and trust).

• Dimensional model: Unlike the previous
model, dimensional models view emotions as
interconnected rather than independent enti-
ties. This model acknowledges that emotions
can vary in intensity and can be represented
along different dimensions. For instance, emo-
tion names are located in vector spaces of
affect that consider valence, arousal, and dom-
inance (VAD) (Russell and Mehrabian, 1977).

• Componential model: The componen-
tial model comprised the appraisal theory
(Scherer, 1999; Lazarus, 1991), which em-
phasizes that emotions are influenced by a
person’s subjective evaluation or appraisal of
a situation or experience. Factors such as
responsibility, certainty, pleasant-
ness, control, and attention play a sig-
nificant role in influencing an individual’s emo-
tional responses to a particular situation or
experience (Smith and Ellsworth, 1985).

Our analysis reveals a clear prevalence of dis-
crete conceptual models in the literature, indicating
a strong interest in classifying emotions into distinct
categories and treating each emotion as an inde-
pendent entity – in line with standard supervised
learning objectives. However, a few papers use di-
mensional models, and an even smaller proportion
explore componential models.

Research papers in discrete or categorical emo-
tion models commonly rely upon different theories.



Figure 3: Most common nomenclature pairs for EA tasks used in the literature.

Figure 4: Most common emotion categories used
in the EA literature.

The most influential theory is the Ekman model (Ek-
man and Friesen, 1981), followed by the Plutchik
model (Plutchik, 1982). A few other studies consid-
ered the Turne list (Turner, 2000) and the Ortony,
Clore, and Collins model (Ortony et al., 1988). With
dimensional models, some studies used a mapping
approach to associate emotion categories with di-
mensions. For instance, Bagher Zadeh et al. (2018)
conducted data annotating mapping the Ekman
emotions to a Likert scale in which values are as-
signed from 0 to 3 to represent the presence of emo-
tions. Park et al. (2021) introduced a framework
that leverages VAD scores obtained from an emo-
tion lexicon to acquire VAD scores from sentences
labeled with categorical emotions. More recently,
componential models have gained attention and
been introduced in the field. Hofmann et al. (2020)
established an annotation task where event de-

scriptions are linked to seven appraisal dimensions
(Smith and Ellsworth, 1985). Stranisci et al. (2022)
relied on Roseman’s model of appraisal (Roseman,
1991) to annotate a corpus of social media posts.
More recently, (Troiano et al., 2023) built a corpus
where people described emotion-triggering events
and their appraisals. Subsequently, readers were
asked to reconstruct emotions and appraisals from
the text. They provide a thorough appraisal theory
overview for text-based emotion analysis suitability
assessment. Additionally, it shows that appraisals
offer an alternative computational approach to EA
and enhance emotion categorization in text using
joint models.

Figure 4 provides an overview of the most fre-
quent emotion categories in the literature. Due to
the widespread use of Ekman’s model (Ekman and
Friesen, 1981), the prevalent emotions observed
are anger, fear, sadness, joy, disgust, and
surprise. Additionally, Plutchik’s model, which is
the second most used, highlights the frequency of
trust and anticipation. However, a range of
other emotions receives comparatively less atten-
tion. These include excitement, anxiety, op-
timism, pessimism, guilt, shame, and love.

3.3. Data

In this section, we provide an overview of the
datasets that have been extensively used in various
EA studies and more recently developed datasets.
In our analysis, we identified over 50 papers that
created a dataset. Table 1 gives a summary list
of some of these datasets, showcasing their key
characteristics: annotation scheme, language, mul-
timodality, source, and size.

Most of the datasets found in the EA studies
are focused on emotion recognition in conversa-
tion, including IdeDialog (Ide and Kawahara, 2022),
M3ED (Zhao et al., 2022), MuSE (Jaiswal et al.,



Dataset Annotation Lang. Source Size
IdeDialog (Ide and Kawahara,
2022)

P JA Twitter dialogues 13,806

M3ED (Zhao et al., 2022) E + neutral CN TV dialogues 24,449
MuSE (Jaiswal et al., 2020) sad, anger, contentment,

amusement, neutral
EN Recordings 28 speak-

ers
MELD (Zahiri and Choi, 2017; Po-
ria et al., 2019)

E + neutral EN Movie dialogues 13,000

DailyDialog (Li et al., 2017) E + other EN Movie dialogues 13,118
EmoryNLP (Zahiri and Choi,
2017)

E + neutral EN TV show dialogues 12,606

IEMOCAP (Busso et al., 2008) happiness, anger, sadness,
frustration, neutral

EN Dyadic interactions 10,039

StudEmo (Ngo et al., 2022) 28 emotion categories EN Customer reviews 5,182
RED v2 (Ciobotaru et al., 2022) P - disgust, anticipation RO Tweets 5,449
APPReddit (Stranisci et al., 2022) appraisals (Roseman, 1991) EN Reddit 1,091
Universal Joy (Lamprinidis et al.,
2021)

anger, anticipation, fear, joy,
sadness

18 Facebook posts 530k

WRIME (Kajiwara et al., 2021) P, emotion intensity JA SNS posts 17,000
EmoEvent (Plaza del Arco et al.,
2020)

E + neutral EN-ES Tweets 8,409

GoodNewsEveryone (Bostan
et al., 2020)

15 emotion categories EN News Headlines 5,000

PO-EMO (Haider et al., 2020) joy, sadness, uneasiness, vi-
tality, suspense, sublime, hu-
mor, annoyance, nostalgia

EN-DE Poems 64 (EN),
18 (DE)

enISEAR (Hofmann et al., 2020) appraisals (Smith and
Ellsworth, 1985)

EN Self-reports 1,001

Table 1: EA datasets. [E] Ekman, [P] Plutchik. The first part of the table contains multimodal datasets
used for emotion recognition in conversation. The second part contains datasets used in EA and recent
ones. Lang.: Language

2020), MELD (Zahiri and Choi, 2017; Poria et al.,
2019), DailyDialog (Li et al., 2017), EmoryNLP (Za-
hiri and Choi, 2017), and IEMOCAP (Busso et al.,
2008). The annotation scheme used in most of
these datasets follows the discrete or categorical
model, specifically the Ekman model theory. How-
ever, IdeDialog uses the Plutchik model, which en-
compasses different emotion categories. Addition-
ally, IEMOCAP and MuSE use their own unique
annotation scheme. In terms of language, most of
these datasets feature primarily English dialogues,
except for M3ED, which incorporates Chinese di-
alogues, and IdeDialog, which includes Japanese
dialogues. These datasets are multimodal, includ-
ing text, audio, and visual information. Moreover,
the dialogues in these datasets are sourced from
diverse domains, including movies, dyadic interac-
tions, TV shows, Twitter, and recordings.

In the second part of the table, we summarize
some of the recent EA datasets created over the

past few years. These datasets include StudEmo
(Ngo et al., 2022), RED v2 (Ciobotaru et al., 2022),
APPReddit (Stranisci et al., 2022), Universal Joy
(Lamprinidis et al., 2021), WRIME (Kajiwara et al.,
2021), EmoEvent (Plaza del Arco et al., 2020),
GoodNewsEveryone (Bostan et al., 2020), PO-
EMO (Haider et al., 2020), and enISEAR (Hofmann
et al., 2020). The annotation schemes of these
datasets offer a wider range of emotion frame-
works and emotions compared to the previously
described for emotion recognition in conversation.
While most adhere to the discrete emotion model,
enISEAR and APPReddit incorporate the compo-
nential model with appraisals. Although English
is the most predominant language, multilingual
datasets like EmoEvent and Universal Joy encom-
pass multiple languages. RED includes Romanian,
and WRIME includes Japanese, further diversify-
ing the linguistic coverage of emotion recognition
studies. None of these datasets present a mul-



timodal aspect. The instances are sourced from
diverse domains, including social media (Twitter,
Facebook), news headlines, self-reports, poems,
customer reviews, and community networks (Red-
dit). Among these domains, social media emerges
as the most predominant data source.

Despite the highly subjective nature of emotions,
only a few works (Martin et al., 2022a; Zhan et al.,
2022; Ghosh et al., 2022) mentioned the gathering
of annotator demographic information, yet most of
them do not use this information for their methods.

3.4. Applications
Studying patterns of human emotions and under-
standing people’s feelings are essential in many
real-life applications (Picard, 2000). In our analy-
sis, among the most used applications, we found
that emotion recognition in conversation has gained
significant popularity in the field by analyzing the
emotions expressed during interactions (Hazarika
et al., 2018; Zhong et al., 2019; Ghosal et al., 2020;
Hu et al., 2021; Lee and Lee, 2022). Another note-
worthy application within the realm of EA is its ap-
plication in the analysis of narrative texts (Kim and
Klinger, 2018b; Liu et al., 2019; Haider et al., 2020;
Zad and Finlayson, 2020; Cortal et al., 2023). Ad-
ditionally, EA has found a valuable niche in the
healthcare sector, particularly in addressing mental
health concerns (Khanpour and Caragea, 2018).
With the advent of social media, detecting and mon-
itoring emotional states associated with mental well-
being has become possible. This capability has
proven invaluable in identifying individuals at risk
of self-harm, anxiety, or stress, as detailed by Tur-
can et al. (2021). EA also proves beneficial during
critical events like the COVID-19 pandemic (Ng
et al., 2020; Sosea et al., 2022; Sampath et al.,
2022). Beyond these applications, EA extends its
impact to various other domains including email
customer care (Gupta et al., 2010), span prediction
(Alhuzali and Ananiadou, 2021), fake news (Mel-
leng et al., 2019), moral content detection (Asprino
et al., 2022), sarcasm detection (Chauhan et al.,
2020a,b), time series analysis of emotional loading
in central bank statements (Buechel et al., 2019),
and financial forecasting (Seroyizhko et al., 2022).

4. Shortcomings of EA in NLP

In this section, we outline the main areas where
there is room for improvement in EA research.

4.1. Lack of Diversity in Available
Datasets

We find significant overlap between datasets: most
are in English, sourced from movies or TV shows,

and annotated using Ekman’s emotions categori-
cally. The lack of language diversity in NLP has
been discussed at length (Martin et al., 2022b;
Sonu et al., 2022), and it is not specific to EA, but
EA lacks diversity in other aspects:

Diversity in emotion labels. Section 3.3 shows
that most datasets are labeled according to Ek-
man’s basic emotions, or Plutchik to a lesser extent.
While these emotions are widely used in the ana-
lyzed studies, they do not generalize to all tasks
or domains (De Bruyne, 2023). Human emotions
are nuanced because this nuance is required for
understanding the world. Yet current datasets pre-
dominantly focus on a few coarse-grained emotions.
For example, feeling guilty or lonely both fall un-
der sadness but convey very different meanings.
Furthermore, the most commonly annotated emo-
tions are negative, particularly anger, fear, and
sadness. This emphasis on negative emotions
has far-reaching consequences for EA and down-
stream applications. Detecting more fine-grained
negative emotions might be helpful in a mental dis-
order detection setting, but positive emotions may
be more relevant for tutoring systems as they aid
learning. A notable example demonstrating the im-
portance of aligning emotion categories with the
specific task at hand is the work of (Haider et al.,
2020), where aesthetic emotions play a pivotal role
in analyzing emotions within poems. This approach
encompasses emotions such as joy, sadness,
uneasiness, vitality, suspense, sublime,
humor, annoyance, and nostalgia.. It is also
noteworthy that most of the papers in the survey
did not specify any concrete application of EA –
lacking guidance in selecting the labels that will aid
in a given task.

Diversity in annotation schemes. The prefer-
ence for Ekman’s or Plutchik’s models significantly
limits the adaptability of EA techniques to different
contexts and tasks (Plaza-del Arco et al., 2022).
Each NLP task may require a nuanced understand-
ing of emotions that these models might not fully
capture. This limitation impedes the development
of more versatile and context-specific emotion anal-
ysis approaches. Furthermore, this preference
for specific models neglects the rich landscape
of existing psychological theories related to emo-
tions. Emotion is a complex and multifaceted phe-
nomenon, and various psychological theories offer
different insights into how emotions are generated,
expressed, and perceived (Hofmann et al., 2020).
Overlooking these diverse theories means miss-
ing out on knowledge, valuable perspectives, and
dimensions of emotion. More recent studies fol-
low alternative theories of cognitive appraisal of
events (see Section 3.2) and show their potential



for emotion classification when encoded in categori-
cal models. Öhman 2020 also point out that current
annotation schemes are based on psychological
theories not primarily focused on text.

4.2. Inconsistency in Terminology
Section 3.1 shows the inconsistent terminology
used in EA. This lack of specificity can obscure
the related but distinct subtasks. Currently, no dis-
tinction is made between ‘emotion classification’,
for example, and ‘emotion prediction’. We generally
understand classification as a subtask of prediction,
so these terms might be treated as synonymous.
We argue that EA should clarify its jargon. Given
the growing interest in detecting the triggers for
emotion in NLP, we suggest using the term pre-
diction to demarcate tasks that are interested in
emotions before they occur, such as forecasting a
customer’s frustration during a support chat based
on contextual cues. One could also make the case
that emotion classification should refer to classify-
ing a set of emotions, whereas emotion detection or
recognition are searching for a specific emotion for
a specific reason. For example, using NLP for sui-
cide prevention might involve detecting sadness,
desperation, or anger. However, it might seem
odd to say it would involve classifying emotions.
Mapping EA in NLP using consistent nomencla-
ture will enable NLP practitioners to focus on fine-
grained specific tasks since there will be a clear
goal. It will also highlight gaps in EA for which new
tasks must emerge.

4.3. Lack of Interdisciplinarity
Two issues arise out of the general lack of interdis-
ciplinary engagement in EA: The first issue was
already raised by Kusal et al. (2022a), who con-
cluded that it would be helpful to gain a deeper
understanding of emotions for the classification
process. As we showed in Section 3.2, currently,
EA in NLP relies solely on emotion models and
frameworks borrowed from psychology. In particu-
lar, NLP overwhelmingly relies on Ekman’s theory
from the 1970s. This theory identifies emotions
with bodily signatures, while Barrett (2017) has em-
pirically problematized it by stating that emotions
do not have such signatures and emphasizes the
importance of considering the context for interpret-
ing emotions. Additionally, Ekman’s views have
been conceptually criticized by philosophers who
argue that emotions possess intentionality, being
directed towards something, a characteristic not
adequately addressed in Ekman’s theory.6

6For an introductory overview, see Brady (2018). For
a more in-depth overview see Scarantino and de Sousa
(2021).

The second issue concerns potential applications
across fields. Most papers we reviewed here do
not mention the potential applicability of EA to the
humanities and social sciences, even though that
is a fruitful area of development (e.g., digital hu-
manities). Collaboration between these disciplines
can lead to innovative research, the development of
specialized tools, and the integration of emotional
insights into a broader range of academic studies.
This interdisciplinary synergy would be mutually
beneficial, enriching the understanding of human
emotions and their role in various domains.

4.4. Demographics and Cultural
Implications

Demographic factors such as age, gender, cultural
background, and socioeconomic status can signifi-
cantly shape individual differences while express-
ing and experiencing emotions. Bender and Fried-
man (2018) call for careful data curation and con-
scientious reporting of the processes and actors
involved in corpus creation. More specifically, they
call for reporting who produced and who annotated
the data. We note that most papers we reviewed do
not include a data statement or report demograph-
ics for either the data creators or the annotators.
Additionally, when demographic data is collected,
it is more commonly associated with annotators
rather than data creators, as observed in prior stud-
ies ((Troiano et al., 2019; Haider et al., 2020; Ka-
jiwara et al., 2021). However, it is noteworthy that
in most cases, this demographic information is not
integrated into the model inputs. Given the sub-
jective nature of emotions and the enormous role
annotators and sources can play, this observation
highlights a concerning gap in the field. It also
emphasizes the need to consider the influence of
annotator demographics for a more comprehensive
and nuanced approach to EA. Furthermore, recent
work (Basile et al., 2021; Plank, 2022; Davani et al.,
2022) has suggested leveraging human label varia-
tion when annotating and creating data. Subjective
tasks like EA would benefit from this approach as
it allows for developing more inclusive and diverse
systems considering individual perspectives and
using annotation to explore the range of possible
emotions in a task (the descriptive paradigm of
Rottger et al., 2022).

5. Discussion

We can now answer the four questions from the
beginning of our study:

1. How are EA tasks defined in NLP?
The commonly used terms to refer
to EA tasks include emotion detec-
tion/classification/recognition/prediction



being emotion recognition the most used.
These terms are often used interchangeably
in different research papers. Consequently,
this interchangeable usage lacks specificity
and can potentially obscure the distinct, yet
interconnected, subtasks involved.

2. What are the most prominent emotion
frameworks and which emotions are mod-
eled? The majority of studies primarily rely
on Ekman’s basic emotions, with Plutchik’s
model being used to a lesser extent. Conse-
quently, other psychological theories are ig-
nored to some degree. This limits the useful-
ness of EA models in downstream applications.
Recent studies based on cognitive appraisals
show future directions to encode categorical
models. Future work should endeavor to diver-
sify the emotions and emotions frameworks
represented.

3. Is the subjectivity of emotions considered
in terms of demographics and cultural fac-
tors? No consideration is given to the subjec-
tivity of emotions in relation to demographics
and cultural factors. The subjective nature of
emotions in EA restricts the diversity and inclu-
sivity of NLP methods. Therefore, it is crucial
for future endeavors in dataset creation and
NLP system development to take these factors
into account.

4. What are the primary NLP applications for
EA? Among the papers reviewed, the majority
of them focus on emotion recognition in conver-
sation which involves the analysis of emotions
expressed during interactions and generating
empathetic responses7. Additionally, there are
applications in areas such as public health, crit-
ical event analysis, email customer care, and
financial forecasting.

6. Roadmap for Future Directions

Demographics for Diversity and Inclusivity.
Collecting data on the demographics of annotators
or data creators, such as age, gender, ethnicity, and
cultural background, provides insights into how indi-
vidual perspectives shape emotional experiences.
Integrating demographic information into the NLP
model inputs could lead to more context-aware and
tailored EA. Research has shown that our percep-
tion of emotions is strongly gendered, racialized,
and age-dependent, and datasets should capture
this diversity. Moreover, while demographics can
affect how emotions are perceived, individual differ-
ences also impact this (Orlikowski et al., 2023).

7For a thorough discussion on this issue, see Curry
and Cercas Curry (2022).

Avoiding the aggregation of labels and instead
focusing on individual demographics promotes a
more nuanced and inclusive approach to EA.8

Tailor Emotion Categories to your Task. When
choosing emotion models or categories, it is vital
to not solely depend on the widely repeated the-
ory in the literature. Instead, one should prioritize
considering the specific domain and application
scenario. In addition, to avoid fixed categorization
and in line with standard supervised learning objec-
tives, exploring models that can transfer knowledge
across different emotions is desirable. For instance,
recent zero or few-shot learning paradigms offer
promising alternatives that enable more flexible and
adaptable approaches in the field of EA (Plaza-del
Arco et al., 2022).

EA Nomenclature. EA is the broader area that
comprises EA tasks in NLP. ‘Emotion detection’,
‘emotion classification’, and ‘emotion recognition’
are often used interchangeably as synonyms. How-
ever, it can be beneficial to distinguish between
these terms based on the specific task at hand.
For example, using NLP for mental disorder detec-
tion might involve detecting specific emotions as
opposed to classifying the emotions involved. In
addition, other terms should not be used as syn-
onyms, given that they contribute to a lack of clarity
about the task’s aims (e.g., ‘prediction’ and ‘classi-
fication’).

Interdisciplinarity. EA is inherently interdisci-
plinary and borrows from social science and hu-
manities. EA should keep up to date with current
theories and models of emotion (e.g., the discrete
vs. dimensional vs. componential models). Further-
more, given that NLP’s domain is language, it would
stand to benefit from a more pluralistic understand-
ing of emotion engaging with philosophical theories
of emotion, such as so-called cognitive theories of
emotion and perceptual theories of emotion.9

7. Conclusion

EA has grown in NLP since the 2010s, with more
research on human emotions in numerous fields.
Over time, conferences and publications have pub-
lished various studies on the area, demonstrating
its growing popularity.

We reviewed over 150 ACL anthology papers
from 2014 to 2022 in this report. We discussed

8See the Perspectivist Data initiative https://pdai.
info/

9For a survey of theories of emotion, see Brady
(2018).

https://pdai.info/
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field nomenclature, emotion theories, demographic
and cultural subjectivity, and NLP applications.

We found demographic and cultural gaps, inade-
quate emotion category match to the downstream
goal, no standard systematic nomenclature in EA,
and no interdisciplinary research. For each gap, we
proposed future directions to develop meaningful
linkages, facilitate targeted study, and enable NLP
emotion modeling for nuance.

Limitations

Our survey primarily focuses on papers included in
the ACL anthology. However, we acknowledge the
existence of other relevant EA papers in the NLP
field that may have been published in journals or
other conferences. Furthermore, we are aware that
there are papers that may employ varying keywords
or terminology when describing their work related
to EA.

Finally, while we have conducted a thorough anal-
ysis of specific aspects related to EA, there are
other facets that we have not covered in this re-
view.
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