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Abstract Indeterminism, understood as a notion that an event may be continued in

a few alternative ways, invokes the question what a region of chanciness looks like.

We concern ourselves with its topological and spatiotemporal aspects, abstracting

from the nature or mechanism of chancy processes. We first argue that the question

arises in Montague-Lewis-Earman conceptualization of indeterminism as well as in

the branching tradition of Prior, Thomason and Belnap. As the resources of the

former school are not rich enough to study topological issues, we investigate the

question in the framework of branching space-times of Belnap (Synthese

92:385–434, 1992). We introduce a topology on a branching model as well as a

topology on a history in a branching model. We define light-cones and assume four

conditions that guarantee the light-cones so defined behave like light-cones of

physical space-times. From among various topological separation properties that are

relevant to our question, we investigate the Hausdorff property. We prove that each

history in a branching model satisfies the Hausdorff property. As for the satisfaction

of the Hausdorff property in the entire branching model, we prove that it is related to

the phenomenon of passive indeterminism, which we describe in detail.
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1 Problem

Uncontroversially, our world has spatial and temporal aspects, or (as the physics has

it) spatiotemporal aspects. Accordingly, an adequate analysis of (in)determinism of

our world must explain how (in)determinism plays out in space and time (or in a

spacetime). Although the intuitive core of the notion of (in)determinism, i.e., ‘‘the

past does (not) determine uniquely the future’’ is hardly contentious, there are a few

proposals of how to rigorously explain this intuition. Prominent are two approaches

nowadays, that develop, respectively, a Laplacean, physics-inspired, concept and a

notion based on modal intuitions voiced perhaps first in Aristotle’s De Interpre-

tatione. Despite deep philosophical differences (which we will review shortly), the

two approaches face a similar challenge: to explain what a region of indeterminism

looks like. Here is how the question arises. Without making any claim to historical

accuracy, it is good to think of both schools as introducing a concept of a global

course of events, calling it a possible world, possible history, or possible scenario.

To analyze (in)determinism, they next postulate some global directionality, which

needs to be neither temporal, nor linear. As a result, the Laplacean school has a

concept of initial segments of possible worlds, whereas the Aristotelian invokes a

distinction between an event’s past, its future of possibilities, and its wings, that is,

the set of events space-like related to it. To address the question of (in)determinism,

the Laplacean then looks for isomorphic initial segments of a pair of possible

worlds, the later segments of which are not isomorphic. The Aristotelian school asks

if there is some event whose future of possibilities contains more than one

alternative possibility. Accordingly, both the schools legitimize a notion of passing

from the region of determinateness (isomorphic initial segments, or an event’s past

including perhaps its wings) to the region of indeterminacy (one of non-isomorphic

later segments, or one of alternative possible futures of an event). We may thus

consider a path, say a photon’s trajectory, passing from the region of determinate-

ness to the region of indeterminacy. Since a spacetime is typically assumed to be

continuous, the following question arises: What does the path look like at the border

of determinateness and indeterminacy? For instance, is there a last element in the

the determinateness region, or a first element in the indeterminacy region?

The proper tools to handle questions like this belong to topology, and in

particular, to the theory of the so-called separation properties. Our paper focuses

almost entirely on one of these properties, called the Hausdorff property, to be

explained in Sect. 3.1. This property comes to the fore in debates over topological

aspects of indeterminism: Supposing that indeterminism plays out in spacetime,

philosophers and physicists typically ask if the Hausdorff property is satisfied.1 Our

focus on the Hausdorff property has a practical dimension as well: An investigation

of other separation properties would extend the size of this essay beyond any

tolerable limit. Other topological features of indeterminism nevertheless require

study as well. In fact, we hope this essay will serve as a call to further investigate the

1 Recently the philosopher Earman (2008) discussed the Hausdorff property in relation to various ways

of conceptualizing indeterminism. On the role of Hausdorff property in physics we have also been taught

by the physicist A. Staruszkiewicz, whom we gratefully acknowledge.
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issue of what the region of passage from determinateness to indeterminacy looks

like. The phrase ‘‘looks like’’ is to indicate that we are not concerned with the

physics of indeterministic processes, that is, with the question of how indeterminism

occurs. We are concerned solely with a combination of spacetime and modality, and

the topological issues this combination raises.

To handle the topological questions, we need, however, a rigorous theory

combining indeterminism and spacetime. With the exception of Montague’s (1962)

model-theoretic analysis of point mass mechanics and Newtonian gravitation, there

is not enough mathematical rigor in the current developments of Laplacean

(in)determinism to permit a fruitful study of topological issues. The required rigor is

possessed by Belnap’s (1992) axiomatic theory of branching space-times (BST),

which combines (in)determinism with (rudimentary) relativistic spacetimes. More-

over, the BST axioms are frugal, and as far as topological questions are concerned,

BST and the Laplacean approach have some affinity (as we show in Sect. 2). Thus,

although we will carry out our investigations in the BST framework, our findings

have bearing for the Laplacean school as well.

As we said, we will investigate one separation property: the Hausdorff property.

In doing this, we will pursue two quite separate goals. Chiefly we address the

following question: Under what conditions does a BST model of indeterminism

(that is, a model of BST comprising many branching histories) satisfy the Hausdorff

property? Our secondary aim is to address the Earman (2008) argument that ‘‘literal

branching of a relativistic spacetime’’ (p. 193) leads to a failure of the Hausdorff

property.2 The failure of the Hausdorff property has various negative consequences

for physics, which Earman lists. So, in order to avoid these consequences, each

individual spacetime in BST needs to satisfy the Hausdorff property. We thus

investigate whether or not this is so. Intuitively speaking, it is unbelievable that

adding indeterminism should destroy topological properties of a single spacetime

(or history in BST parlance). In our earlier publication (Placek and Belnap 2012) we

stated some theorems (mostly without proof) that supported the unbelievability

intuition. Here we lay down our reasoning in full detail, showing that a single

history satisfies the Hausdorff property, in spite of our BST-style explanation of

indeterminism in terms of branching.

The essay is organized as follows. Section 2 contrasts the two schools of thinking

about (in)determinism, Laplacean and Aristotelian. Section 3 introduces topology

for BST and shows that each BST history satisfies the Hausdorff property. An

important part of this task is the introduction of light-cones into the abstract

framework of BST. Then Sect. 4 proves that each single BST history (aka

spacetime) satisfies the Hausdorff property. Section 5 presents theorems exhibiting

necessary and sufficient conditions for a BST branching-histories model to satisfy

2 The argument does not specify with respect to which topology the Hausdorff property fails; in

particular, it does not relate to the so-called Bartha topology, put forward by Belnap (1992) as a natural

topology for BST. Since one may always produce a Hausdorff topology on a set (e.g., discrete topology)

we read the argument as saying that on every natural topology, a branching relativistic spacetime is non-

Hausdorff. We counter it by showing that such a spacetime is Hausdorff with respect to the natural

topology of BST, the Bartha topology.
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the Hausdorff property. And Sect. 6 lays out arguments that the topologies discussed

in this essay are natural topologies for BST. The essay ends with Conclusions.

2 Two Schools of (in)Determinism

Innocent of the concept of computers or Turing machines, Laplace (1820) had

recourse to a powerful intelligence to explicate a concept of determinism, the

inspiration for which came from Newtonian mechanics. The intelligence is

supposed to have two kinds of data, first about an instantaneous state of a system

and second about a mathematical form of all forces acting in the system. These data

enable the intelligence to have the future as well as the past of the system ‘‘present

before its eyes.’’ One problem with this characterization is that it is stated in

epistemic terms. A natural move of replacing the metaphorical ‘‘present before its

eyes’’ by ‘‘to predict’’ or ‘‘to compute’’ does not change this predicament.

‘‘De-epistemologizing’’ of Laplacean indeterminism was achieved by Montague

(1962), who defined a few versions of Laplacean indeterminism in model-theoretic

terms, and applied these definitions to mass point particle mechanics and Newtonian

gravitation. Montague’s momentous decision was to take (in)determinism to be

ascribable to theories, a move that many philosophers have followed. What the

successors rarely appreciate, however, is that a theory was understood by Montague

in the logical sense, that is, as fully characterized by a (formal) language and a set of

axioms. Thus, to apply Montague’s machinery, one needs first to formulate a given

physical theory in some formal language, and then to select an adequate set of

axioms, that is, a set that would deliver truths and only truths of the physical theory

in question. A verdict of whether a theory is deterministic is then based on the

behavior of models (more precisely, partial models) of the theory. Roughly, a theory

is deterministic iff whenever the initial segments of two of its partial models agree,

the later segments of these models agree as well. If we identify a theory with the

class of its models, we may derivatively say that such a class of models is

deterministic or not. We may further define a model to be deterministic iff it belongs

to a deterministic class of models. But it does not make sense on this approach to

primarily ascribe either determinism or indeterminism to a single model: In a single

model there is no structure capable of representing (in)determinism. The need to

present a living physical theory as a formal language with a set of axioms

(a formidable task indeed) is likely responsible for there being no results (as far as

we know) achieved in Montague’s framework (apart from his own).

Philosophers turned instead to Lewis’s (1983) account, which takes inspiration

from Montague’s analysis,3 but is stated in terms of divergent possible worlds rather

than partial models of a theory, the logical notion of a theory being replaced by a

concept of laws of nature. He calls two worlds ‘‘divergent’’ iff they are not

duplicates but an initial segment of one world and an initial segment of the other are

duplicates (p. 359). Still, on Lewis’s analysis, laws of nature bear a close affinity to

a theory, since they are supposed to belong to all the true deductive systems with a

3 Lewis gives full credit to Montague’s work in this paper.
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best combination of simplicity and strength. (Hence, like a theory, they are

linguistic objects.) Then Lewis’s explication of determinism goes as follows:

First, a system L of laws of nature is Deterministic iff no two divergent worlds

both conform perfectly to the laws of that system. Second, a world is

Deterministic iff its laws comprise a Deterministic system. Third, Determin-

ism is the thesis that our world is Deterministic. (Lewis, 1983, p. 360)

Finally we quote an even more succinct formulation, due to Earman (1986, p. 13). In

contrast to Lewis’s formulation, it requires that two worlds agree at a time rather

than on initial segments.

The world w 2 W is Laplacean deterministic just in case for any w0 2 W , if w

and w0 agree at any time, then they agree for all times.

We now want to contrast Laplacean indeterminism with a modal concept of

indeterminism, the essence of which is alternative possible futures. The milestones

in the development of the modal concept of determinism is Kripke’s letter to Prior

(dated September 3, 1958 and reported by Øhrstrøm and Hasle (1995, p. 173)), and

the following book and papers: Prior (1967), Thomason (1970), and Belnap (1992).

Belnap (1992) characterizes this concept as follows:

Let Our World be the set of point events that are ‘‘in suitable external

relations’’ to us. Accommodate indeterminism by including those point events

that either are now future possibilities or were future possibilities. A point

event, e, is indeterministic if Pe [i.e., the set of possibilities open at e] has

more than one member. Otherwise, it is deterministic. Note that on this

account it makes perfectly good sense to locate indeterminism not metaphor-

ically in a theory, but literally in our world. It makes sense to say that Our

World was indeterministic in Boston yesterday, but might not be so in Austin

tomorrow.4

With this little collection of quotes, we can see the differences between the two

schools, which we organize as below:

External versus internal. The Laplacean school describes (in)determinism from

an external standpoint, in an ‘‘eternal’’ language in which there are no indexicals,

and in particular no tenses. Accordingly, this language does not allow one to draw a

distinction between the possible and the actual, and considers all possibilities to be

on a par. In contrast, the other project uses a language, in which an agent (a speaker)

says things from her particular perspective. The perspective has both spatial and

temporal location, but also a modal aspect, as it reflects what was/is/will be possible

or actual—from a given perspective.

Global versus local. The first approach ascribes (in)determinism to large

structures (like theories or worlds), whereas the other puts indeterminism on point

events, and derivatively, on sets of point events.

4 Pe is defined as the partition of the set HðeÞ of histories containing e that is induced by the relation :e on

HðeÞ, understood as ‘‘two histories are undivided at e’’: h �e h0 iff 9e�ðe� 2 h \ h0 ^ e\e�Þ. For more

details, see Sect. 3.
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Modally thin versus modally thick. Each single object used in the definition of

Laplacean indeterminism, be it Montague’s partial model, or Earman/Lewis

possible world, has in itself no structure to represent alternative possibilities. Each

such object is, we say, modally thin. One gets (in)determinism by considering a

class of such structures. In contrast, a model of the (axiomatic) BST theory (called

Our World) typically has many structures (called ‘histories’), to represent

alternative possible courses of events of Our World. A BST model is modally thick.

(In)determinism of theories or of a world? As a result of the above, the first

school ascribes (in)determinism to a theory or its class of models, or its laws of

nature. Only derivatively can it ascribe (in)determinism to a single possible world,

by considering it a member of a relevant set of possible worlds. In contrast, BST

begins with defining (in)determinism of point events, and then uses it to define

(in)determinism of a set of point events, or even to draw a distinction between

deterministic versus indeterministic models of BST.

Ensemble branching versus BST branching. Current Laplaceans explicate

(in)determinism in terms of what Earman (2008, p. 188) calls ‘‘ensemble

branching.’’ An ensemble is a collection of models of a given theory, where each

model is a spacetime (typically, a differential manifold plus some extra structure)

and these models are isomorphic at a time. (Isomorphism at issue is understood here

as the existence of appropriate diffeomorphism between the manifolds.) In contrast

to the Laplaceans’ focus on many models (=spacetimes) of a physical theory, a

generic model of the theory of BST contains more than one spacetime (aka possible

history). Spacetimes branch in BST, since they intersect, but, emphatically, there is

no branching within a single spacetime. A single branching spacetime is analyzed

for instance by Penrose (1979) or by McCabe (2005), but BST has nothing to say

about this concept. For more on ensemble branching versus BST, cf. Placek and

Belnap (2012).

The differences run deep.5 For our task of investigating what a region of

indeterminism looks like, however, there is an affinity between the two approaches.

After all, two divergent worlds of Lewis’s are isomorphic over some initial

segments of them, with their larger initial segments being non-isomorphic.

Similarly, two branching histories overlap in some initial region, and then branch

off. We might be able to say more were we given the details of an isomorphism on

initial segments of possible worlds. This matter, however, has not, as far as we

know, been investigated in the Laplacean school. The call for providing some

details about the mentioned isomorphism will be further reinforced by our results of

Sect. 6.3 that show how natural a construction of a branching model (though not

necessarily a BST model) out of a set of divergent worlds is.

The deep differences between the two ways of thinking about indeterminism are

responsible, we believe, for confusedly taking a BST spacetime (history) to be non-

Hausdorff. An attempt to clarify this confusion was made by Placek and Belnap

(2012); we repeat here the main points of their paper. BST branching is neither an

ensemble branching nor a branching within a single spacetime (aka individual

5 For more about the controversy over modal aspects of indeterminism, see Müller (2009) or Placek and

Belnap (2012).
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branching). BST branching relies on a modally thick notion of a theory’s model. In

such a model there are structures (histories or spacetimes) representing alternative

courses of events. Each history/spacetime is modally thin. It does not branch in

itself, that is, in BST we do not have individual branching. Placek and Belnap

(2012) conjectured that in a natural topology for BST, each history/spacetime is

Hausdorff (modulo some physically motivated assumptions); this claim we prove in

Sect. 4. This result answers an objection of non-Hausdorfness of BST spacetimes.6

A separate issue concerns topological properties of a collection of possible

worlds or histories or spacetimes. Note that such a collection is typically needed to

represent indeterminism. In BST a collection of the sort in question is a multi-

history model of the BST theory (with every two histories overlapping). The rigor of

BST permits addressing topological issues related to the whole BST model.

Regarding the Hausdorff property, Placek and Belnap (2012) claimed, and we prove

here, that a multi-history BST model is non-Hausdorff in its natural topology

(modulo some intuitive assumptions). We emphasize that the same topological

issues, including the satisfaction of the Hausdorff property, arise in the Laplacean

tradition. Is an ensemble of spacetimes, as a whole, Hausdorff? More generally,

what topological properties does such an ensemble have? To handle these questions

in the Laplacean tradition requires a clarification about details of constructing an

ensamble, in particular, details concerning isomorphism between segments of

spacetimes, as well as a choice of topology. But, if it turns out that ensembles of

spacetimes are non-Hausdorff, this result in itself will not speak against the

Laplacean (ensemble-style) representation of (in)determinism of spacetime theories.

In a similar vein, non-Hausdorffness of a whole multi-history BST model does not

speak against a branching-style representation of (in)determinism of spacetime

theories.

We thus suspect that there is a different worry lurking behind topological

objections to branching, namely, Is branching capable of representing indetermin-

ism of theories of physics? This problem requires a separate investigation that lies

definitely outside the scope of this study. We nevertheless give here a hint as to why

we are optimistic about application of branching to physics. As Müller (2009)

argues, although the current orthodoxy in philosophical approaches to determinism

is Laplacean, defining (in)determinism of a theory in terms of an ensemble of the

theory’s models, the assessment of a theory’s (in)determinism is not done in terms

of models (these are typically too hard to construct). A diagnosis concerning

(in)determinism is based on the behavior of solutions to a theory’s equations of

evolution. Does a theory admit a unique equation of evolution, given the initial

data? Or perhaps it permits non-unique solutions (for the same initial data) in the

sense that two solutions bifurcate, after being identical for some period of time?

Such non-unique solutions are naturally viewed as branching histories. Needless to

say, to turn this observation into an argument that branching is capable of

representing (in)determinism of theories, we need a workable branching-style

6 Earman (2008) does not necessarily lever this objection against BST. He says, ‘‘Since I have been

unable to get a fix on what Belnap branching involves, all I can say for the present is this: insofar as

Belnap branching eschews individual branching, then for present purposes I have no quarrel with it . . .’’
(p. 192), and, yes, we eschew individual branching.

On Topological Issues of Indeterminism 409

123



definition of (in)determinism of a theory. The task of constructing such a definition

we leave, however, for a future project.

We proceed now to investigate topological questions of indeterminism in the

framework of branching space-times.

3 Topology of BST

‘‘BST’’ stands for the theory of branching space-times as introduced in Belnap

(1992) and developed by several hands, as indicated in the References.

A model of BST is defined as a dense partial order OW ¼ hW ; �i without

maxima that satisfies two simple conditions, conditions that are more transparent if we

use the following definition: A history in OW is a maximal (upward) directed set; we use

h for histories. h1?eh2 iff e is a ‘‘choice point’’ for h1 and h2, that is, iff e is a maximum

of h1 \ h2. (1) Every lower bounded chain has an infimum, and every upper bounded

chain has a supremum in every history that contains it; and (2) (prior choice postulate)

where h1, h2 are histories in OW, let E be a chain in h1nh2. Then 9 eðe \ E and

h1?eh2Þ.7 Later we will indicate some illuminating conditions that can be added to

BST in order to make full contact with certain topological questions.

In addition to ‘‘history’’ and ‘‘choice point,’’ the following defined terms prove

invaluable in articulating the properties of BST.

Definition 1 (Histories) Hist is the set of all histories in OW. HðeÞ ¼ fh 2 Histje 2
hg is the set of histories containing e.

h �e h0 (read as ‘‘histories h and h0 are undivided at e’’) iff 9e0ðe\e0 ^ e0 2
h \ h0Þ. (Note that h �e h0 is provably an equivalence relation on HðeÞ.)

h ?e h0 (read as ‘‘h and h0 divide (or split) at e’’) iff e is a maximum in h \ h0.
Two events e1; e2 2 W are space-like related, e1 SLR e2, iff they are

incomparable and there is a history to which the two belong.

3.1 BST: The Diamond Topology

In this section we will introduce a topology for BST in order to investigate in the

next sections whether the Hausdorff property is satisfied in BST histories and in

BST models. Let us first recall the Hausdorff property:

Definition 2 Suppose that T is a topology on set X. Then T has the Hausdorff

property iff for any two distinct e; e0 2 X there are disjoint sets U;V 2 T such that

e 2 U and e0 2 V .

We introduce now, following Bartha, what we claim to be a thoroughly natural

topology for BST.8 (See Sect. 6 for arguments for the naturalness.)

7 In considering probabilities in BST, Weiner and Belnap (2006) recorded a need (discovered by Weiner)

for a further natural postulate. It plays no role, however, in our current investigation.
8 Cf. Belnap (2003a), note 26.
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Definition 3 (diamonds) Let OW ¼ hW ;6i be a BST model. We define

de1e2 :¼ fy 2 W je1\e2 ^ e1 6 y 6 e2g;

which we call ‘‘the diamond with vertices e1 and e2.’’

Further, if want to stress that vertices e1, e2 belong to a certain maximal chain t in

W (t 2 MCðWÞ), we will write de1e2
t ð¼ de1e2Þ, calling it ‘‘the diamond oriented by t

with vertices e1 and e2.’’

The ‘diamond’ terminology reflects the fact that the above condition, if applied to

R
2 ordered by the Minkowskian ordering, yields diamond-like shapes.9

Definition 4 (the diamond topology on W) Z is an open subset of W , Z 2 TðWÞ, iff

Z = W or for every e 2 Z and for every t 2 MCðWÞ containing e there is a diamond

de1e2
t � Z that is oriented by t with e strictly between the diamond’s vertices e1 and

e2.

Thus, Z 2 TðWÞ iff Z = W or

8e 2 Z 8t 2 MCðWÞðe 2 t! 9e1; e2 2 tðe1\e\e2 ^ de1e2

t � ZÞÞ:
The condition of the above definition can be used to define the topology TðhÞ on

history h 2 Hist as well:

Definition 5 (the diamond topology on a single history) Z 2 TðhÞ iff Z = h or

8e 2 Z 8t 2 MCðhÞðe 2 t! 9e1; e2 2 tðe1\e\e2 ^ de1e2

t � ZÞÞ;

where MC(h) denotes the set of maximal chains in h.

Despite apparent similarity, the two topologies are different, as evidenced by this

fact:10

Fact 6 If Z � h for some history h � W contains a choice point for h and some h0,
then Z 62 TðWÞ. However, Z may belong to TðhÞ.

Proof Let Z � h and c 2 h be a choice point for h and h0 and c 2 Z. There is thus

t 2 MCðWÞ such that c 2 t and 8eðe 2 t ^ c\e! e 62 hÞ. Accordingly, there are

no e1; e2 2 t such that e1 \ c \ e2 and de1e2
t � h. Hence for these t and c, there are

no e1; e2 2 t such that e1 \ c \ e2 and de1e2
t � Z, which shows that Z 62 TðWÞ. h

It follows that if W is a multi-history model, its histories are not open in the

topology TðWÞ. On the other hand, TðWÞ is ‘‘coherent’’ with the family of

topologies TðhÞ:11

9 The Minkowskian ordering 6M on R
nþ1 (n > 1) is defined as x 6M y iff x0 6 y0 and

P
16k6nðxk � ykÞ2 6 ðx0 � y0Þ2, where x ¼ ðx0; x1; . . .; xnÞ; y ¼ ðy0; y1; . . .; ynÞ, and the first coordinates

are temporal.
10 In fact, the topologies are different in a more significant manner than Fact 6 attests; namely, TðhÞ may

even be properly finer than the subspace of TðWÞ on h. In other words, some Z 2 TðhÞ may not only fail

to be in TðWÞ itself, but also fail to have any Z0 2 TðWÞ such that Z0 \ h = Z. We nonetheless omit a

proof of this fact since it is less relevant than Fact 6 to the purpose of this article.
11 See, e.g., Willard (1970, pp. 68f.), for coherent topologies.
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Theorem 7 A 2 TðWÞ iff 8h 2 Hist A \ h 2 TðhÞ.

Proof To the right: Note that if A \ h ¼£, then A \ h 2 TðhÞ. Pick thus an arbitrary

h 2 Hist such that A \ h 6¼£. Pick then an arbitrary e 2 A \ h and an arbitrary (i) t 2
MCðhÞ such that e 2 t. Since MCðhÞ � MCðWÞ and A 2 TðWÞ, there are (ii) e1; e2 2 t

such that (iii) de1e2
t � A. Then e2 2 h (by (i) and (ii)). Since histories are downward

closed and de1e2
t 6 e2; d

e1e2
t � h. Together with (iii) this implies de1e2

t � A \ h.

To the left: Choose an arbitrary e 2 A. We need to show that for an arbitrary

t 2 MCðWÞ such that e 2 t there is a diamond de1e2
t � A. By the definition of histories,

for every t 2 MCðWÞ there is some history h such that t � h, so t 2 MCðhÞ. Clearly,

e 2 A \ h and (by the premise) A \ h 2 TðhÞ. It follows (since t 2 MCðhÞ) that there

are e1; e2 2 t such that e1 \ e \ e2 and de1e2
t � A \ h, and hence de1e2

t � A. h

A significant consequence of this theorem will be discussed extensively in Sect.

6.3.

We need to check that indeed the families TðWÞ and TðhÞ of open sets, as

defined above, form topologies. This means, in the case of TðhÞ, that

£ 2 TðhÞ; h 2 TðhÞ, if U;V 2 TðhÞ then U \W 2 TðhÞ, and the union of every

family of sets from TðhÞ belongs to TðhÞ. It is straightforward to see that the first

two conditions are satisfied, whereas the facts below show that the remaining

conditions are satisfied as well.

Fact 8 For any history h, if U;V 2 TðhÞ, then U \ V 2 TðhÞ.

Proof Suppose U;V 2 TðhÞ. If U = h then U \ V ¼ V 2 TðhÞ; similarly if

V = h. So suppose U = h and V = h. We need to prove that

8e 2 U \ V 8 t 2 MCðhÞðe 2 t! 9e1; e2 2 tðe1\e\e2 ^ de1e2
t � U \ VÞÞ.

To this end pick an arbitrary t 2 MCðhÞ that passes through e. Since each of

U, V = h is open, there are diamonds da1a2
t � U and db1b2

t � V , with a1 \ e \ a2

and b1 \ e \ b2. Put e1 :¼ maxfa1; b1g 2 t and e2 :¼ minfa2; b2g 2 t. Clearly,

e1 \ e \ e2. Since de1e2
t � da1a2

t � U and de1e2
t � db1b2

t � V , de1e2
t � U \ V . h

Fact 9 For any history h, if Va 2 TðhÞ for every a 2 I,
S

a2I Va 2 TðhÞ.

Proof Suppose the antecedent. If Va = h for some a 2 I then
S

a2I Va ¼ h 2 TðhÞ.
So suppose Va = h for all a 2 I. We need to prove that

8e 2
[

a2I

Va 8 t 2 MCðhÞ e 2 t! 9e1; e2 2 t e1\e\e2 ^ de1e2

t �
[

a2I

Va

 ! !

:

Pick an arbitrary e 2
S

Va; then for some b 2 I, e 2 Vb. Since Vb = h is open,

for every t 2 MCðhÞ such that e 2 t there is a diamond, de1e2
t � Vb, with e1; e2 2 t

and e1 \ e \ e2. But then obviously de1e2
t �

S
Va. h

We thus proved that TðhÞ is a topology on h. Although the fact that TðWÞ is a

topology on W can be analogously shown by a minor tinkering in the proofs above,

it also follows from the fact that TðhÞ are all topologies, since Theorem 7 guarantees

that Facts 8 and 9 imply their TðWÞ versions:
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Fact 10 If U;V 2 TðWÞ, then U \ V 2 TðWÞ.

Proof For each h 2 Hist, if U \ h;V \ h 2 TðhÞ then ðU \ VÞ \ h 2 TðhÞ. h

Fact 11 If Va 2 TðWÞ for every a 2 I;
S

a2I Va 2 TðWÞ.

Proof For each h 2 Hist, if Va \ h 2 TðhÞ for all a 2 I then
S

a2I Va
� �

\ h ¼
S

a2IðVa \ hÞ 2 TðhÞ. h

In what follows, we need a set of particularly simple open subsets of TðhÞ (which

may not be open subsets of TðWÞ), to be thought of as borderless diamonds

(Definition 23 below). To this end, we first need to introduce BST light-cones.

3.2 Light-Cones in BST

To get a better grip on the diamond topology, we would like to single out some

particularly simple open subsets; ideally these subsets should form a base for the

diamond topology on a history. Given that topology, a natural candidate for these

subsets is borderless diamonds. A borderless diamond is a diamond from which the

surface of the future light-cone of its bottom vertex and the surface of the backward

light-cone of its top vertex have been removed. Accordingly, to define borderless

diamonds, we need to introduce light-cones to BST. This task leads to parallel

developments. On the one hand, we will define light-cones in BST and assume some

conditions to guarantee that they behave at least somewhat like light-cones of

spacetimes of physics. (With reference to Fig. 1, this is illustrated in items (i)–(v).)

On the other hand, these conditions are shown to play a topological role, entailing

ultimately that borderless diamonds indeed form a base for the topology TðhÞ.
As a warm-up, let us look at some particular segments of maximal chains asking

whether they are nonempty and lower bounded. Consider first t>e1 :¼ fx 2 tje1 6 xg,
where t 2 MCðhÞ; e1 2 h, and assume it is not empty. Then, since t>e1 is lower

bounded by e1, it has an infimum. Consider next t6e1 :¼ fx 2 tjx 6 e1g, where t 2

Fig. 1 Visualization of light-cones and their properties C1–C4
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MCðhÞ; e1 2 h and assume it is not empty. Since clearly t6e1 is upper bounded by e1, it

has a history-relative supremum suph ðt6e1Þ.

Definition 12 (light-cones) Let e1; e2 2 h for some history h � W . We say that e2

lies on the forward light-cone of e1 in history h, e2 2 flchðe1Þ, iff

9t 2 MCðhÞðe2 2 t ^ e2 ¼ infðt>e1ÞÞ.
And e1 lies on the backward light-cone of e2 in history h, e1 2 blchðe2Þ, iff

9t 2 MCðhÞðe1 2 t ^ e1 ¼ suphðt6e2ÞÞ.

Note that by this definition e lies both on the backward light-cone as well as on

the forward light-cone of itself. Some further properties of the light-cones are

expressed in the following Fact:

Fact 13 (about light-cones) (1) If e2 2 flchðe1Þ, then e1 6 e2; and (2) if

e1 2 blchðe2Þ, then e1 6 e2.

Proof (1) From the antecedent, 9t 2 MCðhÞ ðe2 ¼ inf ðt>e1ÞÞ. Also, e1 6 t>e1

follows. Since e1 is the chain’s lower bound, we obtain e1 6 inf ðt>e1Þ ¼ e2. The

argument for (2) is analogous. h

With our definitions of lying on a light-cone, we can accommodate one of two

orderings that are typically extracted from the structure of a relativistic spacetime.

They are called J and I orderings—cf. Wald (1984). To put it simply, y is J-above

x iff y is within and including the surface of the future light-cone of x. Hence, an

event on the surface of the future light-cone of x is above x. In contrast, y is I-above

x iff y is within but excluding the surface of the future light-cone of x. Accordingly,

an event on the surface of the future light-cone of x is not above x. Since by Fact 13

(1–2), (the surface of) the future light-cone of e is above e, and (the surface of) the

backward light-cone of e is below e, with our definitions of blc and flc, the BST

ordering is J, not I ordering.

It is still instructive to see why Minkowski space-time with I-ordering does not

yield a BST model. Consider Rn with Minkowskian I-ordering 6I
M resulting from its

irreflexive companion relation \M
I , the latter being defined as:12

x\I
M y iffx0\y0 ^ ðx0 � y0Þ2 [

Xn�1

i¼1

ðxi � yiÞ2: ð1Þ

Pick a vertical chain C ¼ fðz0; 0; 0; 0Þj0\z0g approaching O = (0, 0, 0, 0) from

above. O lower bounds C with respect to 6I
M , as does any x such that x0 6 0 and

Pn
i¼1 x2

i 6 x2
0. But O is not an infimum of C because it is not (weakly) above lower

bounds of C lying on the backward light-cone of O (i.e., such x’s that satisfy x0 \ 0

and
Pn

i¼1 x2
i ¼ x2

0). Furthermore, by applying density of Rn, it is easy to note that no

other element of Rn is an infimum of C. Thus, hRn;6I
Mi is not a BST model.

It turns out that for interesting topological results in branching spacetimes, one

must add to the postulates of BST a group of four properties, C1, C2, C3, and C4, to

be satisfied by each history of a BST model. With the help of (i)–(v) below, look at

12 That is, x6I
My iff x\I

M y _ x ¼ y.
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Fig. 1’s annotated picture of light-cones in R
2. One can hardly help ‘‘seeing’’ that

the natural properties C1–C4 of light-cones in Minkowski spacetimes (defined as

Conditions 13, 15, 16, and 17 below) can be expressed in the order-theoretic

vocabulary of BST.

(i) Visual verification of the propriety of Definition 12 of BST light-cones:

9t1 2 MCðR2Þðe5 ¼ infðt>e1

1 Þ iff e5 2 flchðe1ÞÞ
9t1 2 MCðR2Þðe4 ¼ sup

R
2ðt6e1

1 Þ iff e4 2 blchðe1ÞÞ

(ii) Reciprocity of flc and blc (implied by C1):

e2 2 flchðe1Þ iff e1 2 blchðe2Þ

(iii) Betweenness (C2):

if e2 2 flchðe1Þ ^ e1\e3\e2 then e3 2 flchðe1Þ \ blchðe2Þ

(iv) Interior of light-cones (C3):

9t0 2 MCðR2Þðe1 2 t0 ^ t0 \ ðflchðe1Þ [ blchðe1ÞÞ ¼£Þ

(v) Limits of light-cones (C4):

A limit of a chain lying on a light-cone lies on the light-cone as well (if it

exists).

Coming on top of Definition 12, the properties C1–C4 form a set that gives us the

minimum wherewithal for making a useful connection between the order-based

theory BST on the one hand, and standard Minkowski theory on the other. We shall

be introducing them one by one, and sometimes considering them separately in

order to tease out their several consequences; one should bear in mind, however,

that they form a package. We motivate them individually by indicating what ‘‘goes

wrong’’ in the absence of each.

Observe first the following odd fact:

Fact 14 In general, it is not true that e2 2 flchðe1Þ iff e1 2 blchðe2Þ.

Proof See Fig. 2. h

The gerrymandered history of Fig. 2 suggests that there is not enough space in it:

There are no events SLR to e1 that are immediately to the right of e1. The two

conditions below are to ensure that there is always enough space in every history:

Condition 15 (C1: enough space) Let h be a history. Then:

8e1; e2 2 hðif e2 2 flchðe1Þ; then 9t 2 MCðhÞðe1 2 t ^ suphðt6e2Þ ¼ e1ÞÞ;
8e1; e2 2 hðif e1 2 blchðe2Þ; then 9t 2 MCðhÞðe2 2 t ^ infðt>e1Þ ¼ e2ÞÞ:

To see that the infima and suprema occurring in this condition exist, note that

since e2 2 flchðe1Þ implies e1 6 e2; t
6e2 is nonempty; it is also upper bounded by e2,

so it has history-relative suprema. By a similar argument, t>e1 has an infimum.
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Lemma 16 (Reciprocity) Let a history h satisfy condition C1 of enough space.

Then e2 2 flchðe1Þ iff e1 2 blchðe2Þ.

Proof Assume the LHS of the equivalence. This implies (by the first part of C1)

that there is t 2 MCðhÞ such that e1 2 t ^ suphðt6e2Þ ¼ e1. By Definition 12,

e1 2 blchðe2Þ.
In the opposite direction, e1 2 blchðe2Þ implies, by the second part of C1, that

there is a t0 2 MCðhÞ such that e2 2 t0 and e2 ¼ infðt0>e1Þ. (Definition 12 then

assures us that e2 2 flchðe1Þ.) h

An acquaintance with Minkowski spacetime suggests another requirement on

light-cones, which we may call a betweenness property:

Condition 17 (C2: betweenness property) Let h be a history and x; e 2 h.

Then: If x 2 blchðeÞ, then 8yðx\y\e! y 2 blchðeÞÞ.
And, if e 2 flchðxÞ, then 8yðx\y\e! y 2 flchðxÞÞ.

Condition C2 entails that if x 2 blchðeÞ and y 2 blchðeÞ, then for every z between

x and y; z 2 blchðeÞ. Clearly, if z = x or z = y, or z = e, then z 2 blchðeÞ. If neither

of the above, since by Fact 13 we have y 6 e, hence x \ z \ e, so by

C2 : z 2 blchðeÞ. An analogous property holds for flch.

Condition C2 is independent of the BST axioms, which is shown by the BST

model exhibited in Fig. 3. Every maximal path such as t0 that passes through y has a

segment above y that is below e, which proves that y 62 blchðeÞ. On the other hand,

path t passing through x guarantees that x 2 blchðeÞ.
The BST axioms together with conditions C1 and C2 do not guarantee that there

are maximal chains passing through an event that go only through the ‘‘interior’’ of

the event’s light-cones. To illustrate, Fig. 2 shows a one-history BST model, which

is the R
2 plane, with the shaded area on the right removed. (The borders, however,

are in the history.) The ordering is Minkowskian. In this model every maximal chain

e1

e2

Fig. 2 This pathological one-history BST model is a part of the plane to the left of the barred area (the
heavy line is included in the history). e2 lies on the forward light-cone of e1, but e1 does not lie on the
backward light-cone of e2

416 T. Placek et al.

123



passing through e1 stays for some time on the surface of the future light-cone of e1.

Condition C3 below prohibits such models.

Condition 18 (C3: interior of light-cones) Let h 2 Hist. Then

8e 2 h9t 2 MCðhÞðe 2 t ^ t\e 6¼£ ^ t\e \ blchðeÞ ¼£ ^ t [ e \ flchðeÞ ¼£Þ:
Note that we need the condition ‘‘t\e 6¼£’’ above since our history might have

minimal elements; by the BST axiom of no terminal elements, however, we do not

need an analogous condition on t[e.

The final condition here considered concerns suprema (infima) of upper (lower)

bounded chains in future (backward) light-cones: Such suprema (infima) should

belong to future (backward) light-cones.

Condition 19 (C4: limits in light-cones) For every upper bounded chain C �
flchðeÞ; where h 2 Hist and e 2 W: suph ðCÞ 2 flchðeÞ, and for every lower bounded

chain C � blchðeÞ, where h 2 Hist and e 2 W: inf ðCÞ 2 blchðeÞ.

It is no surprise that the conditions C1–C4 still permit strange or pathological

BST models, such as a real half-plane above (and including) the diagonal x = y,

with Minkowskian ordering (this is a one-history model). We say that such histories

have brims. We do not in this paper attempt to give a condition prohibiting brims.

But we aim to give a definition of brims, and put a simple fact relating brims and

light-cones. We distinguish two varieties of a history’s brim, lower and upper. The

intuition underlying our definition is this: If an event e lies on the upper (lower)

brim, every maximal chain passing through e has to go along the same path above

(below) e—the brim—for some period of time.

Definition 20 (brims) e lies on an upper brim of history h, e 2 ubh, iff

9y ðe\y ^ 8 t 2 MCðhÞðe 2 t! 8 xðe 6 x 6 y! x 2 tÞÞÞ. And e lies on a lower

x

y

t´
t

e

Fig. 3 A pathological one-history BST model, the ordered elements being linked by a line, with the
convention that point x not higher on a line than point y means x O y
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brim of history h, e 2 lbh, iff 9y ðy\e ^ 8 t 2 MCðhÞðe 2 t! 8 xðy 6 x 6

e! x 2 tÞÞÞ.

Fact 21 (about brims) For e; e2 2 h, if e 2 ubh and e \ e2, then e 62 blchðe2Þ. Also,

for e; e1 2 h, if e 2 lbh and e1 \ e, then e 62 flchðe1Þ.

Proof For the first assertion, let e, e2 be as in the premise and assume for reductio that

e 2 blchðe2Þ, which entails that for some t 2 MCðhÞ, e 2 t and (�) e ¼ suphðt6e2Þ. On

the other hand, e 2 ubh means that there is a y such that e \ y and

8t0ðe 2 t0 ! 8 xðe 6 x 6 y! x 2 t0ÞÞ. Hence y 2 t and also y, e, e2 are comparable.

If e\y 6 e2, then e 6¼ suphðt6e2Þ, contradicting (�). On the other hand, if e \ y and

e2 \ y, then e2 2 t, and hence suphðt6e2Þ ¼ e2, again contradicting (�), since e \ e2 by

the assumption. The second assertion is proved analogously. h

Note that the proof above does not appeal to any of the conditions C1–C4, which

makes one wonder how the existence of brims is related to condition C3. After all,

C3 prohibits that every path going through event e cross the surface of the future

(past) light-cone of e, whereas a brim like diagonal x = y seems to allow for exactly

this. That is, we are tempted to read an event e2 located on the brim and above e as

belonging to the future light-cone of e. The fact above orders us to resist this

temptation, as such an e2 does not belong to flch(e).

As the final topic related to light-cones, we next prove that although by Definition

12 the relations of belonging to a future light-cone and of belonging to a backward

light-cone appear to depend on the history h, in fact each is history-independent.

Fact 22 (History-independence) (1) If e2 2 flchðe1Þ, then for all h0 2 Hist

containing e1 and e2, e2 2 flch0 ðe1Þ.
(2) If e1 2 blchðe2Þ, then for all h0 2 Hist containing e1 and e2, e1 2 blch0 ðe2Þ.

Proof Ad 1. For some t 2 MCðhÞ: (�) e2 ¼ inf ðt>e1Þ. Pick an arbitrary h0 2 Hist

such that e1; e2 2 h0. There is thus t0 2 MCðh0Þ such that e2 2 t0 and t6e2 ¼ t06e2 . If

z 2 t0 and z \ e2, then z 2 t, and by (�) z 6> e1, whence z 62 t0>e1 . By contraposition,

if z 2 t0>e1 , then z 6\e2, and hence e2 6 z, so e2 lower bounds t0>e1 . Since e2 2 t0>e1

(by Fact 13 e1 6 e2), we get e2 ¼ inf ðt0>e1Þ and hence e2 2 flch0 ðe1Þ.
Ad 2. Assume that e1 2 blchðe2Þ; hence e1 ¼ suphðt6e2Þ for some t 2 MCðhÞ. By

Fact 13, e1 6 e2. If e1 = e2, then e1 2 blch0 ðe2Þ because every event lies on its own

backward light-cone (in every history containing it). Suppose instead that e1 \ e2. We

claim (y) t [ e1 \ h0 6¼£. Suppose otherwise; then t [ e1 � hnh0. So by PCP there is

some c such that c\t [ e1 and h ?c h0; but c\t [ e1 implies c 6 inf ðt [ e1Þ ¼ e1\e2 2
h \ h0, contradicting h ?c h0. Thus (y). Therefore there are z 2 t [ e1 \ h0 and t0 2
MCðh0Þ such that t6z ¼ t06z. Note that e1 2 t6z ¼ t06z and so e1 2 t06e2 . We then

claim (z) t06e2 6 e1. Fix any x 2 t06e2 . If z \ x then z \ e2 and so z 2 t6e2 , which

implies z 6 suphðt6e2Þ ¼ e1, contradicting z 2 t [ e1 ; thus z 6\x, and x 6 z since

z; x 2 t0. Hence x 2 t06z ¼ t6z, while x 2 t06e2 ; so x 2 t6e2 and hence x 6

suphðt6e2Þ ¼ e1. Therefore (z), and so e1 2 t06e2 is the largest element of t06e2 , which

implies e1 ¼ suph0 ðt06e2Þ since e1 2 h0. Thus e1 2 blch0 ðe2Þ. h
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To summarize this section, the axioms of BST were intended only to characterize

indeterminism in the sense of allowing events that admit multiple possible historical

continuations. As such, they tell us little about individual histories. In particular, the

axioms alone do not impose the structure of light-cones on a BST history. In

contrast, the conditions C1–C4 concern individual histories and ensure that

flch(e) and blch(e) of Definition 12 behave like future light-cones and backward

light-cones of a physical spacetime. Further, flch(e) and blch(e) are history-

independent. This means that our definitions properly generalize the concept of

light-cones from a non-modal context of single space-time (history) to the modal

context of branching possible histories.

In the sections to follow we will put the four conditions to topological work. In

Theorem 35, we will see that these conditions suffice for establishing that each

single history has the Hausdorff property, given the topology, TðhÞ, per Definition

5. Furthermore, Theorems 44 and 47 link the satisfaction of the Hausdorff property

in a many-history BST model with the conditions as well as with passive

indeterminism (cf. Definition 39).

3.3 Borderless Diamonds

We are about to introduce borderless diamonds, and prove that such objects are

open sets of h in the topology TðhÞ. (In general, they are not open sets in the

topology TðWÞ—cf. Fact 6.) We will prove that if a history h satisfies the conditions

C1–C4 of Sect. 3.2, the set of borderless diamonds of h forms a base for topology

TðhÞ. But first the definition:

Definition 23 (borderless diamonds) bde1e2 � h is a borderless diamond in history

h, bde1e2 2 BDh, iff there is a diamond de1e2 � h such that bde1e2 ¼ de1e2nðblchðe2Þ
[ flchðe1ÞÞ.

If we want to stress that vertices e1, e2 belong to a certain maximal chain t in h,

we will write bde1e2
t ð¼ bde1e2Þ.

Borderless diamonds are open subsets of histories that contain them, which

follows from Lemmas 24 and 25 below. They involve 5ðxÞ and 4ðxÞ, that is, the

future and past (without brims) of x.

Lemma 24 For any x 2 W , let

5ðxÞ :¼ fz 2 W jz [ x ^ z 62 flchðxÞg:

If history h satisfies conditions C2 and C4, then 5ðxÞ \ h 2 TðhÞ.
Proof If x 62 h then 5ðxÞ \ h ¼£ 2 TðhÞ; so let us assume x 2 h. Let us pick an

arbitrary e 2 5ðxÞ \ h and some t 2 MCðhÞ such that e 2 t. We need to produce an

oriented diamond d
x�y�

t � 5ðxÞ \ h such that e 2 d
x�y�

t . To find a bottom vertex x�,

consider t>x \ flchðxÞ. Observe first that inf ðt>xÞ is well-defined since e 2 t>x and

x 6 t>x. Since inf ðt>xÞ > x and inf ðt>xÞ 2 flchðxÞ, t>x \ flchðxÞ is non-empty. It is

also upper bounded by e since e is comparable with every z 2 t>x \ flchðxÞ and
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e \ z contradicts C2, as z 2 flchðxÞ but e 62 flchðxÞ. Accordingly t>x \ flchðxÞ has a

supremum-in-h, s ¼ suph ðt>x \ flchðxÞÞ, and s 2 t. By C4, s 2 flchðxÞ. Moreover,

s \ e; otherwise e 2 flchðxÞ, which is prohibited by the second conjunct of the

definition of 5ðxÞ. By density, we pick some x� 2 t>x such that s \ x�\ e: Hence

x� 62 flchðxÞ. Moreover, for every z 2 h, if z > x�, then z [ x and z 62 flchðxÞ (by C2),

so z 2 5ðxÞ. Accordingly, for every y� 2 t [ e � h, d
x�y�

t � 5ðxÞ \ h. h

Lemma 25 For any x 2 W , let

4ðxÞ :¼ fz 2 W jz\x ^ z 62 blchðxÞ ^ z is not minimal in Wg:

If history h satisfies conditions C2 and C4 and moreover x 2 h (which implies

4ðxÞ � h and 4ðxÞ \ h ¼ 4ðxÞ), then 4ðxÞ 2 TðhÞ.
Proof We proceed similarly to the proof for Lemma 24, picking an arbitrary

e 2 4ðyÞ and some t 2 MCðhÞ, e 2 t, and then looking for d
x�y�

t , with e 2 d
x�y�

t , this

time concentrating on its top vertex y� 2 t6y. We consider t6y \ blchðyÞ. Note that

suph ðt6yÞ is well-defined since e 2 t6y and y > t6y. Since suph ðt6yÞ 6 y and

suph ðt6yÞ 2 blchðyÞ, t6y \ blchðyÞ is non-empty; it is also lower bounded by e since

for every z 2 t6y \ blchðyÞ, e and z are comparable, and z \ e contradicts C2.

Accordingly there is an infimum f ¼ inf ðt6y \ blchðyÞÞ and f 2 t. By C4,

f 2 blchðyÞ. Moreover, e \ f; otherwise e 2 blchðyÞ. By density, there is some y� 2
t6y such that e \ y* \ f. Hence y� 62 blchðyÞ. Moreover, for every z 2 h, if z 6 y�,
then z \ y and z 62 blchðyÞ (by C2), so z 2 4ðyÞ. Thus, for every x� 2 t\e that is not

minimal in W (which exists since e 2 4ðyÞ is not minimal in W), d
x�y�

t � 4ðyÞ. h

Note that4ðxÞ is simply fz 2 W jz\x ^ z 62 blchðxÞg if W satisfies C3 (or, in fact,

if W has no minimal elements).

Lemma 26 Let history h satisfy conditions C2 and C4. Then the borderless

diamonds on h are open sets of h, that is, BDh � TðhÞ.

Proof Fix any bdxy 2 BDh. No e 2 bdxy is minimal in W since x \ bdxy. So,

because bdxy � h, it is the intersection of 5ðxÞ \ h and 4ðyÞ, both of which are in

TðhÞ by Lemmas 24 and 25. Hence bdxy 2 TðhÞ. h

We have learned from Lemma 26 that borderless diamonds are particularly

simple open sets of history h. Do they form a base for topology TðhÞ? The following

lemma suffices.

Lemma 27 Let a history h satisfy conditions C1 and C3 and let A 2 TðhÞ. Then

for every e 2 A, some borderless diamond contained in A contains e.

Proof By C3 there is t 2 MCðhÞ such that both t\e and t[e are nonempty and

t\e \ blchðeÞ ¼£ and t [ e \ flchðeÞ ¼£. If A = h, pick any e1 2 t\e, e2 2 t [ e

and then e 2 d
e1;e2
t � h ¼ A; on the other hand, if A = h, then the openness of A

implies that there are e1 2 t\e and e2 2 t [ e such that e 2 d
e1;e2
t � A. It follows that

e1 62 blchðeÞ and e2 62 flchðeÞ, and hence e 62 ðflchðe1Þ [ blchðe2ÞÞ (by C1). Accord-

ingly, e is not on a border of de1e2
t , so e 2 bde1e2 � A. h
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Theorem 28 Let h 2 Hist satisfy conditions C1, C2, C3, and C4. Then the set BDh

of borderless diamonds on h forms a base for the topology TðhÞ, that is

8A � h A 2 TðhÞ iff 9B � BDh

[
B ¼ A

� �
:

Proof By Lemma 26, conditions C2 and C4 guarantee that borderless diamonds

are open subsets of h. To construct B � BDh that has the above property, let us put

B :¼ fbd 2 BDhjbd � Ag. To prove that
S
B � A, pick bd 2 B. Then by the

definition of B, bd � A. Lemma 27, which requires C1 and C3, gives us the opposite

direction. h

Theorem 28 also means that if a history h satisfies conditions C1 through C4, the

set of 5ðxÞ \ h and 4ðyÞ (for x; y 2 h) forms a subbase for TðhÞ. It is also worth

noting that Lemma 24 has the following corollary.

Corollary 29 5ðxÞ 2 TðWÞ if W satisfies conditions C2 and C4.

Proof From Lemma 24 by Theorem 7. h

We should note that, in contrast, Lemma 25 (which needs the assumption that

x 2 h) fails to entail the 4ðxÞ counterpart of this corollary, in particular, by Fact 6,

when 4ðxÞ contains a choice point.

4 Hausdorff Property on a Single Spacetime (History)

We next have a theorem relevant to the critical question whether a single spacetime

(BST history) has the Hausdorff property. We prove the theorem with two little

lemmas in addition to Lemma 24. The chief idea is to separate two distinct points

into 5ðxÞ and ðxÞ, the regions inside and outside the forward light-cone of some

point x, which is possible due to Fact 33.

Fact 30 For any e1; e2 2 W and t 2 MCðWÞ with e2 2 t, if e1 66 e2 then e1 66 x for

some x 2 t2
[ e2 .

Proof If e1 6 x for all x 2 t2
[ e2 , then e1 6 infðt2

[ e2Þ ¼ e2. h

Lemma 31 For any x 2 W, let

x e W x e e is not minimal in W

Then ðxÞ \ h 2 TðhÞ for any history h.

Proof Fix any e 2 ðxÞ
T

h and t 2 MCðhÞ such that e 2 t. Then Fact 30 implies

x 66 y for some y 2 t [ e; moreover, x 66 z 2 h for any z 6 y (since y 2 t � h).

Therefore, for any z 2 t\e that is not minimal in W (which exists since e is not

minimal in W), we have z \ e \ y and dzy � ðxÞ
T

h. h
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Note that ðxÞ is simply fz 2 W jz 6> xg if W satisfies C3 (or, in fact, if W has no

minimal elements). Note also that, like Corollary 29, Lemma 31 gives an open set of

W:

Corollary 32 ðxÞ 2 TðWÞ.

Proof From Lemma 31 by Theorem 7. h

The following fact is a crucial element for the Hausdorff property of a history. It

is symmetrical to Fact 30 within a history but, unlike Fact 30, does not extend to

Our World (without a pathological assumption).

Fact 33 For any history h, e1; e2 2 h, and t 2 MCðhÞ with e1 2 t and t\e1 6¼£, if

e1 66 e2 then x 66 e2 for some x 2 t\e1 .

Proof If x 6 e2 for all x 2 t\e1 , then e1 ¼ suphðt\e1Þ 6 e2. h

Lemma 34 Suppose that a history h satisfies C3 and that e1 66 e2 for e1; e2 2 h.

Then there is some x 2 h such that x 2 4ðe1Þ (which implies e1 2 5ðxÞ if h satisfies

C1) and e2 2 ðxÞ.

Proof Applying C3, pick t 2 MCðhÞ such that e1 2 t and t\e1 6¼£ but

t\e1 \ blchðe1Þ ¼£. Then by Fact 33 there is x 2 t\e1 such that x 66 e2, that is,

e2 2 ðxÞ, and moreover x 2 4ðe1Þ since t\e1 \ blchðe1Þ ¼£. h

Theorem 35 Let history h of a BST model OW satisfy conditions C1, C2, C3, and

C4. Then h satisfies the Hausdorff property (in the topology TðhÞ introduced in

Definition 5).

Proof Pick any distinct e1; e2 2 h; because e1 6 e2 and e2 6 e1 would entail

e1 = e2, we may assume without loss of generality that e1 66 e2. By Lemma 34, C1

and C3 imply that e1 2 5ðxÞ \ h and e2 ðxÞ \ h for some x 2 h, where ð5ðxÞ \
hÞ \ ð ðxÞ \ hÞ ¼£ by definition. ðxÞ \ h 2 TðhÞ by Lemma 31, whereas C2

and C4 entail 5ðxÞ \ h 2 TðhÞ by Lemma 24. h

It may be worth noting that Theorem 35 can also be proved with 4ðxÞ and (x)

as in the following lemma (which, however, does not extend to Our World in the

way Lemma 31 extends to Corollary 32).

Lemma 36 For any x 2 W , let

x e W xe is not minimal in We

Then ðxÞ \ h 2 TðhÞ for any history h such that x 2 h.

Proof Fix any e 2 ðxÞ
T

h and t 2 MCðhÞ such that e 2 t. Since e is not

minimal, t\e 6¼£. So Fact 33 implies z 66 x for some z 2 t\e; moreover, for any

y > z, y 66 x and y is not minimal. Without loss of generality we may assume that z

is not minimal (since if it is we can find some z0 2 t such that z\z0\e and hence

z0 66 x and z0 is not minimal). Therefore, for any y 2 t [ e, we have z \ e \ y and

dzy � ðxÞ. h
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To comment on the results of this section, each single history h (aka space-time)

of a BST model satisfies the Hausdorff property with respect to the Bartha topology

TðhÞ, provided that h satisfies conditions C1–C4. In turn, these conditions are

needed in order that a light-cone in a BST history have some typical properties

required of light-cones of space-time physics. This ultimately responds to an

objections voiced by Earman (2008) that space-times of BST are non-Hausdorff.

5 Hausdorff Property on Our World

In this section we are after a completely different game: Instead of focusing on

single histories, we ask about a topological feature of Our World of many branching

histories.

To present our next theorem, we need to introduce a particular feature of BST,

called ‘‘passive indeterminism,’’ formerly labeled ‘‘indeterminism without choice’’

(cf. Belnap 1992) or ‘‘indeterminism with external choice.’’ It is impossible to be

both brief and precise. The rough intuitive idea, spelled out in detail in Belnap

(2005), is that there is a single initial event, I, serving as the common initial of

multiple contingent transitions, each with its own event, Oj, as possible outcome. I
must lie in the causal past of each Oj. If I is a point event, e, and if O is an

immediate outcome of e (no intervening events), then the transition e! O is a

causa causans or originating cause that is not subject to further causal analysis. A

causa causans might well be labeled as a case of active indeterminism. In the more

typical case, a contingent transition, I! O is not a causa causans; instead, it has its

own set of causae causantes external to it that provably form a set of inus conditions

in the sense of Mackie (1974): Each is an insufficient but nonredundant

(conjunctive) part of an unnecessary but sufficient condition of I! O. Such an

I! O illustrates passive indeterminism, since the activity resides in its causae

causantes, the initials of which always lie in the past of O. For example, suppose

you have already placed your bet on the (future) decay of an a-particle. It may be

that the transition from bet-placed to bet-won is indeterministic, but what causes the

win (if you win) is, say, the detection of the decay of the a-particle.

Passive indeterminism can be cleanly characterized by considering various ways

in which two maximal chains t1; t2 2 MCðWÞ can form a Y-shaped fork.

Definition 37 (Y-fork) t1; t2 2 MCðWÞ form a Y-fork iff

1. t1 = t2,

2. t1 \ t2 6¼£,

3. 8x 2 t1 [ t2ðx 2 t1 \ t2 _ t1 \ t2\xÞ.

Every Y-fork has its trunk t1 \ t2, and two arms t1nt2 and t2nt1. A Y-fork may be

entirely a spatio-temporal matter. In order to characterize Y-forks that exhibit

indeterminism, we define a ‘‘modal fork’’ as follows.

Definition 38 (modal-fork) t1; t2 2 MCðWÞ form a modal fork iff they form a

Y-fork and 9h1; h2 2 Hist ðt1nt2 � h1nh2 ^ t2nt1 � h2nh1Þ.
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In the presence of Definition 37, the condition on modal forks is equivalent to this

claim:

8x 2 t1 [ t2ðt1 \ t2\x! x 2 h1nh2 _ x 2 h2nh1Þ:
There is a simple topological test for whether or not a certain modal Y-fork

exhibits passive indeterminism. If its trunk, t1\ t2, has a (unique) maximum, e, then

e is the initial of two causae causantes, the left fork being one possible outcome,

and the right fork the other, and the indeterminism may be called ‘‘active.’’ If,

however, the trunk has no maximum, the Y-fork exhibits passive indeterminism,

and we must look elsewhere for the relevant causae causantes (cf. Belnap 2005).

For our topological purposes, we convert this test into a definition.

Definition 39 (passive indeterminism) A modal fork exhibits passive indetermin-

ism in case its trunk has no maximum.

The upshot of these definitions is a threefold classification of Y-forks. A Y-fork

may be modal or not, and if is modal, it either exhibits passive indeterminism or not.

Note that the essence of passive indeterminism is not a matter of lacking a choice

event (this is impossible by the prior choice principle of BST), but that every choice

event is external to the modal fork in question. The lemma that follows the fact

below shows a crucial feature of passive indeterminism:

Fact 40 (1) Let t1; t2 2 MCðWÞ form a Y-fork. Then its trunk is upper bounded by

an element of each of t1nt2 and t2nt1. (2) And, if t1, t2 form a modal fork, i.e., for

some h1; h2 2 Hist, t2nt1 � h1nh2 and t2nt1 � h2nh1, then 8x 2 t1 [ t2 ðx 2 h1 \
h2 ! x 2 t1 \ t2Þ.

Proof Ad 1. By Definition 37(1) and maximality of t1, t2, there is x 2 t1nt2, so

x 62 t1 \ t2, so t1\ t2 \ x by Definition 37(3); and similarly for t2nt1. Ad 2. The result

follows by observing that t1 [ t2 ¼ ðt1 \ t2Þ [ ðt1nt2Þ [ ðt2nt1Þ. h

Lemma 41 The following two claims are equivalent, for t1; t2 2 MCðWÞ:

1. t1, t2 form a modal fork and t1 \ t2 has no maximum;

2. there exist suph1
ðt1 \ t2Þ and suph2

ðt1 \ t2Þ and suph1
ðt1 \ t2Þ 6¼ suph2

ðt1 \ t2Þ
for some h1; h2 2 Hist.

Proof From (1) to (2). Let us abbreviate C ¼ ðt1 \ t2Þ, c1 ¼ suph1
ðCÞ, D1 ¼

ðt1nt2Þ, and similarly for c2, D2. We show that c1 6¼ c2.

Note that ðC [ D1Þ ¼ t1 by calculation, C 6¼£ by Definition 37(2), D1 6¼£ by

Fact 40, and C\D1 by Definition 37(3). By Definition 38, D1 � h1nh2, so C � h1 by

downward closure of histories, so c1 exists (by the BST axiom of history-relative

suprema) and C 6 c1 6 D1. Since ðC [ D1Þ ¼ t1, density and maximality of t1 imply

that c1 2 ðC [ D1Þ. If c1 2 C, then c1 would be maximum in C, violating assumption

(1) of the Lemma. So c1 2 D1. An exactly parallel argument yields c2 2 D2. Since

ðD1 \ D2Þ ¼£, c1 6¼ c2. From (2) to (1). suph1
ðt1 \ t2Þ 6¼ suph2

ðt1 \ t2Þ implies that

t1 \ t2 has no maximum. It is straightforward to see that t1, t2 form a modal fork. h
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We are now ready to state our first theorem concerning the Hausdorff property in

the topology TðWÞ.

Theorem 42 Let OW be a BST model. If some modal fork in OW exhibits passive

indeterminism, then the Hausdorff property fails in OW (in the topology TðWÞ).

Proof Let t1; t2 2 MCðWÞ form a modal fork exhibiting passive indeterminism.

Then by Lemma 41 there are histories h1, h2 such that t1 \ t2 � h1 \ h2 and

e1 :¼ suph1
ðt1 \ t2Þ 6¼ suph2

ðt1 \ t2Þ ¼: e2. Let e1 2 U and e2 2 V , where U and V

are arbitrary open subsets of W. Since U is open, there must be x1 2 t1 \ t2 such that

x1 \ e1 and 8xðx1 6 x 6 e1 ! x 2 UÞ. For a similar reason there is x2 2 t1 \ t2

such that x2 \ e2 and 8xðx2 6 x 6 e2 ! x 2 VÞ. Thus, max ðx1; x2Þ 2 U \ V . h

A natural question, answered by the lemma below, is, How ubiquitous is passive

indeterminism?13

Lemma 43 Let e be a choice point between histories h and h0 (to be written as

e 2 CPðh; h0Þ) in a BST model and for some e0 6¼ e, e0 2 flchðeÞ and

8cðc 2 CPðh; h0Þ ^ c\e0 ! c ¼ eÞ. Then there is passive indeterminism in the

model.

Proof Clearly, e; e0 2 h and by Fact 13 (1) and the antecedent, e\e0. Also (y)
e0 62 h0—otherwise e would not be a choice point for h and h0. e0 2 flchðeÞ entails

that (z) 9t 2 MCðhÞ ðe0 ¼ inf ðt>eÞÞ. Consider t 6>e. Since e 6 t>e, e 6¼ inf ðt>eÞ, and t

is maximal, t 6>e 6¼£. Since it is upper bounded by e0, it has a supremum and

suph ðt 6>eÞ ¼ e0 (by z). We next argue that t 6>e � h0. Otherwise for some e� 2 t 6>e,

e� 62 h0 and hence e� 2 hnh0, so by PCP, 9c 2 CPðh; h0Þðc\e�Þ. But because

e� 2 t 6>e, e 6\e�. Hence c = e and since c\e� 6 e0, we have a contradiction with

the Lemma’s premise.

We may thus consider suph0 ðt 6>eÞ ¼ s. (y) then requires that s 6¼ e0.

We thus constructed a trunk t 6>e of a modal fork, with two (different) history-relative

suprema. By Lemma 41 and Definition 39, the fork exhibits passive indeterminism. h

To comment on this Lemma, putting aside some pathological BST models, if a

BST model has more than one history, it exhibits passive indeterminism. The

pathology means that either for every choice point e, flch(e) = {e} for any h such

that e 2 h,14 or each choice point between some h, h0 is a point of convergence of a

sequence of choice points between h and h0. Combining our Theorem 42 and

Lemma 43, we obtain the following:

Theorem 44 Let e 2 CPðh; h0Þ for some histories h; h0 in a BST model OW and for

some e0 6¼ e, e0 2 flchðeÞ and 8c 8c ðc 2 CPðh; h0Þ ^ c \ e0 ! c ¼ eÞ. Then the

Hausdorff property fails in OW (in the topology TðWÞ).

13 The conclusion of this lemma, namely, the existence of passive indeterminism, can be also proved by

postulating No Modal Funny Business instead of the lemma’s second premise, i.e., instead of

8cðc 2 CPðh; h0Þ ^ c\e0 ! c ¼ eÞ. For a definition of No Modal Funny Business, cf. Def. 1–2 of Belnap

(2003b).
14 Note that this is satisfied in BT models, so these models do not exhibit passive indeterminism.
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It is still interesting to learn what happens if a BST model has no passive

indeterminism, which is a subject of Theorem 47. Note however that no passive

indeterminism in a BST model means that either the model has one history only, or

(by Lemma 43) is pathological.

We can prove Theorem 47 using the same idea that we used to prove Theorem

35, since Fact 33 carries over to OW in the absence of passive indeterminism.

Fact 45 Suppose no modal fork in OW exhibits passive indeterminism. Then, for

any e1; e2 2 W and t 2 MCðWÞ such that e1 2 t and t\e1 6¼£, if e1 66 e2 then

x 66 e2 for some x 2 t\e1 .

Proof Suppose e1 66 e2 but that x O e2 for all x 2 t\e1 . Pick any h1 2 Hðe1Þ and

h2 2 Hðe2Þ; moreover, since t\e1 6 e2, there is t2 2 MCðh2Þ such that

t\e1 [ fe2g � t2. Then e1 ¼ suph1
ðt\e1Þ whereas suph2

ðt\e1Þ 6 e2; hence e1 66 e2

implies suph1
ðt\e1Þ 6¼ suph2

ðt\e1Þ, which means that e1 62 h2, which moreover

entails t \ t2 ¼ t\e1 . Therefore, by Lemma 41, the modal fork t, t2 exhibits passive

indeterminism. h

Lemma 46 Suppose no modal fork in OW exhibits passive indeterminism, that OW

satisfies C3, and that e1 66 e2 for e1; e2 2 W . Then there is some x 2 W such that

x 2 4ðe1Þ (which implies e1 2 5ðxÞ if W satisfies C1) and e2 2 ðxÞ.

Proof Similar to the proof of Lemma 34, using Fact 45 in place of Fact 33. h

Theorem 47 Let OW be a BST model, in which every history satisfies conditions

C1, C2, C3, and C4. Then if no modal fork in OW exhibits passive indeterminism,

the Hausdorff property is satisfied in OW (in the topology TðWÞ).

Proof Exactly similar to the proof of Theorem 35. Pick any distinct e1; e2 2 W;

without loss of generality we may assume e1 66 e2. By Lemma 46, C1 and C3 imply

that e1 2 5ðxÞ and e2 2 ðxÞ for some x 2 W , where 5ðxÞ\ ðxÞ ¼£ by

definition. ðxÞ 2 TðWÞ by Corollary 32, whereas C2 and C4 entail 5ðxÞ 2 TðWÞ
by Corollary 29. h

The theorems of this section nicely contrast with our results concerning single

histories: With a few exceptions, a BST model hW ;6i is non-Hausdorff with

respect to the Bartha topology on W.

6 Naturalness of the BST Topologies

All our results above obtain with respect to specific topologies: the Bartha topology

TðhÞ on a BST history, and the Bartha topology TðWÞ on a BST model. This

naturally raises a question about strength and relevancy of these results. Aren’t

perhaps the Bartha topologies some gerrymandered and ad hoc constructions,

cooked up just to to guarantee that the lemma and theorems above hold? Against

this objection in each of the next three subsections we provide an independent

argument that the Bartha topologies on a BST model and its histories are natural

topologies:
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1. In appropriate cases, the Bartha topology on a single history (spacetime) agrees

with the standard topology on R
n.

2. Both on a BST model and on a history thereof, the Bartha topology naturally

extends the BST structure.

3. The Bartha topology on Our World, an entire BST model, is canonically

constructed from the Bartha topologies on its histories.

6.1 Extending the Minkowski Structure

One simple criterion of ‘‘naturalness’’ of topology is whether it agrees with the

standard ‘‘ball’’ topology on R
n, if its base set is isomorphic to R

n. It is easy to see

that the criterion is satisfied by the Bartha topology on a history, TðhÞ. There is a

particular class of BST models, called Minkowskian Branching Structures (MBS’s)

and extensively studied by Müller (2002), Wroński and Placek (2009), and Placek

and Belnap (2012), in which histories are isomorphic to R
n with Minkowskian

ordering. More specifically, elements of an MBS’s base set are certain equivalence

classes ½rx�, where r 2 R for some index set R and x 2 R
n, whereas the ordering

generalizes the Minkowskian ordering on R
n. Each history in an MBS is then

identified with set br ¼ f½rx�jx 2 R
ng for some r 2 R. To inquire what borderless

diamonds in history br are (recall that such diamonds form the base of the Bartha

topology on a history, TðbrÞ), we get that they have the form:

bd½rx�½ry� ¼ f½rz� 2 brjx\M z\M y ^ z 62 flcðxÞ [ blcðyÞg;

where \M is the strict companion of the Minkowskian ordering on R
n and

flc(x), blc(x) are the future light-cone and the backward light-cone of x 2 R
n. A little

reflection on the condition above convinces one that z is an element of the bor-

derless diamond in R
n, with x its bottom diamond and y its top diamond. Such

borderless diamonds are open in the standard topology on R
n. Thus, the base for the

Bartha topology on a Minkowskian Branching Structure is provided by the sets of

the form bd½rx�½ry�, whose ‘‘numerical’’ parts are open sets in the standard topology

on R
n.

6.2 Topological Limits and BST Limits

Two notions of limits are involved with BST and topology. One is an intrinsic

ingredient of BST, namely, inf and sup. The other is the convergence of ‘‘nets’’

(a generalization of sequences) in topology—any topology gives rise to a

convergence relation between nets and points. Indeed, topologies are fully

characterized by convergence relations, in the sense that different topologies give

different convergence relations, and that any topology can be recovered from the

convergence relation it gives. Therefore any natural topology of BST must give a

topological limit (that is, a convergence) that extends the BST limit (that is, inf and

sup), in the sense that the two kinds of limits agree whenever the latter makes sense.

This is in fact the case with the Bartha topology, as in Theorems 49 and 50 below.
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A net is a function from a directed set ðD;6Þ to a topological space X.15 A salient

example is a sequence in X, that is, a map from ðN;6Þ to X. The formal concept of

convergence of a net is a formalization (and generalization) of the idea that a

sequence may ‘‘get arbitrarily close’’ to a point x 2 X. The notion of closeness

involved in this idea is abstractly captured by the topology on X. On the other hand,

the idea also involves a somewhat temporal aspect: When f ðnÞ is closer to x than

f ðmÞ is, whether the sequence f gets closer to or farther from x between the two

‘‘stages’’ n and m hinges on whether n is ‘‘after’’ m or not, which is expressed by the

order on the domain D of a net.

The definition of convergence goes as follows. Given a net f : D ? X and a subset

U � X, we say that f ‘‘eventually stays’’ in U if there is a 2 D such that f ðbÞ 2 U for

every b > a. For instance, a sequence f : N! X eventually stays in U � X if,

‘‘after’’ some stage n, f is always in U (meaning, f ðmÞ 2 U for every m > n). Given

this notion of eventually staying, and given the topological abstraction of

‘‘closeness’’ (points in an open set U containing x are ‘‘closer’’ to x than ones

outside U), the idea of ‘‘getting arbitrarily close’’ is formalized as follows: A net f

converges (in the given topology of X) to a point x 2 X if, for every open set U

containing x, f eventually stays in U (that is, there is a 2 D such that f ðbÞ 2 U for

every b > a).

As a particular case, a chain C in a BST model ðW ;6Þ can be regarded as a net

by taking the inclusion map i : C ! W , which maps x 2 C to x itself. A warning

may well be in order, that there is going to be possible confusion, because the same

points x 2 C are serving once as points of the directed domain (that is, as ‘‘stages’’)

of a net, and once as points of spacetimes or of Our World, and because the same

ordering 6 is used, once as the ordering on the directed domain (the ordering of

stages) of the net, and once as the BST ordering (of causal past and future). To avoid

confusion, we reserve the temporal phrasing (‘‘after’’) for when we emphasize the

order as the ordering on the domain of a net, and, taking advantage of familiar

pictures of Our World, we say that a point x 2 W is ‘‘below’’ or ‘‘above’’ y (if x 6 y

or y 6 x) to emphasize the order as the BST ordering.

A chain C in a BST model ðW ;6Þ can be regarded as an ‘‘ascending’’ net

(ascending in terms of the ‘‘above’’ phrasing we just introduced), by taking the

inclusion map i from ðC;6Þ into W, which preserves the order; that is, x 6 y in the

domain ðC;6Þ means that y is ‘‘after’’ x, whereas x 6 y in ðW ;6Þ means that y is

‘‘above’’ x, so that C goes up and up. Therefore, C (as an ascending net) converges

in TðWÞ to e 2 W if, for every U 2 TðWÞ containing e, there is x 2 C such that

y ¼ iðyÞ 2 U for every y 2 C ‘‘after’’ x (meaning, y > x), that is, x 2 C such that

C>x � U.

C can also be regarded as a ‘‘descending’’ net, by taking the inclusion map i from

ðC;>Þ into W, which reverses the order; that is, x > y in ðC;>Þ means that y is

‘‘after’’ x, whereas y 6 x in ðW ;6Þ means that y is ‘‘below’’ x, so that C goes down

and down. Therefore, C (as a descending net) converges in TðWÞ to e 2 W if, for

every U 2 TðWÞ containing e, there is x 2 C such that y ¼ iðyÞ 2 U for every y 2 C

‘‘after’’ x (this time meaning y 6 x), that is, x 2 C such that C6x � U.

15 In general, antisymmetry is not assumed on the order 6 on D. See, e.g., Willard (1970, pp. 73–77).
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Lemma 48 Fix a history h, and let X be either h or W. Then, given any chain

C � h, both of the following hold.

1. C regarded as a descending net converges in TðXÞ to infðCÞ if it exists.

2. C regarded as an ascending net converges in TðXÞ to suphðCÞ if it exists.

Proof Ad 1. Suppose infðCÞ exists. We show that C (as a descending net)

converges in TðXÞ to infðCÞ, which means that, for every U 2 TðXÞ containing

infðCÞ, there is x 2 C such that C6x � U.

Fix any U 2 TðXÞ containing infðCÞ. If infðCÞ is minimal in X then U = X and

hence C6x � U for any x 2 C (C 6¼£ since infðCÞ exists); so suppose infðCÞ is not

minimal in X. Since infðCÞ 6 C, there is t 2 MCðhÞ containing both C and infðCÞ;
therefore infðCÞ 2 U 2 TðXÞ means that there are z; y 2 t such that z\ infðCÞ\y

and dzy � U (such z exists since infðCÞ is not minimal in X). Then there is x 2 C

such that x 6 y (for otherwise y 6 C and hence y 6 infðCÞ). This and z\ infðCÞ 6
C imply C6x � dzy � U. Thus C converges to infðCÞ in TðXÞ.

A proof that is symmetrical (except dropping the case of minimal infðCÞ) would

verify (2). h

Note that a topology is Hausdorff if and only if every net in it converges to at

most one point. Therefore Lemma 48.2 with X = W gives another proof that TðWÞ
fails to be Hausdorff when a modal fork t1, t2 (t1 2 MCðh1Þ; t2 2 MCðh2Þ) exhibits

passive indeterminism, because then the trunk C = t1 \ t2 converges to two distinct

points, namely, suph1
ðCÞ 6¼ suph2

ðCÞ.

Theorem 49 Suppose a history h has no minimal elements. Then, given any chain

C � h and e 2 h, both of the following hold.

1. C regarded as a descending net converges in TðhÞ to e iff e ¼ infðCÞ.
2. C regarded as an ascending net converges in TðhÞ to e iff e ¼ suphðCÞ.

Proof Ad 1. The ‘‘if’’ direction is just Lemma 48.1. For the ‘‘only if’’ direction,

suppose C converges in TðhÞ to e.

Suppose for contradiction that e 66 C; then e 66 x for some x 2 C. By Lemma 36,

e 2 ðxÞ \ h 2 TðhÞ (since e is not minimal), whereas C6x
6 x means ð

ðxÞ \ hÞ \ C6x ¼£, contradicting C converging to e. Thus e 6 C.

The convergence of C entails C 6¼£; so the lowerbounded C has infðCÞ. If

infðCÞ 66 e, then e 2 ðinfðCÞÞ \ h 2 TðhÞ by Lemma 31, whereas infðCÞ 6 C

means ð ðinfðCÞÞ \ hÞ \ C ¼£, contradicting C converging to e; so infðCÞ 6 e.

Hence infðCÞ ¼ e, because e 6 C implies e 6 infðCÞ.
A symmetrical proof would verify (2). h

Theorem 50 Suppose W satisfies C1–C4. Then, given any chain C and e 2 W,

both of the following hold.

1. C regarded as a descending net converges in TðWÞ to e iff e ¼ infðCÞ.
2. C regarded as an ascending net converges in TðWÞ to e iff e ¼ suphðCÞ for

some history h.
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Proof Ad 1. The ‘‘if’’ direction is just Lemma 48.1. For the ‘‘only if’’ direction,

suppose C as a descending net converges in TðWÞ to e, and pick any histories h1 and

h2 containing e and C, respectively. Applying C3, pick t1 2 MCðh1Þ such that e 2 t1

and t1
\e 6¼£ but t1

\e \ blch1
ðeÞ ¼£.

We first claim that, for any x 2 C, if e 66 x then suph2
ðt1\eÞ 6 x. Assuming e 66 x

for x 2 C, suppose for contradiction that t1
\e 66 x; that is, e0 66 x for some e0 2 t1

\e.

Then t1
\e \ blch1

ðeÞ ¼£ implies e 2 5ðe0Þ by C1, whereas5ðe0Þ 2 TðWÞ by C2,

C4 and Corollary 29. On the other hand, C6x \5ðe0Þ ¼£ because e0 66 x implies

e0 66 y for every y 6 x. These contradict since C converges to e. Therefore t1
\e
6 x.

This implies suph2
ðt1

\eÞ 6 x since t1
\e 6¼£ and x 2 C � h2.

Now suppose for contradiction that e 66 C; that is, e 66 x for some x 2 C. Then,

indeed, e 66 y for every y 2 C6x; hence the claim we showed above implies

suph2
ðt1

\eÞ 6 C6x. Therefore ðsuph2
ðt1\eÞÞ \ C6x ¼£. On the other hand, e 2

ðsuph2
ðt1\eÞÞ 2 TðWÞ (by Corollary 32), because e ¼ suph1

ðt1\eÞ 6¼ suph2
ðt1\eÞ 6 x

implies suph2
ðt1\eÞ 66 e. These contradict since C converges to e. Thus eOC.

The convergence of C entails C 6¼£; so the lowerbounded C has infðCÞ. If infðCÞ 6
6 e then e 2 ðinfðCÞÞ 2 TðWÞ (by Corollary 32), whereas infðCÞ 6 C means

ðinfðCÞÞ \ C ¼£, contradicting C converging to e; so infðCÞ 6 e. Hence

infðCÞ ¼ e, because eOC implies e 6 infðCÞ.
Ad 2. The ‘‘if’’ direction is just Lemma 48.2. For the ‘‘only if’’ direction, suppose C

as an ascending net converges in TðWÞ to e.

Suppose for contradiction that C 66 e; that is, x 66 e for some x 2 C. This means e 2
ðxÞ 2 TðWÞ (by Corollary 32), whereas x 6 C>x means ðxÞ \ C>x ¼£,

contradicting C converging to e. Thus COe.

The convergence of C entails C 6¼£; so, for h 2 HðeÞ, C 6 e 2 h implies C � h

and that suphðCÞ exists. Suppose for contradiction that e 66 suphðCÞ. Then, since

e; suphðCÞ 2 h, Lemma 34 implies by C1, C3 that e 2 5ðxÞ and x 66 suphðCÞ for

some x 2 h. By C2, C4 and Corollary 29, 5ðxÞ 2 TðWÞ, whereas x 66 suphðCÞ
implies xOy for no y 2 C and hence5ðxÞ \ C ¼£, contradicting C converging to

e. Thus e 6 suphðCÞ. Therefore e ¼ suphðCÞ because C 6 e 2 h and suphðCÞ 6 e. h

6.3 Branching for the Laplaceans

This subsection dwells on a consequence of Theorem 7, namely that the Bartha

topology TðWÞ on Our World can be regarded as naturally constructed from the Bartha

topologies TðhÞ on the histories h; so, to the extent that TðhÞ are natural, the

naturalness propagates to TðWÞ. This naturalness is based on ‘‘universal mapping

properties,’’ and applies not just to the theory of BST but also to the Laplacean

diverging spacetimes, in the following manner: Given an ensemble of spacetimes that

comes with a criterion of ‘‘identifying’’ points of different spacetimes, we can think of

a branching structure constructed by naturally gluing those spacetimes together at

identified points. This branching structure is to the diverging spacetimes what a BST

structure W is to its histories h (we will show in which sense). Then Theorem 7 points to

how, given topologies on branching histories or diverging spacetimes, to naturally
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construct from them a topology on the branching structure, whether it is a BST

branching or an ensemble branching.

We first lay out a natural construction in which to glue spacetimes (as sets)

together into one branching structure (as a set). Suppose, along the line of

‘‘ensemble branching’’ (see Sect. 2), that we are given an ensemble Hist of

spacetimes h and a criterion for ‘‘identifying’’ points of different spacetimes (for

instance, sharing the same genuine physical magnitudes). Formally, take the disjoint

union
P

h h of histories and write xRy to mean that x; y 2
P

h h are ‘‘identified.’’ The

disjoint union
P

h h can simply be the union
S

h h if all histories are mutually

disjoint (as in Lewis’s ‘‘divergence’’); otherwise, we label points of histories and letP
h h ¼ fðe; hÞje 2 h 2 Histg. Finally, let W be the quotient of

P
h h by the relation

R.16 Let us call the set W constructed in this way from a given ensemble Hist with a

given relation R (on
P

h h) the branching structure for Hist and R; in short, W is an

ensemble Hist of spacetimes glued together at points identified by a relation R.

This ‘‘gluing’’ construction gives us the natural structure of branching, in the

following sense. Let us express the construction in terms of the following two sorts

of maps: One is the family of inclusion maps mh0 : h0 !
P

h h, each of which maps

e 2 h0 to ðe; h0Þ (or to e itself if h are all disjoint). The other is the quotient map q :P
h h ? W, which maps x 2

P
h h to the equivalence class [x] of points identified

with x. Then the construction of the branching structure yields the following

‘‘universal mapping property’’:17

Fact 51 Given a family Hist and a relation R on
P

h h (which may or may not be

an equivalence relation), the branching structure W for Hist and R, with maps mh : h

?
P

h h and q :
P

h h ? W, is the unique (up to isomorphism) set that satisfies the

following.

1. W identifies all that has to be identified; that is, if R identifies e1 2 h1 and

e2 2 h2—in the sense that mh1
ðe1ÞRmh2

ðe2Þ—then q 	mh1
ðe1Þ ¼ q 	mh2

ðe2Þ
2 W .

2. For any set X and a family of maps fh : h ? X (h 2 Hist,) if the family fh respects

R—in the sense that fh1
ðe1Þ ¼ fh2

ðe2Þ whenever mh1
ðe1ÞRmh2

ðe2Þ—then there is

a unique map f : W ? X such that f 	 q 	mh ¼ fh for all h 2 Hist.

This fact can also be put as follows:

Corollary 52 Let W be the branching structure for a family Hist of sets and a

relation R on
P

h h. Then, for any set X, the families of maps fh : h ? X ðh 2 HistÞ
that respect R correspond one-to-one to the maps f : W ? X.

Proof For the correspondence ‘‘to the right,’’ associate with a given R-respecting

family fh : h ? X the map f : W ? X as in Fact 51.2. ‘‘To the left,’’ associate with

given f : W ? X the family f 	 q 	mh : h! X, which respects R by Fact 51.1. And

the correspondence is bijective by Fact 51.2. h

16 When R is not itself an equivalence relation, by ‘‘the quotient by R’’ we mean the quotient by the

equivalence relation that R generates.
17 See Brown (2006, p. 100), for a proof (of essentially the same fact). The results that follow are

essentially ones laid out in Brown (2006, pp. 100f.).
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These results mean the following. We may wish to assign some value (a vector,

for instance) to each point of every spacetime h; that is to take a family of maps fh :

h ? X (say, to a vector space X). Then, as long as this assignment is coherent with

the relevant criterion of identifying points of different spacetimes (for instance,

assigning the same vector to points sharing the same physical magnitudes), f : W ?
X as in Fact 51.2 gives an equivalent description of the assignment—carrying all

and only the information carried by the family fh—in the form of a single map. And

W is the only set that provides the domain for such a corresponding map f.

It is worth noting that, given a BST model ðW ;6Þ, the set W is (isomorphic to)

the branching structure, in the sense we defined above, for its set of histories Hist

and the obvious relation R of identification (that is, ðe1; h1Þ R ðe2; h2Þ iff e1 ¼ e2);

then each q 	mh is just the inclusion map ih : h ? W, which sends

e 2 h to mhðeÞ ¼ ðe; hÞ to qðe; hÞ ¼ e.18 In short, W is ‘‘reconstructed’’ by first

labeling events and then dropping the labels. Hence, W with mh and q satisfies Fact

51 and Corollary 52 for its histories Hist and the obvious R.

Let us now turn to Theorem 7. We can read it as follows: The Bartha topology

TðWÞ on Our World, which is concretely defined in terms of diamonds dxy, can also

be constructed from the family of Bartha topologies TðhÞ on histories h 2 Hist by

setting TðWÞ ¼ fA � W jA \ h 2 TðhÞ for all h 2 Histg, or, in other words, as the

finest topology on W that has each inclusion map ih : h ? W continuous (note that A

\ h = ih
-1[A] for A � W; TðWÞ is the finest because, if another topology T0 on W

has all ih continuous, then every A 2 T0 has A \ h ¼ ih
�1½A� 2 TðhÞ for all h 2 Hist

and hence A 2 TðWÞ, that is, T0 � TðWÞ). This construction is a common one in

topology, a particular case of the construction of gluing several spaces (not just as

sets but as sets plus topologies) together into one.19

This construction can indeed be generalized and applied to any branching

structure W—not only of BST histories but also of divergent spacetimes—by

replacing the inclusion maps ih with maps q 	mh in general, as follows. Let

Tð
P

h hÞ be the ‘‘disjoint union topology,’’ that is, the finest topology on
P

h h that

makes all mh continuous—more concretely, Tð
P

h hÞ ¼ fB �
P

h hjmh0
�1½B� 2

Tðh0Þ for all h0 2 Histg. Then let TðWÞ be the ‘‘quotient topology,’’ that is, the finest

topology on W that makes q continuous—TðWÞ ¼ fA � W jq�1½A� 2 Tð
P

h hÞg ¼
fA � W jðq 	mhÞ�1½A� 2 TðhÞ for all h 2 Histg. Thus any branching structure W,

whether it is a BST one or a diverging one, accommodates the gluing construction

of TðWÞ from TðhÞ. Let us call such TðWÞ the branching topology for Hist, R and

the family of topologies TðhÞ.
The branching topology TðWÞ constructed on a branching structure W in the

manner above is the natural topology on W for the following reason. Recall that,

given any ensemble Hist of histories or spacetimes (whether it comes from a BST

18 Strictly speaking, W is not itself the branching structure in the defined sense: W is a set of events,

whereas we take as the branching structure a set of equivalence classes of event-history pairs; so q(e, h) is

not e, but rather fðe; h0Þje 2 h0 2 Histg ¼ feg 
 HðeÞ. Yet W is isomorphic to the branching structure:

e and {e} 9 HðeÞ are in an obvious one-to-one correspondence.

19 For a variety of such constructions, see, e.g., Willard (1970, pp. 59–69), and Brown (2006,

pp. 97–105).
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structure or from divergence) and any relation R on
P

h h (that serves as a criterion

for identifying points of different spacetimes), the naturalness of the branching

structure W for Hist and R is captured by the correspondence stated in Fact 51 and

Corollary 52. This correspondence, on the level of sets and maps, extends to the

topological level:

Fact 53 Let the set W be the branching structure (as a set) for a family Hist of

topological spaces and a relation R on
P

h h; write TðhÞ for the topology on h 2
Hist. Given any topological space X and a family of maps fh : h ? X ðh 2 HistÞ that

respects R, consider the map f : W ? X given by Fact 51.2. Then TðWÞ is the unique

topology on W that satisfies: (�) f is continuous iff all fh are continuous (with TðhÞ).

Proof The ‘‘only if’’ part of (�) holds for TðWÞ because fh ¼ f 	 q 	mh while the

composition of continuous maps is continuous (q and mh are continuous).

For the ‘‘if’’ part of (�) for TðWÞ, suppose fh are all continuous and fix any open

subset U of X. Then, for each h 2 Hist, the continuity of fh implies fh
�1½U� 2 TðhÞ,

whereas fh
�1½U� ¼ ðf 	 q 	mhÞ�1½U� ¼ ðq 	mhÞ�1½f�1½U��. Thus ðq 	mhÞ�1½f�1½U��

2 TðhÞ for all h 2 Hist, which means f�1½U� 2 TðWÞ by the construction of TðWÞ.
For the uniqueness part, fix any topology T0 on W that satisfies (�). Let us take

q 	mh : h! W as fh : h ? X; then f is the identity map i : W ? W. Since f = i is

continuous from T0 to T0, the ‘‘only if’’ part of (�) for T0 implies that all fh ¼
q 	mh are continuous from TðhÞ to T0. Therefore the ‘‘if’’ part of (�) for TðWÞ
implies that f = i is continuous from TðWÞ to T0, which means T0 � TðWÞ
because i-1[U] = U. On the other hand, the ‘‘if’’ part of (�) for T0 implies that f = i

is continuous from T0 to TðWÞ, that is, TðWÞ � T0. Thus T0 ¼ TðWÞ. h

While we may express assignment of values (or vectors, etc.) to points of

spacetimes h by a family of maps fh : h ? X, it may then be desirable to distinguish

continuous assignments of values from non-continuous ones. This distinction is

made by the topologies TðhÞ (as well as by the topology on X). Recall that, when

such an assignment is coherent with the criterion of identifying points of different

spacetimes, it is equivalently described by a single map f : W ? X. Then Fact 53

means that TðWÞ is the only topology that agrees with the family TðhÞ regarding

whether the assignment is continuous or not.20

In sum, these facts establish that, given an ensemble Hist of histories h and their

topologies TðhÞ, the branching structure W and the branching topology TðWÞ
obtained with the gluing constructions are the natural structure of branching for

Hist, whether the family Hist comes from a BST model or from divergence. These

20 It may be worth noting that the gluing construction can also be extended to orderings on the histories h.

Suppose we are given a set Hist of preordered sets ðh;†hÞ and a relation R on
P

h h. (A preorder is a

reflexive and transitive relation, that is, a partial order without antisymmetry assumed.) On the branching

structure W for Hist and R, we can define the ‘‘branching order for the family †h’’ as the smallest

preorder on W with which all q 	mh preserve order. Then the preorder version of Fact 53 is available. The

BST ordering on any BST model (W, O) is in fact the branching order, in this sense, for the family of its

restrictions to histories h. We should however note that, in non-BST cases, this construction works for

preorders but not necessarily for partial orders: There may be no partial order on the branching structure

with which all q 	mh preserve order (whether †h are partial orders or just preorders).
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two constructs are characterized by the two universal mapping properties expressed

by Facts 51 through 53—one of them assures a correspondence between maps f and

families of maps fh, while the other assures their agreement on continuity. The

constructions are so natural that any theory of branching, whether it is BST or of

ensemble-branching type, would have to admit them.

This does not mean that any theory of branching of spacetimes, if guided by the

requirement of naturalness, must satisfy the BST axioms and adopt Bartha

topologies. We merely claimed that the gluing constructions are natural in the sense

that, given any histories h and topologies TðhÞ on them, their branching structure W

and branching topology TðWÞ should be in a certain relation with them. This has no

consequences for other features of the theory of BST—for instance, the prior choice

principle. An ensemble branching with a significantly different criterion R of

identifying points of spacetimes, or with significantly different topologies, although

it has to construct W and TðWÞ by gluing, may end up with significantly different

features of branching and topology on W. In a slogan, branching is everywhere,

though it might be different from the BST branching.

7 Conclusions

We began this study by inquiring whether Belnap’s (1992) theory of branching

spacetimes satisfies the critical Hausdorff property. To ask a sensible question

required both a rigorous account of BST models hW ;6i and a reasonable topology

for Our World, W, and for each of its histories, h. The definition of BST models

came from Belnap (1992), and to satisfy the second requirement, we adopted the

‘‘Bartha topology,’’ aka ‘‘the diamond topology,’’ as the best choice, both for

defining the class TðWÞ of open sets of W and the class TðhÞ of open sets of each

history, h. Our Theorem 7 shows then a relation between open sets of W and open

sets of h.

Next we defined light-cones in BST models, and to guarantee that they have

properties similar to those of light-cones of space-times of physics, we assumed four

natural postulates C1–C4 on branching histories. We proved that light-cones are

history-independent, which provides evidence that our definitions properly gener-

alize the concept of light-cones from a single space-time to a modal context of many

branching histories. We showed that provided we rule out certain pathological

models by the addition of conditions C1–C4 to the postulates of BST, the set of

‘‘borderless diamonds’’ serves as a base for the topology TðhÞ (Theorem 28).

With these materials in hand, we turned to our first question: Do BST histories

have the Hausdorff property? The most important result of this investigation is that

the answer turns positive when we ask if the four conditions C1–C4 suffice for the

Hausdorff property for individual BST histories (Theorem 35). Since in our many-

branching-histories representation of indeterminism, each BST history was intended

to play the role of a spacetime, and since most spacetime theorists believe that a

topological understanding of spacetime cries out for the Hausdorff property,

Theorem 35, with its intricate proof, was welcome indeed.
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Turning to our central question of what regions of chanciness look like, we

limited our attention to the study of the Hausdorff property in the world of

branching histories. Our main results, Theorems 42 and 47, relate the satisfaction of

the Hausdorff property in a BST model to the existence of passive indeterminism in

the model. Theorem 42 tells us that the failure of the Hausdorff property is a

necessary condition of passive indeterminism. Theorem 47 tidies up our field of

concepts by showing that given the conditions C1–C4, the implication can be

strengthened to an equivalence: Passive indeterminism and the failure of the

Hausdorff property stand or fall together. One should infer that whereas the

Hausdorff property rightly seems essential for any reasonable theory of spacetime,

on the other hand, it seems totally out of place for a world consisting of a family of

branching spacetimes.

The equivalence of a failure of the Hausdorff property and passive indeterminism

prompted our final question: Just how ubiquitous is passive indeterminism? The

answer is given by our Lemma 43: Excluding some pathology, an indeterministic

BST model (i.e., a model with choice points) exhibits passive indeterminism.

We read these results as optimistic, especially for a future project of merging

branching space-times with general relativity. Given physically realistic conditions

C1–C4, each history (or space-time) has the Hausdorff property, which is physically

important. Whether this property is satisfied by a whole model of branching

histories is neutral to current physics. One may thus attempt to associate a

differential structure to a BST model in such a way that each history be a time-

oriented manifold satisfying the Hausdorff property.21
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