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Abstract

The paper defends an Aristotelian notion of indeterminism, as rig-
orously formulated in the framework of branching space-times (BST)
of Belnap (1992), against criticism by Earman (2008) based on a
model-theoretic characterization of indeterminism. It delineates BST
branching against the background provided by Earman’s (2008) dis-
tinction between individual vs. ensemble branching. Partly in order
to motivate our responses to Earman, it describes a construction of
physically-motivated BST models, in which histories are isomorphic
to Minkowski spacetime. Finally it responds to Earman’s criticisms
leveled against BST by addressing a topological issue, the question
of an actual future, the past/future asymmetry, and some semantical
questions.

In current debates two different concepts of (in)determinism have been
used, each having a different historical origin and each being applied in
different fields.1 On the one hand, there is an everyday natural notion
of (in)determinism, discussed first by Aristotle, and illustrated by alter-
native possible futures, one with a sea battle and the other without. On
the other hand, there is a tradition started by Laplace, of characterizing
(in)determinism in terms of laws and predictions. This latter concept was rig-
orously analyzed by the logician, R. Montague, in terms of models of a theory
that are alike up to a certain time, and then diverge. By replacing “models of
a theory” by “possible worlds”, D. Lewis later adapted Montague’s analysis
to general philosophy; in turn, philosophers of physics, especially J. Earman,
have used Lewis-inspired concepts of (in)determinism.

“Branching space-times” is a rigorous attempt to analyze the natural
(Aristotelian) notion of indeterminism. The theory appeared in Belnap
(1992) (henceforth BST92 for the publication, and BST for the theory), and
has since been developed by several philosophers in a variety of directions.
For relevant publications, see items in the list of references by Belnap et
al, by Müller et al, and by Placek et al. BST92 built on earlier work on
the “branching times” (henceforth BT) representation of indeterminism that
goes back to a passing suggestion in an unpublished letter from S. Kripke to

1We are indebted to Bryan Roberts and Balázs Gyenis for timely readings of our
manuscript and for their comments and corrections. We would also like to thank one referee
of this journal for their substantive and detailed comments. TP gratefully acknowledges
the support of the Jagiellonian University WRBW2010 grant and of the MNiSW research
grant K/PMN/000034.
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A. N. Prior dated September 3, 1958,2 to the short discussion in Prior (1967),
and to its working out in Thomason (1970). For our own earlier work on BT,
we refer to Facing the Future (Belnap et al., 2001, henceforth, FF).

Recently, BST has been attacked by John Earman, a leading figure in
the philosophy of physics. Earman (2008) (henceforth Pruning), finds BST
troublesome in several ways, some minor, others major. The major objections
are as follows. (1) It is not clear what kind of branching BST assumes, where
one kind, individual branching, is in conflict with general relativity. (2) On
the BST account, spacetimes seem to violate the Hausdorff property. (3)
BST opposes the doctrine that “(as of now) there is [a] fact of the matter
as to which of the possible futures is the actual future” (p. 190). (4) In
contrast to time-reversal symmetric physics, BST assumes a past vs. future
asymmetry. (5) In addition to these complaints, Earman advances a certain
semantical rule that is at variance with BST semantics.

It seems to us that these objections and perhaps misunderstandings stem
from differing notions of (in)determinism, which in turn underlie differing
versions of branching. So we begin our essay in response to (1) in (§1) with
an attempt to clarify Earman’s diagnosis of a kind of branching assumed
in BST. Then, to prepare for answering the remainder of Earman’s objec-
tions, in §2 we offer an overview of BST. To emphasize how naturally a BST
model arises out of field-theory inspired considerations, in §3 we develop an
account of particular BST models, known as Minkowskian Branching Struc-
tures (MBS’s). In section §4 we reply to Earman’s criticisms (2)–(5). Finally,
our views on indeterminism, and why we think Earman is seriously mistaken,
are in §5.

1 Three types of branching

Pruning begins its discussion of branching by defining three types of branch-
ing, which Earman labels “ensemble branching,” “individual branching,” and
“Belnap branching.” To explain, branching is a means of representing incom-
patible possible courses of events, and should be contrasted with forks used
to represent spatiotemporal relations.

2This is mentioned by Øhrstrøm and Hasle (1995, p. 173).
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1.1 Ensemble and individual branching defined

The first two types are defined with reasonable precision:
“Ensemble branching” is defined by four features.

1. We have a “collection of spacetime models (worlds, histories, . . . )”
(p. 188). The collection is the “ensemble”; note especially that its
members are spacetime models in a standard sense; that is, each is a
structure that can serve as a model in Tarski’s sense of a spacetime
theory in Einstein’s sense.3

2. The collection contains spacetime models that are isomorphic over some
region (typically for all times before a given time), but non-isomorphic
elsewhere.

3. The “isomorphism at issue may be construed either as literal identity
or as a counterpart relation” (p. 188) in something like the sense of
Lewis (1986).

4. There is no “branching structure in any individual spacetime model”
(p. 187).

For most spacetime theories, their models (aka spacetime models) can be
viewed as structures of differential geometry. A spacetime model so under-
stood is a differential manifold M with a collection of object-fields defined on
M; these object-fields characterize the structure of spacetime or the matter-
fields (cf. Pruning, note 4).

“Individual branching,” in contrast, “involves branching structures in in-
dividual spacetime models” (p. 187). This is the only distinguishing feature
that decides between individual branching and ensemble branching. In par-
ticular, in Earman’s characterization, the choice between the identity relation
and other kinds of isomorphism for an adequate relation between spacetime
models, is not relevant to the distinction. This may come as a surprise to
readers of David Lewis, who objected to the literal overlap of initial segments
of worlds, while recommending a similarity of initial segments as an adequate

3We attribute this sense of “model” to Earman in virtue of Earman (1986), p. 20–21,
which refers to the logician, Richard Montague (1962). Earman refers there to Montague’s
model-theoretic analysis of (in)determinism of theories (understood as syntactic objects),
takes possible worlds to be counterparts of models, and then explicates (in)determinism
in terms of possible worlds.
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concept to characterize (in)determinism.4 For Lewis the issue “what kind of
isomorphism” was significant for the characterization of indeterminism. We
may, however, put that aside; the chief point is that in Pruning, Earman
distinguishes three types of branching that might be invoked in considering
indeterminism. We recapitulate the first two.

Ensemble-branching is ensemble branching in the sense given by Ear-
man’s clauses (1)–(4) above. The central idea is that indeterminism is
represented by branching that is between rather than within individual
spacetime models.

Individual branching is individual branching in Earman’s sense. The idea
here is that an attempt is made to represent indeterminism by branch-
ing within an individual spacetime model.

We will also classify theories as “ensemble-branching” or “individual-
branching,” according to the type of branching involved. Earman argues
that (a) ensemble branching gives a good, scientifically respectable account
of indeterminism, whereas (b) any individual-branching theory is bound to
be unpalatable in some important fashion. The argument for (a) lies in other
work by Earman, principally in his prize-winning book, Earman (1986), but
see also the more recent Earman (2007). Much of Pruning is devoted to (b),
which is largely outside the scope of this essay.

1.2 BST branching

Earman defines his third type of branching, “Belnap branching,” only by
vague reference to “the Belnap school of branching spacetimes” (p. 187). In
order to avoid unfortunate personalization, we will call this third type “BST
branching.” We will keep the definition historical: BST branching is the kind
of branching of overlapping “histories” that is axiomatized with mathematical
precision in BST92 and subsequent papers. See §2.3 for a notation-free but
exact list of axioms.

Our major discussion of BST branching occurs in §2 and §3. Here we
insert a few paragraphs on the topic, so as to put the extended discussion
into a proper context.

4Lewis (1986) called the recommended option “divergence,” based on similarity of
initial segments, in contrast with “branching,” based on overlapping initial segments.
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In Pruning Earman complains at length about BST. 5 In some passages,
Earman tends to classify BST as postulating the objectionable individual
branching, which he intends as a serious complaint. Sometimes, however, he
merely complains that he is “unable to get a fix on” BST branching (p. 192),
which Earman characterizes as lying “somewhere between” ensemble and in-
dividual branching, at a location that “is not easy to pin down” (p. 189).
Since BST92 offers a carefully crafted rigorous theory living up to the stan-
dards of mathematical logic, it is difficult for us to appreciate Earman’s
hesitation. In the context of what it calls a Minkowski branching spacetime
(definition 16 of Belnap (1992)), BST92 treats as interchangeable the words
“history,” rigorously defined as a possible course of events, and “spacetime,”
left undefined in terms of the primitives of BST92, but evidently intended to
connote a spacetime in the sense of special relativity. BST does not tolerate
any branching within an individual history. Rather, as in ensemble-branching
theories, all branching is between histories—which, as noted, are imagined
by BST as individual spacetimes. In this respect, then, BST is rather like
an ensemble-branching theory.

What might give rise to naive wondering if BST is, after all, a individual-
branching theory is this: Each individual model of the theory of BST involves
branching. BST is not, however, of the individual-branching type. The rea-
son is this: An individual model of BST is neither a single history, nor an
individual spacetime. In short, a model of BST in the proper logical sense
is not, nor is it intended to be, a spacetime model in Earman’s sense. An
individual model of BST involves many histories (read “space-times”). Here
we are using “model” in the same standard logical sense as does Earman,
who derives his usage from Montague. The difference between an individual
spacetime model and a model of BST is that the former has power to rep-
resent neither alternative possibilities nor other modal notions. Put it this
way: A single, individual model of BST theory represents many pairwise-
incompatible branching courses of events (each course of events imagined as
a spacetime with content), whereas an individual model in Earman’s sense

5We confess to a certain ambivalence about being one of the targets of Pruning : On
the one hand, we are honored by having a truly distinguished philosopher of science focus
his attention on BST; on the other hand, we are disappointed that, judging by Pruning,
Earman seems to have looked at only some thoroughly informal paragraphs of our papers,
giving not the slightest hint that he has considered any part of the extensive technical
development that constitutes the heart of our work.
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represents a single course of events.6 Thus, BST has to be counted as neither
an ensemble-branching nor an individual-branching theory.

To repeat, in BST indeterminism is represented by branching in an in-
dividual structure, as in individual branching, but the model is quite unlike
a spacetime model. It is in fact a more complex structure (a “world”) that
involves many pairwise-branching “histories,” each history construed as a
spacetime, as in ensemble branching. A key feature is that a BST-branching
physical theory has language that can describe branching without ascending
to a metalanguage.7 We defer discussion of BST branching to §2.

2 BT/BST branching

“Branching time” (BT) is an axiomatic theory postulating that the the world
is a tree of “moments,” the latter being envisaged as instantaneous “super-
events” that, although instantaneous, are spread out over all of space.8 BST
theory is a refinement of BT theory.

2.1 BST: Our World and its point events

The construction of BST92 begins with a set, called Our World, of possi-
ble point events—instead of BT-moments—each of which is an ideally small
event that is in a “suitable external relation” (Lewis) to us at present. Speak-
ing of his own worlds, Lewis writes, “. . . each world is interrelated (and is
maximal with respect to such interrelation) by a system of relations which,
if they are not the spatiotemporal relations rightly so called, are at any rate
analogous to them” (Lewis, 1986, p. 75). We hasten to accept this account of
a “world,” adapting it to BST by taking the relation in question to be the re-
flexive, symmetric, and transitive closure of the fundamental causal-temporal
ordering, �, of possible point events. To accommodate indeterminism, the
set includes point events that either belong to the future of possibilities of
here-now, or belong to the future of possibilities of some point event in the

6Cf. the distinction between “modally thick” and “modally thin” structures made in
§2.5. Observe in particular that BST publications cannot be understood if one follows
Earman in casually identifying “worlds” and “histories” (p. 188).

7We count talk about ensembles of models as “metalinguistic,” since, although they
can be defined as collections of nonlinguistic set-theoretical structures, they make little
sense except in their relation to theories.

8See FF for history and references.
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(causal) past of here-now. Of some events from that latter category, we may
say, from our present standpoint, that they could have occurred (it was pos-
sible that they would occur). We may thus visualize a point event as linked
to us at present by zigzagging lines, each line representing a causal-temporal
order, in part analogous to the order familiar from special relativity. Note
that we use here an indexical language, since our notion of possibility is fun-
damentally indexical. After this explanation, we choose to avoid explicitly
indexical language. Thus, we will for brevity say “point event” rather than
“possible point event.” With this understanding, we say that Our World,
abbreviated in technical passages by OW, is the totality of point events, par-
tially ordered by a causal-temporal ordering �, with the ordering e � e

�

understood as “e� is in a possible future of e” and, equivalently, “e is in
the (settled) causal past of e

�.” The locution “Our World” is intended to
emphasize that as far as BST goes, only one “world” is postulated. That
one world, Our World, suffices for possibilities based in reality. We of course
have no reason to block investigation of the idea of a “plurality of worlds”
in connection with unreal possibilities or merely imagined possibilities. It is
just that, rightly or wrongly, BST has nothing to say about them.9

There is a pre-geometrical flavor to the concept of point event, to be
seen in examples such as an elementary particle impinging upon an ideally
smooth surface. The elementary status of the particle indicates that this
event is both very, very tiny, and not further analyzable. The event of the
elementary particle impinging upon a smooth surface has no parts (Euclid);
it is thus a point event. It should be clear that point events are not to be
identified with their locations.

2.2 BST: histories

There is on this account, and in contrast to Lewis, only one world. To capture
indeterminism, OW needs to feature at least two “histories” (aka really
possible courses of events), even though there is no postulate to this effect.
In BST, the notion of “history” is defined in terms of the two primitives, OW
and �. In analogy to many other possible-worlds-like theories, there are two
ingredients to the notion of “history”: consistency and maximality. For a
criterion of consistency of two events, BST takes the existence of a (joint)

9The purposes of Pruning permit using “model,” “world,” and “history” interchange-
ably (p. 188), and we may add “spacetime model.” That won’t do for understanding
BST.
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upper bound of these two events. This decision is motivated by the natural
idea that the upper bound of two events serves as a perspective from which
the two events could have been seen to have occurred jointly. Since a subset
A of OW is called directed (sometimes “upward directed”) if any two of its
elements have an upper bound in A, a history is defined as a maximal upward
directed subset of OW . Thus, significantly, BST histories are certain sets of
point events. In BST92, every two histories overlap, which tallies nicely with
the notion that every point event in OW is in a “suitable external relation”
to us at present: Overlap evidently guarantees that any two point events can
be linked by a zigzagging causal line in the shape of an “M”.

2.3 BST: axioms

BST92 is mathematically rigorous: It presents an axiomatic theory, essen-
tially second order because of the idea of histories. It is not our business here
to explain BST axioms, few though they are, except to the extent required
for clearing up the confusions and answering the complaints of Pruning . It
is important, however, that BST is a mathematically exact theory, and to
make this evident, we briefly state its axioms: OW is a nonempty set, � is a
dense partial order on OW, each lower bounded chain has an infimum, and
if upper bounded, has a supremum in each history containing it, OW has no
maximal elements, and finally, for histories h1, h2, if E is a nonempty lower
bounded chain in h1/h2, then some lower bound of E is maximal in h1 ∩ h2.
This last axiom (called the prior choice principle) entails that every two his-
tories overlap and, moreover, that there is at least one element maximal in
their overlap. Such an element we call a choice event of these histories.

2.4 BST: space-like relatedness

BST has natural concepts of (in)consistency and of space-like relatedness:
Two events are consistent iff they jointly belong to some one history; other-
wise they are inconsistent ; and two events are space-like related iff they are
consistent but incomparable with respect to the ordering � on OW.

2.5 BST: modal thickness and thinness

Note the radical difference between the concept of OW and the concept of
a history. OW contains every event that was, is, or will be really possible
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(this being said from our present standpoint).10 Accordingly, in general OW
has many (alternative) possible histories.

Having this modal aspect in mind, we say that OW is modally thick.
In contrast, a history represents (ideally, in minute detail) some particular
scenario. Within a fixed history, there are no alternative possibilities, since
possibilities alternative to those occurring in a given history must occur in
other, alternative histories. We thus say that a single history is modally thin.

2.6 BST: applications

BST92 has been developed with an eye to two sorts of application. It has
been applied to rigorously analyze (in)determinism and some consequences
thereof, understood as features of the world rather than features of language,
theories, laws, or our knowledge of the world. Here belong BST theories of
causation and of agency in an indeterministic world, as well as the theory
of causal probability spaces.11 These theories are intended as objective in
the same sense that a theory of physics may be intended as objective. The
second application is to provide formal semantics for a language with—in ad-
dition to standard truth-functional and quantificational operators—temporal
or spatiotemporal operators, modalities whose semantics involves quantifica-
tion over histories, and indexicals.12 It is striking that although these are
large tasks, BST is frugal both with respect to primitive concepts and with
respect to postulates. Nevertheless, BST lacks many features. Importantly,
it has (for better or worse) no concept of laws of nature, although it is laws-
friendly, since it has modalities and propositions, both rigorously defined—
see e.g. Belnap (2002b). Its extension by agentive concepts is natural and
straightforward, but the attempt to add mentalist concepts rapidly takes one
away from its fundamental commitments.

10In contrast to Lewis, we do not deal with fanciful notions of possibility. Xu (1997)
coined the term, “possibilities based in reality”; that is what BST means to treat. This
perhaps comes through most clearly in the BST theory of causae causantes, or “originating
causes” as developed in Belnap (2005b).

11Cf. Belnap (2005b). Placek (2004), Belnap (2005a), Weiner and Belnap (2006), and
Müller (2005).

12Cf. Müller (2002), Belnap and Green (1994), Belnap (2007), and Placek and Müller
(2007) .
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2.7 Spatiotemporal locations

Here we will say a word about the relation between BST histories and spa-
tiotemporal locations. The entire next section is devoted to a particular class
of BST models, in which histories are like Minkowski spacetime.

To clarify a relation between histories and spatiotemporal locations, recall
that BST histories are particular sets of point events. In everyday discourse,
we ask what would have occurred at a given time, if things had gone differ-
ently at some junction in the past. Similarly, we wonder what would have
happened in a given spatial location, if things had gone differently. We thus
have a notion of events, belonging to various histories, yet occurring at the
same instant, or in the same spatial location, as a given event. Having learned
the relativity lesson, we should not separate time and spatial location, aiming
instead to capture the concept of “spatiotemporal locations,” st-locations, for
short. Also, the “what would . . . ” questions mentioned above make sense
in limited circumstances only: if we consider some extravagant evolution of
the universe, say, a big crunch five seconds after the big bang, it is doubtful
that we can profitably wonder what would have occurred at our present st-
location, if that other evolution had taken place. The alternative does not
seem to make sober sense. Thus, the histories considered should be in some
sense similar to allow for common st-locations. Accordingly, only particular
BST models permit the introduction of a set of common st-locations.

In this vein, Müller (2005) defines a set S of common st-locations in a
BST model �W, �� as a set of equivalence classes on OW that satisfy certain
conservativeness conditions with respect to the ordering �, namely (using ∃!
for existence and uniqueness):

∀s ∈S ∀h ∈Hist ∃!x ∈W : x ∈ s ∩ h and (1)

∀s1,s2∈S ∀h1, h2∈Hist ∀x1,x2,y1,y2∈W:

((x1 ∈ s1 ∩ h1 ∧ x2 ∈ s2 ∩ h1 ∧ x1 � x2 ∧ y1 ∈ s1 ∩ h2 ∧ y2 ∈ s2 ∩ h2)

→ y1 � y2).

(2)

As Müller shows, there are BST models that do not allow for the introduction
of common st-locations. In his illustration, a base set of a BST model consists
of pairs of real numbers and has two histories which overlap below and in
the wings of point �0, 0�, yet dramatically diverge above this point, as one is
isomorphic to the positive real half-line and the other to a region of R2.
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3 Physically-motivated BST models

Until now there has been no link between abstract set-theoretical construc-
tions of BST and models of mathematical physics. This predicament has
led to complaints as to where in physical models there are objects postu-
lated by BST, for instance choice points (compare a quote from Earman, as
discussed in §5). To repair this unfortunate situation, in this section we con-
struct physically-motivated BST models, in which histories are isomorphic to
Minkowski spacetime. The main news is how naturally a BST model arises
from field-theory inspired considerations.

Having said so, we rush to emphasize that we are not so foolish as to
believe that every spacetime of physics can be re-described in a BST model.
As stated in BST92, some general relativistic spacetimes appear to conflict
with BST definitions or axioms, and at present we do not know how to
modify these to make them cohere with models of general relativity. In
particular, the strict partial ordering � of BST conflicts with causal loops of
some models of general relativity. Also, as explicitly stated in BST92, the
idea of taking a downward fork as a criterion for the involved events to be
in one history, seems to be in conflict with spacetimes with black holes.13

We will show in the next section that there are nevertheless BST models
with histories isomorphic to Minkowski spacetime, which suggests that BST
models for general relativistic spacetimes with weak gravitational fields can
also be constructed.

3.1 Minkowskian Branching Structures

We turn now to constructing a special class of BST models, called Minkows-
kian Branching Structures (MBS’s), which are more relevant (we believe) to
physics.14 First, each history of an MBS is isomorphic to the Minkowski

13B. Roberts remarked to us that the mentioned conflicts seem always to involve global
features of spacetime topology. As for local features of such troublesome spacetimes, they
are reasonable in the sense that there exists an open neighborhood around every point
that can be embedded in R4. Thus, BST can be interpreted minimally as an attempt to
describe the local indeterminism in our world in our vicinity. Another option is to refurbish
BST by replacing a global notion of history by some local notions; a first attempt in this
direction is a theory of possible branching continuations, cf. Placek (2010).

14The notion of a Minkowskian Branching Structure was first introduced informally in
Belnap (1992) as a BST model in which every history is a Minkowski spacetime. Placek
(2000) first attempted to produce a BST model out of (copies of) Minkowski spacetime,
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spacetime. Secondly, the construction proceeds in terms of assignments
of physical properties (typically, strengths of physical fields) to spacetime
points, which is more palatable to physicists’ taste than the abstract axioms
of BST theory. Furthermore, MBS’s permit the introduction of common
st-locations. On the other hand, we shall see that for the construction to
succeed, some additional physical conditions must be satisfied.

Recall that Minkowski spacetime is a four dimensional real vector space,
with the distance function D

2
M : R4 × R4 → R defined as follows (for x, y ∈

R4):

D
2
M(x, y) := −(x0 − y

0)2 +
3�

i=1

(xi − y
i)2

. (3)

The Minkowskian ordering, �M , is defined in the usual way as follows:

x �M y iff D
2
M(x, y) � 0 and x

0 � y
0
. (4)

Two points x, y ∈ R4 are space-like related in the Minkowski spacetime
(‘SLRM ’ for short) iff neither x �M y nor y �M x. Naturally, x <M y iff
x �= y and x �M y.

Many physical theories ascribe physical properties, typically strengths
of physical fields, to points of a spacetime, or can be viewed as involving
such an ascription. If the underlying spacetime is Minkowski spacetime, the
properties are ascribed to points of Minkowski spacetime, i.e., elements of
R4. A minimal (necessary) condition for a theory to exhibit indeterminism is
that it allows for many “scenarios” ascribing alternative possible properties
to points of Minkowski spacetime. In other words, one point of R4 may have
alternative properties assigned, depending on the scenario.

Ultimately we will define an MBS as a triple M = �Σ, F, P � (cf. Defini-
tion 8). We will begin by partly characterizing Σ, F , and P . To help capture
abstractly the informal concept of possible “scenarios,” we assume a non-
empty set Σ of “scenarios.” We let σ, η, γ range over Σ. We want to think
of a scenario as Minkowski spacetime filled with some “content,” where the
content of a scenario should be representable by an attribution of properties
to each Minkowski spacetime point. That is, the content of a single scenario,
σ, may be represented by a function in the set R4 → P(P ), where P is a
nonempty set of properties attributable to points of R4. Our purposes do not

but failed. The first correct construction of MBS’s (but with finitistic assumptions) is in
Müller (2002).

14



require putting any structure on P . A system of such contents can then be
represented by a global attribution of properties F : Σ×R4 → P(P ). We will
call such an F a “property attribution on Σ and P ,” noting that it is in effect
a modal notion since referring to alternative possible properties for the same
spacetime point. Writing σx for a pair from Σ×R4, we may read “F (σx)” as
“the set of properties instantiated at spacetime point x in scenario σ.” We
informally think of the set in question as containing compatible properties
only.

This function evidently dictates for each spacetime point, x, whether
two scenarios, σ, η, are qualitatively the same there (F (σx) = F (ηx)) or
not (F (σx) �= F (ηx)). Clearly, many property attributions yield a pattern
of scenarios without any similarity to what one might call indeterminism.
Indeed, there is a consensus that indeterminism involves many scenarios that
agree over some region (typically, an initial region) and then disagree over
some (typically, later) region. In what follows, we will single out some special
property attributions (which we will call proper property attributions), which
seem reasonable, intuitively speaking. We will find that we are led to a
pattern of indeterminism that is describable by branching space-times. This
means that we will derive from an MBS M = �Σ, F, P � a BST-like Our World
�B, �R�, and BST-like notions of history and choice event, and show that
the BST axioms are satisfied in the defined model.

Let us now turn to a task of defining a proper property attribution, F .
A part of this task is to single out a set of particular points of R4, to be
interpreted, in loose talk, as locations of chanciness, as where the scenarios
diverge. We will call such points “splitting points.”

We first assume that every two scenarios differ somewhere, i.e.,

∀σ, η ∈ Σ (σ �= η → ∃x ∈ R4
F (σx) �= F (ηx)), (SDiff)

where F is a property attribution on Σ and P .
This assures us that every two scenarios are qualitatively different; we

further require that the pattern of differences for two scenarios be rather
special: We postulate that for every two scenarios there is (at least one)
point s ∈ R4 such that the scenarios agree in the past of s and at s, but
disagree somewhere in the immediate future of s. A point satisfying these
two conditions will be defined as a splitting point for the two scenarios.15

15We will discuss Earman’s objection to splitting points in §5.
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The “past and present agreement” (PastPA) clause, that is, “past and
present agreement of scenarios σ, η from a spacetime point s,” is easy to
state: Where F is a property attribution on Σ and P , and σ, η ∈ Σ, and
s ∈ R4

∀y ∈ R4 (y �M s → F (σy) = F (ηy)). (PastPA)

The “immediate future disagreement” (ImFDis) clause, that is, “disagree-
ment of σ, η immediately future to s,” needs, however, to be handled with
more delicacy. The nub is that to say that σ, η split at s is by no means
to say that their contents differ at every spacetime point above s. Far from
it: It makes perfect sense, for example, that they reconvene qualitatively
at some point x above s, and even remain largely the same in content for
ever after (see fn. 14). It would not, however, look reasonable if over some
spatiotemporal stretch immediately above a splitting point for two scenarios
there were no qualitative differences between these scenarios. Just as a point
of R4 at which σ, η are different in content is not a splitting point, so also a
point that is not immediately followed by qualitative differences between two
scenarios is not, after all, the point at which they split. In other words, for s

to be a splitting point between two scenarios σ, η requires not only (PastPA),
but also, no matter how close a future point x is to s, that there is always
an even closer future point at which the two scenarios disagree in content
(immediate future disagreement):

∀x ∈ R4 (s <M x → ∃y ∈ R4 (s <M y <M x∧F (σy) �=F (ηy))).16 (ImFDis)

The following definitions are therefore well-motivated.

Definition 1 (Splitting points). Given M = �Σ, F, P �, where F is a property
attribution on Σ and P and σ, η ∈ Σ and s ∈ R4, s is a splitting point be-
tween scenarios σ, η iff s satisfies the condition (PastPA) of past and present
agreement and the condition (ImFDis) of immediate future disagreement.

Sση ⊆ R4 is defined as the set of all splitting points between scenarios σ, η ∈ Σ.

16We are quick to point out that ImFDis has a consequence that there must be infinitely
many points of disagreement located on the future light-cone of a splitting point s in each
direction. As one of our referees indicated, one can tell a cogent, or apparently cogent,
physical story about a photon taking one of two alternative paths from a splitting point
s, which hardly calls for filling up the future light cone of s with points of disagreement
in every direction, as ImFDis requires. Nevertheless, our proofs rely on ImFDis; we leave
it for future research to construct MBS’s without this consequence.
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Splitting is a qualitative notion that is derived from differences of properties
in scenarios, in contrast to the cause-like notion of choice points of BST92.

Definition 2 (Proper property attribution). Given M = �Σ, F, P �, F is a
proper property attribution on a set of scenarios Σ and a set of properties
P iff F : Σ×R4 → P(P ), and F satisfies the condition SDiff that scenarios
differ, and for all σ, η ∈ Σ,

(1) ∀x ∈ R4 (F (σx) �= F (ηx) → ∃s ∈ R4 (s <M x ∧ s ∈ Sση)), and

(2) for every lower bounded chain E in �R4
, �M�, if ∀x∈E ∃s(s ∈ Sση ∧

s <M x), then ∃s0(s0 ∈ Sση ∧ ∀x(x ∈ E → s0 <M x)).

Observe that the first clause links points of qualitative difference to splitting
points: below each point of difference there is a splitting point. The second
clause is a constraint on a set of splitting points: if there is a splitting point
below each element of a lower bounded chain, then there is a splitting point
below the whole chain.

We show now that for any σ, η ∈ Σ, the set Sση of splitting points induced
by a proper property attribution on Σ and P has some natural properties.
Two of these properties are stated in terms of what we soon prove to be a
region of R4 where the two scenarios are qualitatively the same; but first the
definition.17

Definition 3 (Region of overlap). Given M = �Σ, F, P �, for σ, η ∈ Σ, Rση :=
{x ∈ R4 | ¬∃s (s <M x ∧ s ∈ Sση)}

We will show as part of our proof of Fact 4 just below that Rση is indeed
a region of R4 where the two scenarios are qualitatively the same.

Fact 4. Assume that F is a proper property attribution on Σ and P . Then:

(i) σ �= η → Sση �= ∅;

(ii) Sση = Sησ;

(iii) ∀s, s� ∈ Sση (s �= s
� → s SLRM s

�);

(iv) x ∈ Rση → F (σx) = F (ηx), and

17Note that we write “a region,” not “the region”; there is no implication that the two
scenarios are qualitatively different everywhere else. Remember that we allow for split
scenarios to largely reconvene. Regions of overlap were first introduced by Müller (2002).
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(v) ∀σ, η, γ ∈ Σ Rση ∩Rηγ ⊆ Rσγ.

Proof:

Ad (i). Immediate from Definition 2.

Ad (ii). Immediate from Definition 1.

Ad (iii). Assuming s, s
� ∈ Sσ,η, so that both (PastPA) and (ImFDis) hold

for each of s, s
�, it suffices to show that the hypothesis s <M s

� leads to
contradiction. Applying (ImFDis) (immediate future disagreement) to s

�,
the hypothesis implies the existence of some y0 between s and s

� (hence a y0

such that y0 <M s
�) such that F (σy0) �= F (ηy0). But now applying (PastPA)

(past agreement) to s
� yields F (σy0) = F (ηy0). Contradiction.

Ad (iv). This is essentially the contrapositive of Definition 2 clause (1). For
F a proper property attribution on Σ and P , if there is no splitting point for
σ, η prior to a point x, then F (σx) must be identical to F (ηx).

Ad (v). For reductio, assume x ∈ Rση ∩ Rηγ but x �∈ Rσγ. By Definition 3,
the latter implies that we may choose s such that (s < x ∧ s ∈ Sσγ), which
in turn implies by (ImFDis), that is, by the immediate future disagreement
clause of the definition of set Sσγ of splitting points, that we may find a y

such that
s < y < x ∧ F (σy) �= F (γy). (†)

Regions of overlap are evidently closed downward, so that with our initial
assumption, y <M x implies y ∈ Rση ∩ Rηγ. By item (iv) of this Fact,
F (σy) = F (ηy) and F (ηy) = F (γy), and hence F (σy) = F (γy). Contradic-
tion with (†). �
Observe that in the proof above we used clause (1) but not clause (2) of
Definition 2.

3.2 Defining MBS’s

After this preliminary work, we turn now towards defining MBS’s and show-
ing that they satisfy the BST axioms. The first task is to find a correlate
for the BST notion of Our World, i.e., a base set and an ordering. Given
M = �Σ, F, P �, following Müller (2002), we take the elements of a base set
to be equivalence classes of a certain relation ≡R on Σ× R4. The idea is to
“identify” points in regions of overlap; hence the relation ≡R is defined as
below. Müller proves ≡R to be an equivalence relation on Σ × R4. We will
write [σx] for the equivalence class of σx with respect to the relation ≡R.
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Definition 5 (MBS equivalence, MBS base set, and MBS ordering). Given
M = �Σ, F, P �, the relation ≡R on Σ× R4 is defined as:

σx ≡R ηy iff x = y and x ∈ Rση. (5)

We set
[σx] := {ηx|σx ≡R ηx}.

The base set B is defined by

B := {[σx]|σ ∈ Σ, x ∈ R4}. (6)

The ordering �R on B is defined by

[σx] �R [ηy] iff x �M y and σx ≡R ηx. (7)

We will write <R for the strict counterpart of �R.

As Müller shows, �R is a partial ordering on B. Note that if x is not in the
region Rση of overlap of σ and η, then [σx] ��R [ηy] (for all y), but if x is in
Rση, for [σx] �R [σy] we need only check the Minkowski ordering, x �M y.

Given M = �Σ, F, P �, a natural notion of the course of events correspond-
ing to scenario σ is the set {[σx] | x ∈ R4} of equivalence classes. Knowing
the set, that is, knowing each equivalence class from it, gives us all there is
to be known about this course of events, that is, a property assignment for σ

and every x ∈ R4. This motivates defining {[σx] | x ∈ R4} as a “B-history.”

Definition 6 (B-histories). Given M = �Σ, F, P �, we define “the B-history
corresponding to σ ∈ Σ,” written bσ, as {[σx] | x ∈ R4}.
B-Hist is the set of all B-histories.

Given M = �Σ, F, P �, our plan is to take the pair �B, �R� to be an MBS
representation of Our World. To this end we need a condition to assure an
obviously desirable fact, namely that each B-history is identical to a maximal
upward directed subset of B (i.e., a history in the BST sense), and vice versa.

Condition 7 (the chain condition). Given M = �Σ, F, P �, for a maximal
upward-directed subset h of B and x ∈ R4, define Σh(x) := {σ ∈ Σ|[σx] ∈ h}.
For every maximal upward-directed set h ⊆ B and for every chain L ⊆ R4,
we require

�
{Σh(x)|x ∈ L} �= ∅.
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Given a maximal upward directed subset h ⊆ B and x ∈ R4, we may ask for
which σ ∈ Σ the equivalence class [σx] belongs to h. Σh(x) collects all such
σ ∈ Σ. (For more information on the concept just defined, cf. Müller (2002);
for a discussion of the chain condition, cf. Wroński and Placek (2009).)

Finally, we define MBS’s in the present sense.

Definition 8 (MBS). A triple M = �Σ, F, P � is an MBS iff Σ is a non-
empty set of scenarios, F is a proper property attribution on Σ and P , P is
a nonempty set of properties, and �Σ, F, P � satisfies the chain condition.

Here is a collection of small facts to which we appeal in our proofs, often
silently.

Fact 9. Let M = �Σ, F, P � be an MBS. Then:

(1) [σx] �R [σy] iff x �M y;

(2) [ηx]∈bσ iff [σx]=[ηx] iff σx ≡R ηx iff x∈Rση iff ¬∃s(s∈Sση ∧ s <M x).

We are now going to formulate our main theorem, which summarizes all
the major information about MBS’s, and states the desired facts mentioned
before.

Theorem 10. Suppose that M = �Σ, F, P � is an MBS.

1. Every B-history is a maximal upward directed subset of B;

2. Every maximal upward directed subset of B is a B-history;

3. To every B-history there corresponds a unique σ ∈ Σ, i.e., for every
pair bσ, bη of B-histories, bσ =bη iff σ = η;

4. �B, �R� as defined in Definition 5 satisfies the BST axioms described
in Section 2.3;

5. For every pair bσ, bη of B-histories, [σx] is maximal in bσ∩bη iff x ∈ Sση

(a perfect match between choice events and splitting points);

6. Every B-history is isomorphic to Minkowski spacetime;
M permits the introduction of common st-locations;
Each B-history can be viewed as a differential manifold.
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The clauses 1, 2, and 3 can be summarized by saying that there is a perfect
match between scenarios, B-histories, and maximal upward directed subsets
of B.
Proof:

Ad 1: See the proof of Lemma 4 of Wroński and Placek (2009), which is a
brushed-up version of the proof of “the first direction” of Lemma 3 of Müller
(2002).

Ad 2: See the proof of Lemma 8 of Wroński and Placek (2009).

Ad 3: To the left, the proof is immediate. In the opposite direction, assume
for reductio that (i) bσ = bη and (ii) σ �= η. By Fact 9(2), (i) is equivalent to
(†) ∀z∈R4 : ([σz] = [ηz]). (ii) entails that Sση �= ∅—cf. Fact 4(i). Let us take
s0 ∈ Sση and y such that s0 <M y. By Fact 9(2): [σy] �= [ηy]. Contradiction
with (†).
Ad 4: Non-emptiness of B immediately follows from non-emptiness of Σ,
which is required by Definition 8. To prove the prior choice principle, we
need to show the following: (†) if L is a lower bounded chain in �B, �R� such
that for some σ, η ∈ Σ: L ⊆ bσ/bη, then there is a maximal element [σs0] of
bσ ∩ bη such that ∀[σx] ∈ L : [σs0] <R [σx].

To prove this, let L be as in the antecedent of (†). Let us define E := {x ∈
R4 | [σx] ∈ L}. Since [σx] �R [σy] iff x �M y, E is a lower bounded chain in
�R4

, �M�. From the antecedent of (†), for an arbitrary [σx] ∈ L: [σx] �∈ bη,
which by Fact 9(2) is equivalent to ∃s(s ∈ Sση ∧ s < x). Accordingly, E

satisfies the antecedent of clause (2) of Definition 2. By this clause, ∃s0(s0 ∈
Sση ∧ ∀x(x ∈ E → s0 < x)). Clearly, s0 ∈ Rση, so by Fact 9(2) [σs0] ∈ bη

and hence [σs0] ∈ bσ ∩ bη. Moreover, (‡) [σs0] is maximal in bσ ∩ bη. For,
for any [σy], if [σs0] <R [σy], then s0 <M y and hence by the same Fact,
[σy] �∈ bη and hence [σy] �∈ bσ ∩ bη. Finally, since s0 <M x for every x ∈ E,
∀[σx] ∈ L : [σs0] <R [σx], which taken together with (‡) is the consequent
of (†). �
For the proof of the other axioms of BST, consult Müller’s (2002) proof of
his Theorem 1.18

Ad 5: To the left first: Let x ∈ Sση. Then x ∈ Rση, which by Fact 9(2) is
equivalent to [σx] ∈ bη, which entails [σx] ∈ bσ ∩ bη. To show that [σx] is

18In his proof, Lemma 3 requires finitistic assumptions. A non-finitistic version of this
lemma is proved in Wroński and Placek (2009) as Lemma 8, using the chain condition.
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maximal in bσ ∩ bη, note that if for some [σy], [σx] <R [σy], then x < y, and
hence (since x ∈ Sση) y �∈ Rση. By Fact 9(2) this is equivalent to [σy] �∈ bη,
from which [σy] �∈ bσ ∩ bη follows. Accordingly, [σx] is maximal in bσ ∩ bη.

To the right: Let ($) [σx] be maximal in bσ ∩ bη. Consider a chain E in
�R4

, �R� such that x is its proper infimum. It follows that (�) ∀y ∈ E :
[σy] �∈ bσ ∩ bη. By Fact 9(2) (�) is equivalent to ∀y∈E ∃s (s∈Sση ∧ s < y).
Accordingly, E satisfies the antecedent of clause (2) of Definition 2. By this
clause, there is s0 such that († ) s0 ∈ Sση and (‡) ∀y(y ∈ E → s0 < y). Since
x is the (proper) infimum of E, (‡) implies that s0 �M x. But it cannot
be that s0 <M x since given (†), s0 <M x is equivalent (by Fact 9(2)) to
[σx] �∈ bη, which contradicts ($). Hence x = s0, and by (†), x ∈ Sση.

Ad 6: Function f from bσ∈B-Hist onto R4, defined by: f([σx]) = x, provides
the sought-for isomorphism. By the definition of B-histories f is indeed onto
R4. It is also immediate to see that [σx] �R [σy] iff x �M y — cf. Definition 5.
Next, the set {[ηx] | η ∈ Σ} is the st-location of event [σx] ∈ B —it is
straightforward to see that sets having this form satisfy conditions (1) and
(2) on st-locations of §2.7.
Finally, each B-history can be viewed as a differential manifold since for each
B-history the function f (introduced above) serves as its global chart.19 �

3.3 Taking stock

Let us take stock of this construction of MBS’s. The first message is that
histories in MBS’s are isomorphic to Minkowski spacetime. Accordingly, up
to isomorphism, a history of an MBS is a spacetime (Minkowski spacetime).

The second message, or rather observation, is how delicate the construc-
tion is with respect to theories of modern physics. Even if the spatiotemporal
structure of our Universe were adequately represented by Minkowski space-
time (which it is not), a few conditions must be satisfied, on the part of
physics, for our construction of MBS’s to go through. First, the physical
description must come in the form of a property attribution to spatiotem-
poral points. Second, the property attribution must be quite specific; we
here required it to be “proper.”20 Finally, an additional condition, like our

19For manifold theory, see e.g., Hall (2004).
20This is not to say that some other condition on property attributions and a matching

definition of splitting points would not do the job. The point is that this notion must be
somehow regimented to be of use in producing BST models.

22



Chain Condition 7 or Müller’s finitistic condition, must hold to guarantee iso-
morphism between B-histories and Minkowski spacetime. Yet, with math-
ematical necessity, if these conditions hold, the resulting MBS has sets of
choice events (in an extreme one-history case, there is, namely, the empty
set of choice events), with any two histories overlapping in a region delineated
from above by a figure similar to a generalized letter W. This derivation is
relevant to Earman’s complaint quoted in §5 that modern physics does not
know of this kind of pattern of choice events.

3.4 Historical remarks

Our construction of MBS’s diverges from the constructions of Müller (2002)
and Wroński and Placek (2009) because it aims to be more physics-oriented.
The authors mentioned begin their work with specifying a set Σ of labels for
scenarios and a collection {Sσ,η}σ,η∈Σ of sets of splitting points, where each
Sση possesses properties listed in Fact 4(i)-(iv). Given the two primitive no-
tions, that is, labels for scenarios and sets of splitting points, they define
MBS’s and show, on the assumption of certain additional conditions, that
MBS’s satisfy BST axioms. The authors diverge over these additional con-
ditions: Müller assumes finitistic requirements whereas Wroński and Placek
accepts a “topological” postulate that is equivalent to the chain condition.
The difference notwithstanding, an MBS model is, in their sense, a pair
�Σ, {Sσ,η}σ,η∈Σ�. In contrast, our point of departure is a property attribution
to points in scenarios. Accordingly, an MBS model is, in our sense, a triple
�Σ, F, P �—cf. Definition 8. Splitting points are then a derived notion—see
Definition 1 and, as Fact 4(i)-(iv) shows, they satisfy the conditions assumed
by Müller and Wroński and Placek. Accordingly, given that M = �Σ, F, P � is
an MBS in the sense of Definition 8, �Σ, {Sσ,η}σ,η∈Σ� with {Sσ,η}σ,η∈Σ defined
by Definition 1 is an MBS in the sense of Wroński and Placek (2009). If
finitistic assumptions concerning sets Sση are assumed, �Σ, {Sσ,η}σ,η∈Σ� is an
MBS in the sense of Müller (2002).

The need for the mentioned additional conditions (the chain condition
or finitistic assumptions) stems from the desire to identify B-histories with
histories in the BST sense.
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4 Further replies to Earman

4.1 BST: Hausdorff property

Earman argues that “literal branching of a relativistic spacetime” (p. 193)
can lead to a failure of the Hausdorff property. In turn, the failure of the
Hausdorff property has various negative consequences for physics, which he
lists. So, in order to avoid these consequences, an individual spacetime in
BST had better satisfy the Hausdorff property. We first ask if each BST
history (or spacetime) satisfies the Hausdorff property. There is also a larger
question, going beyond Earman’s worry, of whether each BST model satisfies
the Hausdorff property. Although we pose these questions quite generally
(about BST models), our results obviously apply to MBS’s.

Let us recall the Hausdorff property:

Definition 11. Suppose that T is a topology on set X. Then T has the
Hausdorff property iff for any two distinct e, e

� ∈ X there are disjoint sets
U, V ∈ T such that e ∈ U and e

� ∈ V .

To investigate the Hausdorff property, however, we need a topology for
BST. We introduce below, following Bartha, what we claim to be a thor-
oughly natural topology for BST (generally), and for MBS’s in particular.21

Definition 12 (time-or-light-like paths and diamonds). Let OW = �W,��
be a BST model. t is a time-or-light-like path (t ∈ TTL) iff t is a maximal
chain in �W, ��.
Given a time-or-light-like path t ∈ TTL, we define

d
e1e2
t := {y ∈ W | e1 < e2 ∧ {e1, e2} ⊆ t ∧ e1 � y � e2}.

We call d
e1e2
t “the diamond oriented by t with vertices e1 and e2.”

Definition 13 (the diamond topology on W ). Z is an open subset of W ,
Z ∈ T(W ), iff Z = W or for every e ∈ Z and for every t ∈ TTL containing
e there is a diamond d

e1e2
t ⊆ Z that is oriented by t with e strictly between

the diamond’s vertices e1 and e2.

21Cf. “postprint” to Belnap (1992), footnote 26. As for a topology being natural, this
should be judged by whether or not it can yield open subsets isomorphic to open subsets
in the standard topology of RN . Our topology has this feature, if applied to MBS’s.
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Thus, Z ∈ T(W ) iff Z = W or

∀e∈Z ∀t∈TTL(e∈ t→∃e1, e2∈ t (e1 <e<e2 ∧ d
e1e2
t ⊆ Z)).

The condition of the above definition can be used to define the topology
T(h) on history h ∈ Hist as well:

Z ∈ T(h) iff Z = h or

∀e∈Z ∀t∈TTL((t ⊆ h ∧ e∈ t)→∃e1, e2∈ t (e1 <e<e2 ∧ d
e1e2
t ⊆ Z)).

Despite apparent similarity, the two topologies are different, as evidenced
by this fact:

Fact 14. If Z ⊆ h for some history h ⊆ W contains a choice point, then
Z �∈ T(W ). However, Z ∈ T(h).

We need to check that indeed the family T of open sets, as defined above,
forms a topology. This means that ∅ ∈ T, W ∈ T, if U, V ∈ T, then
U ∩ W ∈ T, and the union of a family of sets from T belongs to T. It is
straightforward to see that the first two conditions are satisfied, whereas the
facts below show that the remaining conditions are satisfied as well.

Fact 15. If U, V ∈ T(W ), then U ∩ V ∈ T(W ).

Proof: If U = V = W , then U ∩ V = W ∈ T(W ). Otherwise we need to
prove that
∀e ∈ U ∩ V ∀t∈TTL (e ∈ t → ∃e1, e2 ∈ t (e1 < e < e2 ∧ d

e1e2
t ⊆ U ∩ V )).

To this end pick an arbitrary t ∈ TTL that passes through e. Since each U

and V is open, there is a diamond d
a1a2
t ⊆ U and a diamond d

b1b2
t ⊆ V , with

a1 < e < a2 and b1 < e < b2. Put: e1 := max{a1, b1} and e2 = min{a2, b2}.
Clearly, d

e1e2
t is indeed a diamond. Since d

e1e2
t ⊆ d

a1a2
t ⊆ U and d

e1e2
t ⊆

d
b1b2
t ⊆ V , d

e1e2
t ⊆ U ∩ V . �

Fact 16. If Vα ∈ T(W ) for every α ∈ I,
�

α∈I Vα ∈ T(W ).

Proof: We need to prove that

∀e e ∈
�

α∈I

Vα → ∀t∈TTL (e ∈ t → ∃e1, e2 ∈ t (e1 < e < e2∧d
e1e2
t ⊆

�

α∈I

Vα)).
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Pick an arbitrary e ∈
�

Vα; then for some β ∈ I: e ∈ Vβ. Since Vβ is open,
for every t ∈ TTL there is an oriented by t diamond d

e1e2
t ⊆ Vβ with e1, e2 ∈ t

and (e1 < e < e2). But then obviously d
e1e2
t ⊆

�
Vα. �

We thus proved that T(W ) is a topology on W . It requires merely a minor
tinkering in the proofs above to see that analogously T(h) is a topology on
h (for h ∈ Hist).

In what follows, we need a set of particularly simple open subsets of T(h)
or T(W ), to be thought of as insides of diamonds.

Definition 17. Let t, t
� ∈ TTL, d

e1e2
t be a diamond oriented by t with vertices

e1 and e2. We define the boundary bd(de1e2
t ) of diamond d

e1e2
t by putting:

e ∈ bd(de1e2
t ) iff

∃t�∈TTL(¬∃e�(e� ∈ d
e1e2
t /t

� ∧ (e� <∀ t
� ∩ d

e1e2
t ∨ e

�
>∀ t

� ∩ d
e1e2
t ))∧

e=max(t� ∩ d
e1e2
t ) ∨ e=min(t� ∩ d

e1e2
t )).

(8)

Proof: Let od
e1e2
t be an open diamond corresponding to diamond d

e1e2
t . Pick

an arbitrary e ∈o d
e1e2
t and an arbitrary t

� ∈ TTL such that e ∈ t
�. Clearly,

t
� ∩ d

e1e2
t �= ∅, so by the BST axioms inf (t� ∩ d

e1e2
t ) and suph (t� ∩ d

e1e2
t ) exist

for every h such that t
� ∩ d

e1e2
t ⊆ h. But it cannot be that e = inf (t� ∩ d

e1e2
t )

(e = sup (t� ∩ d
e1e2
t )) since then e = min(t� ∩ d

e1e2
t ) (e = max(t� ∩ d

e1e2
t ),

which contradicts e �∈ bd(de1e2
t ). Accordingly, by density and maximality of

t
�: ∃y1, y2 ∈ t

�: e1 � inf (t� ∩ d
e1e2
t ) < y1 < e < y2 < sup (t� ∩ d

e1e2
t ) � e2.

Since e is neither a minimal nor a maximal element of t
� ∩ d

e1e2
t , there

are y1, y2 ∈ t
� ∩ d

e1e2
t such that inf (t� ∩ d

e1e2
t ) < y1 < e < y2 < sup (t� ∩ d

e1e2
t ).

It follows that e1 � y1, y2 � e2, and hence d
y1y2
t� ⊆ d

e1e2
t . To complete the

proof, we need to show that for every e
� ∈ d

y1y2
t� : e

� �∈ bd(de1e2
t ). For reductio,

let e
� ∈ bd(de1e2

t ) and e
� = max(t��∩d

e1e2
t ) for some t

�� ∈ TTL (the other case,
with e

� being a minimal element, proceeds analogously). This means that for
every e

∗ ∈ t
��: e

�
< e

∗ → e
∗ �∈ (de1e2

t ). But e1 � e
∗ since e1 � e

�
< e

∗, so
it must be (†) e

∗ �� e2 (this holds for every e
∗ ∈ t

�� such that e
�
< e

∗). On
the other hand, since e

� � y2 < suph(t� ∩ d
e1e2
t ), density and maximality of t

��

entail that for some e
∗ ∈ t

��: e
∗ � suph(t�∩d

e1e2
t ). Since suph(t�∩d

e1e2
t ) � e2,

we get e
∗ � e2, contradicting (†). �

An open diamond od
e1e2
t corresponding to diamond d

e1e2
t is defined as:

od
e1e2
t := d

e1e2
t /bd(de1e2

t ).

Note that the second line of Eq. 8 requires that t
� intersect the entire diamond

d
e1e2
t .
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Fact 18. Open diamonds are open sets in topology T(h) (or in T(W )).

Proof: Let od
e1e2
t corresponds to diamond d

e1e2
t . Pick an arbitrary e ∈o d

e1e2
t

and an arbitrary t
� ∈ TTL such that e ∈ t

�. Clearly, t
� ∩ d

e1e2
t is lower

bounded by e1 and upper bounded by e2, so e1 � e � e2. But it cannot
be that e1 = e (e = e2) since then e = min(t� ∩ d

e1e2
t ) (e = max(t� ∩ d

e1e2
t ),

which contradicts e �∈ bd(de1e2
t ). Accordingly, by density and maximality of

t
�: ∃y1, y2 ∈ t

�: e1 < y1 < e < y2 < e2. But if t
� does not satisfy the condition,

then there are y1, y2. Hence d
y1y2
t� ⊆ d

e1e2
t . To complete the proof, we need to

show that for every e
� ∈ d

y1y2
t� : e

� �∈ bd(de1e2
t ). For reductio, let e

� ∈ bd(de1e2
t )

and e
� = max(t�� ∩ d

e1e2
t ) for some t

�� ∈ TTL (the other case, with e
� being a

minimal element, proceeds analogously). This means that for every e
∗ ∈ t

��:
e
�
< e

∗ → e
∗ �∈ (de1e2

t ). But e1 � e
∗ since e1 � e

�
< e

∗, so it must be (†)
e
∗ �� e2 (this holds for every e

∗ ∈ t
�� such that e

�
< e

∗). On the other hand,
since e

� � y2 < e2, density and maximality of t
�� entail that for some e

∗ ∈ t
��:

e
�
< e

∗ � e2, contradicting (†). �
Note: can we define bd in terms of minimal / maximal elements of ‘out-

side’ TTL’s?

We have now these two theorems, highly relevant to Earman’s concern
with the Hausdorff property.

Theorem 19. Let h be a history of a BST model W that has no minimal
elements. Then the Hausdorff property is satisfied in h (in the topology T(h)).

Proof: Let x, y ∈ h and D the set of diamonds contained in h. We define:

Dx := {d ∈ D | x ∈d ∧ y �∈ d} Dy := {d ∈ D | x �∈ d ∧ y ∈ d}, (9)

where min(h) is the set of minimal elements of h.We put:

Vx := h/(
�

Dy ∪min(h)) Vy := h/(
�

Dx ∪min(h)) (10)

We need to check that (i) x ∈ Vx and y ∈ Vy (ii) Vx ∩ Vy = ∅, and (iii)
Vx, Vy ∈ T(h).
Ad. (i) Since ∀d ∈ Dy x �∈ d and x ∈ h, x ∈ Vx. By a similar argument,
y ∈ Vy. Ad. (ii) If Vx ∩ Vy �= ∅, then there is e ∈ h that does not belong
to any d ∈ D. But by the BST axiom no maximal elements, there is e

� ∈ h

such that e < e
�. Further, there is t ∈ TTL and t ⊆ h such that e, e

� ∈ t. It
follows that e ∈ d

ee�
t . Contradiction.
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Ad. (iii) Let e ∈ Vx. Hence (†) ∀d(d ∈ Dy → e �∈ d). Pick next an
arbitrary t ∈ TTL such that t ⊂ h and e ∈ t. By the definition of Vx and a
BST axiom of no maximal elements, there are e1, e2 ∈ t such that e1 < e < e2.
There is thus the diamond d

e1e2
t ∈ D. Since e ∈ d

e1e2
t , by (†): d

e1e2
t �∈ Dy.

Let us now take e
�
1, e

�
2 ∈ t, arbitrarily close to e and such that e

�
1 < e < e

�
2.

If every such diamond d
e�
1e�

2
t contained y, then we would have e = y, by BST

axioms of infima and historical suprema, which would contradict items (i)

and (ii) of this theorem. There is thus a diamond d
e�
1e�

2
t that does not contain

y. Moreover, if d
e�
1e�

2
t ⊆

�
Dy, then e �∈ Vx.

�∈ T(h). Then there is an e ∈ Vx and a t ∈ TTL, t ⊆ h, e ∈ t such
that for every e1, e2 ∈ t with e1 < e < e2: d

e1e2
t �⊆ Vx. This means that (†)

∀z ∈ t; (z > e → z �∈ Vx) or (‡) ∀z ∈ t; (z < e → z �∈ Vx). Suppose (†) first.
Then every z > e belongs to some d

y1y2
t ∈ Dy∪Do, and hence ∀z > e : z � y1.

Thus inf(t�y1) � e, where t�y1 := {z� ∈ t | z
� � y1}. Since e ∈ Vx, e �� y1,

and hence inf(t�y1) �� y1. But by the definition of infimum, inf(t�y1) � y1.
Contradiction. By a similar argument one can derive a contradiction from
(‡). �

To present our next theorem, we need to introduce a particular feature
of BST, known as “indeterminism without choice” (cf. BST 1992). It could
perhaps be best characterized by considering various ways in which two paths
t1, t2 ∈ TTL can form a Y -shaped fork.

Definition 20 (Y-fork). t1, t2 ∈ TTL form a Y-fork iff

1. t1 �= t2,

2. t1 ∩ t2 �= ∅,

3. ∀x ∈ t1 ∪ t2(x ∈ t1 ∩ t2 ∨ (t1 ∩ t2 < x ∧ (x ∈ t1/t2 ∨ x ∈ t2/t1))).

Every Y-fork has its trunk t1∩ t2, and two arms t1/t2 and t2/t1. A Y-fork
may be entirely a spatio-temporal matter. In order to characterize Y-forks
that exhibit indeterminism, we define a ”modal fork” as follows.

Definition 21 (modal-fork). t1, t2 ∈ TTL form a modal fork iff they form a
Y-fork and ∃h1, h2 ∈ Hist t1/t2 ⊆ h1/h2 ∧ t2/t1 ⊆ h2/h1.

In the presence of Definition 20, the condition on modal forks is equivalent
to this claim:

∀x ∈ t1 ∪ t2 (t1 ∩ t2 < x → x ∈ h1/h2 ∨ x ∈ h2/h1).
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Given an Y-fork, its trunk might have a (unique) maximum, or not. For a
modal fork, it is evident that if t1∩t2 has a maximum, then it is a choice event
for some two histories; otherwise we have indeterminism without choice:

Definition 22 (indeterminism without choice). A modal fork exhibits inde-
terminism without choice in case its trunk has no maximum.

The upshot of these definitions is a three-fold classification of Y-forks. A
Y-fork may be modal or not, and if is modal, it either exhibits indeterminism
without choice, or not. Note that the essence of indeterminism without choice
is not a matter of lacking a choice event (this is impossible by the prior choice
principle of BST), but that every choice event is external to a modal fork in
question. The lemma that follows the fact below shows a crucial feature of
indeterminism without choice:

Fact 23. The trunk of a Y-fork is upper bounded by an element of each of
t1/t2 and t2/t1.

Proof: By Definition 20(1) and maximality of t1, t2, there is x ∈ t1/t2, so
x /∈ t1 ∩ t2, so t1 ∩ t2 < x by Definition 20(3); and similarly for t2/t1.

Lemma 24. Let a modal fork exhibit indeterminism without choice. Then
the trunk of this fork has two distinct history-relative suprema. That is, if
t1, t2∈TTL form a modal fork and t1 ∩ t2 has no maximum, then suph1

(t1 ∩
t2) �= suph2(t1 ∩ t2) for some h1, h2 ∈ Hist.

Proof: For brevity, define Γ = (t1 ∩ t2), γ1 = suph1(Γ), ∆1 = (t1/t2), and
similarly for γ2, ∆2. We show that γ1 �= γ2.
Note that (Γ ∪ ∆1) = t1 by calculation, Γ �= ∅ by Definition 20(2), ∆1 �= ∅
by Fact 23, and Γ < ∆1 by Definition 20(3). By Definition 21, ∆1 ⊆ h1/h2,
so Γ ⊆ h1 by downward closure of histories, so γ1 exists (by the BST axiom
of history-relative suprema) and Γ � γ1 � ∆1. Since (Γ ∪∆1) = t1, density
and maximality of t1 imply that γ1 ∈ (Γ ∪ ∆1). If γ1 ∈ Γ, then γ1 would
be maximum in Γ, violating the assumption of indeterminism without choice
(Definition 22). So γ1 ∈ ∆1. An exactly parallel argument yields γ2 ∈ ∆2.
Since (∆1 ∩∆2) = ∅, γ1 �= γ2. �

We are now ready to state our second theorem concerning the Hausdorff
property.

Theorem 25. Let W be a BST model. If some modal fork in W exhibits
indeterminism without choice, then the Hausdorff property fails in W (in the
topology T(W )).
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We omit the proofs of Theorems 19 and 25.
What is the significance of these theorems? As Pruning argues, a failure of

the Hausdorff property in an individual spacetime has severe consequences.
Against the worry that these consequences concern BST, our Theorem 19
gives the reassuring “don’t worry, be happy with BST”, since each BST
spacetime/history has the Hausdorff property.

Our Theorem 25 concerns a larger issue of whether a BST model, as a
whole, has the Hausdorff property. Since (to recall) a BST model aims to
represent indeterminism, the issue is analogous to asking, in the framework
of ensemble branching, whether an ensemble of spacetimes has the Hausdorff
property. Of course, for the latter question to be tractable, one needs to
know a topology on a set of GR spacetimes, not merely on a given GR
spacetime. The theorem ties together a failure of the Hausdorff property and
indeterminism without choice, the latter being an important feature of BST.
That is, although there are BST models without this feature, they either fail
to represent spatial aspects, or involve strange massive modal correlations.22

Indeterminism without choice is familiar to both the experimenter and
the layman, as this schematic story attempts to illustrate. In order for a
given object to reach a detector and be detected there, it needs to pass
through a shutter, which operates indeterministically: if an α-particle decays
in its vicinity, the shutter opens; otherwise it remains closed. Now, as for
the question: “why has our object been detected?”, the (partial) answer
is: “Because the α-particle decayed in the past of the detection,” which
nicely reflects the meaning of the prior choice principle. Since the decay was
external to the object’s trajectory, it also makes sense to ask: “Which part
of the object’s trajectory is in the causal future of the decay, and which part
is not?” This second question underwrites indeterminism without choice.
Posing this question is natural if indeterminism reigns in a spatially extended
world.

These subtleties aside, branching, whether Hausdorff or non-Hausdorff,
entails bifurcating time-like paths that seem to trouble Earman:

But how would such a particle know which branch of a bifurcat-
ing geodesic to follow? This problem has led general relativists to

22A relevant fact is this: Let W be a BST model, in which every modal fork has a trunk
with a maximum. Moreover, let there exist a maximum m of the trunk of a modal fork
and e ∈ W such that m SLR e. Then there is modal funny business in W. (For the notion
of modal funny business, cf. Müller et al. (2008)).
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shun non-Hausdorff spacetimes that involve non-Hausdorff branch-
ing [. . . ]

The worry is groundless, as it presupposes the mistaken doctrine of the actual
future. To use (with reluctance) the epistemic language of the physicists, the
faulty presupposition of the particle’s ignorance of which way to go is that
there is one selected possible future (the actual future) among many possible
futures, so that the particle does not know which of the possible futures is
actual (see FF section 2B.10). The next section details our complaints about
this mistake. As for bifurcating paths, we say: If the bifurcation is modal,
that’s just indeterminism.

On a related issue, Earman opines that “[i]f non-Hausdorff [. . . ] branching
is to be taken seriously, what is needed is a physical theory that prescribes the
dynamics of branching” (p. 202). Leaving the qualification“seriously” aside,
we readily agree that there is much to be done to make contact between BST
and physics. At present, we know how to link standard quantum mechanics
(in the consistent histories formulation) to BT,23 and Minkowski spacetime
to BST. The issue of supplying dynamics for branching histories, and in
particular, relating BST to general relativity, is largely a white area.

4.2 The thin red line

The “thin red line” (TRL) theory is the colorful term of Belnap and Green
(1994) and FF for the theory that, in Earman’s words, “as of an indeter-
ministic moment (‘branch point’), exactly one future reaching branch is the
actual future” (p. 190). Earman seems to endorse as respectable the heavily
metaphysical view “that (as of now) there is [a] fact of the matter as to which
of the possible futures is the actual future” (p. 190).24

The TRL is not, we think, respectable. It is a muddled theory that tries to
be both deterministic and indeterministic. According to FF, if determinism
be true, then there is only one “possible future reaching branch,” period. But
if some moment is indeterministic, admitting many possible “future reaching
branches,” then, argues FF, it is truly a muddle to suppose that one of these

23Cf. Müller (2007). Since quantum mechanics is non-relativistic, it can be analyzed in
BT, but not in BST, which is a relativistic framework.

24In order to represent Earman’s opinion by quotation, we extracted the quote from a
sentence beginning “It certainly does not follow that (as of now) there is no fact of the
matter . . . ”.

31



is “actual,” and the others “merely” possible—even though the supposition
implies that others have no possibility of being actual. As New Englanders
say, “Fish or cut bait.” FF devotes an entire chapter (which is essentially
grounded in Belnap and Green (1994)) to giving reasons for the “no TRL”
view.25 In some minds (not ours), the matter remains, however, debatable;
see Øhrstrøm (2009) for the most recent and best defense known to us of the
contrary view.26 Moving to the central point, we agree with Pruning (p. 190)
that the denial of the TRL theory is logically independent of BT or BST92,
and in fact it is evident by inspection that such a denial is no part of the
axiomatization of BT or BST92.27 Pruning (p. 192) correctly says, “To get
that result some additional piece of metaphysics would have to be added,”
(p. 190) a step that is rightly characterized as “something beyond ensemble
branching.” What Pruning fails to admit, however, is that it is equally a step
beyond branching either in the ensemble sense or the BST sense to assert
that there is a “fact of the matter as to which of the possible futures is the
actual future” (p. 190). If no-TRL is a piece of unphysical metaphysics, then
so is the TRL doctrine that Pruning seems to espouse.

In its note 11, Pruning explicitly denies the symmetry we claim: Mac-
Farlane (2003), who does not hold with the TRL, is described as attributing
to those who do “a ‘posit’ of a metaphysical entity—the thin red line.” Ear-
man continues, “On the contrary, it is those deniers of the thin red line—like
MacFarlane and the Belnap school—who hold that future tensed but not
past tensed statements may lack a determinate truth value that need to rely
on some posit beyond indeterminism in the ensemble branching sense to mo-
tivate their semantic rules” (p. 192). Earman does not support this claim,
and indeed it is demonstrably false. A straightforward examination of the se-
mantics of indeterminism as given by MacFarlane,28 or of the detailed formal
semantics as given in any of FF or the various papers by Belnap, Placek, or
Müller that are referenced by Pruning (as well as the additional papers refer-

25See also Perloff and Belnap (2010).
26The most recent defenses are A. Malpass’s talk at the conference “Indeterminacy and

Branching Time”, Bristol 2010 and J. Wawer’s presentation at the “Causes and Tenses”
workshop, Kraków 2010.

27Pruning describes FF as using indeterminism “in a sense that validates the no-thin-
red-line doctrine, a future-branching tree structure for time and spacetime, and the other
postulates imposed on this structure.” This is essentially correct, although (regrettably)
it seems falsely to suggest that no-TRL is a postulate of BT or BST92.

28Pruning explicitly declines to consider this theory.
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enced here), reveals these authors do not claim that the TRL is inconsistent.
Rather, these papers make a point of illuminating uses of the future tense
in terms of a semantics that does not refer to a TRL, and that furthermore
would not be improved were the semantics to make such a reference.

4.3 Semantic rule (R)

Pruning considers equating the no-TRL doctrine with a “semantic rule (R),”
which is a wholly inadequate version of the supervaluation account of truth
for future-tensed statements due to Thomason (1970) (an attribution not
mentioned by Pruning), according to which a statement such as “There will
be a sea battle” as uttered now may be true, false, or indeterminate depend-
ing on whether all, none, or some but not all future-reaching branches contain
a “token” of the event-type ‘sea battle.’ We say “inadequate” because (1)
obviously the account is only relevant to a small sample of future-tensed
statements, and (2) it does not live up to the standards for semantic rules
and theories inherited from Tarski: it cannot be counted as “formally cor-
rect,” even for the few sentences to which it applies. For one thing, Pruning
fails to refer to any theory of event types and event tokens.

In the same paragraph, Pruning declares that “a natural rule for assigning
truth to future tensed statements” is a version of (R) that “makes ‘There will
be a sea-battle’ true in case the (hypothesized) unique actual future contains
a sea-battle and false otherwise” (p. 191, our italics). We are unable to
discern the difference between this version of (R) and the TRL (§4.2). We
note that Pruning makes no effort to give a scientific meaning to “actual
future,” and we remark again that we think that it cannot be done.

The paragraph continues with yet a third reading of (R), “yielding a
version of presentism on which contingent statements about the past as well
as the future lack truth values” (p. 191). The symmetry to which Pruning
refers here is mentioned again in its note 11, where, to the extent that we
understand it, the question of a distinguished possible history through a
moment or event is conflated with the question of past/future asymmetry.
Neither denying the asymmetry, as Earman does, nor affirming it, as we do,
is relevant to the existence or nonexistence of a privileged “actual” history
(a TRL). See §4.4 for the quite separate asymmetry question.

Our central argument against the TRL—the history containing the“actual
future”—is this: Positing a TRL does no work in understanding statements
involving a reference to future happenings, whether commonsensical or in the
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language of physics, and indeed tends to interfere with that understanding.
Pruning is misleading to the extent that it suggests the contrary.

Example. Assuming indeterminism, I bet you a dollar that the coin will
come up heads. A naive explanation of bets has it that I am betting that the
coin will come up heads in the actual future—the one that, at the moment
of betting, is fixed as uniquely privileged—regardless of what happens in
alternative physically possible futures. Consequently, on the naive reading,
we bet on what is already actually fixed, even if we don’t know which future is
the one that will actually happen. (The indeterminism is merely epistemic.)

In many cases we take our bets to have indeterministic context: in such
cases we believe that a thing we bet on is not settled, and not merely un-
known. Provided the aim is an analysis of betting-on-heads in an inde-
terministic context, the “regardless” approach is just wrong as it yields an
inadequate analysis. Besides, the very essence of this approach, which is a
gesture towards singling out one (actual) history, is hopeless: the singling-out
cannot be accomplished by no matter how idealized the agent.

As a start of a subtler analysis, one specifies all possible historical con-
tinuations of a particular bet on a particular coin toss coming up heads: If
we end up in one of those possible continuations in which the coin comes
up heads, I win and you owe me one dollar; and of equal importance, if the
history is one of those in which the coin does not come up heads, you win
and I owe you one dollar. This essential and complete and entirely adequate
explanation of our bet quantifies evenly over all histories that include the act
of betting on the coin toss. It has no need of promoting one of the histories
from “possible” to “actual.” For a bet having the form “I bet on the truth of
‘The coin will come up heads’,” one needs a delicate account using “double
time references” as in Belnap (2002a). Neither this account nor any other
useful account of betting appeals to “the actual future” (to the TRL).

Example. Assuming indeterminism, and finding from physical analysis
that the odds are in my favor (say ten to one), I predict that this particular
measurement of the electron will yield “spin up.” Faulty explanation of the
prediction: I am predicting that the outcome of the measurement will be
“spin up” on the actual history, regardless of what happens in alternative
physically possible histories. Again, the “regardless” clause is wrong, and
in just the same way. To explain the act of prediction, you must tell of its
consequences on each member of an ensemble of physically possible histories
that includes the act of predicting the outcome of a particular measurement,
whether the outcome is favorable or not.
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The lesson is even clearer if, instead of predicting, I just make a ten-to-one
claim concerning the chances of “spin up” or not. It doesn’t help at all to say
that I am giving the chances of “spin-up” on the actual history, regardless
of what happens on merely possible histories. You can say it, and say it
consistently, and even with heavy breathing, but it remains mere verbiage.
The probability claim characterizes the ensemble of future developments from
an initial occasion or event; it does not characterize a single history, actual
or not. See especially Müller (2005).

We grant that not only everyday folks, but highly trained scientists, are
inclined to use the language of “actuality” to contrast with “physical possi-
bility.” But that is only because their training doesn’t extend to the relevant
portions of the philosophy of language. Since Kaplan (1989), it has been
clear to philosophers (if not physicists) that the best careful uses of “actual”
need to be grounded in something like “what is settled true at the occasion
of utterance.”29

The issue of whether “Spin-up will come to pass” and “Spin-up will ac-
tually come to pass” are equivalent sentences is subtle. It suffices here to say
that if these sentences are interpreted as “stand-alone,” assuming a natural
syntax and semantics for “actually” they are indeed equivalent.30

4.4 Past/future asymmetry

BT and BST treat the past and future asymmetrically by means of the postu-
late of “no backward branching” of BT and the prior choice principle of BST.
Pruning ignores the arguments of FF in favor of no backward branching, and
equally ignores the crucial and detailed role played by these postulates, es-
pecially in the technical analysis of causae causantes, or originating causes
(Belnap, 2005b). Instead, Pruning opines in an offhand fashion (pp. 191–
192) that in virtue of laws that are time-reversal invariant, such asymmetry
is untrue to physics as represented by ensemble branching. FF quotes the
teaching of a distinguished physicist in its defense of no backward branching:

29MacFarlane (2003) argues for taking into consideration also an occasion of assessment.
30For a distinction between stand-alone sentences and embedded sentences, see FF.

Tenses and actuality are subtle matters, and cannot be treated with vigorous informal
armwaving such as that employed by Pruning. To omit reference to the formal semantics
given in the relevant publications is analogous to discussing general relativity without the
language of differential manifolds, something that would properly scandalize Earman.
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I want to suggest here that—once one accepts indeterminism—
there is no reason against including irreversibility as part of the
fundamental laws of nature. . . . The realization of a specific
pattern of new events, the selection of facts from possibilities is
spontaneous and—apart from conservation laws—is governed by
probability. It should be stressed that this picture does not touch
CTP-invariance or detailed balancing. As Lüders has pointed out
the term “time reversal” should be replaced by “motion reversal.”
One does not change the arrow of time but compares states with
mirrored velocities (Haag, 1990, p. 247).

Indeterminism brings in a distinction between the settled past and present
and the open future. Haag suggests taking this asymmetry (which he some-
what confusingly calls irreversibility) to be a part of the fundamental laws of
physics. Superficially, CPT invariance is in conflict with this asymmetry. We
say “superficially” since the invariance concerns what Haag and Lüders call
“motion reversal” of states rather than the past-future asymmetry of events.

BT/BST concern events, not states, and in general both the theories are
silent about the latter notion. In a particular class of BST models, MBS’s,
states can be easily introduced, however. The state of event [σx] is F (σx),
i.e., a set of point properties (like values of physical fields). In MBS’s states
are repeatable, like states of physical theories, or common-sensical states
(e.g., a body’s temperature). In contrast, a particular event is not repeatable.
Clearly, the motion reversal operates on states, not particular events.

There is no trouble in an MBS history having two intervals (i.e., dense
chains) of events, a sequence of states assigned to one interval being the
reverse of the sequence of states assigned to the other interval. There is also
no trouble in there being two histories, each containing an interval of events,
with the same sequence of states assigned, but each preceded by an event
with a different state. Such sequences of states that fork towards the past
seems to be a BST representation of the motion-reverse of two evolutions
forking towards the future.

These non-problematic cases are local, however, as the relevant states
are states of some segment(s) of histories. In contrast, we may consider the
motion reversal applied to states of the whole history. A toy-model suggested
to us by B. Roberts illustrates the point (the story is non-relativistic, so we
talk of a BT model and pretend it is analogous to an MBS):
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Let one spacetime have a ball spinning clockwise at a constant rate, for
all time. Let another spacetime have the same spinning ball coming to a stop
at some time t, after which it remains at rest forever. The motion-reverse
of the first spacetime is a spacetime with the ball spinning counter-clockwise
for all time and the motion-reverse of the second spacetime is one in which
the ball is at rest until a time t, when it begins to spin counter-clockwise.
Can the two motion-reversed spacetimes be interpreted as histories of a BT
model?

If we keep the ordering � fixed, that is, assume that before an event at
time t the ball spins in one spacetime and is at rest in the other, the two
spacetimes cannot be accommodated in any BT model similar to MBS’s. The
MBS’s postulate of proper property attribution requires that for every two
histories there is a location (element of R4), below which the histories are
qualitatively alike. But, since before t, in one spacetime the ball is spinning
whereas in the other it is at rest, the spacetimes are not qualitatively alike
below any x ∈ R4.

We find this a welcome fact that these two evolutions cannot be described
by a BST model. No sense can be made of two alternative possible evolu-
tions, separate before some event and combining into a single evolution after
it.31 CPT symmetry should not be interpreted as providing evidence for such
evolution. CPT is a claim about models of a physical theory. It requires, in
particular, that if a theory has two models exhibiting states forking towards
the future, then the theory has as well some two models exhibiting states
forking towards the past. The (mathematical) existence of such mathemati-
cal models should not be interpreted as suggesting a possibility of a particular
event (or a particular stage of a system) that is preceded by alternative evolu-
tions. For more on why (we think) it is wrong to characterize indeterminism
in terms of models of theories, see the next section.

5 Indeterminism

Earman claims that

[t]he postulates used by the Belnap program seem to place a pri-
ori constraints on physics. For example, members of the Belnap

31For a detailed defense of the view that no particular event can be preceded by two
alternative courses of events, in the context of no backward branching and the theory of
agency, cf. FF §7A.2.
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school speak of “choice points,” which are to be thought of as
the loci of indeterministic influences that radiate outwards along
or within the future null cones of these loci. On this way of
conceptualizing indeterminism, the members of the ensemble of
physically possible models will typically agree at all points ex-
cept those that lie on or inside the future null cones of the choice
points. I know of no theory in modern physics which will produce
this kind of indeterminism. Relativistic field theories, whether
classical or quantum, typically entail lawlike connections among
relatively spacelike events (p. 192).32

To respond, a particular class of BST models, MBS’s, that we here de-
veloped, assumes a specific pattern of qualitative divergence, which we think
is intuitive and weak (recall the past agreement and the immediate future
disagreement). Nevertheless, as Earman says, no known physical theory ex-
hibits this MBS-style pattern of qualitative differences. BT, however, can
be used to model nonrelativistic quantum mechanics, as shown by Müller
(2007); since this theory is non-relativistic, the analysis requires BT models,
not BST models.33 Another possible area of application for BT is Norton’s
(2008) dome; since this is a system of classical mechanics, it requires BT, not
BST.34

Given the weakness of assumptions underlying our construction of MBS’s,
we tend to say that this situation indicates that there is no indeterminism
in the known relativistic theories, though, on the other hand, nonrelativistic
quantum mechanics is a good candidate for an indeterministic theory. This
moral is in sharp conflict with findings of Earman (1986) and Earman (2007),
and this conflict calls for the re-assessment of the project of investigating in-

32The final sentence of this quotation from Earman suggests that BST cannot represent
lawlike connections between space-like separated events, which is simply false. BST ex-
plicitly leaves room for what it calls “funny business,” which is precisely (non-accidental)
correlations between SLR events, devoting three publications entirely to their study. See
Belnap (2002b), Belnap (2003b), and Müller et al. (2008) and Placek and Wroński (2009).
Pruning cites these papers without considering them. (Pruning ’s reference to Belnap
(2003b) mistakenly references Synthese rather than Philosophical studies).

33Müller analyzes the consistent histories formulation of quantum mechanics.
34As explained in section 4.4, the motion-reversed trajectories and the motion non-

reversed trajectories should not be represented in one BT model (we owe this point to
B. Roberts). For a penetrating discussion on this subject we would like to thank the
audience of TP’s talk in February, 2010, at the Center for Philosophy of Science of the
University of Pittsburgh, and J. Norton in particular.
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determinism of physical theories. Our contention is that ensemble branching
does not adequately represent (in)determinism. The usual intuitive notion of
future-oriented indeterminism is phrased in terms of open possibilities: the
world is indeterministic in some region (or at some stage, or at an event) if
that region has more than one possible continuation. Clearly, the notion is
modal, as it appeals to open possibilities. The notion of open future possibil-
ities was banned from analytic philosophy because no one knew how to talk
soberly about the open future. For this reason, many philosophers attempted
to characterize (in)determinism in epistemic terms, like predictability or cal-
culability. A locus classicus of this movement is Popper’s (1982) book. This
tendency was further reinforced by taking Laplace’s vision as a starting point
of a debate over (in)determinism: Laplace’s demon was explained in epis-
temic terms. To the demon “nothing would be uncertain and the future just
like the past would be present before its eyes” (Laplace, 1902).

The epistemic overtones, and in particular notions like prediction or cal-
culations, brought in side-issues to the debate. Thus, Montague’s model-
theoretic analysis of (in)determinism was a considerable achievement, freeing
the notion from the epistemological load. His analysis, however, is carried
out in terms of a set of models of a given theory, and thus forbids asking if
a particular model of the theory is deterministic or not. It is exactly this
question that we think is essential for deciding whether or not a theory is
deterministic. In a similar vein, the analysis does not yield any insight con-
cerning where indeterminism occurs.35 Importantly, the Montague notion of
indeterminism (as well is its close cousins, Lewis’s and Earman’s notions)
is non-modal in itself. Saying “in itself” we mean that it is not ruled out
that a set of models of a given theory can be used to construct a structure
that could serve as a semantic theory for a language with modalities. (For
a discussion of modal vs. non-modal concepts of (in)determinism, cf. Müller
(2009).)

The good news, however, is that things changed considerably for the bet-
ter! There is no need to shun open possibilities, or to de-epistemologize
Laplace, since there are now rigorous theories such as BT of Prior and
Thomason, or Belnap’s BST that permit cogent theorizing about an open
future of possibilities. Moreover, we claim that particular models of BST,

35This reminds one of Lewis’s desire for a worked-out theory of localized indeterminism
as a background for his theory of counterfactuals. Having seen none, he turned to Mon-
tague’s analysis, or so his letter to Bennett (quoted by Bennett (2003, p. 204)) suggests.
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namely, MBS’s, that we developed here do justice in a thoroughly intuitive
way to the most usual intuition of indeterminism.36 We specifically mean
to include the intuitions of the most hard-headed of scientists when they
think about experiment and intervention. Thus, we tend to say, if no physi-
cal theory exhibits the kind of usual indeterminism that branching attempts
(we think successfully) to capture, so much the worse for indeterminism of
physical theories!

Can one relate indeterminism in the sense of Montague-Lewis-Earman
(M-L-E) to the usual indeterminism, that is, to a modal concept phrased in
terms of open possibilities? The challenge for Earman is to construct, out
of a set of models of a given theory that witnesses its indeterminism (in M-
L-E sense), a structure that could serve as a semantic theory for a language
with modalities. There are indications, such as Müller’s (2007) BT model
for quantum mechanics (in the consistent history formulation) that the task
is doable, though hard. It is necessary to carry out this task, however, if
one wishes to show that various cases of indeterminism (in the sense of M-
L-E) of physical theories, have anything to do with the intuitive notion of
indeterminism. Of course, the other option for Earman is to forswear that
his ensemble analysis of indeterminism has anything to do with the intuitive
(modal) notion.

6 Final

BST/BT are attempts to do metaphysics in a mathematically rigorous way,
with the desideratum: be compatible with current physical theories. There
have been some successes: Minkowskian Branching Structures have histories
isomorphic to Minkowski spacetime. There are BST models representing
EPR correlations, the Bell-Aspect experiment, or the GHZ and GHSZ the-
orems. BT offers a reading of the consistent histories theory of quantum
mechanics. An open task looms large: construct BST-like models that take
into account the fundamental ideas of GR.

36The only non-intuitive and purely technical axiom is the Chain Condition 7, which is
not needed in finite cases.
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