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1*, Vera E. Troeger2, Eric Neumayer3

1 Department of Socioeconomics, Vienna University of Economics and Business, Vienna, Austria,

2 Department of Economics, University of Warwick, Coventry, United Kingdom, 3 Department of Geography

and Environment, London School of Economics and Political Science, London, United Kingdom

* thomas.pluemper@wu.ac.at

Abstract

Traditionally, social scientists perceived causality as regularity. As a consequence, qualita-

tive comparative case study research was regarded as unsuitable for drawing causal infer-

ences since a few cases cannot establish regularity. The dominant perception of causality

has changed, however. Nowadays, social scientists define and identify causality through

the counterfactual effect of a treatment. This brings causal inference in qualitative compara-

tive research back on the agenda since comparative case studies can identify counterfac-

tual treatment effects. We argue that the validity of causal inferences from the comparative

study of cases depends on the employed case-selection algorithm. We employ Monte Carlo

techniques to demonstrate that different case-selection rules strongly differ in their ex ante

reliability for making valid causal inferences and identify the most and the least reliable case

selection rules.

Introduction

We demonstrate that the validity of causal inferences based on the qualitative comparison of

cases depends on the data-generating process and on the choice of case-selection algorithm.

While the first factor is beyond the influence of scientists, researchers can freely choose the

algorithm that determines the selection of cases. Of course, methodologists have long since

been aware of the importance of case-selection for qualitative comparative research [1,2,3].

One can trace back systematic theoretical and methodological reasoning on case-selection to

at least John Stuart Mill [4]. After all this time, one might expect that the optimal case-selection

algorithms are known. Yet, this is only partially the case. We offer one of the first rigorous

analyses of the relative performance of both simple and more complex case-selection rules

under conditions of relevance to real world comparative research [5].

Specifically, we vary the size of the total set of cases from which specific cases are selected,

we vary the degrees to which the causal factor of interest is correlated with confounding fac-

tors, and we vary the “signal-to-noise ratio”, that is, the (relative) strength of the effect of the

causal factor of interest. Using a Monte Carlo design we compare the relative performance of

11 case-selection algorithms, partly following suggestions of qualitative methodologists and

partly derived from common practice in comparative case analyses. The very best case-
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selection algorithm results in an estimated average effect that is almost a hundred times closer

to the true effect than the worst algorithm. We also evaluate the conditions conducive to higher

validity of causal inferences from qualitative comparative research. We find that the best selec-

tion algorithms exhibit relatively high ex ante reliability for making valid inferences if: a) the

explanatory variable of interest exerts a strong influence on the dependent variable relative to

random noise and confounding factors, b) the variable of interest is not too strongly correlated

with confounding variables, and c) the dependent variable is not dichotomous. More impor-

tantly, while the best algorithms are still fairly reliable even in the presence of strong stochastic

influences on the dependent variable and other complications, the worst algorithms are highly

unreliable even if the conditions are met under which qualitative comparative research works

best.

Our research contributes to both qualitative and quantitative methodological debates.

Quantitative researchers assume that it is impossible to derive valid causal inferences from

qualitative comparative research methods. However, we argue that this assumption is outdated

because the concept of causality as regularity [6,4,7] has been superseded by the concept of

causality as counterfactual effect [8,9,10]. In fact, the counterfactual concept of causation

requires only a single case for causal inference if only it were possible to observe the counter-

factual [11,12,13]. In the absence of directly observable counterfactual outcomes, the closest

methodological equivalents according to the ‘identification school’ are randomization of treat-

ment [14] and stratification of treatment and control group [15] through case-selection. It is

this latter research strategy of rule- or model-based case-selection that demands a re-evalua-

tion of qualitative comparative designs.

The logic of causal inference typically invoked by quantitative methodologists therefore

also applies to qualitative comparative methods: if two or more cases are identical in all rele-

vant dimensions but vary in the treatment, causal inference is internally valid. In addition, our

research demonstrates that if these two cases are sampled so that the difference in the treat-

ment is maximized the precision of the computed causal effect is large. We understand of

course that these optimal conditions often do not exist and that selected cases vary in more

dimensions than the treatment effect. Analyzing how different case-selection rules perform as

a function of different conditions in which they must operate is exactly the purpose of our

contribution.

As for the debate amongst qualitative methodologists, our results first and foremost speak

to qualitative comparative researchers who, in the tradition of John Stuart Mill, draw infer-

ences from the comparison of two sufficiently similar cases that vary in respect to the variable

of interest (the ‘treatment’). Yet, the research design logic supported by our results also applies

to scholars who compare a single case at two or more different points in time with a ‘treatment’

occurring in between the first and the last observation of the selected single case. These

research designs are comparative in nature, and thus our findings that inferences are most

likely to be valid if researchers maximize the variance of the variable of interest and minimize

the variance of the confounding factors for selecting the case or cases they analyze over time

also holds for a comparison of two different observations in time of a single case.

Yet, our research also contrasts with some of the acquired wisdom of qualitative methodol-

ogists. We agree that qualitative research, including the in-depth study of one or more cases

and the comparative study of cases, can serve many other purposes and are, arguably, better

suited for inductive purposes such as theory and concept development [16,17]. Qualitative

research often seeks to generate ideas about the data-generating process so that little knowl-

edge of the data-generating process can be assumed to exist prior to the case selection. Clearly,

the logic of case selection for deductive causal inference research differs from the logic of case

selection for inductive research. We therefore do not believe that our results can or indeed
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should be extended to inductive research. Importantly, however, many empirical qualitative

researchers do make causal inferences and generalize their findings from the analyzed cases to

a broader population. Our analysis enables those qualitative researchers who do wish to make

causal inferences based on the comparative analysis of cases to understand how case-selection

rules differ with respect to their ex ante reliability for detecting the direction and strength of a

causal effect. Crucially, given limited knowledge about the data-generating process, we show

that the relatively best-performing algorithms remain best-performing no matter what the

underlying data-generating process (of those we have analyzed).

Qualitative researchers might struggle with a second aspect of our research design. Qualita-

tive comparative researchers hardly ever estimate the strength of an effect and thus an analysis

of effect strengths must seem irrelevant for them (but see [18]). Yet, we do not compute the

effect strength from a comparison of two cases to tempt qualitative researchers to quantify

effect strengths. We merely compute the effect strength and compare it to the assumed true

effect size to have an indicator against which we can judge the ex ante reliability of selection

algorithms. Computing the effect size is a tool, not the goal. Even if qualitative comparative

researchers only intend to make inferences on the direction of a causal effect, they should

agree that the expected deviation of an implied effect strength estimate from the truth–called

root mean squared error by the quantitative tribe–is a good indicator for the relative ex ante
reliability of case-selection algorithms: The larger this deviation, the more likely that even the

inferred direction of an effect is wrong.

The paper is organized as follows: the next section shows that the now dominant modern

concept of causality as counterfactual analysis implies that one can make causal inferences

based on qualitative comparative analysis. One cannot make such inferences with certainty,

however, and the validity of inferences will crucially depend on how cases are selected. We

review what methodologists have advised on the selection of cases in qualitative comparative

research in section 3. This informs our choice of selection algorithms that we subject to Monte

Carlo analysis, though we also add some original algorithms to test whether and, if so, how

much better they can perform. Section 4 describes these algorithms, the Monte Carlo design

and how we evaluate the relative performance of the case-selection algorithms. Section 5 pres-

ents results from the Monte Carlo simulations.

Causal inference and qualitative comparative research

Causality as regularity dominated the philosophy of science at least from Hume to Popper.

Hume [5] argued that scientists cannot have knowledge of causality beyond observed regulari-

ties in associations of events. He therefore suggests inferring causality through a systematic

comparison of situations in which the presumed causal factor is present or absent, or varies in

strength. The concept of causality as regularity became the central element of Hempel and

Oppenheim’s [19] deductive-nomological model of scientific explanation. Hempel was also

the first to develop the concept further to include statistical inference [20]. In Popper’s concep-

tion of a non-degenerative research program [7], a single falsification effectively leads to the

rejection of the tested hypothesis or, worse, the theory from which the hypothesis derives. The

“regularity” perspective culminates in the definition of science as “unbroken, natural regular-

ity” [21].

This “strict regularity” concept of causality had ambiguous implications for comparative

social science qualitative researchers’ ability to make causal inferences. On the one hand, the

analysis of a small number of cases cannot establish regularity. On the other hand, if, con-

versely, a single deviant case suffices to refute a causal claim or even a theory, as Popper

believes, then strength in numbers does not exist [22,23,17]. The “strict regularity” perspective
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is dead, however, because a) not all regularities are causal (“correlation is not causation”) and

b) causality can be probabilistic rather than deterministic and can thus exist without strict

regularity.

Probabilistic causal mechanisms paved the way for an interpretation of regularity as statisti-

cal regularity. Yet, not even the brilliant idea of statistical inference saved the regularity con-

cept of causality. If correlation is not causality, then high correlation does not imply causality

either and low correlation and statistical insignificance may indicate low-probability causality

and a lack of sufficient variation rather than the absence of causality. Eventually, this insight

eliminated the support for the causality as regularity view.

Over the last three decades, the concept of causality as regularity was replaced by the coun-

terfactual concept of causality, also called the potential outcomes framework. Its understanding

of causality is tautological: causality exists if a cause exerts a causal effect on the outcome, and a

cause exerts a causal effect on the outcome when the relation is causal. This tautology seems to

be the main reason why scholars advancing the counterfactual perspective [9,10,24,25] focus on

causal inference and the identification of causal effects rather than on causality itself [24].

According to the counterfactual concept of causality, causality is perfectly identified if one

observes the outcome given treatment and the outcome given no treatment at the same time

for the same person(s). Naturally, this is impossible. Hence, a counterfactual analysis starts

with a ‘missing data’ problem and then immediately turns to ‘second-best’ options for infer-

ring causality. If one cannot observe the potential or counterfactual outcome for any one single

case, then one needs to resort to comparing the outcomes of different cases. This raises the

challenge that either one must make sure that the cases compared are equal or sufficiently sim-

ilar in all dimensions that matter or that one can render the influence of all potential con-

founders irrelevant. Otherwise, no causal effect has been ‘identified’.

The approach generally preferred by identification scholars–what they call the “gold stan-

dard”–aspires to render potential confounders irrelevant by randomizing treatment across a

large number of cases in a controlled experiment (but see [25,26]). Though practically all

actual experiments fall way short of the ideal of experimental designs, the randomization of

treatments in a sample where N approaches infinity guarantees that the treatment will be

uncorrelated with both observable and, crucially, unobservable confounders. Because of this

lack of correlation with any potential confounder, any observable difference in outcomes

between the two groups must be due to the treatment. If one assumes causal homogeneity

among cases and assumes away that potential confounders might condition the effect of treat-

ment, then ideal experiments will not only have identified a cause-effect relationship but will

also allow the calculation of the unbiased effect size.

Clearly, from the experimentalist viewpoint, qualitative small-N comparative research is

useless for causal inferences. In fact, so is everything else. Its diehard proponents explicitly

argue that experiments are a necessary condition for causal inference. For example, Light,

Singer, and Willett [27] claim that “to establish a causal link, you must conduct an experiment
(. . .). Only experimental inquiries allow you to determine whether a treatment causes an out-

come to change.” This claim wrongly assumes that identification is a necessary condition for

causal inference, whereas in fact perfect identification is only a necessary condition for making

causal inferences that are valid with certainty. The idea that one can only make causal infer-

ences if scientists are certain about having identified a cause-effect relationship via experi-

ments is absurd, however. If the claim was correct, scientists would not be able to infer that

more education causes higher lifetime income, or that smoking causes lung cancer. For that

matter, social scientists would not be able to explore much of interest. The quest for causal

inference in the social sciences is not about certainty; it is about how to deal with uncertainty

and how much uncertainty about the validity of inferences can be tolerated.
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More importantly, making certainty a prerequisite for causal inference runs into a logical

problem for the social sciences because experiments that social scientists are able to conduct

do not generate inferences that are valid with certainty. Even ignoring causal heterogeneity

and potential conditionalities [28], the confounding-factors problem can only be solved

asymptotically, that is, by increasing the sample size to infinity. With a finite number of partic-

ipants, randomization of treatment does not suffice to render treatment uncorrelated to unob-

served confounders like mood, experience, knowledge, or intelligence, and often to even

observed confounders like age, sex, income, or education. As a remedy, many experimenters

control for observable differences in addition to randomizing treatment. Since it is impossible

to control for all factors that influence human behavior, not least because some of them may

be unobserved, the problem of confounders can be reduced but not eliminated by experi-

ments. Yet, if experiments only increase the probability that causal inferences are correct, then

the strict dichotomy between experiments and all other research methods that Light, Singer,

and Willett make is unjustified.

The second approach to solving the “missing data” problem in the counterfactual concept

of causality argues that causal effects are identified if cases can be selected so as to guarantee

that all the relevant properties of the treatment group exactly match the properties of the con-

trol group [29,30,31]. Identification via selection or matching on the properties of the treat-

ment and control groups requires perfect knowledge of all the factors that influence outcomes

and also that one can match cases on these properties. As with experiments, falling short of

this ideal will mean that a causal effect has not been identified with certainty, but does not ren-

der causal inference impossible. For experimentalists, matching is far inferior to experiments

because they doubt one can know all the relevant properties (one can know the so-called data-

generating process) and even if one could know these properties, one cannot measure all of

these properties, some of which are unobservable, and thus one cannot match on them.

This second approach substitutes impossible counterfactual analyses with a possible analy-

sis of cases that have been carefully selected to be homogeneous with respect to confounding

variables. This strategy is obviously encouraging for causal inference based on case compari-

son. Nothing in this matching approach suggests that the validity of causal inferences depends

on the number of cases. If cases are homogeneous, causal inferences based on small-N qualita-

tive comparative methods become possible, and the validity of these causal inferences depends

on the employed selection rule.

Qualitative comparative researchers have always made arguments that closely resemble

matching [5]: if two cases are identical in all relevant dimensions but vary in the dimension of

interest (the treatment), then it is possible to directly infer causality and to compute a causal

effect size. This possibility does not imply that causal inference from qualitative comparative

research is optimal or easy, however. Of course, there is the issue of knowing all relevant

dimensions and finding at least two cases which are identical in all these dimensions. There

are other difficulties, too: First, if causal processes are stochastic, as they are bound to be, then

a single small-N comparative analysis, which cannot control for noise and random errors, will

not reveal the truth but some random deviation from the truth. Matching cases in a quantita-

tive analysis with large N therefore can be superior—though the greater difficulty of adequately

matching a larger number of cases means that any positive effect on the validity of causal infer-

ences from efficiency gains may be defeated by the negative effect due to problems in match-

ing. Second, perfect homogeneity among cases on all confounding factors can only be

achieved if researchers know the true data-generating process, which is unlikely to be the case

even if qualitative researchers argue that their in-depth study of cases allow them to know

much more about this process than quantitative researchers do [32,33]. In the absence of

knowledge of the true data-generating process, qualitative comparative researchers should
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make sure that selected cases do not differ in respect to known strong confounding factors.

The potential for bias grows with the strength of the potentially confounding factor (for which

no controls have been included), and the size of the correlation between the variable of interest

and the confounder.

Case-selection and qualitative comparisons

Methodological advice on the selection of cases in qualitative research stands in a long tradi-

tion. John Stuart Mill in his A System of Logic, first published in 1843, proposed five methods

meant to enable researchers to make causal inferences: the method of agreement, the method

of difference, the double method of agreement and difference, the method of residues, and the

method of concomitant variation [4]. Methodologists have questioned and criticized the use-

fulness and general applicability of Mill’s methods [34,35]. However, without doubt Mill’s pro-

posals had a major and lasting impact on the development of the two most prominent modern

methods, namely the “most similar” and “most different” comparative case-study designs

[1,36,37].

Yet, as Seawright and Gerring [3] point out, these and other methods of case-selection are

“poorly understood and often misapplied”. Qualitative researchers mean very different things

when they invoke the same terms “most similar” or “most different” and usually the descrip-

tion of their research design is not precise enough to allow readers to assess exactly how cases

have been chosen. Seawright and Gerring have therefore provided a formal definition and clas-

sification of these and other techniques of case-selection. They [3] suggest that “in its purest

form” the “most similar” design chooses cases which appear to be identical on all controls (z)
but different in the variable of interest (x). Lijphart [1] suggested what might be regarded a var-

iant of this method that asks researchers to maximize “the ratio between the variance of the

operative variables and the variance of the control variables”.

Naturally, the “most similar” technique is not easily applied because researchers find it diffi-

cult to match cases such that they are identical on all control variables. As Seawright and Ger-

ring [3] concede: “Unfortunately, in most observational studies, the matching procedure

described previously–known as exact matching–is impossible.” This impossibility has three

sources: first, researchers usually do not know the true model and thus cannot match on all

control variables. Second, even if known to affect the dependent variable, many variables

remain unobserved. And third, even if all necessary pieces of information are available, two

cases that are identical in all excluded variables may not exist.

Qualitative comparative researchers prefer the “most similar” technique, despite ambiguity

in its definition and practical operationalization, to its main rival, the “most different” design.

Seawright and Gerring [3] believe that this dominance of “most similar” over “most different”

design is well justified. Defining the “most different” technique as choosing two cases that are

identical in the outcome y and in the main variable of interest x but different in all control var-

iables z, they argue that this technique does not generate much leverage. They criticize three

points: first, the chosen cases never represent the entire population (if x can in fact vary in the

population). Second, the lack of variation in x renders it impossible to identify causal effects.

And third, elimination of rival hypotheses is impossible. As Gerring [38] formulates poi-

gnantly: “There is little point in pursuing cross-unit analysis if the units in question do not

exhibit variation on the dimensions of theoretical interest and/or the researcher cannot man-

age to hold other, potentially confounding, factors constant.”

For comparative case studies, Seawright and Gerring also identify a third selection tech-

nique, which they label the “diverse” technique. It selects cases so as to “represent the full

range of values characterizing X, Y, or some particular X/Y relationship” [3]. This definition is
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somewhat ambiguous and vague (“some particular relationship”), but one of the selection

algorithms used below in our MC simulations captures the essence of this technique by simul-

taneously maximizing variation in y and x.

Perhaps surprisingly, King, Keohane and Verba’s [39] seminal contribution to qualitative

research methodology discusses case-selection only from the perspective of unit homogeneity–

broadly understood as constant effect assumption–and selection bias–defined as non-random

selection of cases that are not statistically representative of the population. Selecting cases in a

way that does not avoid selection bias negatively affects the generalizability of inferences. Ran-

dom sampling from the population of cases would clearly avoid selection bias. Thus, given the

prominence of selection bias in King et al.’s discussion of case-selection, the absence of ran-

dom sampling in comparative research may appear surprising. But it is not. Random selection

of cases leads to inferences which are correct on average when the number of conducted case

studies approaches infinity, but the sampling deviation is extremely large. As a consequence,

the reliability of single studies of randomly sampled cases remains low. The advice King and

his co-authors give on case-selection, then, lends additional credibility to commonly chosen

practices by qualitative comparative researchers, namely to avoid truncation of the dependent

variable, to avoid selection on the dependent variable, while at the same time selecting accord-

ing to the categories of the “key causal explanatory variable”. King et al. [39] also repeatedly

claim that increasing the number of observations makes causal inferences more reliable. Quali-

tative methodologists have argued that this view, while correct in principle, does not do justice

to qualitative research [40,41,42]. More importantly, they also suggest that the extent to which

the logic of quantitative research can be superimposed on qualitative research designs has

limits.

While there is a growing consensus on the importance of case-selection for comparative

research, as yet very little overall agreement has emerged concerning the use of central termi-

nology and the relative advantages of different case-selection rules. Scholars largely agree that

random sampling is unsuitable for qualitative comparative research (but see [5]), but disagree-

ment on sampling on the dependent variable, and the appropriate use of information from

observable confounding factors persists. Our Monte Carlo analysis will shed light on this issue

by exploring which selection algorithms are best suited under a variety of assumptions about

the data-generating process.

A Monte Carlo analysis of case-selection algorithms

In statistics, Monte Carlo experiments are employed to compare the performance of estima-

tors. The term Monte Carlo experiments describes a broad set of techniques that randomly

draw values from a probability distribution to add error to a predefined equation that serves as

data-generating process. Since the truth is known, it is straightforward to compare the esti-

mated or computed effects to the true effects. An estimator performs the better the smaller the

average distance between the estimated effect and the truth. This average distance is usually

called the root mean squared error.

Our Monte Carlo experiments follow this common practice in statistics and merely replace

the estimators by a case-selection rule or algorithm. We compare selection rules commonly

used in applied qualitative comparative research, as well as various simple permutations and

extensions. Without loss of generality, we assume a data-generating process in which the

dependent variable y is a linear function of a variable of interest x, a control variable z and an

error term ε. Since we can interpret z as a vector of k control variables, we can generalize find-

ings to analyses with multiple controls.
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Case-selection algorithms

Ignoring for the time being standard advice against sampling on the dependent variable,

researchers might wish to maximize variation of y, maximize variation of x, minimize variation

of z or some combination thereof. Employing addition and subtraction, the two most basic

functions to aggregate information on more than one variable, leads to seven permutations of

information from which to choose; together with random sampling this results in eight simple

case-selection algorithms–see Table 1. The mathematical description of the selection algo-

rithms, as shown in the last column of the table, relies on the set-up of the Monte Carlo analy-

ses (described in the next section). In general, for each variable we generate Euclidean distance

matrices, which are N×N matrices representing the difference or distance in a set of cases i and

j forming the case-dyad ij. Starting from these distance matrices, we select two cases that follow

a specific selection rule. For example, max(x) only considers the explanatory variable of inter-

est, thereby ignoring the distance matrices for the dependent variable y and the control vari-

able z. With max(x), we select the two cases that represent the cell of the distance matrix with

the largest distance value. We refrain from analyzing case-selection algorithms for qualitative

research with more than two cases. Note, however, that all major results we show here carry

over to selecting more than two cases based on a single algorithm. However, we do not yet

know whether all our results carry over to analyses of more than two cases when researchers

select cases based on different algorithms–a topic we will revisit in future research.

Algorithm 1 does not use information (other than that a case belongs to the population),

and samples cases randomly. We include this algorithm for completeness and because qualita-

tive methodologists argue that random sampling–the gold standard for sampling in quantita-

tive research–does not work well in small-N comparative research.

We incorporate the second algorithm–pure sampling on the dependent variable without

regard to variation of either x or z–for the same completeness reason. Echoing Geddes [43],

many scholars have argued that sampling on the dependent variable biases the results

[39,44,45]. Geddes demonstrates that “selecting on the dependent variable” lies at the core of

invalid results generated from qualitative comparative research in fields as diverse as economic

development, social revolution, and inflation.

But does Geddes’s compelling critique of sampling on the dependent variable imply that

applied researchers should entirely ignore information on the dependent variable when they

also use information on the variable of interest or the confounding factors? Algorithms 5, 6,

and 8 help us to explore this question. These rules include selection on the dependent variable

in addition to selection on x and/or z. Theoretically, these algorithms should perform better

than the algorithm 2, but we are more interested in analyzing how these biased algorithms per-

form in comparison to their counterparts, namely algorithms 3, 4, and 7, which, respectively,

Table 1. Simple case-selection algorithms.

sampling information

Name max dist(y) max dist(x) min dist(z) selection algorithm

1 random no no no random draw

2 max(y) yes no no max dist(y)

3 max(x) no yes no max dist(x)

4 min(z) no no yes min dist(z)

5 max(y)max(x) yes yes no max [dist(y)+dist(x)]

6 max(y)min(z) yes no yes max [dist(y)-dist(z)]

7 max(x)min(z) no yes yes max [dist(x)-dist(z)]

8 max(y)max(x)min(z) yes yes yes max [dist(y)+dist(x)-dist(z)]

https://doi.org/10.1371/journal.pone.0219727.t001
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maximize variation of x, minimize variation of z, and simultaneously maximize variation of x
and minimize variation of z, just as algorithms 5, 6 and 8 do, but this time without regard to

variation of y.

Theoretically, one would expect algorithm 7 to outperform algorithms 3 and 4. Qualitative

methodlogists such as Gerring and Seawright and Gerring [17,3] expect this outcome and we

concur. Using more information must be preferable to using less information when it comes

to sampling. This does not imply, however, that algorithm 7 necessarily offers the optimal

selection rule for qualitative comparative research. Since information from at least two differ-

ent variables has to be aggregated, researchers have at their disposal multiple possible algo-

rithms that all aggregate information in different ways. For example, in addition to the simple

unweighted sum (or difference) that we assume in Table 1, one can aggregate by multiplying

or dividing the distances, and one can also weight the individual components.

Lijphart [1] has suggested an alternative function for aggregation, namely maximizing the

ratio of the variance in x and z: max[dist(x)/dist(z)]. We include Lijphart’s suggestion as our

algorithm 9 even though it suffers from a simple problem which reduces its usefulness: when

the variance of the control variable z is smaller than 1.0, the variance of what Lijphart calls the

operative variable x becomes increasingly unimportant for case-selection (unless of course the

variation of the control variables is very similar across different pairs of cases). We solve this

problem by also including in the competition an augmented version of Lijphart’s suggestion.

This algorithm 10 adds one to the denominator of the algorithm proposed by Lijphart: max
[dist(x)/(1+dist(z))]. Observe that adding one to the denominator prevents the algorithm from

converging to min[dist(z)] when dist(z) becomes small. Finally, we add a variance-weighted

version of algorithm 7 as our final algorithm 11 to check whether weighting improves on the

simple algorithms. Table 2 summarizes the additional analyzed algorithms that aggregate

information using more complicated functions.

Note that thus far we have given the selection algorithms formal and technical labels, avoid-

ing terminology of case-selection rules commonly used in the literature. Nevertheless, there

are connections between some of the above algorithms and the terminology commonly used

in the literature. For example, algorithms 2, 3 and 5 are variants of selection rules described by

Seawright and Gerring [3] as “diverse” case-selection rules. Algorithms 2, 5, 6, and 8 all use

information on variation of the dependent variable and are thus variants of selection on the

dependent variable. More importantly, algorithms 4 and 7 as well as algorithms 9 to 11 seem

to be variants of the most similar design. However, we do not call any of these algorithms

“selection on the dependent variable” or “most similar”. The reason is that, as discussed above,

there is a lack of consensus on terminology and different scholars prefer different labels and

often mean different things when they invoke rules such as “sampling on the dependent vari-

able” or “most similar”.

The Monte Carlo design

The use of Monte Carlo techniques may appear to be strange to qualitative researchers. How-

ever, Monte Carlo simulations are perfectly suited for the purpose of exploring the ex ante

Table 2. Case-selection algorithms with more complicated functions for aggregating information from more than one variable.

sampling information

Name max dist(y) max dist(x) min dist(z) selection algorithm

9 lijphart no yes yes max [dist(x)/dist(z)]

10 augmented lijphart no yes yes max [dist(x)/(1+dist(z))]

11 weighted max(x)min(z) no yes yes max
distðxÞ

maxdistðxÞ �
distðzÞ

maxdistðzÞ

h i

https://doi.org/10.1371/journal.pone.0219727.t002
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reliability of case-selection algorithms. As we have explained above, Monte Carlo simulations

provide insights into the expected accuracy of inferences given certain pre-defined properties

of the data-generating process. While they are commonly used to compare estimators, one can

equally use them to compare the performance of different sampling rules.

Monte Carlo simulations allow us to systematically change the data-generating process, and

to explore the comparative advantages of different selection algorithms depending on the

assumptions we make about the data-generating process. Possible systematic changes include

variation in the assumed level of correlation between explanatory variables, the relative impor-

tance of uncertainty, the level of measurement error, and so on. Unsystematic changes are

modelled by repeated random draws of the error term.

Specifically, we define various data-generating processes from which we draw a number of

random samples, and then select two cases from each sample according to a specific algorithm,

as defined above. As a consequence of the unaccounted error process, the computed effects

from the various Monte Carlo simulations will deviate somewhat from the truth. Yet, since we

confront all selection algorithms to the same set of data-generating processes, including the

same error processes, performance differences must result from the algorithms themselves.

These differences occur because different algorithms will select different pairs of cases i and j,
and, as a consequence, the computed effect and the distance of this effect from the true effect

differ. Our analysis explores to what extent a comparison of two cases allows researchers to

estimate the effect that one explanatory variable, called x, exerts on a dependent variable, called

y. We assume that this dependent variable y is a function of x, a single control variable z, which

is observed, and some error term ε: yi = βxi+γzi+εi, where β, γ represent coefficients and ε is

an iid error process. Obviously, as var(ε) approaches zero, the data-generating process

becomes increasingly deterministic. We follow the convention of quantitative methodology

and assume that the error term is randomly drawn from a standard normal distribution. Note,

however, that since we are not interested in asymptotic properties of case-selection algorithms,

we could as well draw the error term from different distributions. This would have no conse-

quence other than adding systematic bias to all algorithms alike. The process resembles what

Gerring and McDermott [46] call a “spatial comparison” (a comparison across n observations),

but our conclusions equally apply to “longitudinal” (a comparison across t periods) and

“dynamic comparisons” (a comparison across n�t observations). We conducted simulations

with both a continuous and a binary dependent variable. We report results for the continuous

variable in detail in the next section and briefly summarize the results for the binary dependent

variable with full results reported in the appendices.

There are different ways to think about the error term. First, usually scientists implicitly

assume that the world is not perfectly determined and they allow for multiple equilibria which

depend on random constellations or the free will of actors. In this respect, the error term accounts

for the existence of behavioral randomness. Second, virtually all social scientists acknowledge the

existence of systematic and unsystematic measurement error. The error term can be perceived as

accounting for information that is partly uncertain. And third, the error term can be interpreted

as model uncertainty–that is, as unobserved omitted variables also exerting an influence on the

dependent variable. Only if randomness and free will, measurement error, and model uncertainty

did not exist, would the inclusion of an error term make no sense.

We always draw x and z from a normal distribution, but, of course, alternative assumptions

are possible. Given the low number of observations, it comes without loss in generality that we

draw ε from a normal distribution with mean zero and standard deviation of 1.5; and, unless

otherwise stated, all true coefficients take the value of 1.0; the standard deviation of variables is

1.0; correlations are 0.0; and the number of observations N, representing the size of the sample

from which researchers can select cases, equals 100.
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Evaluating the results from the Monte Carlo simulations

We compare the reliability of inference on effect strength. Specifically, the effect size of x on y
from a comparative case study with two cases equals

b̂ðxÞ ¼
yi � yj
xi � xj

; ð1Þ

where subscripts [i,j] represent the two selected cases. We take the root mean squared error

(RMSE) as our measure for the reliability of causal inference as it reacts to both bias and ineffi-

ciency. The RMSE is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðb̂ � btrueÞ

2

N

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðb̂Þ þ ½Biasðb̂; btrueÞ
2
�

q

: ð2Þ

This criterion not only incorporates bias (the average deviation of the computed effect from

the true effect), but also accounts for inefficiency, which is a measure of the sampling variation

of the computed effect that reflects the influence of random noise on the computed effect.

Qualitative researchers cannot appropriately control for the influence of noise on estimates.

The best they can do to account for randomness is to choose a case-selection algorithm that

responds less than others to noise. Naturally, these are case-selection algorithms that make

best use of information. In quantitative research, the property characterizing the best use of

information is called efficiency, and we see no reason to deviate from this terminology.

Results from the Monte Carlo analysis of case-selection algorithms

We conduct three sets of MC simulations, in which we vary the parameters of the data-gener-

ating process, and evaluate the effect of this variation on the precision with which the algo-

rithms approach the true coefficients together with the efficiency of the estimation. In each

type of analysis we draw 1,000 samples from the underlying data-generating process. In the

first set of simulations, we change the number of observations from which the two cases are

chosen (i = 1,. . .N), thereby varying the size of the sample, i.e., the total number of cases from

which researchers can select two cases. In the second set of simulations, we vary the correlation

between x and z–that is, the correlation between the variable of interest and the confounding

factor. In the final set of simulations, we vary the variance of x and thus the effect size or

explanatory power of x relative to the effect size of the confounding factor z.
Analyzing the impact of varying the number of analyzed cases on the validity of inferences

in qualitative comparative research may seem strange at first glance. After all, qualitative

researchers usually study a fairly limited number of cases. In fact, in our Monte Carlo analyses

we generate effects by looking at a single pair of cases selected by each of the case-selection

algorithms. So why should the number of cases from which we select the two cases matter?

The reason is that if qualitative researchers can choose from a larger number of cases about

which they have theoretically relevant information, they will be able to select a better pair of

cases given the chosen algorithm. The more information researchers have before they select

cases, the more reliable their inferences should thus become. In other words, N does not repre-

sent the number of cases analyzed, but the number of the total set of cases from which the ana-

lyzed cases are chosen.

By varying the correlation between x and the control variable z we can analyze the impact

of confounding factors on the performance of the case-selection algorithms. With increasing

correlation, inferences should become less reliable. Thereby, we look at the effect of potential

model misspecification on the validity of inference in qualitative comparative research. While
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quantitative researchers can eliminate the potential for bias from correlated control variables

by including these on the right-hand-side of the regression model, qualitative researchers have

to use appropriate case-selection rules to reduce the potential for bias.

Finally, in varying the standard deviation of x we analyze the impact of varying the strength

of the effect of the variable of interest on the dependent variable. The larger this relative effect

size of the variable of interest, the more reliable causal inferences should become. The smaller

the effect of the variable of interest x on y in comparison to the effect on y of the control or

confounding variables z, the harder it is to identify the effect correctly, and the less valid the

inferences become–especially when the researcher does not know the true specification of the

model.

Table 3 reports the Monte Carlo results obtained when we only vary the size of the sample

from which we draw the two cases we compare. In this set of simulations, we do not allow for

systematic correlation between the variable of interest x and the confounding factor z. The

deviations of computed effects from the true effect occur because of “normal” sampling error,

and how efficiently the algorithm deals with the available information.

Observe, first, that of the basic case-selection algorithms, max(x)min(z) performs up to 100

times better with respect to the average deviation from the true effect (the root mean squared

error) than the poorest-performing competitors, namely random, which draws two cases ran-

domly from the sample, and max(y), which purely selects on the dependent variable. The

drawback from selecting on the dependent variable declines if researchers additionally take

into account variation of x and/or variation of z, but these algorithms 5, 6, and 8 are typically

inferior to their counterparts 3, 4, and 7, which ignore variation of the dependent variable.

Accordingly, selection on the dependent variable not only leads to unreliable inferences that

are likely to be wrong, it also makes other selection algorithms less reliable. Hence, researchers

should not pay attention to variation in the dependent variable y when they select cases. By

selecting cases on the variable of interest x while at the same time controlling for the influence

of confounding factors, researchers are likely to choose cases which vary in their outcome if x
indeed exerts an effect on y.

Maximizing variation of x while at the same time minimizing variation of z appears opti-

mal. Algorithm 7 uses subtraction as a basic function for aggregating information from more

than one variable. Would using a more complicated function dramatically improve the

Table 3. Monte Carlo results from varying ‘population size’.

Algorithm N = 20 N = 40 N = 60 N = 80 N = 100

1 random 9.137 13.846 6.008 6.860 17.349

2 max(y) 65.096 16.481 55.532 7.604 12.787

3 max(x) 0.575 0.488 0.447 0.429 0.411

4 min(z) 23.399 10.234 40.154 18.113 6.929

5 max(y)max(x) 3.213 7.608 35.725 1.935 2.047

6 max(y)min(z) 13.072 5.915 14.028 7.241 9.997

7 max(x)min(z) 0.522 0.438 0.419 0.387 0.360

8 max(y)max(x)min(z) 2.925 2.014 1.704 1.505 1.563

9 lijphart 1.754 1.544 1.400 1.548 1.416

10 augmented lijphart 0.536 0.479 0.442 0.407 0.389

11 weighted max(x)min(z) 0.521 0.442 0.417 0.388 0.359

Note: corr(x,z) = 0, SD(x) = 1

The table displays the root mean squared error. Smaller numbers indicate higher reliability.

https://doi.org/10.1371/journal.pone.0219727.t003
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performance of case-selection? The results reported in Table 3 show that, at least for this set of

simulations, this is not the case. Algorithm 7 performs roughly 10 percent better than the aug-

mented version of Lijphart’s proposal (augmented lijphart), and while algorithm 11, the vari-

ance-weighted version of algorithm 7, is very slightly superior, not much separates the

performance of the two.

Another interesting finding from Table 3 is that only four algorithms become systematically

more reliable when the population size from which we draw two cases increases. These four

algorithms are: max(x), max(x)min(z) and its weighted variant, weighted max(x)min(z), as well

as augmented lijphart. Algorithms need to have a certain quality to generate, in expectation,

improvements in the validity of causal inferences when the population size becomes larger.

Random selection, for example, only improves on average if the increase in population size

leads to relatively more “onliers” than “outliers”. This may be the case, but there is no guaran-

tee. When researchers use relatively reliable case-selection algorithms, however, an increase in

the size of the sample, on which information is available, improves causal inferences unless

one adds extreme outliers to the sample. Inferences become more reliable if cases are selected

from a larger sample of cases for which researchers have sufficient information. We are not

making any normative claim about enlarging the population size, because the improvements

of enlarging the population from which cases are selected has to be discounted by the deterio-

rations caused by an increase in case heterogeneity caused by an enlarged sample.

The results from Table 3 support King, Keohane and Verba’s [39] arguments against both

random selection and sampling on the dependent variable. At first sight, our results seem to

differ from Herron and Quinn’s [5] finding that “simple random sampling outperforms most

methods of case selection” even when the number of analyzed cases “is as small as 5 or 7”.

However, our results are consistent with Herron and Quinn’s finding that random sampling is

not reliable when the number of cases is two. In fact, the number of cases required to make

random sampling a viable strategy depends on the heterogeneity of cases and the signal-to-

noise ratio of the causal effect of interest: the more homogeneous and stronger the effect

researchers are interested in, the better the performance of random selection of cases and the

lower the number of cases for sufficiently reliable inferences.

In Table 4, we report the results of Monte Carlo simulations from varying the correlation

between the variable of interest x and the confounding factor z.

Table 4. Monte Carlo results from varying the correlation between the variable of interest x and the confounding factor z.

Algorithm corr = -0.9 corr = -0.7 corr = -0.3 corr = 0 corr = 0.3 corr = 0.7 corr = 0.9

1 random 10.849 6.188 11.002 7.301 10.535 5.783 7.420

2 max(y) 52.987 64.685 13.840 7.154 4.215 2.883 2.379

3 max(x) 0.891 0.733 0.465 0.401 0.472 0.734 0.930

4 min(z) 20.962 8.325 5.717 5.653 8.742 10.358 36.662

5 max(y)max(x) 2.801 2.777 2.177 1.944 1.929 1.799 1.822

6 max(y)min(z) 61.050 19.741 6.171 4.685 9.976 11.658 4.980

7 max(x)min(z) 0.741 0.486 0.369 0.364 0.383 0.475 0.711

8 max(y)max(x)min(z) 10.010 2.787 1.591 1.520 1.666 1.981 2.159

9 lijphart 3.426 2.202 1.671 1.575 1.505 2.072 3.778

10 augmented lijphart 0.869 0.551 0.397 0.372 0.411 0.543 0.829

11 weighted max(x)min(z) 0.736 0.481 0.369 0.363 0.383 0.472 0.701

Note: SD(x) = 1.0, N = 100, SD(z) = 1.0, Varying Correlation (x,z). The table displays the root mean squared error. Smaller numbers indicate higher reliability.

https://doi.org/10.1371/journal.pone.0219727.t004
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Note that all substantive results from Table 3 remain valid if we allow for correlation

between the variable of interest and the confounding factor. In particular, algorithm 11, which

weights the individual components of the best-performing simple case-selection algorithm 7,

performs only very slightly better; while the performance gap between simple algorithm max
(x)min(z), based on subtraction, and the augmented Lijphart algorithm (augmented lijphart),
which uses the ratio as aggregation function, increases only marginally. Table 4 also demon-

strates that correlation between the variable of interest and confounding factors renders causal

inferences from qualitative comparative research less reliable. Over all simulations and algo-

rithms, the RMSE increases by at least 100 percent when the correlation between x and z
increases from 0.0 to either -0.9 or +0.9.

Finally, we examine how algorithms respond to variation in the strength of the effect of the

variable of interest. In this final set of simulations for which results are reported in Table 5 we

vary the standard deviation of the explanatory factor x; a small standard deviation indicates a

small effect of x on y relative to the effect exerted from z on y. The results show that the perfor-

mance of all case-selection algorithms suffers from a low “signal-to-noise” ratio. As one would

expect, the smaller the effect of the variable of interest x on y relative to the effect of z on y, the

less reliable the causal inferences from comparative case study research becomes. Yet, we find

that the algorithms which performed best in the previous two sets of simulations also turn out

to be least vulnerable to a small effect of the variable of interest. Accordingly, while inferences

do become more unreliable when the effect of the variable of interest becomes small relative to

the total variation of the dependent variable, comparative case studies are not simply confined

to analyzing the main determinant of the phenomenon of interest if one of the top performing

case-selection algorithms are used. As in the previous sets of simulations, we find that little is

gained by employing more complicated functions for aggregating information from more

than one variable as, for example, the ratio (augmented lijphart) or weighting by the variance

of x and z (weighted max(x)min(z)). Sticking to the most basic aggregation function has little

cost, if any.

We now briefly report results from additional Monte Carlo simulations which we show in

full in the appendix to the paper (S1 File). First, weighting x and z by their respective sample

range becomes more important when the data-generating process includes correlation

between x and z and the effect of x on y is relatively small (see Table A in S1 File). In this case,

Table 5. Monte Carlo results from varying the strength of the effect of the variable of interest.

algorithm SD(x) = 0.3 SD(x) = 0.7 SD(x) = 1.0 SD(x) = 1.5 SD(x) = 2.0

1 random 20.796 13.926 7.301 4.701 12.342

2 max(y) 105.183 22.097 7.154 2.706 0.969

3 max(x) 1.390 0.597 0.401 0.274 0.200

4 min(z) 41.889 13.112 5.653 8.377 3.024

5 max(y)max(x) 56.402 6.168 1.944 0.803 0.456

6 max(y)min(z) 125.917 68.193 4.685 1.671 0.738

7 max(x)min(z) 1.291 0.521 0.364 0.236 0.177

8 max(y)max(x)min(z) 95.349 3.862 1.520 0.654 0.388

9 lijphart 4.842 2.153 1.575 0.956 0.730

10 augmented lijphart 1.293 0.542 0.372 0.259 0.197

11 weighted max(x)min(z) 1.242 0.522 0.363 0.233 0.177

Note: corr(x,z) = 0.0, N = 100, SD(z) = 1.0, Varying SD(x)

The table displays the root mean squared error. Smaller numbers indicate higher reliability.

https://doi.org/10.1371/journal.pone.0219727.t005
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weighting both the variation of x and z before using the max(x)min(z) selection rule for identi-

fying two cases slightly increases the reliability of causal inferences.

Second, we also conducted the full range of Monte Carlo simulations with a dichotomous

dependent variable (see Tables B- E in S1 File). We find that the algorithms that perform best

with a continuous dependent variable also dominate with respect to reliability when we ana-

lyze dichotomous dependent variables. Yet, causal inferences from qualitative comparative

case study research become far less reliable when the dependent variable is dichotomous for all

selection algorithms compared to the case of a continuous dependent variable. The root mean

squared error roughly doubles for the better-performing algorithms. As a consequence, causal

inferences with a binary dependent variable and an additional complication (either a non-triv-

ial correlation between x and z or a relatively small effect of x on y) are not reliable. Accord-

ingly, qualitative researchers should not throw away variation by dichotomizing their

dependent variable. Where the dependent variable is dichotomous, qualitative comparative

research is confined to what most qualitative researchers actually do in these situations: trying

to identify strong and deterministic relationships or necessary conditions [47,48]. In both

cases, the strong deterministic effect of x on y compensates for the low level of information in

the data.

Conclusion

Case-selection rules employed in qualitative research resemble ‘matching’ algorithms devel-

oped by identification scholars in quantitative research and thus can be employed to derive

causal inferences. They also share their most important shortcoming: the extent to which

causal inferences from selected samples are valid is partly determined by the extent of knowl-

edge of the data-generating process. The more is known about the “true model”, the better

researchers can select cases to maximize the ex ante reliability of their causal inferences.

Our major contribution has been to guide qualitative comparative researchers on what are

the selection rules with the highest ex ante reliability for the purpose of making causal infer-

ences under a range of conditions regarding the underlying data-generating process. The

validity of causal inferences from qualitative comparative research will necessarily always be

uncertain but following our guidance will allow qualitative comparative researchers to maxi-

mize the imperfect validity of their inferences.

Qualitative comparative researchers can take away six important concrete lessons from our

Monte Carlo simulations: First, ceteris paribus, selecting cases from a larger set of potential

cases gives more reliable results. Qualitative researchers often deal with extremely small sam-

ples. Sometimes nothing can be done to increase sample size, but where there are no binding

constraints it can well be worth the effort expanding the sample from which cases can be

selected. Second, for all the better-performing selection algorithms, it holds that ignoring

information on the dependent variable for the purpose of selecting cases makes inferences

much more reliable. Tempting though it may seem, qualitative comparative researchers should

not select on the dependent variable at all. Third, selecting cases based on both the variable of

interest and confounding factors improves the ex ante reliability of causal inferences in com-

parison to selection algorithms that consider just the variable of interest or just confounding

factors–even if this means that one no longer chooses the cases that match most closely on

confounding factors. These algorithms are relatively best-performing, no matter what the

underlying data-generating process (of those we have analyzed). This is a crucial lesson

because qualitative comparative researchers might not have much knowledge about the kind

of data-generating process they are dealing with. Fourth, correlation between the variable of

interest and confounding factors renders the selection algorithms less reliable. The same holds
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if the analyzed effect is weak. This reinforces existing views that qualitative case comparison is

most suitable for studying strong and deterministic causal relationships [47,48]. Fifth, the reli-

ability of case-selection rules depends on the variation in the dependent variable scholars can

analyze. Accordingly, unless there are very strong over-riding theoretical or conceptual rea-

sons, throwing away information by dichotomizing the dependent variable is a bad idea. A

continuous dependent variable allows for more valid inferences; a dichotomous dependent

variable should only be used if there is no alternative. Sixth, employing basic functions for

aggregating information from more than one variable (such as maximizing the difference

between variation of x and variation of z) does not reduce by much the ex ante reliability of

case-selection compared to more complicated aggregation functions (such as maximizing the

ratio or the variance-weighted difference). The only exceptions occur if x and z are highly cor-

related and the effect of x on y is relatively small compared to the effect of z on y. As a general

rule, one does not lose much by opting for the most basic aggregation function.

In conclusion, our Monte Carlo study is broadly consistent with the views of qualitative

methodologists. After all, the best- or nearly best-performing algorithms in our analysis of

alternative selection algorithms appear to be variants of the most similar design, which in turn

draws on Przeworski and Teune’s [35] and Lijphart’s [49] suggestions for case-selection. How-

ever, we are the first to provide systematic evidence that upholds existing recommendations in

the presence of stochastic error processes. In addition, we demonstrated that simple functions

for linking variation of the explanatory variable with variation of the confounding variables

perform relatively well in general. There is little reason to resort to more advanced functions

unless the explanatory variable has a weak effect and is strongly correlated with the confound-

ing variables. One important area for further analysis comes from settings in which compara-

tive qualitative researchers assess claims about two or more causal factors interacting with

each other.
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