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Abstract

Andy Egan recently drew attention to a class of decision situations that provide a

certain kind of informational feedback, which he claims constitute a counterexample

to causal decision theory (CDT). Arntzenius and Wallace have sought to vindicate

a form of CDT by describing a dynamic process of deliberation that culminates in

a "mixed" decision. I show that, for many of the cases in question, this proposal

depends on an incorrect way of calculating expected utilities, and argue that it is

therefore unsuccessful. I then tentatively defend an alternative proposal by Joyce,

which produces a similar process of dynamic deliberation but for a different reason.

Andy Egan [2007] recently drew attention to a class of decision situations which, he claims,

constitute a counterexample to causal decision theory (CDT). In these situations, the

process of making a decision provides the agent with informational feedback that makes

all options unratifiable: no matter what option the agent chooses, in choosing it she will

receive information that will make her prefer some other option. Frank Arntzenius [2008]

and David Wallace [2010] have both sought to vindicate forms of CDT through the use

of mixed decisions, in which the agent chooses a probability distribution over acts rather

than a single act. In this way, they claim, an agent in the situations Egan describes can

make a mixed decision that she will have no reason to want to change. In this paper I
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show that, for a significant number of the cases in question, this proposal does not work

because it rests on an incorrect way of calculating the expected utility of a mixed decision.

In section 1 I introduce expected utility theory and describe a case involving a conditional

bet that is unfair, despite being composed of two fair unconditional bets. This unfair

conditional bet illustrates a general phenomenon which, as I show later, leads Arntzenius

(systematically) and Wallace (in one case) to miscalculate the expected utility of mixed

decisions. In section 2 I introduce causal decision theory, the version of expected utility

theory defended by Arntzenius and Wallace. In section 3 I describe the problem cases

and the instability to which they give rise. In section 4 I introduce mixed decisions and

show how, in some cases, they solve the problem of instability. In section 5 I argue that,

for a large subclass of the problem cases, mixed decisions do not constitute a solution.

The solutions that have been proposed rest on a way of calculating expected utilities that

is incorrect, for the same reason that the conditional bet described in section 1 is unfair.

Arntzenius is concerned mainly with the cases in which my objection applies, whereas

Wallace is concerned mainly with those in which it does not; consequently, in this section

I engage mainly with Arntzenius’s proposal, though Wallace’s is similar. In section 6 I

describe, and tentatively accept, a different but related proposal by James Joyce [2012]for

dealing with these cases.

1 Evidential expected utility and conditional bets

In this section we shall consider a series of easy problems.

Problem 1. You are faced with two closed boxes, A and B. The boxes are

transparent; you can see that box A contains $10 and box B contains $20.

You may open one box and keep the contents. What do you do?

This problem is not difficult: assuming that you prefer having more money to having less,

you should take box B.
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Problem 2. You are faced with two closed boxes, A and B. Box A is

transparent, and contains $10. Box B is opaque; you confidently believe that

its contents were determined by the toss of a fair coin, such that it contains

$21 if the coin landed heads but is empty if the coin landed tails. You may

open one box and keep the contents.

The expected utility calculation for this case is straightforward, but it is worth introdu-

cing some terminology at this stage for later use. We define the choice partition A as

comprising the actions available to the agent and the and outcome partition O as specify-

ing the different ways that events might unfold, in a way that is sufficiently fine-grained

to capture all aspects of the situation that the agent cares about. In this case the the

agent has two options, take box A (AA) and take box B (AB). Given we care only about

money, there are three possible outcomes: win $0, win $10 and win $21. We also need to

provide a utility function, U (·), giving a (cardinal) numerical measure of the desirability

of each outcome. The relation between dollars and utilities depends on the agent’s atti-

tude to risk, but for the remainder of this paper we will assume agents are risk-neutral,

valuing money at a rate of 1 dollar = 1 utility point. The agent’s utility function for

cash prizes is then U (win $x) = x. In fact, to simplify matters, we will build the agent’s

utility function into our outcome partition by representing outcomes as value-level pro-

positions of the form V = v, where v is the numerical desirability of the outcome in

question (C.f. Briggs, 2010). O is thus represented as the set {V = 0, V = 10, V = 21}.

The expected utility of an act A, then, is simply the expectation value of V given that

the act is performed: that is, an average of the desirabilites of the possible outcomes,

with each outcome weighted according to its subjective probability given that A occurs:

EEU(A) =
∑

o∈O Cr (o/A)U (o). In Problem 2, taking box A has an expected utility of

10, whereas taking box B has an expected utility of 10.5, and so you should take box B.

Problem 3 (The Boxing Match). You are considering placing a bet of

$10 on a boxing match between Bill, the reigning champion, and Ted, the

underdog. If you bet on Bill and he wins, you make a profit of $2; if you bet

on Ted and he wins, you make a profit of $30; if you bet on the loser, you lose
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$10. You expect Bill to win with a probability of 0.7. Thus, a bet on Bill has

an expected utility of 0.7 × 2 + 0.3 × (−10) = −1.6, whereas a bet on Ted

has an expected utility of 0.3 × 30 + 0.7 × (−10) = 2. However, you do not

have the option of choosing which boxer to bet on. Instead, you are offered a

conditional bet. If you accept then a fair coin will be tossed; if it lands heads

you must bet on Bill, and if it lands tails you must bet on Ted. Should you

bet?

We can calculate the expected utility the conditional bet by enumerating the possible

outcomes and taking an average of their values, weighted according to their probabilities.

The possible outcomes are a winning bet on Bill, which has a value of 12 and a probability

of 0.35; a winning bet on Ted, which has a value of 40 and a probability of 0.15; and a

losing bet, which has a value of -10 and a probability of 0.5. The weighted average of

these is 0.35×2+0.15×30+0.5× (−10) = 0.2, so the bet has a positive expected utility,

indicating (by a small margin) that you should take it.

There is also a second way we can calculate the conditional bet’s expected utility. Instead

of directly calculating a weighted average of all possible outcomes, we can first calculate

the expected utility of each unconditional bet and take an average of these, with each

unconditional bet weighted according to the probability that it would eventuate from

the conditional bet. Because the result of the toss is probabilistically independent of the

result of the match, the result is the same: 0.5 × (−1.6) + 0.5 × 2 = 0.2. This second

approach is often clearer and more convenient.

Problem 4 (The Pet Bet). You have decided to adopt two pets from the

local animal shelter, which will be delivered later today. Because you like

surprises, you have asked the staff there to decide what animals to send by

tossing a fair coin; they will send cats if it lands heads and dogs if it lands

tails. You have been told that you will be sent two brothers, Tom and Tim,

but you do not know what their species is. Because you are a compulsive

gamblers, you and a friend agree to bet on Tim’s species: one of you will bet
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that he is a cat, the other that he is a dog, and whoever loses must give $100

to the winner. To make the bet even more exciting, your friend suggests the

following procedure for deciding who will bet on which species: if Tom is a

cat, then you must bet that Tim is a dog; is Tom is a dog, then you must bet

that Tim is a cat. Is this a fair bet?

The answer is obviously no, because you are sure to lose, but your friend might defend

the bet by arguing as follows. There are two unconditional bets you might make: CAT

or DOG. Since Tim is equally likely to belong to either species, each bet has an expected

utility of 0.5×100+0.5× (−100) = 0. Your friend argues that, as with problem 3, we can

then calculate the expected utility of the conditional bet by taking a weighted average

of the expected utilities of the unconditional bets, with each weighted according to its

probability of eventuating from the second-order bet. Tom is equally likely to be a dog

or a cat, so each first-order bet has a weighting of 0.5; thus, the expected value of the

second-order bet is 0.5× 0 + 0.5× 0 = 0, making it a fair bet.

This argument is fallacious because Tom’s species is not probabilistically independent of

that of his brother Tim; although each brother has a 0.5 chance of being either a cat or

a dog, the conditional probability of Tom being a cat given that Tim is a cat is 1. Thus,

if we wish to calculate the second-order bet’s expected value as a weighted average of

those of the first-order bets, then we must not use each first-order bet’s unconditional

expected utility, but rather its expected utility conditional on its eventuating from the

second-order bet. In this case, because you are sure that Tom is a cat if and only if Tim

is, each first-order bet is sure to be lost given that it eventuates from the second-order

bet, and thus has an expected utility of -100, which is therefore also the second-order

bet’s expected utility. This illustrates a general fact about expected utilities:

FACT. If B is a second-order bet over a set of first-order bets, then it is not

necessarily the case that the expected utility of B is a weighted average of the

unconditional expected utilities of those first-order bets.
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My central claim is that a substantial part of the literature on mixed decisions fails to

take this fact into account, making an error exactly analogous to that made by your friend

in the Pet Bet.

2 Newcomb’s problem and causal expected utility

Problem 5. You are a contestant on a game show, faced with a transparent

box containing $10. Sat opposite you is the game show host, who has two

envelopes, one empty and one containing $100. You may, if you wish, take

the contents of the box. The host will observe your choice and give you an

envelope, whose contents (if any) you can keep. You confidently believe that

he will give you $100 if you do not take the contents of the box, but noting if

you do.

In this case, it is clear that you should not take the contents of the box: if you do so then

you can expect to win only $10, whereas if you don’t then you can expect to win $100.

Problem 6 (Newcomb’s problem). As in problem 5, you are faced with a

transparent box containing $10. You may, if you wish, take the contents of the

box. Again there is a game show host, but this time, instead of two envelopes,

he has an opaque box, whose contents have already been determined and which

will receive regardless of your choice. However, you confidently believe that

he is an extremely reliable predictor of human behaviour, who has decided the

contents of the box based on an accurate prediction of your choice (perhaps

using a brain scanner and a supercomputer to simulate your decision-making

process): more specifically, if he predicted you would take the $10 then he left

the box empty, but if he predicted you would leave the $10 then he put $100

in the box.

From the point of view of evidential expected utility, this is indistinguishable from problem

5. You are (by stipulation) completely confident in the host’s powers of foresight, so your
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credence in the box containing $100 is 1 conditional on your leaving the $10, and zero

conditional on your taking it. So once again, EEU-maximization prescribes leaving the

$10 and taking just the contents of the opaque box. And indeed, this course of action has

been defended on the grounds that, by taking just one box, you can expect to win $100,

whereas by taking both boxes you can only expect to win $10.

There is, though, a crucial difference between problems 4 and 5. In problem 4, when you

are choosing whether to take the $10 it has not yet been determined whether you will get

the $100; your decision on the former matter is what determines the latter. In problem

5, by contrast, when you make your decision it is too late to exert any causal influence

on the contents of the opaque box: if it contains $100 then you will get $100 regardless of

your choice, and if it doesn’t then you won’t. (I am excluding, by stipulation, time travel,

crystal balls, and other forms of backwards causation.) This observation leads to the

following argument for taking both boxes, which has convinced most decision theorists.

Either the opaque box contains $100 or it doesn’t. If it contains $100, then taking both

boxes will earn you $110, whereas taking one will only earn you $10. If the opaque box

is empty, then two-boxing will get you $10, and one-boxing will get you nothing. Either

way, you’ll be better-off by $10 if you two-box. Granted, one-boxing will provide you with

evidence in the light of which you can expect a higher payoff than you could expect if you

took both boxes, but leaving the $10 in order to obtain this evidence would amount to

“an irrational policy of managing the news” [Lewis, 1981].

These observations motivated the development of causal decision theory (CDT), in which

expected utilities are weighted, not according to conditional probabilities, but according

to the probabilities of subjunctive conditionals which are intended to capture an act’s

propensity to causally influence the outcome of a situation. Modelling a situation (or

rather, an agent’s understanding of a situation) using CDT requires, in addition to act

and outcome partitions, a set of states of nature or dependency hypotheses which con-

stitute “the locus of all the agent’s uncertainty”[Joyce, 1999]: the state of nature that

obtains, together with the agent’s act, determines what the outcome of the situation

will be. The exact nature of these varies among versions of CDT, but for present pur-
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poses we will model each state as a set of (non-backtracking) subjunctive condition-

als, one for each available action, specifying what would happen if that action were

performed. An action’s A’s causal expected utility is is a weighted average of the de-

sirabilities of the possible outcomes, with each outcome o weighted according to the

agent’s credence that the state of nature obtaining contains a conditional with A as

antecedent and o as consequent: CEU(A) =
∑

o∈O Cr (A� o)U (o).1 In this prob-

lem there are two possible states: S1, in which the opaque box contains $100, repres-

ented as {A1� V = 100, A2� V = 110} (where A1 is the act of taking one box and

A2 the act of taking both), and S2, in which the opaque box is empty, represented as

{A1� V = 0, A2� V = 10}. This is represented graphically by the payoff matrix be-

low. If the agent has credence p that the opaque box contains $100, the CEU of taking

one box is Cr (A1� V = 100) × 100 + Cr (A1� V = 0) × 0 = 100p, while by similar

calculations that for taking both boxes is 100p+10. This reflects the fact that, whatever

the contents of the box, two-boxing will always earn the agent an extra $10.

S1 S2

A1 100 0

A2 110 10

The value of p, of course, is not fixed. Once you decide for sure to take both boxes, you

can be sure that the predictor will have foreseen this and left the opaque box empty, so

that taking two boxes will then have a CEU of just 10; but since your choice has no effect

on the contents of the box, taking one box will then have an even lower CEU, of zero.

Conversely, if you decide for sure to take only one box you can be sure that the box will

have $100 in it, so that one-boxing has a CEU of 100; but two-boxing will then have a

greater CEU still, of 110. Your deliberation provides you with informational feedback

about the state of nature, and hence about the outcomes that would result from the

actions available to you. But this feedback is not relevant to your decision: deciding to

take both boxes gives you evidence that you are unlucky enough to have an empty box in
1Incidentally, if an agent is sure she will perform A then A’s CEU and EEU are the same, since

Cr (A� o) and Cr (o/A) are then both equal to the agent’s unconditional credence in o. Thus, once a
decision has been made, we can speak unambiguously of the expected utility of that decision.
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front of you, but gives you no reason to change your judgement that you can do better by

taking both boxes than by taking only one. In the next section, we shall consider some

situations in which the decision-making process provides informational feedback that does

seem to be relevant to the agent’s decision.

3 Decision instability

Problem 7. You are a contestant on a game show. In front of you are two

opaque boxes, A and B. You know that one box contains $100, but you don’t

know which. You may choose one box to open, and keep its contents, if any; if

you pick box A, you will receive an extra $10, regardless of the box’s contents.

As in Problem 4, you confidently believe the host to be an extremely reliable

predictor of human behaviour; and once again, you believe that the host has

determined the boxes’ contents in such a way as to frustrate you, this time by

putting the $100 in whichever box he foresaw you would not open.

In this case, the actions’ causal utilities depend on the agent’s beliefs about the boxes’

contents. Specifically, if the agent has a credence of p that the money is in box A (state

SA) and 1 − p that it is in box B (SB), then taking box A has a CEU of 100p + 10 and

taking box B has a CEU of 100 (1− p). It follows that taking box A has greater CEU

than taking box B iff p is 9/20 or greater; so CEU advises taking box A if your credence

in its containing $100 is greater than 9/20, taking box B if it is less, and being indifferent

if it is exactly 9/20.

SA SB

AA 110 10

AB 0 100

CDT thus does not provide unqualified advice in this case, but only advice relative to

an agent’s credence function. We might stipulate that you have an initial credence of 1/2

that the $100 is in box A, perhaps because you have watched the show many times and

the money has been in box A half the times. Given this credence, CDT then prescribes
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taking box A. But this prescription is unstable, in the following sense. If you decide to take

box A, you will come to believe that you are going to do so. As in Newcomb’s problem,

this provides informational feedback about the likely contents of the boxes; but unlike in

Newcomb’s problem, the information you gain is relevant to your preference ordering over

the boxes.

Specifically, when you decide to take box A you come to expect the host to have foreseen

this and placed the money in box B; in the light of this, taking box B will seem more

desirable, and, once you have updated your credences accordingly, this is what CDT will

recommend relative to your new credence function. But if you then decide to take box

B, something similar will happen: you will come to expect the host to have foreseen

this and placed the money in box A, leaving you in the same predicament. CDT thus

appears to give no stable advice in this situation; if you consult it for advice, plan to

follow that advice, and update your credences accordingly, then the advice will inevitably

be revoked. In short, each option has the property of being causally unratifiable: from

the point of view of an agent who has decided to perform it and updated her credences

accordingly, it is less desirable than some alternative. This gives rise to two worries. The

first is a normative worry: does CDT give correct advice in this case, and if so, which

piece of advice is correct? The second is a worry about dynamics: even if CDT does give

good advice then, given the instability of that advice, how can an agent who is trying

to maximise CEU ever settle on a decision rather than oscillating uselessly between the

options?

The existence of cases providing no ratifiable option is noted by Gibbard and Harper

[1978], who contend that this “instability of rational decision” is an oddity of the cases

rather than of CDT: a claim that is of little use to those of us who wish to work out

what to do in such a situation. More recently, Egan (op cit) (after whom these cases

have come to be known as Egan cases) has claimed that an agent in a situation like this

should do what he “confidently expects” will cause the better outcome - in the case of

problem 5, this would mean taking box A, and thus expecting to get $110, rather than

taking box B and expecting to get $100. This leads him to reject CDT, although he
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does not propose a theory of his own. In any case, I will not engage further with Egan’s

views here, but instead will examine another proposed solution, namely “mixed decisions”,

which Arntzenius [2008] and Wallace [2010] have both recently proposed as answers to

the challenge raised by Egan cases.

4 Mixed decisions

Arntzenius objects to the performance of unratifiable acts on the basis of what he calls

Piaf’s maxim: “a rational person should not be able to foresee that she will regret her

decisions”(p. 277). If an agent commits to unratifiable act and updates her credences

accordingly, her updated causal utilities will be such as to make her foreseeably prefer

some other act; so there is a clear sense in which she will regret her decision2. He seeks

(unsuccessfully, as we shall see) to make regret-free actions possible in Egan cases by

allowing mixed decisions.

A mixed decision can be thought of as a probability distribution over acts. The most

(ostensibly) straightforward interpretation of this formal notion is that to make the mixed

decision to perform A with probability p is simply to make a decision to act “randomly”

in some sense. This is usually understood as being analogous with making a decision by

means of a coin toss or some other external generator of randomness, except that the

randomness is generated by some means internal to the agent. For now, we need only

note that, immediately after making the mixed decision to perform A with probability p,

an agent will have a credence of p that she is going to perform A.

How does allowing mixed decisions help in problem 7? To answer this we need to specify

the host’s behaviour towards agents who make mixed decisions. The most important
2Op cit, pp. 290-1. This invocation of Piaf’s maxim to criticise the instability of CDT should not

be conflated with his invocation of the principle of weak desire reflection (which he describes (p. 277)
as a “version of Piaf’s maxim”) to criticise evidential decision theory. Weak desire reflection states that
an agent’s evaluation of an option’s desirability at a given time should be equal her expectation, at that
time, of her evaluation of its desirability at any given future time, provided that her evaluations change
only as a result of updating her credence function according to new information. Arntzenius shows that
EDT does not satisfy weak desire reflection (pp. 278-282) but CDT does (pp. 282-5), which he offers as a
demonstration of CDT’s superiority over EDT. His criticism of CDT’s instability is based on an entirely
separate application of the notion of regret, that does not involve desire reflection.
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matter to clarify is whether he can foresee the “first-order” outcome of mixed decisions:

for example, if a contestant takes box A as a result of a mixed decision to take box A with

probability p and box B with probability q, whether the host can foresee that the contest-

ant takes box A or only that she mixes with probabilities p and q. Call predictors who

can foresee the first-order act that eventuates from a mixed decision as type-1 predictors,

and those who can foresee only the assigned probabilities type-2 predictors. Likewise, call

cases featuring type-1 predictors type-1 Egan cases, and those featuring type-2 predictors

type-2 Egan cases. By stipulating that the host is a type-2 predictor, and specifying his

behaviour when he predicts a mixed decision, we arrive at the following type-2 case.

Problem 8. You are a contestant on a game show. In front of you are two

opaque boxes, A and B. You know that one box contains $100, but you don’t

know which. You may open one, and keep its contents, if any; if you pick box

A, you will receive an extra $10, regardless of the box’s contents. You have the

option to make a mixed decision. You believe that the host has foreseen your

decision and placed the money according to the probability p he predicted you

would assign to box A: if he predicted p would be greater than 11/20 he placed

the money in box B, if less than 11/20 he placed it in box A, and if exactly

11/20 then he randomised, putting the money in box A with probability 9/20

and box B with probability 11/20.

It is clear that no mixed decision assigning probability greater than or less than 11/20

is ratifiable: if you assign box A greater probability than 11/20 then you can be sure the

money will be in box B, which you then prefer to take with certainty, and if you assign box

A a lower probability than 11/20 then you can be sure the money will be in box A, which

you will likewise then prefer to take with certainty. If you assign box A a probability of

exactly 11/20 then you can expect the host to have randomised the location of the $100,

putting it in box A with probability 9/20, so that each box has an expected value of $55.

But in problem 8 (and generally in problems involving type-2 predictors), despite the

fact about expected utilities noted in section 1, the CEU of a mixed decision is simply a

weighted average of the unconditional CEUs of the available pure acts. Once you have
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decided to assign box A a probability of 11/20 and adjusted your credences accordingly,

any decision, pure or mixed, therefore has the same CEU of 55, which means you have

no incentive to revoke your decision: uniquely among the decisions available to you, this

decision is ratifiable. If we are prepared to accept the concept of mixed decisions, then

they seem to provide the means to deal with cases featuring type-2 predictors, not just in

problem 8 but generally.3 This is not true of cases featuring type-1 predictors. Consider

a second variant of problem 7, featuring a type-1 predictor:

Problem 9. You are a contestant on a game show. In front of you are two

opaque boxes, A and B. You know that one box contains $100, but you don’t

know which. You may open one, and keep its contents, if any; if you pick box

A, you will receive an extra $10, regardless of the box’s contents. You have

the option of making a mixed decision, but you believe the host is a type-1

predictor who has determined the boxes’ contents in such a way as to frustrate

you, by putting the $100 in whichever box he foresaw you would not open.

Arntzenius’s proposal, which he calls Deliberative (Causal) Decision Theory (DDT), fol-

lows Skyrms [1990] in modelling deliberation as a dynamical process. On this model the

agent starts out with a set of credences about the state of nature and how she is going

to act, which she then adjusts according to a rule that changes the latter in a way that

“seeks the good” and updates the former accordingly. For example, in problem 9, the

agent might start out with equal credences that she is going to take box A and box B.

Accordingly, she sets her credences in the money being in box A and in its being in box B

- Cr (SA) and Cr (SB) respectively - to 1/2 each. She now calculates three CEUs: that of

taking box A, that of taking box B, and that of the “default mixed act” associated with

her current set of credences, i.e. that which assigns each act a probability equal to her

current credence that she is going to perform it. Taking box A and taking box B have

CEUs of 60 and 50, respectively. DDT assumes (without argument and, as we shall see,
3Wallace [2010] provides a detailed treatment of the use of mixed decisions in cases involving type-

2 predictors, though he also applies them - erroneously, as we shall see - to a case involving a type-1
predictor, namely the “psychopath button” case (see below). Both Arntzenius and Wallace prove that
there is always a ratifiable mixed decision in these cases.
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wrongly) that the CEU of a mixed act is a weighted average the unconditional CEUs of

those of the component pure acts, weighted according to the probabilities it assigns them,

thus assigning the default mixed act a CEU of 55. Finding box A more desirable, and

box B less desirable, than the status quo, she increases her credence that she is going

to take box A, decreases her credence that she is going to take box B, and adjusts her

credences about the location of the $100 accordingly. She then recalculates CEUs; if it is

still the case that one of the boxes is more desirable than the status quo, she updates her

credences once again. In general, this updating of credences about how she is going to act

takes place according to a rule that “increases the credence only of actions whose causal

utility is greater than the status quo” and “raises the sum of the probabilities of all acts

with causal utility greater than the status quo”. This process of deliberation continues

until the agent reaches a fixed point, i.e. a point at which the agent’s updating rule tells

her not to adjust her credences because no pure act has a utility greater than that of the

status quo. In this case, that happens when the agent has a credence of 11/20 that she is

going to take box A.4

The idea of DDT is that, having arrived at these credences, the agent can make the

corresponding mixed decision, assigning probability 11/20 to box A, without regretting

that decision. Taking either box has a CEU of 55, and so (DDT assumes) does the mixed

decision. Committing to the mixed decision will leave the agent’s credences, and hence

these CEUs, unchanged; having done so, the agent will therefore have no reason to wish

she had chosen differently. (It is easy to see that, in cases of this sort, the equilibrium

credences will be such as to make the two pure acts have equal CEU; for only then will

neither pure act’s CEU be greater than a weighted average of the two, and hence only
4Arntzenius describes his own proposal as “little more than an exposition” of Skyrms’s work (p. 292),

which I have therefore referred to to resolve some minor unclarity in Arntzenius’s paper. Some of the
details mentioned here are not explicit in Arntzenius but are explicit in Skyrms. Most importantly,
Arntzenius is not explicit about the assumption that the CEU of a mixed act is a weighted average
the unconditional CEUs of those of the component pure acts, but Skyrms (op cit, pp. 29-30) asserts
this without argument by stating that “A state of indecision, P , carries with it an expected utility,
the expectation according to the probability vector P = 〈p1 . . . pn〉 of the expected utilities of the acts
A1 . . . An” (Unlike Arntzenius, Skyrms draws a notional distinction between the agent’s state of indecision
about how to act, which he formalises as a probability vector, and her credences about how she is going
to act. This difference is not important for present purposes.) Arntzenius also does not state explicitly
what he means by the expected utility of the status quo, but Skyrms (pp. 29-30) makes it clear that the
expected utility of what he terms a “state of indecision” is that of the default mixed act of that state.
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then will DDT tell the agent not to readjust his credences.)

One worry that might arise at this point is that this does not really eliminate regret.

Granted, when the agent has made a mixed decision but has not yet determined which

pure act to perform as a result, she will have no reason to rue her choice. But in due

course, the decision will have to culminate in her taking one box or the other. And once

she finds herself taking a box she will come to expect the predictor to have foreseen this

and placed the money in the other box; regardless of having made a mixed decision, she

will now wish to revoke her decision and open the other box instead. This is a serious

objection, to which I do not think either Arntzenius or Wallace has an adequate response,

but it is not the objection I wish to pursue here.5 Instead I shall pursue a separate and

more fundamental objection, which is that DDT’s way of calculating the expected utility

of mixed acts is completely wrong when a type-1 predictor is involved.

5 DDT is wrong about type-1 cases

In section 1 I gave an example (namely the Pet Bet) of a conditional bet that has a lower

expected value than any of the unconditional bets from which it is composed, because the

event determining the values of the unconditional bets is not probabilistically independent

of the the event that determines which unconditional bet eventuates from the conditional

bet. An act in a decision situation is effectively a bet on the state of nature, and a mixed

decision is a conditional bet that results in an unconditional bet through whatever chance

process determines which pure act is performed as a result of the mixed decision. And

just as a conditional bet’s expected value is sometimes not a weighted average of the

unconditional expected values of the component unconditional bets, a mixed decision’s

expected utility is in some cases not a weighted average of the unconditional expected

utilities of the component pure acts. Problem 9 and other Egan cases, as we shall see, are

cases of this sort.

In Problem 9, contrary to DDT, the mixed decision M of taking box A with probability
5Wedgwood [2011, §3] pursues this and related objections in more detail.
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11/20 is not ratifiable. This can be seen as follows. An agent who is sure she will do M

has a 11/20 credence that the $100 is in box B, and hence that, if she were to take box B,

she would get $100; consequently, taking box B has an expected payoff of $55. By similar

reasoning, taking box A has the same expected payoff. Nonetheless, the agent’s credence

that she is actually going to get the $100 is zero. For by hypothesis, she is confident

that the host has foreseen which box she will actually take, and has left it empty. Since

she is sure she will do M , and is also sure she won’t get the $100, it follows, by the

general principle that p and q jointly imply p� q, that she should also be sure of the

subjunctive conditional that if she were to do M she would not get the $100. In view

of the probabilities assigned by M to the pure acts, it follows that she must have 11/20

credence that if she were to do M she would take box A and get $10, and 9/20 credence

that if she were to do M she would take box B and get nothing, giving M a CEU of

11/20×10 = 5.5, making either pure act preferable to M by a margin of 49.5 utility points.

The same point can be made as an argument by contradiction. Suppose, on the contrary,

that you are facing problem 9 and are able to perform mixed decisions that resolve into

pure acts in a way that is independent of the location of the money, so that a mixed

decision’s CEU is a weighted average of those of the pure acts. It follows that your

credence that M would result in each of the four possible outcomes - taking box A and

getting $110, taking box B and getting $100, taking box A and getting $10, and taking

box B and getting nothing - can be found by multiplying your credence that M would

result in your taking that box with your credence that the box’s contents are as specified.

Once you are sure that you will do M you thus have, for example, a credence of 9/20 that

M would result in your taking box B and a credence of 11/20 that box B contains $100;

you should thus have a credence of 9/20 × 11/20 = 101/400 that, if you did M , you would

take box B and get $100. But you are sure you are going to do M ; so by modus ponens,

you should have a credence of 101/400 that you are going to take box B and get $100. But

this contradicts our earlier stipulation that you are sure the predictor will have foreseen

which box you would take and put the money in the other box. Given the existence of

a predictor who can foresee your action and adjust the state of nature accordingly, it is
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incoherent to suppose that you have the ability to make a mixed decision that works in

such a way that the outcome of a pure act is independent of whether it eventuates from

that decision.

This observation generalises to many of the cases discussed in recent literature, which

feature either type-1 predictors or natural processes that behave analogously. One such

case is Death in Damascus (discussed by Gibbard and Harper [1978]): the predicament

faced by a man who has a date with Death, whose appointment book contains infallible

predictions of where his victims will be at the appointed time. The point of this story is

that you cannot cheat death: no matter how cunningly you try to model his reasoning

process in order to predict where he will be waiting for you, he will always be one step

ahead of you. But this can only be the case if Death can foresee where the agent will

actually go: if he could foresee only the choice of probability distribution, it would always

be possible to have a 1/2 chance of cheating him by performing a mixed decision and thus

leaving him uncertain of where you will be. This possibility would clearly defeat the point

of the story.

The case of Psycho Paul, introduced by Egan, is analogous. In this case, Paul is contem-

plating whether to press the “kill all psychos” button. He thinks it would be good for all

psychos to die, provided that he himself is not a psycho; but he has a very strong desire

not to die himself. He thinks it very unlikely (credence 0.05) that he himself is a psycho;

but he thinks pressing the button would be very strong evidence that he is a psycho: his

credence in being a psycho conditional on pushing is 0.95, whereas his credence condi-

tional on not pushing is 0.05. Either decision - pushing or not pushing - is thus one that

he will regret: if he decides to push then he will come to have a high credence that he is

a psycho and hence that he should not push, whereas if he decides not to push he will

have a high credence that he is not a psycho, and hence that he can safely push.

Psycho Not Psycho

Push −100 10

Don’t Push 0 0
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DDT tells Paul to make the mixed decision to push with probability 1/22.6 If he does

so, then his credences in the possible eventualities are 21/22 that he will refrain from

pushing, 19/440 ≈ 0.043 that he is a psycho who will push and thereby kill himself, and

just 1/440 ≈ 0.0023 that he is a non-psycho who will push and thereby enjoy a psycho-free

future. The expected utility of this set of prospects is −189/44 ≈ −4.3: the chance of being

a non-psycho who will push is 19 times smaller than that of being a psycho who will

push, whereas it would need to be ten times greater in order for the prospect of living

without psychos to compensate for the risk of dying.7 As a result, the mixed act compares

unfavourably with either pure act: Since Paul has 10/11 credence that he is not a psycho,

pushing with certainty would give a 10/11 chance of the most favourable outcome and only

a 1/11 chance of dying, a far better set of prospects than those conditional on his pushing

as a result of the mixed decision. Meanwhile, refraining with certainty from pushing

would guarantee his survival; the only scenario in which this would be worse than the

mixed act is that in which he is not a psycho but will push anyway, but this is a scenario

in whose actuality he has a credence of less than a quarter of one percent: not nearly

great enough to compensate for the risk of dying. Consequently, the mixed decision, like
6This can be shown as follows. Updating his credences according to a 1/22 credence that he will push

gives him credence 1/22 × 0.95 + 21/22 × 0.05 = 1/11 credence that he is a psycho; the CEU of pushing is
then CU (PUSH) = 1/11 × (−100) + 10/11 × 10 = 0, while that of not pushing is always 0. The mixed
act’s CEU is, according to DDT, a weighted average of those of the pure acts, and thus also equal to 0;
this set of credences is thus a fixed point in Paul’s deliberation.

7

Cr (Push&Psycho) = Cr (Psycho/Push)Cr (Push)

= 0.95× 1/22

= 19/440

Cr (Push&¬Psycho) = Cr (¬Psycho/Push)Cr (Push)

= 0.05× 1/22

= 1/440

CU (Push) = −100Cr (Psycho) + 10Cr (¬Psycho)

= −100 [Cr (Psycho/Push)Cr (Push) + Cr (Psycho/¬Push)Cr (¬Push)]

+10 [Cr (¬Psycho/Push)Cr (Push) + Cr (¬Psycho/¬Push)Cr (¬Push)]

= −100 (0.95× 1/22 + 0.05× 21/22) + 10 (0.05× 1/22 + 0.95× 21/22)
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the pure decisions, is unratifiable: as soon as he has made it, and before he has started

determining whether he will actually end up pushing, he will wish he had instead picked

one of the pure decisions of pushing or not pushing.

It might be objected at this point that “medical” cases like the Psycho Button are really

type-2 rather than type-1 cases: Paul’s decision provides evidence about whether he is

a psycho, and so the greater the probability he assigns to pushing, the greater credence

he should have that he is a psycho; but once he has made a given mixed decision, the

eventual outcome - whether he ends up pushing or not - gives no further evidence about

his mental health. After all, the argument might go, making a mixed decision is something

like acting on the toss of a coin or the roll of a die - and whereas an infallible predictor

might be able to predict the outcome of such a process, and thus correlate his behaviour

with it, there is no way that the outcome of a dice roll could be correlated with Paul’s

mental health.

My response to this objection is twofold. Firstly, the Psycho Button case threatens to

become incoherent if we think of Paul as having access to mixed decisions whose outcomes

are uncorrelated with his mental health. For Paul has a high credence that he is a psycho

conditional on his pushing, and a much lower credence that he is a psycho conditional

on his not pushing; hence, he has a much higher credence that he will push, conditional

on his being a psycho, than conditional on his not being a psycho. But if he really takes

himself to be making a mixed decision whose outcome is uncorrelated with his mental

health, then his credences about his action given his mental health should be equal to his

unconditional credences; hence, so too should his credences about his mental health given

his actions. But this simply contradicts the initial stipulation that he takes his actions to

provide evidence about his credences.

It may be objected that this response makes the unwarranted presupposition that Paul

has introspective knowledge of his credences, utilities, and decision procedure. But my

second response is that, in any case, I don’t really care whether it is possible to conceive of

Paul as having access to mixed decisions of a sort that decorrelate his acts from the state

of nature. The version of Psycho Button case that I am talking about is, by stipulation,
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one that works the way I have described. Nor does this interpretation originate with

me; Wallace writes that “we’re not assuming that Paul thinks whether he’s a psychopath

depends [evidentially] on what (potentially mixed) strategy he chooses, but only on the

end result: what button he presses, that is.” (p. 258) This seems to be the only type-1

case Wallace considers in a paper that otherwise constitutes a correct analysis of the use

of mixed decisions in type-2 cases.8 Moreover, it is clear that cases involving a reliable

predictor, such as Problem 9 and Death in Damascus, must be interpreted as type-1 cases.

DDT was supposed to provide a general theory for dealing with Egan cases; so if it cannot

handle these cases, it is not fully adequate.

To sum up, the mixed decisions that were supposed to solve the problem of regret in

Egan cases are in fact unratifiable themselves, so DDT does not provide a way for an

agent facing such a situation to make a decision that she will not regret in Arntzenius’s

sense. Might there, though, be some other mixed decision available in these cases, which,

unlike that recommended by DDT, is ratifiable? No. Consider, for example, problem 9

again. Suppose you decide to take box A with probability p (with 0 < p < 1) and box B

with probability 1− p, and adjust your credences accordingly. Then you have credence p

that the $100 is in box B ad 1−p that it is in box A. But conditional on your taking either

box, you have credence 1 that the money is in the other: so you have credence p that you

will take box A and get $10, credence 1−p that you will take box B and get nothing, and

credence zero that you will get the $100: so the CEU of going ahead with your plan is 10p.

On the other hand, the CEU of taking A for sure is 100 (1− p) + 10, and that of taking

B for sure is 100p: both are greater than that of the mixed act, regardless of the value of

p, which is thus unratifiable. Providing a similar argument for the Psycho Button case

is left as an exercise for the reader. In the next section I provide a general argument to

show that a large class of Egan cases provide no ratifiable option; in the following section

I extend the analysis to consider, from the point of view of an agent who has settled on
8Wallace also considers Death in Damascus, but it is not clear whether he is regarding it as a type-1

or type-2 case. He writes that “[a]ssuming that Death is a very good predictor, the optimal strategy is
to choose at random. (If Death’s powers go beyond prediction into actual prophecy, I’m less sure if the
analysis applies.)” The mention of “actual prophecy” seems to refer to the possibility of death being a
type-1 predictor; if so, he is correct that his analysis does not then apply.
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some particular mixed decision, the expected utility of some other mixed decision. These

sections are somewhat more technical than the rest of the paper; less technically-inclined

readers may skip to section 8, in which I argue that, despite the preceding critique of

DDT, there is, nonetheless, reason to think that DDT may be right about the credences

with which a rational agent should finish her deliberations, though for the wrong reason.

6 A general case

So far I have argued that, in two specific cases, the mixed decisions prescribed by DDT are

unratifiable, and that, in one, no mixed decision is ratifiable. In this section I will argue

that any mixed decision, in any Egan case, is unratifiable, provided the case satisfies a

certain constraint: namely, that the agent’s conditional credence in each state, given her

action, is fixed relative to her credences in how she is going to act: in other words, it is

independent of her choice of (pure or mixed) act.9 First, some more terminology. Let A be

an action (pure or mixed), and P be a proposition. Then the conditional CEU of A given

P , CU (A/P ), is the CEU of A, relative to Cr (·/P ), the agent’s conditional credence

function given P . In particular, CU (A/A′) is the CEU of A, from the point of view

of an agent who has decided to perform A′ and has updated her credences accordingly

by conditioning. The conditonal CEU of A, without further specification, means the

conditional CEU of A given A. When two pure acts, A1 and A2, are available, I will write

Mp for the mixed decision that assigns probabiliity p to A1 and 1− p to A2.

The general form of an Egan case is a decision situation with two acts, A1 and A2,

and two states, S1 and S2, such that both acts are unratifiable. This unratifiability is

captured formally by a pair of inequalities, CU (A1/A2) > CU (A2/A2) and CU (A2/A1) >

CU (A1/A1). As I am restricting my attention to cases in which the agent’s credences in

states, conditional on acts, are fixed, we can abbreviate Cr (S1/A1) as q1 and Cr (S2/A2)

as q2. Denoting as vnm the value of the outcome resulting from performing the act An in
9This is subject to the proviso that, in standard probability theory, probabilities conditional on an

event with probability zero are not well-defined. This proviso is not relevant here, since probabilities
conditional on an action with probability zero are irrelevant for expected utility calculations.
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state Sm, we can calculate the CEU of each pure act, conditional both on itself and on

the other pure act:

CU (A1/A1) = Cr (S1/A1) v11 + Cr (S2/A1) v12 = q1v11 + (1− q1) v12

CU (A1/A2) = Cr (S1/A2) v11 + Cr (S2/A2) v12 = (1− q2) v11 + q2v12

CU (A2/A2) = Cr (S1/A2) v21 + Cr (S2/A2) v22 = (1− q2) v21 + q2v22

CU (A2/A1) = Cr (S1/A1) v21 + Cr (S2/A1) v22 = q1v21 + (1− q1) v22

How, though, do we calculate the conditional CEU, CU (Mp/Mp), of a mixed act? We

have enough information to calculate the expected utility simpliciter associated with the

agent’s credence and utility functions,
∑

o∈O Cr (o)U (o). The CEU ofMp,
∑

o∈O Cr (Mp� o)U (o)

differs from the agent’s unconditional CEU in that each outcome o is weighted according

to the agent’s credence in the subjunctive conditional that o would occur if Mp were per-

formed. In the previous section I appealed to the centring principle that p and q jointly

imply p� q. Since we are considering the case in which the agent is sure she will per-

form Mp, this principle has the consequence that the agent should be sure that, if a given

outcome o occurs, the conditional Mp � o obtains. Conversely, by modus ponens, the

agent should be sure that, if Mp � o holds, o will occur. Thus, the agent’s credence in

the conditional Mp � o should be equal to her unconditional credence in o, and so the

conditional CEU of Mp is equal to the expected utility simpliciter associated with the

credence function Cr (·/Mp).10

The agent’s credence in the outcome V = vnm, associated with act An and state Sm,
10Although strong centring follows from counterfactual excluded middle and modus ponens, it might be

rejected by somebody who rejects conditional excluded middle, in which case this argument would not go
through. Since the formulation of CDT we have been using presupposes counterfactual excluded middle,
an alternative formulation would be needed, such as that provided by Lewis [1981]. I will show here that
Lewis’s formulation also implies the equivalence, argued for in the text, between an act’s conditional CEU,
given it is performed, and the expected utility simpliciter of the agent’s conditional credence function,
given the act is performed.
Lewis formulates the CEU of an act A as CEU (A) =

∑
k∈K Cr (k)V (A& k), where V (·) denotes

evidential expected utility the elements of K are propositions specifying aspects of the state of the world,
insofar as they are relevant to the outcome of the decision situation, that the agent cannot causally
influence. Since we are considering the case in which the agent is sure she will perform A, this reduces to
CEU (A/A ) =

∑
k∈K Cr (k)V (k). Expanding this by substituting in the definition of evidential expected

utility, we have CEU (A) =
∑

k∈K Cr (k)
∑

o∈O Cr (o/k)U (o). But rearranging and simplifying this gives∑
o∈O Cr (o)U (o), the agent’s expected utility simpliciter, which is thus equivalent to A’s conditional

CEU on Lewis’s formulation as well as on the formulation I am using.
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given that she does Mp, is Cr (An &Sm/M
p) = Cr (An/M

p)Cr (Sm/An&Mp). Since, by

stipulation, the agent’s conditional credences in states, given acts, are independent of her

choice of mixed act, this reduces to Cr (An/M
p)Cr (Sm/An). The conditional CEU of

Mp is thus:

CU (Mp/Mp) =
∑
o∈O

Cr (o/Mp)U (o)

= Cr (A1&S1/M
p) v11 + Cr (A1&S2/M

p) v12 +

Cr (A2&S1/M
p) v21 + Cr (A2&S2/M

p) v22

= Cr (A1/M
p) [Cr (S1/A1) v11 + Cr (S2/A1) v12] +

= Cr (A2/M
p) [Cr (S1/A2) v21 + Cr (S2/A2) v22]

But her conditional credences in her actions given she does Mp are Cr (A1/M
p) = p and

Cr (A2/M
p) = 1− p. Denoting, once more, Cr (Sn/An) as qn, we thus have:

CU (Mp/Mp) = p [q1v11 + (1− q1) v12] + (1− p) [(1− q2) v21 + q2v22]

But this is just a weighted sum of the causal utilities we calculated earlier for each act,

conditional on that act being performed :

CU (Mp/Mp) = pCU (A1/A1) + (1− p)CU (A2/A2)

The assumption underlying DDT, that the CEU of a mixed decision Mp is a weighted

sum of those of the component pure acts, turns out not to be so far from the truth:

unfortunately, the relevant CEU of each pure act A is not the CEU of that pure act

conditional on the mixed act is performed, CU (A/Mp), but its CEU given that it actually

ends up getting performed, CU (A/A). It is easy to show that Mp is thus unratifiable.

To do this we need to calculate the CEU of a pure act, e.g. A1, conditional on Mp:
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CU (A1/M
p) = Cr (S1/M

p) v11 + Cr (S2/M
p) v12

= [Cr (S1/A1)Cr (A1/M
p) + Cr (S1/A2)Cr (A2/M

p)] v11 +

[Cr (S2/A1)Cr (A1/M
p) + Cr (S2/A2)Cr (A2/M

p)] v12

= [q1p+ (1− q2) (1− p)] v11 + [(1− q1) p+ q2 (1− p)] v12

= p [q1v11 + (1− q1) v12] + (1− p) [(1− q2) v11 + q2v12]

But this is simply a weighted sum of the CEUs we calculated previously for A1, conditional

on itself and ocnditional on A2:

CU (A1/M
p) = pCU (A1/A1) + (1− p)CU (A1/A2)

Subtracting this from the conditional CEU previously calculated forMp gives CU (Mp/Mp)−

CU (A1/M
p) = (1− p) [CU (A2/A2)− CU (A1/A2)]. But since this is an Egan case,

CU (A1/A2) is less than CU (A2/A2); thus (provided p is less than 1) CU (Mp/Mp) −

CU (A1/M
p) is negative, and we have CU (A1/M

p) > CU (Mp/Mp): given that the

agent assigns A1 probability less than 1, she prefers to perform A1 with certainty. By an

exactly parallel argument, A2 will also be preferred to Mp, given Mp is chosen, provided

that p is greater than zero. Thus, any mixed act, like the pure acts, is unratifiable.

7 Counterfactual mixed decisions

So far we have seen, for a range of Egan cases, how to calculate, conditional on on a given

mixed decision Mp being made, the causal utilities both of Mp and of the component pure

acts. But one might also ask a further question: given that an agent performs Mp, what

is her CEU for some other mixed act, M q, where q 6= p? For example, in problem 9, once

you have decided on Mp, the mixed decision assigning probability p to box A and 1 − p

to box B, the CEUs are as follows. You have credence 1− p that the money is in box A,

so taking box A has a CEU of 100 (1− p) + 10; you have credence p that the money is in

box B, so taking box B has a CEU of 100p; and you have a credence of zero that mixing
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with probability p would result in you getting the money, so mixing with probability p

has a CEU of 10p. But what, in general, is the CEU of M q given that Mp is performed,

CU (M q/Mp)?

Perhaps most straightforward are two “corner” answers. The first of these is that taking

box A with probability q has a CEU conditional on Mp that is simply a weighted average

of the CEUs of of the pure acts conditional on Mp: CU (M q/Mp) = qCU (AA/M
p) +

(1− q)CU (AB/M
p). In this case this is equal to q [100 (1− p) + 10] + (1− q) [100p].

When p is chosen in accordance with DDT as 11/20, so that the two pure acts have equal

CEU given that the agent mixes with probability p, this formula implies that the CEU of

mixing with probability q is independent of q: CU
(
M q/M 11/20

)
= 55. This first corner

answer would follow from the assumption that the predictor’s accuracy is “counterfactually

brittle”: given that you actually mix with probability p he can perfectly predict your

action, but switching to any other probability would completely eliminate the correlation

between his prediction and your action. This answer seems unsatisfactory. For one thing,

the formula it gives for CU (M q/Mp) is not the same as the formula for CU (Mp/Mp), even

when p = q. This implies a discontinuity in CU (M q/Mp) as a function of q: for example,

CU
(
M 11/20/M 11/20

)
is 5.5 but CU

(
M 11/20+ε/M 11/20

)
, for arbitrarily small ε, would be 55.

Given the vague nature of real agents’ credence functions, it seems implausible both

that utilities should be discontinuous like this, and that an arbitrarily small shift in the

probability assigned to an act should completely confound a reliable predictor.

A second corner answer is adopt the formula we derived for CEU (Mp/Mp), substituting

q for p: CEU (M q/Mp) = 10q. This implies that the predictor’s accuracy is completely

counterfactually robust: even if you mixed with a probability different from your actual

choice, the predictor still would have perfectly predicted this. Provided your choice of

mixed decision actually has some causal effect on your outcome, then, since we are ruling

out backwards causation, this is not plausible. Given you are mixing with probability p, if q

is different from p, you should have some nonzero credence that the act you would perform

if you mixed with probability q is different from the act you will actually perform. But you

also think that the Predictor predicted the act you will actually perform; and, given the
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non-backtracking interpretation of counterfactuals that is relevant to CEU calculations,

the prediction he would have made if you acted differently is the same as the one he

actually made. So, if mixing with a different probability would change your action, it

would also falsify the prediction.

If we reject these two corner answers, then it is impossible to give a general answer

without making further specifications about the causal structure of a particular situation.

We can, however, make progress in this direction by specifying that the relationship

between a mixed decision and the act that results from it is monotonic in a certain

sense: if a mixed decision M , assigning probability p to a pure act A, would result in A

being performed, then so too would any mixed act M ′ assigning probability p′ such that

p′ > p. This assumption of has the consequence that predictions have a certain degree of

counterfactual robustness, especially in cases involving a predictor who perfectly predicts

the agent’s actual behaviour. To conceptualise this, it may be helpful to conceive of

the agent’s credence function as embodying a probability space of epistemically possible

worlds. Each world in this space consists of an epistemically possible assignment of truth

values to propositions (both unconditional propositions about what is actually the case,

and conditional propositions). If an agent has credence p in a given proposition, then

worlds at which that proposition is true will occupy a region of her epistemic possibility

space with measure p.11

Thus, consider an agent who is certain she will perform Mp, performing A1 with prob-

ability p and A2 with probability 1 − p, and is certain that her action will be correctly

predicted. Then her epistemic possibility space will consist of two regions: a region with

measure p, consisting of worlds at which she performs A1 and this is correctly predicted,

and a region with measure 1−p, consisting of worlds at which she performs A2 and this is

correctly predicted. For values q different from p, the possibility space has a region with

measure q of worlds at which the agent would perform A1 if she were to make the mixed
11This space of epistemically possible worlds must, of course, be sharply distinguished from the modal

space of metaphysically possible worlds. Indeed, each epistemically possible world comes with its own
modal universe. For example, it is epistemically possible that Hesperus is not Phosphorus; in epistemically
possible worlds at which this is true, it is metaphysically neecessary, and so each such world comes with
a modal universe consisting entirely of worlds at which Hesperus is not Phosphorus.
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Figure 1:

decision Mp. The monotonicity assumption states that, if q is less than p, then this region

consists only of worlds at which the agent actually performs A1. This is shown in figure 1:

the epistemic possibility space contains a region of measure p in which the agent performs

A1, which has a subregion of measure q in which the agent would still perform A1 if she

did M q. (In the diagrams, “>” denotes a subjunctive conditional.) The remainder of the

A1 region, and the entirety of the A2 region, together having measure 1 − p, consists of

worlds at which the agent would perform A2 if she did M q.

In problem 9, for example, we know that, given the you actually take box A with probabil-

ity p, the money is in box A if and only if the mixed decisionMp would result in you taking

box B. What does this tell us about some other mixed decision Mp? If q > p, then M q as-

signs greater probability than Mp to box A: so by monotonicity, if Mp would result in box

A being opened, then so would M q. And, if Mp would result in box A being opened, the

money is in box B. So, since you have a credence of p that Mp would result in box A being

opened, you should also have a credence of p that M q would result in your opening box

A and finding it empty. Your remaining credence, 1− p, is that Mp would result in your
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Figure 2:

taking box B, and hence that the money is in box A. Since q > p, you thus have credence

q− p that M q would result in your opening box A and finding money in it, and credence

1 − q that it would result in your opening box B and finding it empty. This is shown in

figure 2: in the middle region, which has measure q − p, doing M q would result in you

taking box A and getting the money. Thus we have CU (M q/Mp) = 10q + 100 (q − p).

If q < p then, by similar reasoning, M q would result in a p − q likelihood of opening

box B and finding money in it, giving CU (M q/Mp) = 10q + 100 (p− q). The general

formula is thus CU (M q/Mp) = 10q + 100 |p− q|, which is consistent with previous cal-

culations for the cases where q is equal to 1, 0, or p. For q 6= p we thus always have

CU (M q/Mp) > CU (Mp/Mp) Moreover, maximising CEU will always require q to be

1, 0, or either, depending on p: given that Mp is performed, any other mixed decision

M q will be preferred, but the most preferred option will always be a puue act. Given

the monotonicity assumption, p − q represents the chance that, by switching from Mp

to M q, you would behave differently from your actual behaviour and thus confound the

Predictor. The greater p− q, the better.
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7.1 Imperfect predictors

Generalising this answer to cases involving imperfect predictors is not entirely straight-

forward. In the previous case, two kinds of world were epistemically possible: worlds at

which you take box A but the money is in B, and worlds at which you take box B but

the money is in A. Given the monotonicity assumption, there was thus only one kind

of world to which to assign “extra” credence in opening a given box when considering

counterfactual mixed decisions: namely, ones at which you open the other box and find it

empty. Things are more complicated in cases in which the state of nature does not per-

fectly predict the agent’s action. In Psycho Button, for example, there are four epistemic

possibilities: Johnny might be a psycho and push, be a psycho and not push, not be a

psycho and push, or not be a psycho and not push. Suppose Johnny is certain he will mix

with probability p; In accordance with his conditional credences, he thus has a credence of

0.95p that he will push and is a psycho and 0.05p that he will push and is not a psycho. If

either of these possibilities obtains then, by the monotonicity assumption, Johnny would

still push, with the same outcome, if he mixed with some other probability, q, greater

than p. But he must, additionally, have credence q − p that he is at a world at which he

does not actually push, but would if he did M q. There are two kinds of such world to

consider: worlds at which he is a psycho, and worlds at which he is not; a question thus

arises as to how this extra credence that he would push should be distributed between

these two kinds of world.

Possibly the most natural answer is simply to assign the extra credence to the two kinds

of world in proportion with their probability measure.12 Given that he does not (actually)

push, Johnny has credence 0.05 that he is a psycho and 0.95 that he is not; on this scheme,

we thus assign an additional probability of 0.05 (q − p) to worlds at which Johnny is a

psycho and would push if he did M q, and 0.95 (p− q) to worlds at which he is not a psycho

and would push. This is shown in figure 3. Adding additional terms to represent Johnny’s

credence of p in worlds at which he actually pushes, and hence at which the outcome of
12I am not claiming that this is the “correct” answer. There are many possible answers, and singling

one out as “correct” woudl require an analysis of the causal structure of the situation that is beyond the
scope of the present discussion.
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Figure 3:

M q would be the same as the actual outcome, he thus has credence 0.95p + 0.05(q − p)

that he is a psycho who would push if he did M q, 0.05p + 0.95 (q − p) that he is a non-

psycho who would push if he did M q, and 1 − q that he would not push if he did M q.

The conditional CEU for M q given Mp when q > p is thus −100 [0.95p+ 0.05(q − p)] +

10 [0.05p+ 0.95 (q − p)], which simplifies to 4.5q − 99p.

By similar reasoning, if q is less than p then Johnny has credence 1− p that he actually

won’t push and an additional credence of p− q that he actually will push but would not

push if he did M q; this is divided between a credence of 0.95 (p− q) in worlds at which

he is a psycho and 0.05 (p− q) in worlds at which he is not; his remaning credence, of q,

is assigned to worlds at which he would push if he did M q; he thus has credence 0.95q

that he would push if he did M q and is a psycho, and 0.05q that he would push if he

did M q and is not a psycho. So the conditional CEU for M q given Mp when q < p is

−100 (0.95q) + 10 (0.05q), which simplifies to −94.5q.

Again, these results are consistent with our previous calculations. In the case where
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q = p, both formulae give the CEU of M q as −94.5p, which is the same as the utility

we originally calculated for Mp. Likewise, the formulae for when q > p and for when

q < p are consistent with our previous calculations for the conditional CEUs, given Mp

of the pure acts of pushing and not pushing, respectively. As in the case of perfect

predictors, CU (M q/Mp) has its minimum value when q = p and increases linearly as q

approaches zero or one. In summary, then, considering counterfactual mixed decisions

does not fundamentally change the previous analysis. Having settled on a mixed decision

Mp, the agent will prefer another mixed decision M q to the status quo, but her most

prefered option will be a pure act.

8 Joyce

Like Arntzenius and Wallace, Joyce [2012] claims that an agent facing an Egan case

should undergo a dynamic process of adjusting her credences that culminates in her being

indifferent between the available pure acts. But Joyce’s grounds for this are fundamentally

epistemic. If the agent’s credences do not make her indifferent between the acts, then there

is at least one act such that she has positive credence that she will perform it, but which

does not maximise CEU relative to her current credence function. In Psycho Button, for

example, Johnny’s initial credence of 0.05 that he is a psycho entails, given his conditional

credences, a 1/19 credence that he will push. But since pushing maximises CEU, it follows

that he has only a 1/19 credence that he will maximise CEU; whereas, as a rational agent,

Johnny should believe himself to be a CEU-maximiser. Thus, there is an inconsistency in

his beliefs, and so he should adjust them. When neither act is ratifiable, the only credence

function that will avoid this inconsistency is one relative to which the two acts have equal

CEU. So provided that the agent does indeed believe himself to be a CEU-maximizer, and

has introspective access to his CEUs, theoretical rationality alone will lead him to form the

same credences as those prescribed by DDT. This adjustment of credences, Joyce argues,

is required by standard CDT: the agent’s initial credences fail to incorporate information

that is freely available to him, and hence the act of incorporating such information into
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his credences (which is assumed to be costless) is initially preferable to either of the acts

explicitly specified in the decision problem.

So we have found a plausible way to salvage a substantial part of DDT, that concerned

with credences. What about actions? Joyce claims, plausibly, that once the agent has

adjusted her credences to incorporate the information freely available to her, maximising

CEU is both necessary and sufficient for acting rationally. This means that either pure

act is rationally permissible. Where Joyce goes wrong is to claim that all mixed acts

are also rationally permissible, based seemingly on the misapprehension that a mixed

act’s CEU is a weighted average of those of the pure acts. This leads him to falsely

conclude that “you can’t go wrong” in Egan cases, “whatever you do”. Believing the

mixed decision recommended by DDT to be uniquely ratifiable, Joyce finds it necessary

to back this conclusion up with arguments aiming to dispel the intuition, based on the

desire to avoid regret, that this decision is normatively preferable to the alternatives. I

can give ratificationism shorter shrift: there is no ratifiable decision, either pure or mixed,

so since “ought” implies “can”, ratifiability cannot be a constraint on rational choice.13

Where does this leave us? Once the agent’s credences are in equilibrium, the default

mixed decision corresponding with her credence function doesn’t maximise CEU. If we

hold that CEU-maximization is a necessary condition for rational action - a maxim that I

do not intend to call into question - then an agent with these credences should prefer one

or the other pure decision. This is not a major problem for Joyce’s normative theory: he

still gets to be a causal decision theorist and to hold that there is no normative problem

with making unratifiable decisions. What might be more worrying is that we have no

solution to the worry that Egan cases raise for decision dynamics: pure decisions are still

unratifiable; if an agent makes a pure decision and comes to expect herself to go through

with it, she will end up with credences that make her want to change her mind. Joyce

mentions in passing that the mixed decision that assigns probabilities equal to the agent’s

equilibrium credences might be a “particularly salient way of picking”. And were it indeed
13One might still be a lexical ratificationist, thinking that ratifiable decisions are preferable to unrat-

ifiable ones with the same CEU; but Egan (pp. 111-112) provides a convincing counterexample to this
claim.
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the case that this decision is ratifiable, that would constitute a solution to the dynamics

problem: an agent who came to believe she would make this decision would have no need

to adjust her credences, and would have no incentive to deviate from it.14 But since no

ratifiable decision is in fact available, we need some story about how an agent will get

herself to execute an unratifiable decision. This seemingly leaves two possibilities. The

first is that she retains her equilibrium credences until after she has irrevocably made her

decision. This doesn’t seem very plausible: surely, if Paul finds his hand moving towards

the button, this will at least somewhat increase his credence that he is going to push it;

and any increase in this credence above the equilibrium level will suffice to make him

prefer to refrain. The other possibility is that any decision must be resolute: one that

the agent will go through with despite coming to see it as suboptimal. This again might

make us uncomfortable: why would she do such a thing?

9 Conclusion

So DDT is right about the credences with which a rational agent will complete her de-

liberations. On Arntzenius’s official conception of mixed decisions, this amounts to a

vindication of the entirety of DDT: “decision theory is theory of what credences one

ought to have in one’s actions ... not a theory that tells one which actions are rational

and which are not”. Indeed, Joyce’s epistemic justification for adjusting credences fits

well with this conception of decision theory: better, perhaps, than a pragmatic justific-

ation based on the desire to avoid regret. But the ambition of avoiding regret must be

abandoned, and the the worry about the dynamics of executing an unratifiable decision

remains unresolved.
14Here I am once more setting aside a worry about the dynamics of mixed decisions: namely that of

how, once a mixed decision has been resolved into a pure act, the agent is to go through with that act.
I think the worry I raise here, about how to go through with an unratifiable pure decision that does
not result from a mixed decision but is itself, qua pure decision, the outcome of rational deliberation, is
harder to set aside.
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