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1. Introduction. What Is Logic, Really?

Attention! In this book,

predicate language is used as a synonym of first order language,

formal theory – as a synonym of formal system, deductive system, 

predicate logic – as a synonym of first order logic without equality.

constructive logic – as a synonym of intuitionistic logic,

algorithmically solvable – as a synonym of recursively solvable,

algorithmically enumerable – as a synonym of recursively enumerable.

1.1. Total Formalization is Possible!

What is logic? Of course, logic is “about reasoning”. Parts of our knowledge
may be inter-dependent, so, one part may be derived from some other ones. A
trivial example:

All fathers are male persons.

No person can be male and female simultaneously.

Miranda is a female person.

Hence, Miranda is not a father.

Of course, we knew the latter “fact” in advance. But imagine, we are trying to
teach this kind of reasoning to a computer. A computer may know in advance
only that part of our knowledge that is stored in its knowledge base. But, it is
impossible to store all of our knowledge. Thus, we must avoid storing of the
knowledge that is easily derivable from the one already stored. For example, if
the first three of the above propositions have been already stored, then we need
not to store the fourth one – it can be derived by reasoning:

Assume, Miranda is a father. Then Miranda is a male person. But Miranda is a female person.
Hence, Miranda is male and female simultaneously. This is impossible. Hence, Miranda is not
a father.  

Therefore, we must implement on our computer not only the knowledge base,
but  also  the  necessary means  of  reasoning  (an  advanced  kind  of  query
processing).

Hence, today, we have a very fundamental reason to formulate our knowledge
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and  means  of  reasoning  explicitly:  only  in  this  way  we  can  transmit  the
knowledge and the ability of reasoning to computers.

Of course, explicit reasoning started long before computers – probably, in the
6th century BC when Greeks proved the first mathematical theorems. Let us
consider one of them:

Theorem.  There are more prime numbers  than any prescribed amount.  (In modern terms:
there are infinitely many prime numbers.) 

Proof (modern notation is used). Assume the contrary, that p1 , ... , pk is the complete list

of  all  primes,  and  consider  the  number N=p1⋅...⋅pk+1 .  We  know  that  such  N  is

divisible by none of p1 , ... , pk . But we know also that any (natural) number is divisible by
a prime.  So, N must be divisible by a prime that does not belong to the alleged “complete”
list. Q.E.D.  

Here,  the  statement  of  Theorem is  derived from other  statements  that  “we
know”. How do we know them? Either we or other people have proved these
statements earlier  – by deriving them from some other statements,  or, they
were forced to  adopt  them without  proof,  for example,  as  “obvious” ones.
Indeed, asking for proofs over and again indefinitely long time is hopeless. At
some moment, such a process must be stopped – by a decision to adopt some
of the statements without proof, as “axioms”. 

Additional  stimulus  to  explicit  reasoning  was  a  contradiction  found  in
geometrical  reasoning.  The early Pythagoreans arrived at  an implicit  belief
that  any  two  line  segments  must  possess  a  common measure.  Namely  (in
modern terms), if x and y are lengths of two line segments, then there exists a
(usually, smaller) segment z such that x=pz ; y=qz , where p, q are some
natural numbers. Of course, if z is the maximum common measure, then p, q
possess no common divisors. Now, let us try to find the common measure of x
and y being the side and the diagonal of a square. By Pythagorean Theorem:
x2+x2=2 x2= y2 . But there is a maximum z such that

x=pz ; y=qz ;2 p2 z2=q2 z2 ;2 p2=q2 .

Hence, q is even: q=2r ;q2=4 r2; p2=2 r2 . Thus, p is even as well, but we
know that p and q do not possess common divisors.  We have arrived at  a
contradiction!  According to  a  legend,  this  caused a  serious  conflict  among
Pythagoreans.  The  solution  was  found  by  abandoning  the  belief  in  the
universal  existence  of  common measures,  and by re-building  the  geometry
accordingly. 

Note.  Of course,  in modern terms,  Pythagoreans  discovered that √2 is  an
irrational  number,  i.e.,  that  there  are  no  natural  numbers  p,  q  such  that

√2= q
p

(or, 2 p2=q2 , see above).
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How far can people proceed with explication? Can  any  implicit  knowledge
(intuition)  be converted into an explicit  knowledge represented as  a  list  of
axioms? Can any sophisticated human skills of reasoning be converted into an
explicit list of rules of inference? Is this really possible? 

It took more than 2000 years to develop the necessary methods. The process
ended  in  1870s  and  subsequent  decades  –  in  the  work  of  Georg  Cantor,
Gottlob  Frege,  Charles  S.  Peirce,  Bertrand Russell,  David  Hilbert,  of  their
colleagues  and followers.  Today,  the logical  techniques developed by these
people allow for an axiomatic reconstruction of any theory that is based on a
stable system of principles (in particular, of any mathematical theory).

Total  axiomatic  reconstruction  is  called  formalization.  The  results  of  such
reconstruction  are called  formal theories (the terms “formal  systems” and
“deductive systems” also are used) emphasizing that in these theories no step
of reasoning can be done without a reference to an exactly formulated list of
axioms and rules of inference. Even the most "self-evident" logical principles
(like as, "if  A implies  B, and B implies  C, then A implies  C") must be either
formulated in the list of axioms and rules explicitly, or must be derived from it.

Modern students can think of formal theories as  knowledge bases. In these
bases, knowledge is stored in the form of propositions, also called  axioms.
The simplest kind of axioms are facts representing data of the usual databases,
for example, personal data of people, such as “Miranda is a female person”.
The second kind of axioms are  rules representing data constraints, such as
“All fathers are male persons”.  Knowledge bases are equipped with  query
processing software. However,  the situation with  query processing is  here
more  complicated  than  in  the  case  of  the  usual  databases.  For  example,
imagine, we would wish to ask “Is Miranda a father?” This would mean, in
fact, asking the question: which of the propositions, “Miranda is a father” or
“Miranda is not a father” follows from the axioms stored in the knowledge
base?

The first distinctive feature of a formal theory (or, knowledge base) must be a
precisely  defined  ("formal")  language used  to  express  its  propositions.
"Precisely  defined"  means  here  that  there  is  an  algorithm  allowing  to
determine,  is  a  given  character  string  a  correct  proposition,  or  not.
(Algorithms  are  mechanically  applicable  procedures  that  do  not  refer  to
implicit  knowledge  or  human  skills.  Algorithms  can  be  implemented  as
computer programs. For more details, see Algorithm in Wikipedia)  

The second distinctive feature of a formal theory must be a precisely defined
("formal") notion of proof. Each proof proves some proposition, that is called
(after being proved) a theorem. Thus, theorems form a subset of propositions.

What  could  mean  here  “precisely  defined”?  Curiously  enough,  the  most

https://en.wikipedia.org/wiki/Algorithm#Informal_definition
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general definition is very simple, and it does not mention neither axioms, nor
rules of inference: precisely defined notion of proof means that there is an
algorithm allowing to determine, is a given text a correct proof, or not.

Neither "self-evident" axioms, nor "plausible" rules of inference are distinctive
features of the "formality". Speaking strictly, "self-evident" is synonymous to
"accepted without argument". Hence, axioms and/or rules of inference may be
"good, or bad", "true, or false", and so may be the theorems obtained by means
of them. The only definitely verifiable thing is here the fact that some theorem
has been, indeed, proved by using some definite set of axioms, and by means
of some definite set  of inference rules. And this fact must be verifiable by
means  of  an  algorithm  –  by  a  procedure  that  can  be  implemented  on  a
computer.

Thus, a  theory  T is called a formal theory if and only if there are two
algorithms:

a) an algorithm allowing to verify, is a given character string a correct
proposition of T, or not; 

b)  an  algorithm  allowing  to  verify,  is  a  given  text  a  correct  proof
according to the principles of T, or not.

If somebody is going to publish a "mathematical text" calling it "proof of a
theorem in  theory  T",  then  we must  be  able  to  verify  whether  the  text  in
question  is  really  a  correct  proof  according  to  the  standards  of  proving
accepted  in  theory  T.  Thus,  in  a  formal  theory,  the standards  of  reasoning
should be defined precisely enough to implement verification of proofs on a
computer. But note that we are discussing here verification of ready proofs,
and not the much more difficult problem – is some proposition provable in T
or not, see below.

Axioms  and  rules  of  inference  represent  the  most  popular  of  the  possible
techniques of formalization (see Exercise 1.1.7 below).

Chess game as a formal “theory”

As an unpractical  example of  a  formal  theory let  us consider  the  game of
chess, let us call this "theory" CHESS. Let 's define as propositions of CHESS
all  the  possible  positions  –  i.e.,  allocations  of  some  of  the  pieces  (kings
included) on a chessboard – plus the flag: "white to move" or "black to move".
Thus, the set of all the possible positions represents the language of CHESS.
The only axiom of CHESS is the initial position (“white to move” included),
and the rules of inference – the well-known rules of the game. Rules define
“proof steps” – they allow correct passing from some propositions of CHESS
to some other ones. Starting with the axiom and iterating moves allowed by
the  rules  we  obtain  theorems of  CHESS.  Thus,  theorems  of  CHESS are
defined as all the possible positions (i.e., propositions of CHESS) that can be
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obtained from the initial  position (the axiom of  CHESS)  by moving pieces
according  to  the  rules  of  the  game  (i.e.,  by  using  the  inference  rules  of
CHESS). Note that here, correct silly moves are considered as correct “proof
steps”. 

Exercise  1.1.1 (optional). Could  you provide  an  unprovable proposition  of  CHESS?  Try
proving that your proposition is unprovable, indeed, i.e., that your position cannot be obtained
from the initial position by moving pieces according to the rules of the game.

Note. By  the  way,  as  you  see  it  now,  and  will  see  later  again:  in  logic,
“negative” proving, i.e., proving that something cannot be proved, may be a
more complicated task than “positive” proving.  

Why  could  CHESS  be  called  a  formal  theory?  When  somebody  offers  a
"mathematical text" P as a proof of a theorem A in CHESS, this means that P
is  a  record  of  some  chess-game  stopped  in  the  position  A.  Checking  the
correctness of such "proofs" is a boring, but an easy task. The rules of the
game are formulated precisely enough – we could write a computer program
that will execute the task.

Exercise  1.1.2 (optional). Try  estimating  the  size  of  this  program  in  some programming
language.

Another toy example

Our second example of a formal  theory is  only a bit  more serious.  It  was
proposed by Paul Lorenzen, so let us call this theory Lo.  Propositions of  Lo
are all the possible (non-empty) "words" made of letters a, b, for example: a,
b, aa, aba, baab. Thus, the set of all these "words" represents the language of
Lo. The only axiom of Lo is the word a, and Lo has two rules of inference:

 X├ Xb; X├ aXa. 

This means that (in  Lo) from a proposition  X we can infer immediately the
propositions Xb and aXa. For example, the proposition aababb is a theorem of
Lo:

a ├ ab ├ aaba ├ aabab ├ aababb
rule1   rule2    rule1      rule1

This fact is expressed usually as Lo├ aababb ( "Lo proves aababb", ├ being a
"fallen T").

Exercise  1.1.3. a)  Verify  that  Lo  is  a  formal  theory.  (Hint:  describe  an
algorithm allowing to determine, is a sequence of propositions of Lo a correct
proof, or not.)

b) (P. Lorenzen) Verify the following property of theorems of Lo: for any X,
 if Lo├ X, then Lo├ aaX.
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General properties of formal theories

One  of  the  most  important  properties  of  formal  theories  is  given  in  the
following

Exercise  1.1.4. Show that  the  set  of  all  theorems of  a  formal  theory  is
algorithmically enumerable, i.e., show that, for any formal theory T, one can
build an algorithm AT that generates and prints out on an endless paper tape all

theorems of  this  theory  (and nothing else).  (Hint:  we will  call  T a  formal
theory if and only if we can present an algorithm for checking texts as correct
proofs via principles of reasoning of  T. Thus, assume, you have 4 functions:
GenerateFirstText() –  returns  Text,  GenerateNextText() –  returns  Text,
IsCorrectProof(Text) – returns  true or  false,  ExtractTheorem(Text) – returns
Text, and you must implement the functions GenerateFirstTheorem() – returns
Text, GenerateNextTheorem() – returns Text).

Unfortunately,  such generating algorithms cannot solve the problem that
the  mathematicians  are  mainly  interested  in:  is  a  given  proposition  A
provable in T or not? Indeed, when, executing the algorithm AT, we see our

proposition A printed out, this means that A is provable in T. Still, in general,
until that moment, we cannot know in advance whether A will be printed out
some time later or it will not be printed at all.

Note.  According  to  the  official  terminology,  algorithmically enumerable  sets  are  called
"recursively enumerable sets", in some texts – also "listable sets". 

Exercise 1.1.5. a) Describe an algorithm determining whether a proposition of
Lo is a theorem or not.

b)   (optional)  Could you imagine such an algorithm for  CHESS? Of course,
you could, yet... Thus you see that even, having a relatively simple algorithm
for checking the correctness of proofs, the problem of determining provability
can be a very complicated one.

T is  called  a  solvable  theory  (more  precisely  –  algorithmically solvable
theory) if and only if there is an algorithm allowing to check whether some
proposition is provable by using the principles of T or not.

In the Exercise 1.1.5(a) you proved that  Lo is a solvable theory. Still, in the
Exercise 1.1.5(b) you established that it is hard to state whether  CHESS is a
"feasibly  solvable"  theory  or  not.  Determining  the  provability  of
propositions  is  a  much  more  complicated  task  than  checking  the
correctness  of  ready  proofs. It  can  be  proved  that  most  mathematical
theories  are  unsolvable,  the  elementary  (first  order)  arithmetic  of  natural
numbers included (see, for example,  Mendelson [1997], or  Podnieks [1997],
Section 6.3). There is no algorithm allowing to determine, is some arithmetical
proposition provable from the axioms of arithmetic, or not.
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Note. According to the official terminology, algorithmically solvable sets are called "recursive
sets".

Normally, formal theories contain the negation symbol  not. In such theories,
solving of the problem stated in a proposition  A means proving either  A, or
proving notA ("disproving A", "refuting A"). We could try to solve the problem
by using the enumeration algorithm of the Exercise 1.1.4: let us wait until A or
notA is printed. In general, we have four possibilities here:

a)  A will  be printed,  but  notA will  not (then the problem  A  has a positive
solution);

b)  notA will be printed, but  A will not (then the problem  A has a negative
solution);

c) A and notA will be printed both;

d) neither A, nor notA will be printed.

In the case c), by using principles of T, some proposition and its negation can
be proved simultaneously, i.e., T is an  inconsistent theory. This means that
the  principles  of  T  must  be  re-examined  (to  determine  the  cause  of
inconsistency) and corrected. 

In the case d) we may be waiting forever, yet nothing interesting will happen:
by using the principles of T one can neither prove nor disprove the proposition
A, and  for  this  reason  such a  theory  is  called  an  incomplete  theory. The
famous Incompleteness Theorem proved by Kurt Gödel in 1930 says that most
mathematical  theories  are  either  inconsistent  or  incomplete (see
Mendelson [1997] or Podnieks [1997], Section 6.1).

Exercise  1.1.6. Show  that  any  (simultaneously)  consistent  and  complete
formal theory is solvable. (Hint: use the algorithm of the Exercise 1.1.4, i.e.,
assume that you have the functions  GenerateFirstTheorem() − returns  Text,
GenerateNextTheorem() −  returns  Text,  and  implement  the  function
IsProvable(Text) that  returns  true or  false.  Where  the  consistency  and
completeness come in here?)

Exercise 1.1.7 (optional). a) Verify that "fully axiomatic theories" are formal theories in the
sense of the above general definition. (Hint: assume, that you have the following functions:
GenerateFirstText() − returns  Text,  GenerateNextText() − returns  Text,  IsPropositon(Text) −
returns  true  or  false,  IsAxiom(Proposition) − returns  true or  false,  there is  a  finite  list  of
inference rule names: {R1, ..., Rn}, function  Apply(RuleName, ListOfPropositions) − returns

Proposition or  false,  and  you  must  implement  the  functions  IsCorrectProof(ListOf
Propositions) − returns true or false, ExtractTheorem(Proof) − returns Proposition).

b) (for smart students) What, if, instead of {R1, ...,  Rn}, we would have an  infinite list of

inference rules, i.e., functions GenerateFirstRule(), GenerateNextRule() returning RuleName?



11

1.2. Predicate Languages

History

Aristotle (384-322 BC) – in a sense, the "first logician", "... was not primarily a mathematician
but made important contributions by systematizing deductive logic." (according to MacTutor
History of Mathematics archive).

Gottlob  Frege:  "In  1879  Frege  published  his  first  major  work  Begriffsschrift,  eine  der
arithmetischen  nachgebildete  Formelsprache  des  reinen  Denkens. ...  In  this  work  Frege
presented for the first time what we would recognise today as a logical system with negation,
implication, universal  quantification, essentially the idea of truth tables etc." (according to
MacTutor History of Mathematics archive).

Hilary Putnam. Peirce the Logician.  Historia Mathematica, Vol. 9, 1982, pp. 290-301 (an
online excerpt available, published by John F. Sowa).

Imagine, we are trying to build a  knowledge base (or, a  formal theory) by
making explicit some piece of our (until now – mainly implicit) knowledge.
How should we proceed? 

We have an informal vision of some domain consisting of “objects”. When
speaking about  it,  we are uttering  various  propositions,  and some of  these
propositions we regard as “true” statements about the domain. Thus, our first
formalization task must be defining of some formal language, allowing to put
all our propositions about the domain in a uniform and precise way.

After  this,  we  can  start  considering  propositions  that  we  are  regarding  as
“true”  statements  about  the  domain.  There  may  be  an  infinity  of  such
statements, hence, we can't store into knowledge base all of them, so we must
organize them somehow. Some minimum of the statements we will declare as
axioms, and store in the knowledge base. The other ones we will try to derive
from the axioms by using some precisely defined rules of inference.

Formulation of axioms (in knowledge bases they are called  facts and  rules)
and rules of inference (i.e., logic) is an absolutely necessary next step, if we
wish to transmit our knowledge to computers. In advance, computers “do not
know” even the most trivial things about the human society, such as “persons
cannot be parents of themselves”. Or, about natural numbers: we must submit
to our computer, for example, x+0=x as an axiom, if we wish it to learn
proving of mathematical theorems. 

In mathematics and computer science, the most common approach to the first
phase  of  formalization  is  using of  the  so-called predicate  languages,  first
introduced by G. Frege and C. S. Peirce.

(In most textbooks, they are called  first order languages, however, see below the warning
about second order languages.)

http://www.jfsowa.com/peirce/putnam.htm
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
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Usually, we are taught to analyze the sentence "John loves Britney" as follows:
John – subject, loves – predicate, Britney – object. The approach of predicate
languages is different: instead of "John loves Britney", let us write

loves(John, Britney),

where  loves(x,  y) is  a  two-argument  predicate,  and  John,  and  Britney are
objects. By the way, following this principle literally, we should write =(x, y)
instead of x=y. 

Another example: in a predicate language, to say “All people are mortal”, we
will write: “for all x, if x is a person, then x is mortal”, or,

∀ x( person(x)→mortal(x)) .

This  approach  –  reducing  of  human  language  sentences  to  variables,
constants,  functions,  predicates  and  quantifiers,  appears to  be extremely
flexible,  and  it  is  much  more  uniform  when  compared  to  the  variety  of
constructs used in natural human languages. A unified approach is much easier
to use for communication with computers.

Yet another example: "Britney works for BMI as a programmer". In a predicate language, we
must introduce a 3-argument predicate "x works for y as z", or works(x, y, z). Then, we may
put the above fact as: works(Britney, BMI, Programmer).

Note. Representing data in the form of predicates was the main idea of Edgar F. Codd when he
introduced  relational  databases  (“SQL  databases”)  in  1970.  Database  tables  represent
predicates.

Language primitives

The informal vision behind the notion of predicate languages is centered on
the  so-called  "domain"  –  a  non-empty  collection  of  "objects",  their
"properties" and the "relations" between them, that we wish to describe by
using  the  language.  This  vision  serves  as  a  guide  in  defining  the  formal
language, and further – when selecting axioms and rules of inference.

Object variables

The  first  kind  of  language  elements  we  will  need  are  object  variables
(sometimes called also individual variables, or simply, variables). We need an
unlimited number of them):

x, y, z, x1, y1, z1,...

The above-mentioned "domain" is the intended “range” of all these variables. 

Examples. 1) Building a language that should describe the "domain of people", we must start 
by introducing "variables for people": x denotes an arbitrary person.

2) Building the language of the so-called first order arithmetic, we are thinking about "all 
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natural numbers" as the range of variables: 0, 1, 2, 3, 4, …:  x denotes here an arbitrary natural
number.

3) Building the language of set theory, we think about "all sets" as the range of variables: x 
denotes an arbitrary set.

“Domain of people” represented as a UML class diagram

Note. Since our screens and printers allow only a limited number of pixels per
inch, in principle, we should generate variable names by using a finite set of
characters. This can be achieved, for example, by using a single letter x:

x, xx, xxx, xxxx, xxxxx,...

Object constants

The next possibility we may wish to have in our language are the so-called
object constants (sometimes called individual constants, constant letters, or
simply, constants) – names or symbols denoting some specific "objects" of our
"domain".

Examples.  1)  In  our  "language  about  people"  we  may  introduce  constants  identifying
particular people: John, Britney etc.

2) In the language of first order arithmetic, we may wish to introduce two constants – 0 and 1
to denote "zero" and "one" – two natural numbers having specific properties.

3) In the language of set theory, we could introduce a constant denoting the empty set, but
there is a way to do without it as well (for details, Podnieks [1997], Section 2.3).

Function constants

In  some  languages  we  may  need  also  the  so-called  function  constants
(sometimes  called  function  letters)  –  names  or  symbols  denoting  specific
functions, i.e., mappings between "objects" of our "domain", or operations on



14

these objects.

Examples. 1) In our "language about people" we will not use function constants.

2) In the language of first order arithmetic, we introduce two function constants "+" and "*"
denoting  the  usual  addition  and  multiplication  of  natural  numbers,  i.e.,  the  two-argument
functions x+y and x*y.

3)  In  the  language  of  set  theory,  we  could  introduce  function  constants  denoting  set
intersections x∩y ,  unions x∪ y ,  set  differences x – y ,  power sets P (x) etc.,
but there is a way to do without these symbols as well (for details, Podnieks [1997], Section
2.3).

In mathematics, normally, we are writing  f(x, y) to denote the value of the
function f for the argument values x, y. This (the so-called "prefix" notation) is
a uniform way suitable for functions having any number of arguments:  f(x),
g(x, y), h(x, y, z) etc. In our everyday mathematical practice some of the two-
argument functions  (in  fact,  operations)  are  represented by using the more
convenient "infix" notation (x+y, x*y instead of the uniform +(x, y), *(x, y),
etc.).

Note. In a sense, object constants can be viewed as a special case of function
constants – an object constant is a “zero-argument function”.

Predicate constants 

The last (but the most important!) kind of primitives we need in our language
are the so-called  predicate constants (sometimes called predicate letters) –
names  or  symbols  denoting  specific  properties (of)  or  relations between
"objects" of our "domain".

Note. Using "predicate" as the unifying term for "property" and "relation" may
seem somewhat unusual. But some kind of such unifying term is necessary.
Properties are, in fact, unary (i.e., one-argument) "predicates", for example, "x
is red". Relations are, two- or more-argument "predicates", for example, "x is
better than y", or "x sends y to z".

Examples. 1) In our "language about people" we will use the following predicate constants
(see the class diagram above):

Male(x) − means "x is a male person";

Female(x) − means "x is a female person";

Mother(x, y) − means "x is mother of y";

Father(x, y) − means "x is father of y";

Married(x, y) − means "x and y are married";

x=y − means "x and y are the same person".

The first two constants represent, in fact, "properties" (or, "classes") of our objects. The other
4 constants represent "relations" between our objects. The term "predicate" is used to include
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both versions. We do not introduce  Person(x) as a separate predicate because our domains
consists of persons only.

2) It may seem strange to non-mathematicians, yet the most popular relation of objects used in
most  mathematical  theories,  is  equality (or  identity).  Still,  this  is  not  strange  for
mathematicians.  We  can  select  an  object  x  in  our  "domain"  by  using  a  very  specific
combination of properties and relations of it, and then – select another object y – by using a
different combination. And after this (sometimes it may take many years to do) we prove that
x=y, i.e., that these two different combinations of properties and relations are possessed by a
single object. Many of the discoveries in mathematics could be reduced to this form.

In the language of first order arithmetic, equality "=" is the only necessary predicate constant.
Other "basic" relations must be reduced to equality. For example, the relation x<y for natural
numbers  x,  y  can  be reduced  to  equality  by  using the  addition  function  and  the  formula

z(x+z+1=y).∃z(x+z+1=y).

3) In the language of set theory a specific predicate constant "in" denotes the set membership
relation: x∈ y means "x is a member of y". The equality predicate x=y also is used – it
means "the sets x and y possess the same members".

The uniform way of representation suitable for predicates having any number
of arguments is again the "prefix" notation:  p(x), q(x, y), r(x, y, z) etc. In the
real  mathematical  practice,  some  of  the  two-argument  predicates  are
represented  by using  the  "infix"  notation  (for  example,  x=y instead  of  the
uniform =(x, y), etc.).

Zero-argument predicate constants? In an interpretation (see Section   4.1   below), each such
predicate must become either "true", or "false". Hence, paradoxically, zero-argument predicate
constants would behave like as "propositional variables" – they represent assertions that do not
possess a meaning, but possess a "truth value".

Summary of language primitives

Thus,  the  specification  of  a  predicate  language  includes  the  following
primitives:

1) A countable set of object variable names.

2) An empty, finite, or countable set of object constants. 

3) An empty, finite, or countable set of function constants. To each function
constant a fixed argument number must be assigned.

4) A finite, or countable set of predicate constants. To each predicate constant a
fixed argument number must be assigned.

Different sets of primitives yield different predicate languages.

Examples. 1) Our "language about people" is based on: a) object variables x, y, z, ...; b) object
constants:  John,  Britney,  ...;  c)  function  constants:  none;  d)  predicate  constants:  Male(x),
Female(x), Mother(x, y), Father(x, y), Married(x, y), x=y.

2) The language of first order arithmetic is based on: a) object variables x, y, z, ...; b) object
constants: 0, 1; c) function constants: x+y, x*y; d) predicate constant: x=y.
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3) The language of set theory is based on: a) object variables x, y, z, ...; b) object constants:
none; c) function constants: none; d) predicate constants: x∈ y , x= y .

The remaining part  of  the  language definition is  common for  all  predicate
languages.

Terms and formulas

By using the language primitives, we can build terms, atomic formulas and
(compound) formulas.

Terms are expressions used to denote objects and functions:

a) Object variables and object constants (if any), are terms.

b) If f is a k-argument function constant, and t1, ..., tk are terms, then the string

f(t1, ..., tk) is a term.

c) There are no other terms.

Examples. 1) In our "language about people" only variables x, y, z, ..., and object constants
John, Britney, ... are terms.

2) In the language of first order arithmetic, for addition and multiplication the "infix" notation
is used: if t1, t2 are terms, then (t1+t2) and (t1*t2) are terms. Of course, the object constants 0, 1

and variables x, y, z, ... are terms. Examples of more complicated terms: (x+y), ((1+1)*(1+1)),
(((1+1)*x)+1).

3) In the language of set theory, variables x, y, z, ... represent the only kind of terms.

If a term does not contain variable names, then it denotes an "object" of our
"domain"  (for  example,  ((1+1)+1) denotes  a  specific  natural  number  – the
number  3).  If  a  term  contains  variables,  then  it  denotes  a  function.  For
example, (((x*x)+(y*y))+1) denotes the function x2+y2+1.

Attention! Note  that  the  language  of  first  order  arithmetic  does  not  contain  a  function
constant denoting the  exponentiation xy,  thus, for example,  we must write x*x instead of
x1+1.

Of  course,  the  key  element  of  our  efforts  in  describing  "objects",  their
properties and relations, will be assertions, for example, the commutative law
in  arithmetic:  ((x+y)=(y+x)).  In  predicate  languages,  assertions  are  called
formulas (or,  sometimes,  well  formed  formulas  –  wff-s,  sentences,  or
statements).

Atomic formulas

(In  some  other  textbooks:  elementary  formulas,  prime  formulas.)  Atomic
formulas are defined as follows:

a) If p is a k-argument predicate constant, and t1, ..., tk are terms, then the
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string p(t1, ..., tk) is an atomic formula.

b) There are no other atomic formulas.

For the equality symbol, the "infix" notation is used: if t1, t2 are terms, then

(t1=t2) is an atomic formula. 

Examples. 1) In our "language about people", the following represent examples of atomic
formulas:  Male(x),  Female(Britney),  Male(Britney) (not  all  formulas  that  are well  formed,
must be true!), Father(x, Britney), Mother(Britney, John), Married(x, y).

2) Summary of the atomic formulas of the language of first order arithmetic: a) constants 0
and 1, and all variables are terms; b) if t1 and t2 are terms, then (t1+t2) and (t1*t2) also are

terms; c) atomic formulas are built only as (t1=t2), where t1 and t2 are terms.

3) In the language of set theory, there are only two kinds of atomic formulas: x∈ y , and
x=y (where x and y are arbitrary variables).

In the language of  first  order  arithmetic,  even by using the only available
predicate constant "=", atomic formulas can express a lot of clever things, for
example,

((x+0)=x); ((x+y)=(y+x)); ((x+(y+z))=((x+y)+z));
((x*0)=0); ((x*1)=x); ((x*y)=(y*x)); ((x*(y*z))=((x*y)*z));

(((x+y)*z)=((x*z)+(y*z))).

Exercise 1.2.1. As the next step, translate the following assertions into the
language of first order arithmetic (do not use abbreviations!): 2*2=4, 2*2=5,
(x+y)2 = x2+2xy+y2.

Formulas

The  following  definition  is  common  for  all  predicate  languages.  Each
language is specific only by its set of language primitives.

To write more complicated assertions, we need compound formulas, built of
atomic  formulas  by  using  a  fixed  set  of  propositional connectives  and
quantifiers (an invention due to G. Frege and C. S. Peirce). In this book, we
will use the following set of symbols: 

Implication symbol:  B→C means "if  B, then C", or "B implies C",  or "C
follows from B".

Conjunction symbol: B∧C means "B and C".

Disjunction symbol: B∨C means "B, or C, or both". 

Attention! Thus, our disjunction symbol means the so-called  non-exclusive
"or".  If B and  C both are true,  then B∨C is  true as well.  The so-called
exclusive OR (programmers would wish to write it as B xor C ) is used to
denote “either B, or C, but not both”. 
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Negation symbol: ¬B means "not B”.

Universal quantifier: ∀x B means "for all x, B".

Existential quantifier: ∃z(x+z+1=y). x B means "there is x such that B".

The widely used equivalence connective ↔ can be derived in the following
way:  B↔C  stands  for (( B →C )∧(C → B)) .  If  you  wish  to  use  the
exclusive OR (“either B, or C, but not both”),  you can define B xorC as
¬(B ↔C) .

Attention! For  programmers,  conjunction,  disjunction  and  negation  are  familiar  "logical
operations" – unlike the implication that is not used in "normal" programming languages. In
programming, the so-called IF-statements, when compared to logic, mean a different thing: in
the  statement  IF  x=y  THEN  z:=17,  the  condition,  x=y  is,  indeed,  a  formula,  but  the
"consequence" z:=17 is not a formula – it is an executable statement. In logic, in B→C ("if B,
then C"), B and C both are formulas.

Now, we can define the notion of formula of a predicate language as follows:

a) Atomic formulas are formulas.

b)  If  B and C are formulas,  then (B → C ) ,(B∧C ) ,( B∨C ) ,  and (¬B)
also are formulas (B and C are called sub-formulas).

c) If B is a formula, and x is an object variable, then (∀ x B) and (∃z(x+z+1=y). x B)
also are formulas (B is called a sub-formula).

d) There are no other formulas.

Warning about omitting of parentheses! To make formulas easier for human
reading,  usually,  some  of  the  formally  necessary  parentheses  are  omitted
according to the so-called priority rules. For example,

B∨C → D∧F means (B∨C )→( D∧F ) , and not (B∨(C → D)∧F ) .

Thus, implication has lower priority than disjunction and conjunction. For full
treatment of priority rules see the section “Omitting Parentheses” below. 

Knowledge representation by means of predicate languages

Do not  be  surprised  by  the  trivial  character  of  the  most  of  the  assertions
expressed  in  the  formulas  below.  Even  such  trivial  assertions  must  be
submitted to  computers,  if  we wish them to make conclusions and answer
questions about people, natural numbers, or sets. 

Examples.  1)  In  our  "language  about  people",  the  following  are  examples  of  compound
formulas: 

((Father ( x , y))∨(Mother (x , y ))) "x is a parent of y" 
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(∀ x (∀ y ((Father ( x , y ))→(Male (x)))))

"fathers are males" – could serve as an 
axiom. Looks somewhat artificial, but 
represents the most natural way of 
saying that "fathers are males" in a 
predicate language!

(∀ x (∀ y ((Mother ( x , y))→(¬Male ( x)))))
"mothers are not males" – could be 
derived from the axioms formulated 
below.

(∀ x (∃z(x+z+1=y). y (Mother ( y , x )))) "each x has some y as a mother" – could
serve as an axiom.

(∀ x (Male (x)∨Female (x ))) What does it mean? It could serve as an 
axiom.

(∀ x ¬(Male (x)∧Female (x ))) What does it mean? It could serve as an 
axiom.

∃z(x+z+1=y).z (Father(x , z )∧(Father (z , y)∨Mother (z , y ))) “x is a grandfather of y”

∀ x (∀ y (∀ z ((Mother ( x , z)∧Mother ( y , z))→(x= y ))))

∀ x (∀ y (∀ z ((Father (x , z )∧Father ( y , z ))→( x=y ))))

What does this mean? These formulas could serve as axioms. They look somewhat 
artificial, but represent the most natural way of saying "no more than one" in a predicate 
language!

2) Some simple examples of compound formulas in the language of first order arithmetic.

Attention! Speaking strictly, predicate symbols "<", ">", "≤", "≥", "≠" etc. do not belong to
the  language of  first  order  arithmetic.  For  example,  x<y should  be  replaced  by  their  full
version of the kind ∃z(x+z+1=y).u((((x+u)+1)= y )) .

(∃z(x+z+1=y).u(x=(u+u))) "x is an even number" 

(∃z(x+z+1=y).u(((x+u)+1)= y)) "x is less than y", or, x<y

(0< y∧∃z(x+z+1=y).u(x=( y∗u )))
"x is divisible by y". Speaking strictly, 
x<y must be replaced by

∃z(x+z+1=y).u (((x+u)+1)= y ) .

((1<x )∧(¬(∀ y (∃z(x+z+1=y). z ((( y< x)∧(z<x ))∧(x=( y∗z))))))) ,

formula prime(x), "x is a prime number".
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∀ w(∃z(x+z+1=y). x ((w<x )∧( prime (x))))

"There are infinitely many prime 
numbers" (one of the first mathematical 
theorems, 6th century BC). Speaking 
strictly, w<x must be replaced by

∃z(x+z+1=y).u ((((w+u)+1)=x )) , and prime(x) 
must be replaced by the above long 
formula.

∀ x ∀ y (0< y →∃z(x+z+1=y). z∃z(x+z+1=y).u (u< y∧x= y∗z+u)) What does it mean?

3) Some simple examples of compound formulas in the language of set theory:

(∃z(x+z+1=y). y ( y∈x )) "x is a non-empty set" 

(∀ z (( z∈x )→(z∈ y))) "x is a subset of y", or x≤y

((∀ z ((z∈x )↔(z∈ y)))→ (x=y )) What does it mean? Will serve as an 
axiom.

(∀ y (∀ z (( y∈x)∧(z∈x ))→ y=z)) "x contains zero or one member"

(∀u ((u∈ x)↔ ((u∈ y )∨(u∈ z)))) "x is union of y and z", or x= y∪z

Of  course,  once  again, having  a  predicate  language  is  not  enough for
expressing  all  of  our  knowledge  formally,  i.e.,  for  communicating  it  to
computers. Computers do not know in advance, for example, how to handle
sexes. We must tell them how to handle these notions by introducing axioms.
Thus, the above-mentioned formulas like as Female (Britney ) ,

∀ x (Male( x)∨Female( x)) , or ∀ x ∀ y(Father ( x , y)→(Male (x)))

will be absolutely necessary as axioms (facts and rules). As we will see later,

knowledge base = language+facts+rules+query processor,

or, in mathematics, 

 theory = language + axioms + logic,

i.e.,  in fact,  to formulate all of our knowledge formally, we must create
theories. 

Exercise 1.2.2.  Translate the following assertions into our "language about
people":

"x is child of y";
"x is grand-mother of y"; "x is a grand-father"

"x is brother of x”; “x and y are sisters";
“x is cousin of y”; “x is nephew of y”; “x is uncle of y”.

Exercise 1.2.3. Translate the following assertion to the language of first order

http://en.wikipedia.org/wiki/Uncle
http://en.wikipedia.org/wiki/Nephew_and_niece
http://en.wikipedia.org/wiki/Cousin
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arithmetic:

"x and y do not have common divisors" (note: 1 is not counted as a divisor!);

" √2 is an irational number"; (Attention! ¬∃z(x+z+1=y). p∃z(x+z+1=y).q(√2= p
q

) , and ∃z(x+z+1=y). x (x∗x=2)

are not correct solutions. Why?)

Exercise 1.2.4. Imagine an alternative language of arithmetic that does not
contain  function constants + and *, but contains predicates  sum(x, y, z) and
prod(x, y, z) instead (meaning x+y=z and x*y=z correspondingly). Translate
the following assertions into this language:

x+0=x ; x+ y= y+x ; x+( y+1)=(x+ y)+1 ; (x+ y)∗z=(x∗z )+( y∗z ) .

Exercise 1.2.5. Try inventing your own predicate language. Prepare and do
your own Exercise 1.2.2 for it.

Exercise 1.2.6 (optional). In computer science, one of the popular means of
knowledge representation are the so-called  UML class diagrams and  OCL
(UML −  Unified Modeling Language, OCL −  Object    Constraint Language  ).
The above diagram representing our “domain of people” is an example. In our
“language of people”, put down as many axioms of the domain you can notice
in the diagram. For example, “every person is either male, or female”, “all
fathers  are  males”,  “every  person  has  exactly  one  mother”,  “a  person  can
marry no more than one person” etc. 

Many-sorted Languages

Maybe, you have to describe two or more kinds of "objects" that you do not wish to reduce to
"sub-kinds" of one kind of "objects" (for example,  integer numbers and character strings).
Then you may need introducing for each of your "domains" a separate kind ("sort") of object
variables. In this way you arrive to the so-called many-sorted predicate languages. In such
languages: a) a finite number of sorts can be introduced; b) each variable and each object
constant must be assigned to some sort; b) for each function constant, each of its arguments
must be assigned to some some sort, and function values must be assigned to a (single) sort; c)
for each predicate constant, each of its argument must be assigned to some sort. In many-
sorted  predicate  languages,  the  term  and  atomic  formula  definitions  are  somewhat  more
complicated: building of the term f(t1, ..., tk) or the formula p(t1, ..., tk) is allowed only, if the

sort of the term ti values coincides with the sort of the i-th argument of f or p respectively. And

the "meaning" of quantifiers depends on the sort of the variable used with them. For example,
∀x means "for all values of x from the domain of the sort of x".

Theoretically, many-sorted languages can be reduced to one-sorted languages by introducing
the corresponding predicates Sort i(x) ("the value of x belongs to the sort i"). Still, in some
applications of logic (for example, in computer science) the many-sorted approach is usually
more natural and more convenient.

http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Object_Constraint_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
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Warning about second order languages!

In our definition of predicate languages only the following kinds of primitives were used:
object variables, object constants, function constants and predicate constants. You may ask:
how about function variables and predicate variables? For, you may wish to denote by r "an
arbitrary property" of your "objects". Then, r(x) would mean "x possess the property r", and
you  would  be  able  to  say  something  about  "all  properties",  for  example,

∀ r∀ x∀ y (x= y→r(x)↔r ( y)) . In this way you would have arrived at a second order
language! In such languages, function and predicate variables are allowed. But properties lead
to sets of objects, for example, {x | r(x)} would mean the set of all objects that possess the
property r. But, why should we stop at the properties of objects? How about "properties of sets
of objects" etc.? As it was detected long ago, all kinds of sets can be fully treated only in set
theory!  Thus,  instead of building your own second order  language,  you should better  try
applying your favorite ("first order") set theory. An unpleasant consequence: the existence of
the  (much  less  significant)  notion  of  second  order  languages  forces  many  people  to  call
predicate languages "first order languages" − to emphasize that, in these languages, the only
kind of variables allowed are object variables.

On the other hand, when trying to implement realistic formal reasoning software, then using
of some second order constructs is, as a rule, more efficient than implementing of a pure first
order reasoning. See, for example, Notices of the AMS, Special Issue on Formal Proof, Vol. 55,
N 11, 2008 (available online).

For details, see: Second-order-logic in Wikipedia.

Omitting parentheses

Our formal definitions of terms and formulas lead to expressions containing
many parentheses. Let us remind, for example, our formula expressing that "x
is a prime number":

((1< x)∧(¬(∃z(x+z+1=y). y (∃z(x+z+1=y). z ((( y<x)∧( z<x))∧(x=( y∗z ))))))) .

Such formulas are an easy reading for computers, yet inconvenient for human
reading (and even more  inconvenient  –  for  writing them correctly).  In  the
usual mathematical practice (and in programming languages) we are allowed
to improve the look of our formulas by omitting some of the parentheses −
according to (some of) the following rules:

a) Omit the outermost parentheses,  for example,  we may write A→(B→C)
instead of the formally correct (A→(B→C)). In this way we may improve the
final look of our formulas. Still, if we wish to use such formulas as parts of
more complicated formulas, we must restore the outermost parentheses, for
example: (A→(B→C))→D.

b) We may write, for example, simply:

x+ y+ z+u , x∗y∗z∗u ,
A∧B∧C∧D , A∨B∨C∨D ,

∃z(x+z+1=y). x∀ y∃z(x+z+1=y). z∀ u F .

http://en.wikipedia.org/wiki/Second-order-logic
http://www.ams.org/notices/200811
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instead of the more formal
((x+ y)+ z)+u ,((x∗y)∗z )∗u ,

((A∧B)∧C )∧D ,
((A∨B)∨C )∨D ,

(∃z(x+z+1=y). x (∀ y (∃z(x+z+1=y). z (∀u F )))) .

In this way we can simplify the above expression "x is a prime number" as:

(1<x)∧(¬(∃z(x+z+1=y). y∃z(x+z+1=y). z (( y<x)∧( z< x)∧(x=( y∗z ))))) .

c) We can apply the so-called priority rules. For example, the priority rank of
multiplications is supposed to be higher than the priority rank of additions.
This rule allows writing x+y*z instead of the more formal x+(y*z) − because
of its higher priority rank, multiplication must be performed first. The most
popular priority rules are the following:

c1) The priority rank of function constants is higher than the priority rank of
predicate constants. This allows, for example, writing x*y = y*x instead of
(x*y)=(y*x), or x∈ y∪z − instead of x∈( y∪ z) .

c2) The priority rank of predicate constants is higher than the priority rank of
propositional connectives and quantifiers. This allows, for example, writing

y< x∧z< x instead of ( y< x )∧( z< x) .

c3)  The  priority  rank  of  quantifiers is  higher  than  the  priority  rank  of
propositional  connectives.  This  allows,  for  example,  writing
∃z(x+z+1=y). x F∧∀ yG instead  of (∃z(x+z+1=y). x ( F ))∧(∀ y (G)) ,  or  writing  ¬∃z(x+z+1=y). x F

instead of ¬(∃z(x+z+1=y). x (F )) .

c4)  The  priority  rank  of  negations is  higher  than  the  priority  rank  of
conjunctions  and  disjunctions.  This  allows,  for  example,  writing
¬A∧¬B instead of (¬ A)∧(¬ B) .

c5)  The priority  rank of  conjunctions and disjunctions is  higher  than the
priority  rank  of  implications.  This  allows,  for  example,  writing

A∧B →C∨D  instead of (A∧B)→(C∨D) .

In the usual mathematical practice, some additional priority rules are used, but
some of them are not allowed in the common programming languages.  To
avoid confusions do not use too many priority rules simultaneously!

According to the above priority rules, we can simplify the above expression "x
is  a  prime number" even further,  obtaining  a  form that  is  much easier  for
human  reading  (but  is  somewhat  complicated  for  a  computer  program  to
“parse” it):

1<x∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y<x∧ z<x∧x=y∗z) .

As you see, all the above rules are mere abbreviations. In principle, you could
use  any  other  set  of  abbreviation  rules  accepted  by  your  audience.  If
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computers would do logic themselves, they would not need such rules at all
(except, maybe, for displaying some of their results to humans).

Exercise 1.2.6.  "Translate" the following assertions to our "language about
people":

"x and y are siblings";
"x and y are brothers"; “x and y are sisters”; “x is cousin of y”;

“parents of x and y are married”; 
“x and y are married people” (formalize both possible meanings); 

“nobody is married to everybody”.

Exercise 1.2.7. Translate the following assertions to the language of first order
arithmetic:

"x and y are twin primes" (examples of twin pairs: 3,5; 5,7; 11,13; 17,19;...),
"There are infinitely many pairs of twin primes" (the famous Twin Prime

Conjecture), 
"Each positive even integer ≥4 can be expressed as a sum of two primes"

(the famous Goldbach Conjecture),

"x is a power of 2" (Attention! n(x=2∃z(x+z+1=y). n) is not a correct solution. Why? Think about
prime divisors of x instead.).

Free variables and bound variables

Usually,  people  use  these  notions  without  definitions.  Anyway,  a  precise
treatment follows.

The above expression "x is a prime number":

1<x∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y<x∧ z<x∧x=y∗z)

contains 3 variables: x − occurs 4 times in terms, y − 2 times in terms and 1
time in quantifiers, z − occurs 2 times in terms and 1 time in quantifiers. Of
course, x is here a "free" variable – in the sense that the "truth value" of the
formula depends on particular "values" taken by x. On the contrary, the "truth
value" of the formula does not depend on the particular "values" taken by the
two "bound" variables y and z − the quantifiers y, z force these variables to∃z(x+z+1=y). ∃z(x+z+1=y).
"run across their entire range".

To make the notion precise, first, let count only the occurrences of variables in
terms, not in quantifiers. And second, let us define a particular occurrence ox

of a variable x in (a term of) a formula F as a  free occurrence  or a  bound
occurrence according to the following rules:

a) If F does not contain quantifiers x, x, then o∃z(x+z+1=y). ∀ x is free in F.

b) If F is xG or xG, then o∃z(x+z+1=y). ∀ x is bound in F.
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c1) If F is G∧H , G∨H , or G→H, and ox is free in G (or in H), then ox is

free in F.

c2) If F is ¬G, yG, or yG, where y ∃z(x+z+1=y). ∀ is not x, and ox is free in G, then ox is

free in F.

d1) If F is G∧H , G∨H , or G→H, and ox is bound in G (or in H), then ox is

bound in F.

d2) If F is ¬G, yG, or yG (where y is any variable, x included), and o∃z(x+z+1=y). ∀ x is

bound in G, then ox is bound in F.

Thus,  the  above  formula 1<x∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y<x∧ z<x∧x=y∗z) contains  4
free occurrences of x, 2 bound occurrences of y, and 2 bound occurrences of z.

Exercise 1.2.8. Verify that an occurrence of x in F cannot be free and bound
simultaneously. (Hint: assume that it is not the case, and consider the sequence
of all sub-formulas of F containing this particular occurrence of x.)

Formally, we can use formulas containing free and bound occurrences of a
single  variable  simultaneously,  for  example, x>1→∃z(x+z+1=y). x(x>1) .  Or,  many
bound occurrences of a single variable, for example,

(∀ x F (x)∧∃z(x+z+1=y). x G (x))∨∀ x H (x)

means the same as

(∀ x F (x)∧∃z(x+z+1=y). y G ( y))∨∀ z H ( z) .

Still, it is not recommended using a single variable in too many different roles
in a single formula. Such formulas do not cause problems for computers, but
they may become inconvenient for human reading.

If  a  formula  contains  free  occurrences  of  variables,  i.e.,  occurrences  of
variables that are not bound by quantifiers (for example: x=0∨ x=1 ), then
the "truth value" of such formulas may depend on particular values assigned to
free variables. For example, the latter formula is "true" for x=1, yet it is "false"
for x=2. Formulas that do not contain free occurrences of variables, are called
closed formulas, for example:

∀ w∃z(x+z+1=y). x(w< x∧ prime( x)) .

Closed formulas represent "definite assertions about objects of theory", they
are expected to be (but not always really are) either "true", or "false". 

Term substitution

To say that x is a free variable of the formula F, we may wish to write F(x)
instead of simply F. Replacing all free occurrences of x by a term t yields an
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"instance" of the formula F. It would be natural to denote this "instance" by
F(t).

For example, if F(x) is y(y+y=x) and t is z*z+z, then F(t), or F(z*z+z) will∃z(x+z+1=y).
denote y(y+y=z*z+z).∃z(x+z+1=y).

However,  if  t  would  be  y*y+y,  then  F(t),  or  F(y*y+y)  would  be
y(y+y=y*y+y). Is this really F(y*y+y)?∃z(x+z+1=y).

Thus,  sometimes,  formal  substitutions  can  lead  to  crazy  results.  Another
example: in our expression "x is a prime number", let us replace x by y. Will
the resulting formula mean "y is a prime number"? Let's see:

1< y∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y< y∧ z< y∧ y= y∗z ) .

Since y<y is always false, the second part ¬ y z(...) is true, hence, the latter∃z(x+z+1=y). ∃z(x+z+1=y).
formula  means  simply  that  "1  is  less  than  y",  and  not  that  "y  is  a  prime
number".

Of course, we failed because we replaced a free variable x by a variable y in
such a way that some free occurrence of x became bound by a quantifiers for
y. In this way we deformed the initial meaning of our formula.

The following simple rule allows to avoid such situations. Suppose, x is a free
variable of the formula F. We will say that the  substitution F(x/t) (i.e., the
substitution of the term t for x in the formula F) is admissible if and only if no
free occurrences of x in F are located under quantifiers that bind variables
contained in t. If the substitution F(x/t) is admissible, then, by replacing all
free occurrences of x in F by t, of course, we do not change the initial meaning
of  the  formula  F(x),  and  hence,  we  may  safely  denote  the  result  of  this
substitution by F(t). 

Exercise 1.2.9. Is x/y an admissible substitution in the following formulas?
Why?

x=0∨∃z(x+z+1=y). y( y> z ) ;
x=0∨∃z(x+z+1=y). y ( y>x) .

Exercise  1.2.10 (optional). a)  Mathematicians:  think  over  the  analogy  between  bound
variables  in  logic  and  bound  variables  in  sum  expressions  and  integrals.
b) Programmers: think over the analogy between bound variables in logic and loop counters in
programs.
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1.3. Axioms of Logic: Minimal System, Constructive System 
and Classical System

Now we go on in detail to the second phase of formalization:

a) after having defined a formal language (predicate language) allowing to put
down propositions about objects in our domain of interest,

b) and having formulated as axioms some of the propositions, that we think to
be “true” of the objects in the domain, 

c)  we  must  introduce  some  means  of  reasoning allowing  to  derive  other
statements that are as “true” of the objects as are the axioms.

Indeed, having formulated some fragment of our knowledge as a set of axioms
A1, ..., An in some predicate language L, and put them into a knowledge base,

we do not think that A1, ..., An are  all the  statements that are “true” of the

objects we are trying to describe. Many other “true” statements  follow from
A1, ..., An as consequences.

The problem of reasoning: 

"formula G follows from the formulas A1, ..., An", 

what exactly does it mean? Since we wish to teach reasoning to computers,
the answer must be absolutely explicit.

Tentative solution of the problem

Axioms of a theory can formulate facts and rules. Facts are formulated usually
as atomic formulas that do not contain variables, for example,

 
Male (John);

Female (Britney ) .

Rules are  formulated  as  formulas  that  contain  logical  connectives  and
quantifiers, for example,

∀ x(Male(x)∨Female(x)) ;
¬∃z(x+z+1=y). x (Male( x)∧Female( x));

∀ x ∀ y(Father ( x , y)→ Male (x)).

Thus, to teach reasoning to computers, we must, first of all, teach them how to
manipulate logical connectives and quantifiers. The necessary principles of
manipulation will be represented as  logical axioms and rules of inference.
Since the “meaning” of connectives and quantifiers does not depend on the
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“meaning” of the specific primitives of each predicate language, these axioms
and rules of inference must be applicable to any predicate languages. This is
because,  sometimes,  such  axioms  and  rules  are  called  “generally  valid”,
“logically valid”, or “purely logical”.

For example, assume that some formula F has the following form:

(B → D)→ ((C → D)→ (B∨C → D)) ,

where  B,  C,  D are  some formulas.  Then  F  is  “true”  independently  of  the
specific language primitives used in the formulas B, C, D. This is why it is
accepted below as the logical axiom L8.

Similarly,  the  following  rule  of  inference  (Modus  Ponens)  is  applicable
independently of the language primitives contained in the formulas B, C:

Having derived the formulas B, B→C, derive the formula C.

For example, if we have B→D and C→D already derived, then – by applying
twice this rule  to the above long formula F – we can derive that B∨C → D .

We will try to formulate a complete (as complete as possible) system of such
"purely  logical"  principles  (logical  axioms  and  rules  of  inference).
Establishing the existence of such a system is the result of a 2500 year long
history of great discoveries and inventions.

Aristotle (384-322 BC), 

Gottlob Frege (1848-1925), Charles Sanders Peirce (1839-1914).

Bertrand Russell (1872-1970), David Hilbert (1862-1943).

D.Hilbert, W.Ackermann. Grundzüge der theoretischen Logik. Berlin (Springer), 1928 (see
also: Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

The  first  version  of  logical  axioms  was  introduced  in  1879  by  G.  Frege  in  his  above-
mentioned  Begriffsschrift.  The  next  important  version  was  proposed  in  1910-1913  by  B.
Russell and A. Whitehead in their famous book Principia Mathematica. And finally, in 1928
D. Hilbert and W. Ackermann published in their above-mentioned book, in a sense, the final
version  of  logical  axioms.  Equivalent  modifications  of  this  version  are  now  used  in  all
textbooks of mathematical logic.

In our version, logical axioms will be represented by means of the so-called
axiom  schemas (programmers  might  call  them  templates).  Each  schema
(template) represents an infinite, yet easily recognizable collection of single
axioms. For example,  schema L3: B∧C → B may represent the following

axioms ("instances of the schema") in the language of first order arithmetic:

x= y∧x=x → x= y ,

1∗1=1∧1+ 1=1+ 1→ 1∗1=1 ,

and many other axioms: take any formulas B, C in your predicate language,
and you will obtain an instance of the axiom schema B∧C → B . 

http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Russell.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Peirce_Charles.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Frege.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Aristotle.html
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We will not specify properties of the  equivalence connective in axioms. We
will regard this connective as a derived one (as a “macro”): B ↔C will be
used  as  an  abbreviation  of (B →C )∧(C → B) .  Similarly, A xor B
(“exclusive OR”) can be used as an abbreviation of ¬(B ↔C) .

Axioms of logic

Suppose,  we  have  specified  some  predicate  language  L.  We  adopt  the
following 15 axiom schemas as the logical axioms for the language L.

In the first 11 axiom schemas L1-L11 below, B, C and D are any formulas in

the language L.

The  first  two  axiom  schemas  L1,  L2 represent  the  "definition"  of  the

implication connective:

L1: B →(C → B)  (try thinking over, what does it mean?),

L2:  (B →(C → D))→((B →C )→( B → D))  (think  over,  what  does  it

mean?).

Such (or similar) definition of implication is necessary, if we wish computers
to handle implications correctly. 

Note.  The  axioms L1,  L2 represent  the  (currently)  most  popular  version  of  "defining" the

implication connective. About other (equivalent) versions − containing 3 or 4 axioms − see
Hilbert, Bernays [1934] (Chapter III) and Exercise 1.5.2 below.

The following axiom schemas L3–L5  represent the "definition" of the AND-

connective (conjunction):

L3: B∧C → B  (what does it mean?),

L4: B∧C →C  (what does it mean?),

L5: B →(C → B∧C)  (what does it mean?).

Such (or similar) definition of conjunction is necessary, if we wish computers
to handle conjunctions correctly. 

The following axiom schemas L6–L8 represent the "definition" of the (non-

exclusive!) OR-connective (disjunction):

L6: B → B∨C  (what does it mean?),

L7: C → B∨C  (what does it mean?),

L8: (B → D)→ ((C → D)→ (B∨C → D))  (what does it mean?).
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Such (or similar) definition of disjunction is necessary, if we wish computers
to handle disjunctions correctly.

Attention! Once  again,  as  the  above  three  axioms  show,  the  disjunction
connective is intended as the non-exclusive OR: B∨C is meant as “B, or C,
or both”. 

The  next  axiom  schema  L9 represents  the  "definition"  of  the  negation

connective. In fact, it is a formal version of a proof method well-known in
mathematics − refutation by deriving a contradiction (Reductio ad absurdum):

L9: (B →C)→((B →¬C )→¬B)  (what does it mean?). 

Note. The axiom L9 represents the (currently) most popular version of "defining" the negation

connective. About other (equivalent) versions − see Hilbert, Bernays   [1934]   (Chapter III) and
Exercise 2.4.2 below.

The next axiom schema L10 represents the famous principle "Contradiction

Implies Anything" (Ex contradictione sequitur quodlibet, or Ex falso sequitur
quodlibet):

L10: ¬B →( B →C)  (try thinking over, what does it mean?).

The following axiom schema L11 represents the famous  Law of Excluded

Middle (Tertium non datur):

L11: B∨¬B  (try thinking over, what does it mean?).

The above 11 schemas (plus the Modus Ponens rule of inference, see below)
represent the classical propositional logic in the language L.

Now, the "definitions" of the universal and existential quantifiers follow.

In the following axiom schemas L12, L13, F is any formula, and  t is a term

such that F(x/t) is an admissible substitution (in particular, t may be x itself):

L12:  ∀ x F (x)→ F (t )  (in  particular, ∀ x F (x)→ F (x) ,  what  does  it

mean?),

L13:  F (t )→∃z(x+z+1=y). x F ( x)  (in  particular, F (x)→∃z(x+z+1=y). x F (x) ,  what  does  it

mean?).

In the following schemas L14, L15, F is any formula, and G is a formula that

does not contain free occurrences of the variable x:

L14: ∀ x (G → F (x))→(G →∀ x F (x )) (what does it mean?),

L15: ∀ x (F (x)→G)→(∃z(x+z+1=y). x F (x)→G ) (what does it mean?).
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Rules of inference

In the following rules of inference, B, C and F are any formulas.

Modus Ponens (MP): B→C; B├ C, or,
B →C ; B

C
(what could this mean?).

Generalization (Gen):
F (x)

∀ x F (x)
(what could this mean?).

This  list  of  logical  axioms  and  rules  of  inference  represents  the  so-called
classical  predicate  logic in  the  predicate  language  L  (or,  simply  −  the
classical logic in the language L).

Note.  In  the above axioms,  properties  of  the  equality predicate x=y (such as  reflexivity,
symmetry, transitivity etc.) are not defined. So, equality is considered here as a  non-logical
symbol. As a rule, the concept of equality is specific in each particular theory. For example, in
set theories, two sets are considered as equal, if and only of they possess the same members,
i.e.,  x=y  means ∀ z (z∈x↔z∈ y) .  The  necessary  properties  of  equality  must  be
formulated in the specific axioms of theory, or must be provable by using these axioms. This is
why, in some texts, the above axioms of logic are called first order logic without equality.
For an alternative version of logic, in which equality is considered as a logical symbol, see
F  irst order logic with equality   in Wikipedia.

Possible misconceptions

1. Modus Ponens rule allows to derive C, if we have B and B→C (C follows 
from B) already derived. The “converse” version B→C; C├ B is wrong as a
logical principle. Knowing B→C and C can serve as an argument in favor 
of B being true, but not as a reliable proof of B.

2. No formal restrictions are put on the formula F(x) when applying 
Generalization rule. However, be careful when using Gen in a proof: the 
result ∀ x F (x) will be valid only if F(x) was derived putting no 
restrictions on x. If our proof contains such restrictions, i.e., if F(x) was 
derived by using some hypothesis H(x), then, from F(x), we cannot conclude
∀ x F (x) . If one is applying Gen to F(x), one has in mind that F(x) is 

“true for all values of x”. For details, see Deduction Theorem 2 in Section 
1.5 below.

Some of the logical axioms are "wrong, but useful"!

Three of the above axiom schemas seem to be (at least partly) problematic.

For example, how do you find the funny axiom L10: ¬B →( B →C) ? If ¬B

and B were true simultaneously, then anything were true?  Ex contradictione
sequitur quodlibet? Is this a really "true" axiom? Of course, it is not. Still, this
does not matter: we do not need to know, were C "true" or not, if ¬B and B

https://en.wikipedia.org/wiki/First-order_logic#Equality_and_its_axioms
https://en.wikipedia.org/wiki/First-order_logic#Equality_and_its_axioms
https://en.wikipedia.org/wiki/Modus_ponens
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were  "true"  simultaneously.  By  assuming  that  "if  ¬B  and  B  were  true
simultaneously,  then  anything  were  true"  we greatly  simplify  our logical
apparatus. For example, we will prove in  Section 2.6 that, in the classical
logic, ¬¬B→B. This simple formula can't be proved without the "crazy" axiom
L10 (see Section 2.8).

In  fact,  the  first  axiom  L1:  B→(C→B)  is  funny  as  well.  If  B  is

(unconditionally)  true,  then  B  follows  from  C,  even  if  C  has  nothing  in
common with B? Moreover, in Exercise 1.4.2 below we will prove that the
axioms L1,  L9 allow proving that ¬B, B├ ¬C, i.e.,  if  ¬B and B were true

simultaneously, then anything were false (thus, in a sense, L1 contains already

50% of L10!). After this, could we think of L1 as a really "true" axiom? Of

course, we can't. Still, this does not matter: if B is already known as true, then
it may be too complicated to explore all C’s from which B could follow. By
assuming that "if B is true, then B follows from anything" we greatly simplify
our logical apparatus.

The above two phenomena are called paradoxes of the material implication,
see  Paradoxes  of  Material  Implication by  Peter  Suber,  and  Falsity  Implies
Anything by Alexander Bogomolny.

May our decision to "greatly simplify" the logical apparatus have also some
undesirable  consequences?  Let  us  consider  the  following  formula  F(x):
∀ y (Child (x , y)→Female( y)) . It seems, F(x) is intended to mean: "All

the children of x are female". However, in our system of logic, F(x) is regarded
as true also, if x does not have children at all! If you do not have children at
all, then all your children are female! Or male? Or smart? Etc. Sounds funny,
but is, in fact, harmless...

Thus, it would be an exaggeration to call the above system of axioms and rules
of inference “a system of principles of correct reasoning”. As we saw it, not
all logical axioms represent such principles, some of them were introduced
solely in order to simplify the system. It would be better to call this system “a
good  engine  of  reasoning”.  Though  not  perfect,  it  is  extremely  efficient,
much more efficient than the more complicated systems proposed in order to
overcome  its  seeming  deficiencies  (see,  for  example,  Relevance  logic in
Wikipedia).

Constructive logic

Still, it appears that the most serious problem is caused not by L1 and L10, it is

caused by the axiom L11: B∨¬B − the Law of Excluded Middle. How can

we think of L11 as a "true" axiom, if (according to Gödel's Incompleteness

https://en.wikipedia.org/wiki/Relevance_logic
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.cut-the-knot.org/do_you_know/falsity.shtml
http://www.earlham.edu/~peters/courses/log/mat-imp.htm
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Theorem)  each  sufficiently  strong  consistent  theory  contains  undecidable
propositions? We postulate that either B, or ¬B "must be true", yet for some B
we will unable to prove neither B, nor ¬B! Knowing that B∨¬B is "true"
inspires us to work on the problem, but it may appear useless, if we do not
succeed... Should we retain L11 as an axiom after this?

For  this  (and some other,  see below)  reasons some people  reject  L11 as  a

"valid" logical axiom.

The above list of 15 axiom schemas as it stands is called the classical logic.

By  excluding  L11 from  the  list  we  obtain  the  so-called  constructive

(historically, and in most textbooks − intuitionistic) logic. As a concept, it was
introduced by Luitzen Egbertus Jan Brouwer in 1908:

L. E.  J.  Brouwer. De onbetrouwbaarheid der  logische principes  (The unreliability  of  the
logical principles), Tijdschrift voor Wijsbegeerte, 2 (1908), pp.152-158.

Brouwer's main objection was against non-constructive proofs that are enabled
mainly by an "improper" use of the Law of Excluded Middle. 

An elegant very short  non-constructive proof proposes to use either the pair
a=b=√2 , or the pair a=√2;b=√2√2 to prove that there are two irrational

numbers a, b such that ab is rational. The possibly shortest constructive proof
of this fact is by using the pair a=√2;b=2 log23 instead.  

Exercise 1.3.1. Elaborate on these two proofs. 

For the entire history, see The Root-2 Proof as an Example of Non-constructivity by J. Roger
Hindley.

Note. A similar kind of non-constructive reasoning is represented by the so-
called Double Negation Law: ¬¬B→B, see Section 2.6.

As a formal system, the intuitionistic logic was formulated by Arend Heyting
in 1930:

A. Heyting. Die formalen  Regeln der  intuitionistischen  Mathematik.  Sitzungsberichte  der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 1930, pp.42-
56.

The constructive concept of logic differs from the classical one mainly in its
interpretation of disjunction and existence assertions:

− To prove B∨C constructively, you must prove B, or prove C. To prove
B∨C by using the classical logic, you are allowed to assume ¬(B∨C )

as  a  hypothesis  and derive  a  contradiction.  Having only  such a  “negative"
proof, you may be unable to determine, which part of the disjunction B∨C
is true − B, or C, or both. Knowing that B∨C is "true" may inspire you to
work on the problem, but it may appear useless, if you do not succeed…

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Heyting.html
http://www.users.waitrose.com/~hindley/Root2Proof2015.pdf
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Brouwer.html
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− To prove ∃z(x+z+1=y).x B(x) constructively, you must provide a particular value of x
such that B(x) is true. To prove ∃z(x+z+1=y).x B(x) by using the classical logic, you are
allowed  to  assume ∀x¬B(x) as  a  hypothesis  to  derive  a  contradiction.
Having only such a "negative" proof, you may be unable to find a particular x
for which B(x) is true. Knowing that ∃z(x+z+1=y).x B(x) is "true" may inspire you to
work on the problem, but it may appear useless, if you do not succeed...

Note. As a joke, we could regard existence assertions as "huge disjunctions". For example, in
the  language  of  first  order  arithmetic, ∃z(x+z+1=y).x B(x) could   be  "thought"  of  as

B(0)∨B(1)∨B(2)∨.. . , i.e., as an infinite "formula". Thus, the above two theses are, in a
sense, "equivalent".

The  constructive  (intuitionist)  logic  is  one  of  the  great  discoveries  in
mathematical logic − surprisingly, a system of constructive reasoning can be
obtained simply by dropping the Law of Excluded Middle from the list  of
valid logical principles.

See also Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia of Philosophy.

See also on Markov's Principle in Wikipedia.

Exercise 1.3.2. Explain, why the following formulas cannot be proved in the
constructive logic: 

a) ¬¬B→B ;

b) ¬∀ F ( x)→∃z(x+z+1=y). x¬F (x ) ;

c) ¬(B∧C)→¬B∨¬C .

Minimal logic

By excluding both L10 and L11 we obtain the so-called minimal logic. It was

introduced by Ingebrigt Johansson in 1936:

I.Johansson. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus.  Compositio
Mathematica, 1936, Vol. 4, N1, pp.119-136.

As a separate  concept,  the minimal  logic  is  much less  significant  than the
constructive logic. Indeed, since it allows proving of [L1, L9, MP]: B, ¬B├ ¬C

(in a sense, 50% of L10!), dropping of L10 is not a very big step.

Exercise 1.3.3 (optional). Reconsider  Exercise 1.1.7 and verify that, for any
predicate language, minimal, constructive and classical predicate logic are
formal  theories (with  empty  sets  of  non-logical  axioms)  according  to  the
definition given in Section 1.1.    

http://en.wikipedia.org/wiki/Ingebrigt_Johansson
https://en.wikipedia.org/wiki/Markov's_principle
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/entries/logic-intuitionistic/


35

First order theories

Thus, as the result of the formalization process, we obtain the so-called first
order theories.

Each first order theory T includes:

a) a specific predicate language L(T);

b)  logical  axioms and  rules  of  inference for  this  language  (classical  or
constructive version may be adopted);

c)  a  set  of  specific (non-logical)  axioms of  T  (the  specific  knowledge,
represented in T, the specific knowledge stored in the knowledge base).

Specific  axioms  are  called  “non-logical”  because  they  provide  information
about  the  intended  object  domain  of  the  theory.  As  such,  they  cannot  be
derived from logical axioms that are valid independently of any domains. See
the examples below.

As we will prove in  Section 4.3,  we will never need to introduce  specific
(non-logical) rules of inference. All the consequences of the axioms of a first
order  theory,  can be derived by using the logical  axioms and two rules  of
inference – Modus Ponens and Generalization.

Thus, we have arrived at a tentative solution to the problem of reasoning: we
have now a precise answer to the question stated above: "formula G follows
from A1,  ...,  An",  what does it  mean? It  means: there is  a correct proof (a

sequence of formulas) that proves (the notation is explained below):

 [L1-L15, MP, Gen]: A1, A2, ..., An├ G (if we intend to use the classical logic),

or proves 

 [L1-L10,  L12-L15,  MP,  Gen]:  A1,  A2,  ...,  An├ G (if  we intend to  use the

constructive logic).

Is this solution,  indeed, only a tentative one? In  Section 4.3 we will prove
Gödel’s  Completeness  Theorem  showing  that,  at  least  for  the  classical
predicate logic, this solution is, in a sense, the only possible.  

As the first example, let's use our "language about people" to build a “theory about people”.

First of all, this theory includes instances of logical axioms for the “language about people”, 
for example:

L1: Male(x)→(Female (x)→ Male (x)) ;

L6: Mother (x , y )→ Mother ( x , y )∨Father( x , y) ;

L11: Male (John)∨¬Male (John) ;

L13: Female (Britney)→∃z(x+z+1=y). x Female( x) .

As we see here, the logical axioms are “content-free” – being applicable to
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any languages, they cannot provide specific information about John, Britney,
sexes and parents. This information must be provided by non-logical axioms.

This is why we must include as many as possible non-logical axioms, expressing what we
think is “true” of our intended domain, for example:

∀ x (Male (x )∨Female (x)) ;
¬∃z(x+z+1=y). x (Male(x )∧Female (x)) ;
∀ x ∀ y (Father (x , y)→ Male (x)) ;
∀ x ∀ y ∀ z ((Mother (x , z )∧Mother ( y , z ))→ x=y ) .

Exercise 1.3.4. Extend this list of axioms as far as you can. Is your list complete? What do
you mean by “complete”?

Another example of a first order theory − the so-called first order arithmetic PA (also called
Peano arithmetic): 

The language of PA:

a) Constants 0 and 1, and all variables are terms.

b) If t1 and t2 are terms, then (t1+t2) and (t1*t2) also are terms.

c) Atomic formulas are built as (t1=t2), where t1 and t2 are terms.

Since  we  can  use,  for  example,  the  expression  2x2-3y2-1=0  as  an  abbreviation  of
(1+1)*x*x=(1+1+1)*y*y+1, we can say simply that, in first order arithmetic, atomic formulas
represent Diophantine equations. 

Examples  of  instances  of  logical  axioms  for  the  language  of  first  order  arithmetic:
L1: x=0 →( y=1→ x=0) ;

L6: x=y → x=y∨z=1 ;

L11: 0=1∨¬(0=1) ;

L12: ∀x(x=1)→ x=1 .

Once again, we see here, that the logical axioms are “content-free” – being
applicable to any languages, they cannot provide specific information about
natural numbers. 

The specific (non-logical) axioms of first order arithmetic:

x=x,
x=y→y=x,
x=y→(y=z→x=z),
x=y→x+1=y+1,
¬(0=x+1),
x+1=y+1→x=y,
x+0=x,
x+(y+1)=(x+y)+1,
x*0=0,
x*(y+1)=(x*y)+x,

B(0)∧∀ x (B(x)→ B(x+1))→∀ x B(x) ,  where  B  is  any  formula  in  the  language  of
arithmetic.

The axioms 7-10 represent recursive definitions of addition and multiplication. As the last the

http://en.wikipedia.org/wiki/Diophantine_equation
http://en.wikipedia.org/wiki/Peano_axioms
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so-called induction schema is listed.

Note.  But  how about  the  exponentiation?  Why  didn't  we  include  the  function  x y in  the
language  of  arithmetic  (and  the  corresponding  axioms:  x0=1;  xy+1=(xy)*x)?  This  is  not
necessary,  because  it  appears  that  exponentiation  can  be  defined  as  a  (very  complicated)
formula  containing  only  addition  and  multiplication.  See  Mendelson  [1997],  or  Podnieks
[1997], Section 3.3. 

For the most popular  axiom system of set theory – see ZFC (see  Zermelo-Fraenkel's set
theory in Wikipedia).

Proofs and theorems

In general, any sequence of formulas F1, F2, ..., Fm  could be regarded as a

(correct or incorrect) formal proof (or simply, a proof) of its last formula Fm.

In a correct proof, formulas can play only the following roles:

a) Axioms. Some formulas may be logical or non-logical axioms (or instances
of the corresponding schemas).

b) Consequences of earlier formulas, obtained by using the rules of inference.
For example, if F25 is A, and F34 is A→B, and F51 is B, then we can say that

F51 has been obtained from F25 and F34 by using the Modus Ponens rule. Or, if

F62 is C(x), and F63 is xC(x), then we can say that F∀ 63 has been obtained

from F62 by using the Generalization rule.

c)  Hypotheses. Some formulas may appear in the proof without any formal
justification, simply by assuming that (for this proof) they are "true". 

Thus, to describe the actual status of a formal proof, we need the following
notation: 

[T]: A1, A2, ..., An├ F,

where T is a first order theory (it determines which formulas are axioms and
which are not), A1, A2, ..., An are all the hypotheses used in the proof, and F is

the formula proved by the proof. Each formula in such a proof must be either
an axiom, or a hypothesis from the set A1, A2, ..., An, or it must be obtained

from earlier formulas (in this proof) by using a rule of inference. You may read
the  above  notation  as  "in  theory  T,  by  using  formulas  A1,  A2,  ...,  An as

hypotheses, the formula F is proved".

As the first example, let us consider the following proof:

 [L5, MP]: B ,C ├ B∧C . 

http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
http://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory
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(1) B Hypothesis given.

(2) C Hypothesis given.

(3) B →(C → B∧C ) It's the axiom schema L5.

(4) C → B∧C It follows from (1) and (3) by
Modus Ponens.

(5) B∧C It follows from (2) and (4) by
Modus Ponens.

For more serious examples of formal proofs see the next Section 1.4 (Theorem
1.4.1 and Theorem 1.4.2).

Using previously proved formulas

In practice, when proving [T]: A1, A2, ..., An├ B, we may wish to apply some

theorem Q that already has been proved earlier. If we would simply insert Q
into  our  formal  proof,  then,  formally,  this  would  yield  only  a  proof  of
 [T]: A1, A2, ..., An, Q├ B, i.e., we will be forced to qualify Q as a hypothesis.

To obtain the desired formal proof of [T]: A1, A2, ..., An├ B, we must insert

not  only  Q  itself,  but  the  entire  proof of  Q!  In  this  way  we  obtain  the
following

Theorem 1.3.1. If there is a proof [T]: A1, A2, ..., An, Q├ B, and a proof [T]:

A1, A2, ..., An├ Q, then there is a proof [T]: A1, A2, ..., An├ B.

Proof. The proof [T]: A1,  A2,  ...,  An,  Q├ B is a sequence of formulas F1,

F2, ..., Fk, Q, ..., Fm, B, and the proof [T]: A1, A2, ..., An├ Q is some sequence

of formulas G1, G2, ..., Gp, Q. Let us replace Q by G1, G2, ..., Gp, Q:

F1, F2, ..., Fk, G1, G2, ..., Gp, Q, ..., Fm, B,

and (if we wish so) eliminate the duplicate formulas. This sequence is a proof
[T]: A1, A2, ..., An├ B. Q.E.D.

In practice, we are not interested in writing down full formal proofs in the
sense of the above definition, where only axioms and hypotheses were allowed
in  proofs.  Theorem  1.3.1  allows  to  assert  the  existence  of  such  proofs
without writing them down fully. 

If, in some proof, hypotheses are not used at all, then we may write simply
[T]:├ B, or even T├ B, and say that B is a theorem of theory T. 
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Corollary 1.3.1. If there is a proof [T]: A1, A2, ..., An├ B, and proofs [T]:├

A1, [T]: ├ A2, ..., [T]:├ An, then there is a proof [T]:├ B. In other words, if

there is a proof [T]:  A1,  A2,  ...,  An├ B, and A1,  A2,  ...,  An are previously

proved theorems of T, then B is a theorem of T as well. 

Proof. Immediately, by Theorem 1.3.1.

Consistency

Sometimes,  a  seemingly  plausible  set  of  axioms  allows  deriving  of
contradictions (the most striking example −  Russell's paradox in the "naive"
set theory). A formula F is called a contradiction in the theory T, if [T]:├ F
and [T]:├ ¬F,  i.e.,  if  T both proves and disproves F.  Theories allowing to
derive  contradictions  are  called  inconsistent  theories.  Thus,  T is  called  a
consistent theory if and only if T does not allow deriving of contradictions.

Normally,  for  a  first  order  theory,  the  set  of  all  theorems  is  infinite,  and,
therefore, consistency cannot be verified empirically. We may only hope to
establish  this  desirable  property  by  means  of  some  theoretical  proof (see
Podnieks [1997], Section 5.4 for a more detailed discussion of this problem).

For theories adopting the above logical axioms, inconsistency is, in a sense,
"the worst possible property".  Indeed, the axiom L10: ¬B →( B →C) says

that in an inconsistent theory anything is provable. In Exercise 1.4.2 we will −
without L10 − prove 50% of it: [L1, L9, MP]: B, ¬B├ ¬C. Thus, even without

L10 (but with L1): in an inconsistent theory anything is disprovable.

Is  consistency  enough  for  a  theory  to  be  "perfect",  “non-empty”  etc?  In
Section 4.3 we will prove the so-called Model Existence Theorem: if a first
order theory is consistent, then there is a "model" (a kind of a "mathematical
reality") where all its axioms and theorems are "true", i.e., a consistent theory
is at least “non-empty”.

Completeness

If a formula contains free occurrences of variables, i.e., variables that are not
bound by quantifiers (for example: x=0∨x=1 ), then the "truth value" of
such formulas may depend on particular values assigned to the free variables.
For example,  the latter  formula is "true" for x=1, yet it  is  "false" for x=2.
Formulas that do not contain free occurrences of variables, are called  closed
formulas, for example:

∀ w∃z(x+z+1=y). x(w< x∧ prime( x)) .

http://en.wikipedia.org/wiki/Russell's_paradox
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Closed formulas represent "definite assertions about the objects of a theory",
and they are expected to be either "true", or "false". Or, in a first order theory,
they are expected to be either provable, or disprovable (refutable). The above
closed  formula  (stating  that  "there  are  infinitely  many  prime numbers")  is
provable − if our theory is first order arithmetic. 

T is called a complete theory if and only if for each closed formula F in the
language of T: [T]:├ F or [T]:├ ¬F, i.e., if and only if T proves or disproves
any closed formula of its  language.  In other  words:  a complete  theory can
solve any problem from the domain of its competence.

In an incomplete theory, some closed formulas ("definite assertions about the
objects of theory") can be neither proved, not disproved. Thus, an incomplete
theory  does  not  solve  some  of  the  problems  from  the  domain  of  its
competence.

Formally,  according  to  this  definition,  an  inconsistent  theory  is  complete.
Indeed, the axiom L10:  ¬B→(B→C) says that if a theory allows deriving a

contradiction, then, in this theory, anything is provable, i.e., it is a complete
theory.

Of course, if T would be both consistent and complete, then we could call it
"absolutely perfect". Unfortunately, Gödel's Incompleteness Theorem says that
all  fundamental  mathematical  theories  are  either  inconsistent  or
incomplete, i.e., none of them is absolutely perfect (see Mendelson [1997] or
Podnieks [1997], Section 6.1). 

Exercise 1.3.5 (optional). Re-formulate the above axiom system for a many-sorted predicate
language.

1.4. The Flavor of Proving Directly

Theorem 1.4.1. [L1, L2, MP]: A→A for any formula A. What does it mean?

It's the so-called reflexivity property of implication.

The following sequence of formulas represents a proof of the formula A→A
(C can be here any formula, for, example, A itself):

(1)
(A→((C→A)→A))→((A→(C→A))→
(A→A))

It's the axiom schema L2: 

(B→(C→D))→((B→C)→(B
→D)), with B = A, C = C→A,
D = A.

http://en.wikipedia.org/wiki/Peano_axioms
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(2) A→((C→A)→A)
It's the axiom schema L1: 

B→(C→B), with B = A, C = 
C→A.

(3) (A→(C→A))→(A→A)
It follows from (1) and (2) by 
Modus Ponens.

(4) A→(C→A)
It's the axiom schema L1: 

B→(C→B), with B = A, C = 
C.

(5) A→A
It follows from (3) and (4) by 
Modus Ponens.

As you can see, the proof is easy to verify as a correct one, but it seems hard to
build it from scratch. "Why" should we take "the axiom L2 with B = A, C =

C→A, D = A" as the first step?

How could one invent a proof like the above one? One of the versions could be as follows.
First, let's try to find an axiom, from which we could get A→A as a consequence. By trying
L1, i.e., B→(C→B), and setting B=C=A, we could obtain A→(A→A), a dead end. So, let's try

L2,  i.e.,  (B→(C→D))→((B→C)→(B→D)).  By  setting  B=D=A  we  obtain

(A→(C→A))→((A→C)→(A→A)). It seems to be a good decision − because the first premise
A→(C→A) is, in fact, L1. Hence, by applying the MP rule, we obtain (A→C)→(A→A). Now,

how to make A→C "provable"? Since C is, in fact, an arbitrary formula, we can replace C by
C→A, obtaining (A→(C→A))→(A→A). The premise is here, again, L1, hence, by applying

the MP rule,  we obtain A→A. Q.E.D.  By performing all  our  replacements from the very
beginning, we obtain the above proof of the formula A→A.

Hint. If, in your future formal proofs, you need to obtain an instance of the
formula A→A, then just insert 5 formulas of the above proof (more precisely,
insert the necessary instances of these formulas).

Theorem 1.4.2. [L1, L2, MP]: A→B, B→C├ A→C, for any formulas A, B, C.

What does it mean? It's the so-called Law of Syllogism (by Aristotle), or the
transitivity property of implication.

The following sequence of formulas represents a proof of the formula A→C
from the hypotheses A→B and B→C:

(1) A→B Hypothesis given.

(2) B→C Hypothesis given.
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(3)
(A→(B→C))→((A→B)→(A
→C))

It's the axiom schema L2: 

(B→(C→D))→((B→C)→(B→D)), 
with B = A, C = B, D = C.

(4) (B→C)→(A→(B→C))
It's the axiom schema L1: B→(C→B),

with B = B→C, C = A.

(5) A→(B→C)
It follows from (2) and (4) by Modus 
Ponens.

(6) (A→B)→(A→C)
It follows from (3) and (5) by Modus 
Ponens.

(7) A→C
It follows from (1) and (6) by Modus 
Ponens.

Hint. If, in your future proofs, you need to apply the transitivity property of
implication,  then  just  insert  the  last  5  formulas  of  the  above  proof  (more
precisely, insert the corresponding instances of these formulas).

Note. Only  the  axiom schemas  L1 and  L2,  and  the  inference  rule  Modus

Ponens are  used  for  proving  the  Theorems  1.4.1  and  1.4.2.  Hence,  these
theorems will remain valid for any logical system containing L1, L2 and

Modus Ponens.

Theorem 1.4.3. a)  [L1,  L2,  MP]:  A→(B→C)├ B→(A→C).  What  does  it

mean? It's the so-called Premise Permutation Law.

b) [L3, L4, L9, MP]: ¬(A∧¬A) . What does it mean? It's the so-called Law

of Non-Contradiction.

Proof. Do Exercises 1.4.1, 1.4.2.

Exercise 1.4.1. Build sequences of formulas representing the following proofs
(only the axiom schemas L1 and L2 and Modus Ponens are necessary):

a) [L1, MP]: A├ B→A (a sequence of 3 formulas). What does it mean? 

b) [L2,  MP]:  A→B, A→(B→C)├ A→C (a sequence of 5 formulas).  What

does it mean?

c)  Prove  Theorem  1.4.3(a)  (a  sequence  of  9  formulas  −  thanks  to  Pavel
Andreyev for the idea).

d)  [L1,  L2,  MP]:  A→(A→B)├ A→B  (easy  solution  –  a  sequence  of  9

formulas,  a  smarter  solution  proposed by Arnold Ostrovsky – 8 formulas).
What does it mean?
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e) (for smart students) [L1, L2, MP]: (A→(A→B))→(A→B) (a sequence of 7

formulas! – a surprising sophisticated solution proposed by Ilmārs Cīrulis).

Exercise 1.4.2. Build sequences of formulas representing the following proofs:

b) [L3-L5, MP]: A∧B ├ B∧A (a sequence of 8 formulas). What does it

mean?

c)  [L6-L8,  MP]: A∨B → B∨A (a  sequence  of  5  formulas).  What  does  it

mean?

d) [L1, L9, MP]: B, ¬B ├ ¬C (a sequence of 9 formulas). What does it mean?

It's a weak form of the "crazy" axiom  L10:  ¬A→(A→B). The axiom says:

"Contradiction implies  anything".  As we see,  in  the  minimal  logic  we can
prove 50% of L10: "Contradiction implies that all is wrong". Of course, this

50%-provability  of  L10 decreases  the  significance  of  the  minimal  logic

accordingly.

e) Theorem 1.4.3(b) (a sequence of 5 formulas). 

f) [L1, L8, L10, MP]: ¬A∨B →( A→ B) (a sequence of 5 formulas). What

does it mean?

fx) [L1, L9, MP]: A→B, ¬B ├ ¬A (a sequence of 7 formulas). What does it

mean? It's the so-called Modus Tollens rule.

g) [L8, L11, MP]: A→B, ¬A→B ├ B (a sequence of 7 formulas). What does it

mean?

h)  [L1-L8,  MP]: A → B ├ A∨C → B∨C (a  sequence  of  11  formulas).

What does it mean?

i) [L1-L11, MP]: A∨( A→ B) (a sequence of 14 formulas, a smarter solution

by Ilmārs Cīrulis – 13 formulas). What does it mean? Does it mean anything at
all?

Exercise 1.4.3 (optional,  for smart students). Could you build shorter sequences proving the
formulas of Exercise 1.4.1(c, d) and Exercise 1.4.2(b, d)? Evgeny Vihrov verified in 2011 that
any proof of the formula of Exercise 1.4.1(d) will take more than 5 formulas.

https://en.wikipedia.org/wiki/Modus_tollens
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1.5. Deduction Theorems

If, by assuming B as a hypothesis, we have proved C, then we have proved
that B implies C. This natural way of reasoning is formalized in the so-called
deduction theorems (introduced by Jacques Herbrand and Alfred Tarski):

J. Herbrand. Recherches sur la théorie de la démonstration. PhD Thesis, University of Paris,
1930 (approved in April 1929).

A. Tarski. Ueber einige fundamentale Begriffe der Metamathematik. "Comptes Rendus de
Séances de la Société des Sciences et des Lettres de Varsovie, Classe III", 1930, Vol.23, pp.
22-29.

We will prove two such theorems – Deduction Theorem 1 (for propositional
logic) and Deduction Theorem 2 (for predicate logic). 

Theorem 1.5.1 (Deduction Theorem 1). If T is a first order theory, and there
is a proof of

[T, MP]: A1, A2, ..., An, B├ C,

 then there is a proof of

[L1, L2, T, MP]: A1, A2, ..., An├ B→C.

In other words, having a  Modus Ponens proof of C from the hypotheses A1,

A2,  ...,  An,  B,  we  can  build  a  Modus  Ponens proof  of  B→C  from  the

hypotheses A1, A2, ..., An.

It  appears  that,  usually,  proving  of  [T,  MP]:  ...  B├  C  is  much  easier
(technically simpler) than proving of [T, MP]: ...├ B→C.

Exercise  1.5.1 (optional,  for  smart  students).  Do  not  read  the  proof  below.  Try  proving
yourself.

Proof  (thanks  to  Sergey  Kozlovich  for  the  idea,  see  also  Kleene  [1967],
Exercise 10C).  We must define a  procedure allowing to convert  any proof
 [T, MP]: A1, A2, ..., An, B├ C into a proof [L1, L2, T, MP]: A1, A2, ..., An├

B→C.

The  easy  way  to  do  this  would  be  using  an  induction  by  the  number  of
formulas in the proof [T, MP]: A1, A2, ..., An, B├ C. But we will apply a more

elegant  idea.  Any  proof  [T,  MP]:  A1,  A2,  ...,  An,  B├ C is  a  sequence  of

formulas F1, F2, …, Fm. We will replace each formula Fi by 3 or 5 formulas,

the last of these being the formula B→Fi, yet retaining our sequence as a valid

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Tarski.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html
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proof.

We must consider the following cases:

1) F is an axiom (i.e., an instance of a logical axiom or a non-logical axiom of
T). Replace F by 3 formulas: F, F→(B→F), B→F. The second formula is an
instance of L1, the third formula is obtained from the first two ones by using

Modus Ponens.

2)  F is  one of the hypotheses Ai.  Replace F by 3 formulas:  F,  F→(B→F),

B→F. The second formula is an instance of L1, the third formula is obtained

from the first two ones by using Modus Ponens.

3) F is B. Replace F by the 5 formulas from the proof of Theorem 1.4.1, where
D can be here any formula, for, example, B itself:

(B→((D→B)→B))→((B→(D→B))→(B→B)) (an instance of L2),

B→((D→B)→B) (an instance of L1),

B→(D→B))→(B→B) (by Modus Ponens),

B→(D→B) (an instance of L1),

B→B (by Modus Ponens).

The last formula is here, of course, B→F.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi

having the form Fj→F (i.e., Fj→F and Fj yield F by Modus Ponens). Then, the

formulas B→Fj, B→(Fj→F) are already present in the converted proof (they

appeared during the replacement  operations  applied to  the formulas Fj and

Fj→F). So, replace F by 3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, MP] that is using the

hypotheses A1, A2, ..., An, but not B! The last formula of this proof is B→C

(because C is the last formula of our initial proof [L1, L2, MP]: A1, A2, ..., An,

B├ C). Thus, we have a proof [L1, L2, MP]: A1, A2, ..., An├ B→C.

Q.E.D.

The  above  proof  of  Deduction  Theorem 1  includes,  in  fact,  an  algorithm
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allowing to obtain a proof [L1, L2, MP]: A1, A2, ..., An├ B→C from a given

proof [L1, L2, MP]: A1, A2, ..., An, B├ C. The resulting proof is much longer

than the given one: if the given proof consists of m formulas, then the resulting
proof consists of 3m or 3(m–1)+5=3m+2 formulas.

Corollaries 1.5.1. 1) If there is a proof 

[T, MP]: A1, A2, ..., An, B1, B2, ..., Bk├ C,

then there is a proof

[L1, L2, T, MP]: A1, A2, ..., An├ (B1→(B2→(...→(Bk→C)...))).

In particular, if [T, MP ]: B ├ C, then [T, MP]:├ B→C.  

And, if [T, MP ]: B, C├ D, then [T, MP]:├ B→(C→D). 

2) If T includes (or proves) schemas L1, L2, then, if there is a proof [T, MP]:

A1, A2, ..., An, B├ C, then there is a proof [T, MP]: A1, A2, ..., An├ B→C. 

Proof. 1) By iterating Deduction Theorem 1.

2) If T is a theory which includes or proves the schemas L1, L2, then [L1, L2,

T, MP] is equivalent to [T, MP]. Q.E.D.

Exercise 1.5.2 (optional, for smart students). In earlier versions of logical axioms, instead of
the axiom L2, in some texts, the following 3 axioms were used:

L21: (A→(A→B))→(A→B),

L22: (A→(B→C))→(B→(A→C)) (Premise Permutation Law),

L23:  (A→B)→((B→C)→(A→C))  (Law  of  Syllogism,  or  the  transitivity  property  of

implication).

Verify that both versions, i.e., [L1, L2, MP] and [L1, L21, L23, L23, MP] are equivalent. (Hints:

a) See Section 2.1 to verify that [L1, L2, MP] proves L21, L23, L23. b) Verify that [L1, L21, L23,

L23, MP] proves L2 either directly, or by proving the Deduction Theorem 1 for [L1, L21, L23,

L23, MP].)

Exercise 1.5.3 (optional, thanks to Sergey Kozlovich for the idea).

a) Prove the following generalization of the Modus Ponens rule:

[L1,  L2,  MP]:  (D1→(D2→...(Dk→B)...),  (D1→(D2→...(Dk→(B→C))...)├

(D1→(D2→...(Dk→C)...).

b) Prove the following generalization of the axiom L14 (formulas D1, D2, ...,

Dk do not contain x as a free variable): 
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[L1,  L2,  L14,  MP]:├  x(D∀ 1→(D2→...(Dk→F(x))...)  →  (D1→(D2→...

(Dk→ xF(x))...).∀

Exercise 1.5.4 (optional, for smart students). Investigate the size (the number of formulas) of
the proof of [L1, L2, MP]: A1, A2, ..., An,  B→C as a function f(m) of the size m of the proof⊢ B→C as a function f(m) of the size m of the proof

of [L1, L2, MP]: A1, A2, ..., An, B  C. You may wish to ⊢ B→C as a function f(m) of the size m of the proof report your result. We will publish

your report  on the web as  an appendix to  this book. The current  record holder  is  Sergey
Kozlovich,   2004  : f(m) ≤ 3m+2. Improve this result, or prove that it is the best one possible.

Exercise 1.5.5 (optional, for smart students). Investigate the size (the number of instances of
atomic formulas) of the proof of [L1, L2, MP]: A1, A2, ..., An,  B→C as a function g(m) of⊢ B→C as a function f(m) of the size m of the proof

the size m of the proof of [L1, L2, MP]: A1, A2, ..., An, B  C. You may wish to ⊢ B→C as a function f(m) of the size m of the proof report your

result. We will publish your report on the web as an appendix to this book. The current record
holder is Kirils   Solovjovs, 2008  : g(m, n) ≤ 7m+24n−2, where n is the number of instances of
atomic formulas in the formula B. Improve this result, or prove that it is the best one possible.

Attention! Generalization involved...

Now, what, if in the proof of A1, A2, ..., An, B├ C not only Modus Ponens, yet

also Generalization rule is used?

We must be careful, because, trying to apply Deduction Theorem 1 formally,
we can obtain crazy results. Indeed, having a formula F(x), by Gen, we obtain
the formula xF(x). Thus, F(x)├ xF(x). If Deduction Theorem 1 could be∀ ∀
extended  to  application  of  Gen without  any  restrictions,  then  we  could
conclude that├ F(x)→ xF(x). If this is true for any x, it is true also for x=2,∀
hence, ├ F(2)→ xF(x). Thus, if the number 2 is prime, then all numbers are∀
prime?

So, let us try deriving a restricted formulation of the Deduction Theorem − it
seems, we should prohibit application of Gen to the variables that occur as
free in B − in the hypothesis "to be moved".

Theorem 1.5.2 (Deduction Theorem 2). If there is a proof

[T, MP, Gen]: A1, A2, ..., An, B├ C,

where,  after B appears in the proof,  Generalization is not applied to the
variables that occur as free in B, then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An├ B→C.

Proof. Let us modify the above proof of the Deduction Theorem 1. 

We must define a procedure allowing to convert  any correct proof [T, MP,
Gen]: A1, A2, ..., An, B├ C into a proof [L1, L2, L14, T, MP, Gen]: A1, A2, ...,

http://podnieks.id.lv/mlog/155_Solovjovs.pdf
http://podnieks.id.lv/mlog/155_Solovjovs.pdf
mailto:Karlis.Podnieks@lu.lv
mailto:Karlis.Podnieks@lu.lv
http://podnieks.id.lv/mlog/152_Kozlovich.doc
http://podnieks.id.lv/mlog/152_Kozlovich.doc
http://podnieks.id.lv/mlog/152_Kozlovich.doc
mailto:Karlis.Podnieks@lu.lv
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An├ B→C.

Unlike the proof of the Deduction Theorem 1, let us leave unchanged all the
formulas of the proof of [T, MP]: A1, A2, ..., An, B├ C before B appears in

the proof. After this, starting with B, we will replace each formula F by 3 or
5 formulas, one of them being the formula B→F.

So, F is B or appears after B. We must consider the following cases:

1), 2), 3) − like as in the proof of the Deduction Theorem 1.

4) F is derived from some previous formulas Fi and Fj by Modus Ponens, Fi

having the form Fj→F (i.e., Fj→F and Fj yield F by Modus Ponens). Then, 4

sub-cases are possible.

4a) Fj and Fj→F both appear before B, i.e.,  they remain unchanged in the

converted proof. Let us replace F by the following 3 formulas: F, F→(B→F),
B→F. The second formula is an instance of L1, the third formula is obtained

by using Modus Ponens from the first two ones.

4b) Fj appears before B, and Fj→F is B or appears after B. Then, the formulas

Fj and B→(Fj→F) are already present in the converted proof. Let us replace F

by the following 5 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

Fj→(B→Fj) (an instance of L1),

B→Fj (by Modus Ponens),

B→F (by Modus Ponens).

4c) Fj is B or appears after B, and Fj→F appears before B. Then, the formulas

B→Fj and Fj→F are already present in the converted proof. Let us replace F

by the following 5 formulas from the proof of Theorem 1.4.2:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(Fj→F)→(B→(Fj→F)) (an instance of L1),

B→(Fj→F) (by Modus Ponens),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).
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4d) Fj and Fj→F both are B or appear after B. Then, the formulas B→Fj and

B→(Fj→F) are already present in the converted proof (they appeared during

the  replacement  operations  applied  to  the  formulas  Fj and  Fj→F).  Let  us

replace F by the following 3 formulas:

(B→(Fj→F))→((B→Fj)→(B→F)) (an instance of L2),

(B→Fj)→(B→F) (by Modus Ponens),

B→F (by Modus Ponens).

5) F is derived from some previous formula Fi by Generalization, thus, F is in

the  form xF∀ i.  By  the  assumption  of  Deduction  Theorem 2,  B does  not

contain free occurrences of x. Then, 2 sub-cases are possible.

5a)  Fi appears  before  B.  Let  us  replace  F  by  the  following  3  formulas:

F,  F→(B→F),  B→F.  The  second  formula  is  an  instance  of  L1,  the  third

formula is obtained by using Modus Ponens from the first two ones.

5b) Fi is B or appears after B. Then the formula B→Fi is already present in the

converted proof (it appeared during the replacement operation applied to the
formula Fi). Let us replace F by the following 3 formulas:

x(B→F∀ i) (by Generalization, B does not contain x as a free variable),

x(B→F∀ i)→(B→ xF∀ i)  (B does not  contain x as a free variable,  thus,  we

have here an instance of L14, and xF∀ i is F),

B→F (by Modus Ponens).

Thus, what we have now, is a correct proof in [L1, L2, L14, T, MP, Gen] that is

using the hypotheses A1, A2, ..., An, but not B! The last formula of this proof is

B→C (because C is the last formula our initial proof of [T, MP, Gen]: A1,

A2, ..., An, B├ C). Thus, we have a proof [L1, L2, L14, T, MP, Gen]: A1, A2, ...,

An├ B→C. Q.E.D.

In textbooks, the following restricted form of Deduction Theorem 2 is more
popular: 

Theorem 1.5.2A (Deduction Theorem 2A). If T is a first order theory, and
there is a proof of

[T, MP, Gen]: A1, A2, ..., An, B├ C,

where Generalization is not applied to the variables occurring as free in B,
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then there is a proof of

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An├ B→C. 

Proof. Since, Gen is not applied to the variables occurring as free in B at all, it
is not applied after B appears in the proof. Q.E.D.

Corollaries 1.5.2. 1) If there is a proof

[T, MP, Gen]: A1, A2, ..., An, B1, B2, ..., Bk├ C,

where  Generalization is not applied to the variables appearing as free in the
formulas B1, B2, ..., Bk, then there is a proof 

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An├ (B1→(B2→(...→(Bk→C)...))).

2) If B is a closed formula, and there is a proof

[T, MP, Gen]: A1, A2, ..., An, B├ C,

then there is a proof 

[L1, L2, L14, T, MP, Gen]: A1, A2, ..., An├ B→C. 

3) If T is a theory whose axioms include (or prove) the schemas L1, L2, L14,

then, if there is a proof

[T, MP, Gen]: A1, A2, ..., An, B├ C, 

where  Generalization is not applied to the variables occurring as free in B,
then there is a proof of

 [T, MP, Gen]: A1, A2, ..., An├ B→C.

Proof. Similar to the proof of the above Corollaries of Deduction Theorem 1.

Exercise 1.5.6 (optional). In some other textbooks, a somewhat different system of logical
axioms is used: instead of the axioms L14, L15 and the Generalization rule the following two

rules of inference are used:

G→F(x)  G→ xF(x) ( -Introduction);⊢ B→C as a function f(m) of the size m of the proof ∀xF(x) (∀-Introduction); ∀xF(x) (∀-Introduction);

F(x)→G  xF(x)→G ( -Introduction).⊢ B→C as a function f(m) of the size m of the proof ∃xF(x)→G (∃-Introduction). ∃xF(x)→G (∃-Introduction).

Of course, here, G is a formula that does not contain x as a free variable. Verify that both
systems are equivalent in all of their versions (minimal, constructive, and classical).

The surprising efficiency of Deduction Theorems

Try proving of 

[L1- L4, MP]: (A →(B →C ))→( A∧B →C ) . (*)
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For proving directly – an almost impossible task!

But now, having Deduction Theorems, we can simplify the task of proving (*)
and  make  it  feasible.  More  precisely  –  we  can  make  feasible  the  task of
proving that (*) is provable. We will not propose a full proof of (*), we will
propose a shorter proof that such a full proof exists! 

Indeed, by introducing of two hypotheses, we can proceed as follows:

(1) A →(B → C ) Hypothesis assumed.

(2) A∧B Hypothesis assumed.

(3) A∧B → A
Axiom L3: B∧C → B with B = A,

C = B.

(4) A∧B → B
Axiom L4: B∧C →C with B = A,

C = B.

(5)  A By MP, from (2), (3).

(6)  B By MP, from (2), (4).

(7)  B→C By MP, from (1), (5).

(8)  C By MP, from (6), (7).

Thus, we have established that

[L3- L4, MP]: A →(B → C ) , A∧B ├ C .

Now, by Deduction Theorem 1,

[L1- L4, MP]: A →(B →C ) ├ A∧B →C .

And let us apply this theorem once more,

[L1- L4, MP]: ⊢ B→C as a function f(m) of the size m of the proof (A→(B →C ))→(A∧B →C ) .

In  fact,  we did  not  prove  (*),  i.e.,  we  did  not  produce  a  sequence  of
formulas proving (*). We just proved that such a sequence does exist! To
produce it really, we must apply (twice!) the algorithm described in the proof
of Deduction Theorem 1. As the result, we will obtain a full proof consisting
of 3(3∗8+2)+2=80 formulas!
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2. Propositional Logic

George Boole (1815-1864): "In 1854 he published An Investigation into the Laws of Thought,
on  Which  are  founded  the  Mathematical  Theories  of  Logic  and  Probabilities. Boole
approached  logic  in  a  new way  reducing  it  to  a  simple  algebra,  incorporating  logic  into
mathematics. He pointed out the analogy between algebraic symbols and those that represent
logical  forms.  It  began  the  algebra  of  logic  called  Boolean  algebra  which  now  finds
application in computer construction, switching circuits etc." (according to MacTutor History
of Mathematics archive).

See also:

G.Boole. The Calculus of Logic.  The Cambridge and Dublin Mathematical Journal, vol. 3
(1848) (available online, published by David R. Wilkins).

2.1. Proving Formulas Containing Implication only

Experience  once  more  the  power  of  Deduction  Theorems  as  means  of
“proving  provability” of formulas. 

Exercise 2.1.1. a) Produce a sequence of 4 formulas proving

[L1, L2, MP]: A→(A→B), A├ B.

b)  Apply  the  algorithm  described  in  the  proof  of  Deduction  Theorem  1
producing a sequence of 3∗4+2=14 formulas proving

 [L1, L2, MP]: A→(A→B)├ A→B.

c) (optional) Apply the algorithm once more – producing a sequence of 44
formulas proving

 [L1, L2, MP]: ( A→(A→B))→(A→B).

Compare these numbers with the currently best solution proposed by human
solvers – a sophisticated sequence of 7 formulas instead of the generated 44
ones! See Exercise 1.4.1.

Attention! Be careful when assuming hypotheses.

For example, in order to prove the strange formula (the so-called Peirce's Law,
see below)  ((A→B)→A)→A, the only correct move would be assuming of
(A→B)→A as a hypothesis, and trying to prove A, i.e., trying to prove that
(A→B)→A├ A. 

Assuming of any further hypotheses would be wrong, for example, assuming

http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Boole.html
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of A→B and A. Why? Because, after proving (easily) that A→B, A├ A, by
Deduction Theorem 1, it follows that A→B├ A→A and├ (A→B)→(A→A),
or A├ (A→B)→A and├ A→((A→B)→A). Where do you see Peirce’s Law
here:├ ((A→B)→A)→A?

Exercise 2.1.2. Use Deduction  Theorem 1 to  prove the  following [L1,  L2,

MP]:

a) ((A→B)→(A→C))→(A→(B→C)). Be careful when assuming hypotheses:
assume (A→B)→(A→C), A, B – in this order, no other possibilities! 

b) (A→B)→((B→C)→(A→C)). It's another version of the Law of Syllogism
(by  Aristotle),  or  the  transitivity  property  of  implication.  Explain  the
difference between this formula and Theorem 1.4.2: A→B, B→C├ A→C.

c)  (A→(B→C))→(B→(A→C)).  It's  another  version  of  the  Premise
Permutation Law. Explain the difference between this formula and Theorem
1.4.3(a): A→(B→C)├ B→(A→C).

2.2. Proving Formulas Containing Conjunction

The following simple theorem allows to make some or our “proofs of 
provability” shorter:

Theorem 2.2.1. a) (C-introduction) [L5, MP]: A, B├ A∧B .

b) (C-elimination) [L3, L4, MP]: A∧B ├ A, A∧B ├ B.

c)  If there is a proof of [T, MP]: A1, A2, ..., An, A, B├ C, then there is a proof 

of [T, L3, L4, MP]: A1, A2, ..., An, A∧B ├ C.

Exercise 2.2.1. Prove (a, b) of Theorem 2.2.1.

Let us prove (c).

(1) A∧B Hypothesis given.

(2) A∧B → A
Axiom L3: B∧C → B with B = A, 

C = B.

(3) A∧B → B
Axiom L4: B∧C →C with B = A, 

C = B.

(4) A By MP, from (1) and (2).
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(5) B By MP, from (1) and (3).

(6) A1, A2, ..., An, A, B├ C Insert the given proof here.

Theorem 2.2.1(a, b) can be used as additional rules of inference allowing to 
further simplify our “proofs of provability”, for example, the latter one:

(1) A∧B Hypothesis given.

(4) A By C-elimination, from (1).

(5) B By C-elimination, from (1).

(6) A1, A2, ..., An, A, B├ C Insert the given proof here.

Theorem 2.2.1 allows especially to simplify proving of equivalences. Let us 
remind that B↔C is defined as an abbreviation of (B →C)∧(C → B) . Of 
course, we will call B and C equivalent formulas if and only if├ B↔C. For 
example, by Theorem 1.4.1, [L1, L2, MP]: A→A, hence,

 [L1, L2, L5, MP]: (A → A)∧( A→ A) , i.e.,

[L1, L2, L5, MP]: A↔A.

Theorem 2.2.2. a) [L1, L2, L5, MP]: (A→(B→C)) ↔ ((A→B)→(A→C)) 

(extension of the axiom L2).

b) [L1-L4, MP]: (A → B)∧( B →C )→( A→C) (another form of the Law of 

Syllogism, or transitivity property of implication).

Proof. a) Of course, (a) of the Exercise 2.1.2(b) is the reverse formula of the 
axiom L2. Hence, by C-introduction we obtain (a).

Let us prove b):

(1) (A→ B)∧(B → C ) Hypothesis assuned.

(2) A Hypothesis assumed.

(3) A→B By C-elimination, from (1).

(4) B→C By C-elimination, from (1).

(5) B By MP, from (2), (3).

(6) C By MP, from (4), (5).

Thus, we have established that [L1-L4, MP]: (A → B)∧( B →C ) , A├ C. By 
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applying twice Deduction Theorem 1,├ (( A→ B)∧(B →C ))→( A→C) .

Exercise 2.2.2. Prove the following [L1- L5, MP]:

a) A→B, A→C├ A → B∧C . What does it mean? 

b) (A → B)∧( A →C )→(A → B∧C ) . What does it mean? 

c) A → B∧C ├ A→B. What does it mean? 

d) A → B∧C ├ A→C. What does it mean? 

e) (A → B∧C )→( A→ B)∧( A →C ) . (Hint: apply transitivity of 
implication.) What does it mean? Hence,

 [L1- L5, MP]: (A → B∧C )↔( A→ B)∧( A →C ) .

Theorem 2.2.3 (properties of the conjunction connective). [L1- L5, MP]:

a) A∧B ↔B∧A . What does it mean? Conjunction is commutative.

b) A∧(B∧C)↔( A∧B)∧C .  What  does  it  mean?  Conjunction  is
associative.

c) A∧A↔ A . What does it mean? Conjunction is idempotent.

Exercise 2.2.3. Prove Theorem 2.2.3.

Exercise 2.2.4. Prove the following, [L1- L5, MP]:

a) (A →(B →C ))↔(A∧B →C) . What does it mean?

b) (A → B)→ (A∧C → B∧C) . What does it mean? The converse formula
(A∧C → B∧C)→( A→ B) cannot be true. Explain, why.

c) A├ B ↔ B∧A . What does it mean?

Let us remind once more that the equivalence connective A↔B is defined as
an abbreviation of (A → B)∧( B → A) .

Theorem 2.2.4 (properties of the equivalence connective). [L1- L5, MP]:

a) A↔A (reflexivity),

b) (A↔B)→(B↔A) (symmetry),

c) (A↔B)→((B↔C) →((A↔C)) (transitivity).

Exercise 2.2.5. Prove Theorem 2.2.4.
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2.3. Proving Formulas Containing Disjunction

Like as Theorem 2.2.1, the following theorem allows to make some of our
“proofs of provability” shorter.

Theorem 2.3.1. a) (D-introduction) [L6, L7, MP]: A├ A∨B ; B├ A∨B

b) (D-elimination) If there is a proof

 [T, MP]: A1, A2, ..., An, B├ D,

and a proof 

 [T, MP]: A1, A2, ..., An, C├ D,

then there is a proof

[T, L1, L2, L8, MP]: A1, A2, ..., An, B∨C ├ D. 

Exercise 2.3.1. a) Prove Theorem 2.3.1(a).

b)  Elaborate  on  the  following  proof  of  Theorem  2.3.1(b).  By  Deduction
Theorem 1, there are proofs of A1, A2, ..., An├ B→D and A1, A2, ..., An├

C→D. Write down these two proofs one after another, append the axiom L8

and B∨C as a hypothesis, and apply (three times) MP.  

Theorem 2.3.1(b) is called “D-elimination” because of its mode of application:
to  prove B∨C ├ D,  we  “eliminate”  the  disjunction,  by  trying  to  prove
separately B├ D and C├ D, and after this, apply Theorem 2.3.1(b).

Theorem 2.3.2. a) [ L5, L6-L8, MP]: A∨B ↔B∨A . What does it mean?

Disjunction is commutative.

b) [L1, L2, L5, L6-L8, MP]: A∨A ↔ A . What does it mean? Disjunction is

idempotent.

Exercise 2.3.2. Prove Theorem 2.3.2.

Theorem 2.3.3. Disjunction is associative:

[L1, L2, L5, L6-L8, MP]: A∨(B∨C)↔( A∨B)∨C .

Proof. Let us prove, for example,

A∨(B∨C) ├ (A∨B)∨C .

By D-elimination,  we can first  try proving separately  A├ (A∨B)∨C and
B∨C ├ (A∨B)∨C . So, part 1 of the proof:

(1)  A Hypothesis given.
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(2) A∨B By D-introduction, from (1).

(3) (A∨B)∨C By D-introduction, from (2).

In  part  2,  we  apply  D-elimination  once  more,  trying  to  prove  separately
B├ (A∨B)∨C and C├ (A∨B)∨C :

Part 2a:

(1)  B Hypothesis given.

(2) A∨B By D-introduction, from (1).

(3) (A∨B)∨C By D-introduction, from (2).

Part 2b:

(1) C Hypothesis given.

(2) (A∨B)∨C By D-introduction, from (1).

From  Parts  2a,  2b,  by  D-elimination  theorem,  we  obtain B∨C ├
(A∨B)∨C ,  and  from Parts  1,  2  again,  by  D-elimination  theorem,  we

obtain A∨(B∨C ) ├ (A∨B)∨C .

The second part of the proof (←) can be reduced in a similar way. Q.E.D. 

Exercise 2.3.3. a) Prove

[L1, L2, L6-L8, MP]: (A → B)→ (A∨C → B∨C) . What does it mean? The

converse formula (A∨C → B∨C )→( A → B) cannot be true. Explain, why.

b) Prove [L1, L2, L6-L8, MP]: A→B, C→D├ A∨C → B∨D . What does it

mean?

The following theorem resembles the well-known  distributive property of
(number)  addition to  multiplication:  (a+b)c = ac+bc.  Of course,  the "dual"
distributive property (of multiplication to addition) does not hold for numbers:
ab+c=(a+c)(b+c) would imply ab+c=ab+ac+bc+cc, c=ac+bc+cc, and, if c<>0,
then 1=a+b+c. Still, surprisingly, in logic,

Theorem 2.3.4. Conjunction is distributive to disjunction, and disjunction
is distributive to conjunction:

a) [L1-L8, MP]: (A∧B)∨C ↔(A∨C)∧(B∨C) .

b) [L1-L8, MP]: (A∨B)∧C ↔(A∧C)∨(B∧C) .

Exercise 2.3.4. Prove of Theorem 2.3.4. (Hint: apply D-elimination and D-
introduction.)
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2.4. Formulas Containing Negation – Minimal Logic

The following is another theorem allowing to make some of our “proofs of
provability” shorter:

Theorem 2.4.1. (N-elimination) If there is a proof

[T, MP]: A1, A2, ..., An, B├ C,

and a proof

 [T, MP]: A1, A2, ..., An, B├ ¬C,

 then there is a  proof

 [T, L1, L2, L9, MP]: A1, A2, ..., An├ ¬B.

What does it mean?

Proof. a) By Deduction Theorem 1, there are proofs of A1, A2, ..., An├  B→C

and A1, A2, ..., An├ B→¬C. Write down these two proofs one after another,

append the axiom L9, and apply (twice) MP. Q.E.D. 

Theorem 2.4.1 is called “N-elimination” because of its mode of application: to
prove├ ¬B , we “eliminate” the negation, by trying to prove separately B├
C and B├ ¬C , and after this, apply Theorem 2.4.1.

Theorem 2.4.2. a) [L1, L2, L9, MP]: A, ¬B├ ¬(A→B). What does it mean?

b) [L1-L4, L9, MP]: A∧¬B →¬( A→ B) . 

Proof. 

(1)  A Hypothesis given.

(2) ¬B Hypothesis given.

(3) A→B Hypothesis (N-elimination).

(4)  B By MP, from (1) and (3).

Thus, in (2) and (4) we have a contradiction. By N-elimination theorem, it
follows that A, ¬B├ ¬(A→B). Q.E.D. 

Exercise 2.4.1. a) Prove Theorem 2.4.2(b).

b) Prove that: [L1, L2, L9, MP]: (A→¬A)→¬A. What does it mean? (Hint:

apply N-elimination.)
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Exercise 2.4.1A (optional, for smart students) Investigate the size (the number of formulas) of 
the proof of [L1, L2, L9, MP]: A1, A2, ..., An├ ¬B as a function f(k, m) of the sizes k, m of the 

proofs of [L1, L2, L9, MP]: A1, A2, ..., An, B├ C and A1, A2, ..., An, B├ ¬C. You may wish to 

report your result. We will publish your report on the web as an appendix to this book. The 
current record holder is Aiga Romane, 2008: f(k, m) ≤ 3(k+m)+7. Improve this result, or prove
that it is the best possible one.

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the
classical  logic  [L1-L11,  MP]  to  prove  the  converse  of  (b):

¬(A → B)→ A∧¬ B ,  i.e.,  the  equivalence ¬(A → B)↔ A∧¬ B .  This
converse formula cannot be proved in the constructive logic [L1-L10, MP] (see

Section 2.8).

Theorem 2.4.3. [L1, L2, L9, MP]: (A→B)→(¬B→¬A). What does it mean?

It's the so-called Contraposition Law.

Note. The following rule form of Contraposition Law is called Modus Tollens:

[L1, L2, L9, MP]: A→B, ¬B├ ¬A, or, A→ B ;¬B
¬A

.

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the
classical  logic  [L1-L11,  MP]  to  prove  the  converse  formula

(¬B→¬A)→(A→B), i.e.,  the equivalence (A→B)↔(¬B→¬A). We will  see
also that this converse formula cannot be proved in the constructive logic [L1-

L10, MP] (see Section 2.8).

Exercise  2.4.2. a)  Prove  Contraposition  Law  in  two  ways:  by  using  N-
elimination, and without it.

b) (optional, for smart students) Verify that, in our axiom system, Law of Non-Contradiction
and Contraposition Law could be used instead of the axiom L9. More precisely: prove L9 in

the logic [L1-L5, Law of Non-Contradiction, Contraposition Law, MP]. Be careful: do not use

theorems depending on the axiom L9.

Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A. What does it mean?

Attention:  non-constructive  reasoning! In  Section  2.6,  we  will  use  the
classical logic [L1-L11, MP] to prove the converse formula ¬¬A→A  (the so-

called  Double  Negation  Law).  We  will  see  also  (Section  2.8)  that  this
converse formula cannot be proved in the constructive logic [L1-L10, MP].

Exercise 2.4.3. a) Prove Theorem 2.4.4.

b) Prove [L1-L9, MP]: (A→¬B)↔(B→¬A). What does it mean?

Attention:  non-constructive  reasoning!  The  formula  (¬A→B)↔(¬B→A)

https://en.wikipedia.org/wiki/Modus_tollens
http://podnieks.id.lv/mlog/241_Romane.doc
mailto:Karlis.Podnieks@lu.lv
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(very  similar  to  the  formula  of  Theorem 2.4.3)  can  be  proved only in  the
classical logic. See Section 2.8.

Still, curiously, in the minimal logic we can prove:

Theorem 2.4.5. [L1, L2, L9, MP]: ¬¬¬A↔¬A. What does it mean?

Proof.  Indeed,  by  Theorem  2.4.4,├  ¬A→¬¬¬A.  By  Contraposition  Law,
├ (A→¬¬A)→(¬¬¬A→¬A). Hence, by Theorem 2.4.4 and MP,├ ¬¬¬A→¬A.
Q.E.D.

Theorem 2.4.5 (and some of the following formulas in this and in the next
section  containing  double  negations)  may  seem  uninteresting  to  people
believing  unconditionally  in  the  equivalence  ¬¬A↔A.  Still,  it  seems
interesting (at least – for a mathematician) to obtain a general characterization
of logical formulas that do not depend on the Law of Excluded Middle. In
Section 2.7 we will use these formulas to prove the elegant and non-trivial
Glivenko's theorem:  a) A is provable in the classical propositional logic (in
[L1-L11, MP]) if and only if ¬¬A is provable in the constructive propositional

logic (in [L1-L10, MP]), b) ¬A is provable in the classical propositional logic if

and only if ¬A is provable in the constructive propositional logic.

Theorem 2.4.6. a) [L1, L2, L9, MP]: (¬A→A)→¬¬A. What does it mean?

b) [L1,  L2,  L6,  L7,  L9,  MP]: ¬¬( A∨¬A) .  What does it mean? This is a

“weak  form”  of  the  Law  of  Excluded  Middle  that  can  be  proved
constructively. The formula ¬¬( A∨¬A) can be proved in the constructive
logic, but A∨¬A can't – as we will see in Section 2.8.

Exercise 2.4.4. Prove (a) and (b) of Theorem 2.4.6. The axiom L11 must not be

used in these proofs! (Hint for (b): use axioms to derive a contradiction from
¬(A∨¬A) ).)

We  will  need  the  results  of  the  following  theorem  to  prove  Glivenko’s
Theorem in Section 2.7.

Theorem 2.4.7. [L1-L9, MP]:

a) (A→B)→(¬¬A→¬¬B). What does it mean?

b) ¬¬(A→B)→(¬¬A→¬¬B). What does it mean?

c) (A→(B→C))→(¬¬A→(¬¬B→¬¬C)). What does it mean?

d) ¬¬(A→B), ¬¬(B→C)├ ¬¬(A→C). What does it mean?

e) ¬¬A, ¬¬(A→B)├ ¬¬B. What does it mean?

The  converse  of  (a):  (¬¬A→¬¬B)→(A→B)  cannot  be  proved  in  the
constructive logic (see Section 2.8).
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Proof.  To  prove  (a),  we  must  simply  apply  twice  Contraposition  Law:
(A→B)→(¬B→¬A), and (¬B→¬A)→(¬¬A→¬¬B). 

Now, let us prove (b).

(1) ¬¬(A→B) Hypothesis assumed.

(2) ¬¬A Hypothesis assumed.

(3)  ¬¬A→((A→B)→¬¬B)

From (a), by 
transposing A→B and 
¬¬A, by Premise 
Permutation Law.

(4) (A→B)→¬¬B From (2) and (3).

(5)  ((A→B)→¬¬B)→(¬¬¬B→¬(A→B)) By Contraposition Law.

(6) ¬¬¬B→¬(A→B) From (4) and (5).

(7)  (¬¬¬B→¬(A→B))→(¬¬(A→B)→¬¬¬¬B) By Contraposition Law.

(8) ¬¬(A→B)→¬¬¬¬B From (6) and (7).

(9) ¬¬¬¬B From (1) and (8).

(10) ¬¬¬¬B→¬¬B Theorem 2.4.5.

(11) ¬¬B From (9) and (10).

Thus, by Deduction Theorem 1,├ ¬¬(A→B)→(¬¬A→¬¬B).

Exercise 2.4.5. Prove (c) of Theorem 2.4.7. (Hint: apply (a) and (b).)

To prove d) ¬¬(A→B), ¬¬(B→C)├ ¬¬(A→C), first, let us take (c) with A =
A→B, B = B→C, C = A→C:

(1)├ ((A→B)→((B→C)→(A→C)))→(¬¬(A→B)→(¬¬(B→C)→¬¬(A→C))).

(2) ├ (A→B)→((B→C)→(A→C)
By transitivity of implication and 
Deduction Theorem 1.

(3) ¬¬(A→B) Hypothesis given.

(4) ¬¬(B→C) Hypothesis given.

(5) ¬¬(A→C) From (1), (3) and (4).

Of course, (e) is an easy consequence of (b). Q.E.D.

Theorem 2.4.8. [L1-L9, MP]:
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a) ¬¬( A∧B)↔(¬¬A∧¬¬B) . What does it mean?

b) ¬¬ A∨¬¬ B →¬¬( A∨B) . What does it mean?

Exercise 2.4.6. a) Prove Theorem 2.4.8(a). (Hint: apply Contraposition Law –
several times, and Theorem 2.4.7(b).)

b)  Prove Theorem 2.4.8(b).  (Hint:  apply D-elimination,  D-introduction  and
Contraposition Law.)

Attention:  non-constructive  reasoning!  The  converse  of  (b):
¬¬( A∨B)→¬¬ A∨¬ ¬ B cannot be proved in the constructive logic (see

Section  2.8).  If  we  simply  succeed  in  deriving  a  contradiction  from
¬(A∨B) ,  then,  perhaps,  we do not  have  a  method allowing to decide,

which part of ¬¬ A∨¬¬ B  is true – ¬¬A, or ¬¬B?

Augustus de Morgan (1806-1871): "He recognised the purely symbolic nature of algebra and
he was  aware of  the  existence of  algebras  other  than ordinary  algebra.  He introduced  de
Morgan's  laws  and  his  greatest  contribution  is  as  a  reformer  of  mathematical  logic."
(according to MacTutor History of Mathematics archive).

Theorem 2.4.9. 

a) [L1, L2, L8, L9, MP]: ¬A∨¬B →¬( A∧B) . It's the constructive half of

the so-called First de Morgan Law. What does it mean?

b) [L1-L9, MP]: ¬(A∨B)↔¬A∧¬B . It's the so-called Second de Morgan

Law. What does it mean?

Attention: non-constructive reasoning! The second half of (a) – the converse
implication ¬(A∧B)→¬A∨¬B can be  proved in  the  classical  logic,  but
not in the constructive logic (see Section 2.8). Explain, why.

Proof. Let us prove (a).

(1) ¬ A∨¬ B Hypothesis assumed.

(2) A∧B Hypothesis (N-elimination).

(3) A C-elimination from (2).

(4) B C-elimination from (2).

(5) ¬A D-elimination from (1) ¬B D-elimination from (1)

(6) A ;¬A Contradiction. B ;¬B Contradiction. 

(7)
¬A ;¬¬A Unified 

contradiction.
¬A ;¬¬A Unified contradiction.

The last step is necessary, if we wish to apply D-elimination theorem. In this

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/De_Morgan.html
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theorem, it is supposed that in both branches a common formula is derived,
and not two different ones. To unify both contradictions, we applied here the
“50%  L10 theorem”  (“contradiction  implies  that  all  is  wrong”)  proved  in

Exercise 1.4.2: [L1, L9, MP]: B ;¬B ├ ¬A ;¬¬A . Since we are operating

in the minimal logic, we could not apply L10 itself.

Exercise 2.4.7. Prove Theorem 2.4.9(b). (Hint: apply N- and D-elimination,
the above-mentioned contradiction-unification included.)

Q.E.D.

Exercise 2.4.8. Prove:

a) [L1-L9, MP]: (A→ B)→ ¬( A∧¬ B) . What does it mean? Compare with

Theorem 2.4.2(b): A∧¬B →¬( A → B) .

b) [L1-L8, MP]: A∨B →(( A →B)→ B) . What does it mean?

Attention: non-constructive reasoning! The converse implications of (a, b),
¬(A∧¬ B)→( A → B) and (( A→ B)→ B)→ A∨B cannot  be  proved  in

the constructive logic (see  Section 2.8).  Explain,  why. Still,  we will  prove
these formulas in the classical logic.

2.5. Formulas Containing Negation – Constructive Logic

In this book, constructive logic is used as a synonym of intuitionistic logic!

Constructive logic includes the axiom L10: ¬B→(B→C), but rejects the Law

of Excluded Middle L11: B∨¬B as a general logical principle.

Exercise 2.5.1. a) [L10, MP]: A, ¬A├ B. What does it mean? 

b) [L1, L2, L8, L10, MP]: A∨B →(¬ A→ B) . What does it mean?

We will verify in  Section 2.8 that the formula (b) cannot be proved in the
minimal logic [L1-L9, MP] (and even not in [L1-L9, L11, MP]), i.e., it cannot

be proved without L10.

Attention:  non-constructive  reasoning!  The  converse  of  (b),  i.e.,
(¬ A→ B)→ A∨B cannot be proved in the constructive logic (see Section

2.8). Explain, why.

Theorem 2.5.1. a)  [L1,  L8,  L10,  MP]: ¬A∨B →( A→ B) .  What  does  it

mean?
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b) [L1, L2,  L6, MP]: A∨B →(¬A → B) ├ ¬A→(A → B) . What does it

mean? It means that the “natural” rule A∨B ;¬ A ├ B implies L10!

We will  verify in  Section 2.8 that the formula  Theorem 2.5.1(a) cannot be
proved in the minimal logic [L1-L9, MP] (and even not in [L1-L9, L11, MP]),

i.e., it cannot be proved without L10.

Attention:  non-constructive  reasoning!  The  converse  of  (a),  i.e.,
(A → B)→¬ A∨B cannot be proved in constructive logic (see Section 2.8).

Explain, why.

Proof.  a) When proving (a), we cannot use Deduction Theorem 1 (because of
the  missing  axiom L2).  So,  let  us  simply  build  a  sequence  of  5  formulas

representing the proof of (a):

(1)
(¬A→(A → B))→((B →( A→ B))→(¬A∨B →( A→ B)))

(Axiom L8)

(2) ¬A→(A → B) Axiom L10.

(3) B →( A→ B) Axiom L1.

(4)
(B →( A→ B))→

(¬A∨B →(A → B)) By MP, from (1), (2).

(5) ¬A∨B →( A→ B) By MP, from (4), (3).

b)  Surprisingly,  the  rule A∨B ,¬ A ├  B seems to  be  a  quite  a  "natural"
logical principle, yet it  cannot be proved without the axiom L10! Why not?

Because it implies L10! Indeed,

(1) A∨B →(¬ A→ B) Hypothesis given.

(2) ¬A
Hypothesis assumed (¬A→(A→B) 
to prove!)

(3) A Hypothesis assumed.

(4) A∨B By D-introduction, from (3).

(5) B By MP, from (1), (4) and (2).

Hence, by Deduction Theorem 1,
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[L1, L2, L6, MP]: A∨B →(¬ A → B) ├ ¬A→(A→B). Q.E.D.

Theorem 2.5.2. [L1-L10, MP]:

a)  (¬¬A→¬¬B)→¬¬(A→B). It's  the converse of  Theorem 2.4.7(b).  Hence,
[L1-L10, MP]:├ ¬¬(A→B)↔(¬¬A→¬¬B).

b)  ¬¬A→(¬A→A).  It's  the  converse  of  Theorem  2.4.6(a).  Hence,
 [L1-L10, MP]: ¬¬A↔(¬A→A). 

c) A∨¬ A →(¬ ¬ A → A) . What does it mean?

d)  ¬¬(¬¬A→A).  What  does  it  mean?  It’s  a  “weak”  form  of  the  Double
Negations Law – provable in constructive logic. 

We will verify in Section 2.8 that formulas (a, b, c, d) cannot be proved in the
minimal  logic  [L1-L9,  MP]  (and  even  not  in  [L1-L9,  L11,  MP]),  i.e.,  they

cannot be proved without L10.

Proof. Of course, (b) is an instance of the axiom L10.

To prove (a), prove in Exercise 2.5.2 that ¬¬A→¬¬B, ¬(A→B)├ ¬B, ¬¬B.
Then, by N-elimination theorem,├ (¬¬A→¬¬B)→¬¬(A→B).

To prove (c) and (d) do Exercise 2.5.2(b). Q.E.D.

Exercise 2.5.2. a) Prove that [L1-L10, MP]: ¬¬A→¬¬B, ¬(A→B)├ ¬B, ¬¬B.

b) Prove (c) and (d) of Theorem 2.5.2.

Exercise 2.5.3. Prove that in [L1-L10, MP]:

a) A├ B ↔ B∨¬ A . What does it mean?

b) B∨( A∧¬ A)↔B . What does it mean?

c) (( A∧¬ A)∧B)∨C ↔C . What does it mean?

2.6. Formulas Containing Negation – Classical Logic

If  you agree to adopt the axiom L11: B∨¬ B ,  i.e.,  the Law of Excluded

Middle, you can prove, first of all:

Theorem 2.6.1. (Double Negation Law)

 [L1, L2, L8, L10, L11, MP]: ¬¬A → A.

Hence, [L1-L11, MP]: ¬¬A ↔ A.
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Exercise 2.6.1. Prove Theorem 2.6.1.

We will verify in Section 2.8 that the formula ¬¬A → A cannot be proved in
the minimal logic  [L1-L9,  MP] (and even not in [L1-L9,  L11,  MP]),  i.e.,  it

cannot be proved without L10.

In the minimal logic we proved Theorem 2.4.4: [L1, L2, L9, MP]: A→¬¬A.

Hence, [L1-L11, MP]: ¬¬A ↔ A.

Attention:  non-constructive  reasoning!  The  formula  ¬¬A→A cannot  be
proved in the constructive logic, see Section 2.8. Why? Because it represents a
kind of non-constructive reasoning. Indeed, imagine, you wish to prove that

xB(x). Assume the contrary, ¬  xB(x), and derive a contradiction. Thus you∃z(x+z+1=y). ∃z(x+z+1=y).
have proved the negation of ¬ xB(x), i.e., ¬ ¬ xB(x). To conclude xB(x)∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y).
from ¬ ¬ xB(x), you need the Double Negation Law. Hence, by adopting this∃z(x+z+1=y).
law as a logical principle, you would allow non-constructive existence proofs
– if you prove xB(x) by assuming ¬ xB(x), and deriving a contradiction,∃z(x+z+1=y). ∃z(x+z+1=y).
then you may not obtain a method allowing to find a particular x satisfying
B(x).

Theorem 2.6.2. [L8, L11, MP]: A→B, ¬A→B├ B. Or, by Deduction Theorem

1, [L1, L2, L8, L11, MP]: (A→B)→((¬A→B)→B). What does it mean?

This  formula cannot  be proved in  the  constructive  logic (see  Section  2.8).
Explain, why.

Exercise 2.6.2. Prove Theorem 2.6.2.

In  the  classical  logic,  you can  prove  also  the  converse  of  Contraposition
Law:

Theorem  2.6.3. [L1-L11,  MP]:  (¬B→¬A)→(A→B).  Hence,  [L1-L11,  MP]:

(A→B) ↔ (¬B→¬A).

Attention:  non-constructive  reasoning!  The  formula  (¬B→¬A)→(A→B)
cannot be proved in the constructive logic, see Section 2.8. Explain, why.

Exercise 2.6.2. Prove that in [L1-L11, MP]:

a) Theorem 2.6.3. (Hint: apply Double Negation Law.)

b)  (¬A→B)↔(¬B→A).  Compare  with  Exercise  2.4.3(b):  [L1-L9,  MP]:

(A→¬B)↔(B→¬A).

Attention: non-constructive reasoning! The formula (b) cannot be proved in
the constructive logic, see Section 2.8.

Theorem 2.6.3. [L1-L9, L11, MP]:  ˫ ¬(A∧B)→¬A∨¬B . Hence,  [L1-L9,
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L11, MP]: ˫ ¬(A∧B)↔¬A∨¬B .

The equivalence represents the First de Morgan Law. 

Let us remind also the Second de Morgan Law:

[L1-L9, MP]: ¬(A∨B)↔¬ A∧¬ B . 

Thus, both of de Morgan laws can be proved in [L1-L9, L11, MP], i.e., they do

not depend on the axiom L10.

Proof. The constructive half of the First Law we proved in the minimal logic
as Theorem 2.4.9(a): [L1-L9, MP]: ¬ A∨¬ B → ¬(A∧B) . Let us prove the

remaining  half:  [L1-L9,  L11,  MP]: ¬( A∧B)→¬ A∨¬ B .  The  axiom L10

will not be used in this proof.

Let us apply a pretty  general method of proving formulas in the classical
logic:  start  the  proof  by  introducing  instances  of  L11 as  hypotheses  and

applying D-elimination.

Our particular proof starts by assuming (0) ¬( A∧B) as the hypothesis, after
this  we  introduce A∨¬A ; B∨¬B as  additional  hypotheses.  Then,  by  D-
elimination, we obtain 4 branches starting with the following hypotheses:

1) A ;B , 2) A ;¬B , 3) ¬A ; B , 4) ¬A;¬B .

In branches (2, 3, 4) we obtain the required formula ¬ A∨¬ B simply by D-
introduction.

In the branch (1):

(1) A Hypothesis assumed.

(2) B Hypothesis assumed.

(3) A∧B
By C-introduction, from (1), (2). 
Contradiction with our initial 
hypothesis: (0) ¬( A∧B) .

(4) ¬ A

From (0) and (3), but not by L10! 

By[L1, L9, MP]: B, ¬B├ ¬C, proved 

in Exercise 1.4.2. 

(5) ¬ A∨¬B By D-introduction, from (4).

Thus, we have proved 4 cases:

 [L1-L9, MP]: ¬(A∧B); xA; yB ├ ¬A∨¬B ,
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where each of  x, y is either an empty symbol, or a negation symbol. By D-
elimination theorem, we obtain 2 cases:

 [L1-L9, MP]: ¬(A∧B); xA; B∨¬B ├ ¬A∨¬B ,

and, finally: [L1-L9, MP]: ¬(A∧B); A∨¬B ; B∨¬B ├ ¬A∨¬B and

[L1-L9, L11, MP]: ¬(A∧B) ├ ¬A∨¬B . Q.E.D.

It appears that, in the classical logic, we can express implication by using
negation and disjunction (let  us  call  it  I-elimination).  Indeed,  we already
know that [L1, L8, L10, MP]: ¬ A∨B →( A→ B) (Theorem 2.5.1).

Exercise 2.6.3. Prove that [L1-L8, MP]: A∨C ├ (A→ B)→ B∨C .

Hence, [L1-L8, MP]: A∨¬ A ├ (A→ B)→¬ A∨B , i.e.,

Theorem 2.6.4. [L1-L8, L11, MP]: (A→ B)→ ¬ A∨B . Hence,

(I-elimination) [L1-L11, MP]: (A→ B)↔ ¬ A∨B .

Exercise 2.6.4. Prove that in [L1-L11, MP]:

a) B∧( A∨¬ A)↔ B . What does it mean?

b) (( A∨¬ A)∨B)∧C ↔C . What does it mean?

c) (( A→ B)→ B)→ A∨B .  What  does  it  mean?  By adding  the  result  of
Exercise 2.4.7, [L1-L11, MP]: A∨B ↔((A → B)→ B) .Thus, in the classical

logic, disjunctions can be replaced by implications.

Theorem 2.6.5. [L1-L11, MP]: ¬(A→ B)→ A∧¬B . 

Hence, together with Theorem 2.4.2(b): [L1-L11, MP]: ¬(A→ B)↔ A∧¬B .

Proof. Do Exercise 2.6.5(b). 

Thus, in the classical logic, an implication is false if and only if the premise is
true, and the conclusion is false. 

In the constructive logic,  if  an implication is false,  it  follows only that the
conclusion is false. Indeed, from L1: B →( A→ B) , by Contraposition Law:

[L1,  L2,  L9,  MP]: ¬(A→ B)→¬B .  But  the formula ¬(A→ B)→ A can

be proved in the classical logic only (see Theorem 2.8.5 in Section 2.8). 

Exercise 2.6.5. Prove that in [L1-L11, MP]:

a) (A → B)↔¬( A∧¬ B) . What does it mean?

b) ¬(A → B)↔ A∧¬ B .
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c) A∨B ↔(¬ A→ B) . What does it mean?

d) A∧B ↔¬( A→ ¬ B) . What does it mean?

e)  (optional,  for  smart  students)  Try  detecting,  which  parts  of  these
equivalences  are  provable  in  the  constructive  logic.  (Hint:  take  a  look  at
Theorem 2.8.5.)

Strange formulas

Exercise 2.6.6.  Prove in the classical logic the following strange formulas.
(Hint: the easy way – apply the method used above to prove Theorem 2.6.3.)

a) [L1, L2, L6–L 8, L10, L11, MP]: A∨( A→ B) . What does it mean? Does it

mean anything at all? Compare with Exercise 1.4.2.

b) [L1, L2, L6–L8, L10, L11, MP]: (A → B)∨( B → A) . What does it mean?

Does it mean anything at all?

c) [L1–L11,  MP]: (( A→ B)→ A)→ A .  What does it  mean? Does it  mean

anything at all? It is the so-called Peirce's Law from:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American
Journal of Mathematics, 1885, vol.7, pp.180-202.

2.7. Constructive Embedding: Glivenko's Theorem

Let  us  remind  some of  the  results  of  previous  sections  concerning  double
negations:

Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A.

Theorem 2.4.5. [L1–L9, MP]: ¬¬¬A↔¬A.

Theorem 2.4.6(b). [L1–L9, MP]: ¬¬( A∨¬ A) . In this weak form, the Law

of Excluded Middle can be proved constructively. 

Theorem 2.4.7. [L1–L9, MP]: a) (A→B)→(¬¬A→¬¬B).

b) ¬¬(A→B)→(¬¬A→¬¬B).

c) (A→(B→C))→(¬¬A→(¬¬B→¬¬C)).

d) ¬¬(A→B), ¬¬(B→C)├ ¬¬(A→C).

e) ¬¬A, ¬¬(A→B)├ ¬¬B.

Theorem 2.4.8. [L1-L9, MP]:

a) ¬¬( A∧B)↔ (¬¬ A∧¬¬ B) .
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b) ¬¬ A∨¬¬ B →¬¬( A∨B) .

Theorem 2.5.2. [L1-L10, MP]:

a) (¬¬A→¬¬B)→¬¬(A→B). It's the converse of Theorem 2.4.7(b).

d) ¬¬(¬¬A→A). 

Theorem 2.6.1. [L1-L11, MP]: ¬¬A ↔ A.

Does it mean that for any formula A:

 If [L1-L11, MP]:├ A, then [L1-L10, MP]:├ ¬¬A?

 (The converse is obvious: if [L1-L10, MP]:├ ¬¬A, then [L1-L11, MP]:├ A by

Theorem 2.6.1.)

Imagine, we have a proof of [L1-L11, MP]:├ A. It is a sequence of formulas

R1, R2, ..., Rn, where Rn = A. If this sequence does not contain instances of the

axiom L11, then it is a proof of [L1-L10, MP]:├ A as well. Hence, according to

Theorem 2.4.4, [L1-L10, MP]:├ ¬¬A

If the sequence R1, R2, ..., Rn  contains some instances of L11, i.e., formulas

having the form B∨¬ B , then, according to Theorem 2.4.6(b), we could try
replacing  each  such  formula  by  a  sequence  proving  that  [L1-L9,  MP]:

¬¬(B∨¬ B) . It appears that each of the formulas ¬¬R1, ¬¬R2, ..., ¬¬Rn is

provable in [L1-L10, MP].

a)  If  Rk is  an  instance  of  the  axioms  L1-L10,  then  [L1-L10,  MP]:├ ¬¬Rk

(Theorem 2.4.4).

b) If Rk is an instance of the axiom L11, then [L1-L10, MP]:├ ¬¬Rk (Theorem

2.4.6(b)).

c) Now, let us assume that i, j < k, and Ri, Rj├ Rk directly by MP, i.e., Rj is

Ri→Rk.  We know already  that  [L1-L10,  MP]:├ ¬¬Ri and  [L1-L10,  MP]:├

¬¬(Ri→Rk). By Theorem 2.4.7(b),

 [L1-L9, MP]:├ ¬¬(Ri→Rk)→ (¬¬Ri→¬¬Rk).

Hence, [L1-L10, MP]:├ ¬¬Rk. 

Because A = Rn,  we have proved the remarkable Glivenko's  theorem from

1929:

V. Glivenko. Sur quelques points de la logique de M. Brouwer. Academie Royale de Belgique,
Bulletins de la classe des sciences, 1929, ser.5, vol.15, pp.183-188.
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Valery  Ivanovich  Glivenko (1897-1940)  is  best  known by  the  so-called  Glivenko-Cantelli
theorem in probability theory. 

Theorem 2.7.1 (Glivenko's Theorem).

 [L1-L11, MP]:├ A if and only if [L1-L10, MP]:├ ¬¬A.

Or: a formula A is provable in the classical propositional logic if and only if its
double negation ¬¬A is provable in the constructive propositional logic.

This theorem provides a kind of a "constructive embedding" for the classical
propositional logic: any classically provable formula can be "proved" in the
constructive logic, if you put two negations before it.

Corollary 2.7.1. [L1-L11, MP]:├ ¬A if and only if [L1-L10, MP]:├ ¬A.

Or: a "negative" formula ¬A is provable in the classical propositional logic if
and only if it is provable in the constructive propositional logic.

Indeed, if [L1-L11, MP]:├ ¬A, then by Glivenko's theorem, [L1-L10, MP]:├

¬¬¬A, and by Theorem 2.4.5, [L1-L10, MP]:├ ¬A. Q.E.D.

Exercise 2.7.1. Prove the following version of Glivenko's theorem (see Kleene
[1952]):

a) If [L1-L11, MP]: A1, A2, ..., An├ C, then

[L1-L10, MP]: ¬¬A1, ¬¬A2, ..., ¬¬An├ ¬¬C.

b) If [L1-L11, MP]: ¬A1, ¬A2, ..., ¬An, B1, B2, ..., Bp├ ¬C, then

[L1-L10, MP]: ¬A1, ¬A2, ..., ¬An , ¬¬B1, ¬¬B2, ..., ¬¬Bp├ ¬C.

2.8. Axiom Independence. Using Computers in Mathematical 
Proofs

If one of our axioms Li could be proved by using the other axioms only, then

we could simplify our logical system by dropping Li as an axiom. A striking

example:

Theorem 2.8.1. The axiom  L9:  (A→B)→((A→¬B)→¬A) can be proved in

[L1, L2, L8, L10, L11, MP].

This fact was established by Augusts Kurmītis (on the web, also: A. A. Kurmit):

A. A. Kurmitis. On independence of a certain axiom system of the propositional calculus.
Proc. Latvian State University, 1958, Vol. 20, N3, pp. 21-25 (in Russian).

http://en.wikipedia.org/wiki/Valery_Glivenko
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The following proof of L9 in [L1, L2, L8, L10, L11, MP] is due to Jānis Sedols.

First, let us establish that the formula (A→¬A)→¬A can be proved in [L1, L2,

L8,  L10,  L11,  MP] (in Exercise 2.4.1 we established that [L1,  L2,  L9,  MP]:

(A→¬A)→¬A):

(1) (A →¬ A)→((¬ A →¬ A)→( A∨¬ A)→¬ A) Axiom L8.

(2) A→¬A Hypothesis.

(3) ¬A→¬A
This is provable in [L1, L2, 

MP] (Theorem 1.4.1).

(4) A∨¬ A Axiom L11.

(4) ¬A
From (1), (2), (3) and (4), 
by MP.

(6) (A→¬A)→¬A

By Deduction Theorem 1 
(which is valid for any 
propositional system 
containing [L1, L2, MP]).

Now let us establish that in [L1, L2, L10, MP]: A→B, A→¬B├ A→¬A.

(7) A→B Hypothesis.

(8) A→¬B Hypothesis.

(9) A Hypothesis.

(9) B From (7), (9), by MP.

(10) ¬B From (8), (9), by MP.

(11) ¬B→(B→¬A) Axiom L10.

(12) ¬A From (9), (10) and (11) by MP.

(13) A→B, A→¬B├ A→¬A
By Deduction Theorem 1 (which is 
valid for any propositional system 
containing [L1, L2, MP]).

Finally, let us merge the proofs of (6) and (13), then by MP we obtain ¬A, i.e., 

[L1, L2, L8, L10, L11, MP]: A→B, A→¬B├ ¬A.
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Now, by Deduction Theorem 1 (which is valid for any propositional system
containing [L1, L2, MP]) we obtain the axiom L9:

[L1, L2, L8, L10, L11, MP]: (A→B)→((A→¬B)→¬A).

Q.E.D.

What should we do after establishing that one of our axioms is "dependent"?
Do you think, we should drop L9 as an axiom of our logical system?

First, let's note that we have proved L9 by using three problematic axioms:

L1, L10, L11. But L9 itself is not problematic!

Secondly,  L9 cannot be  proved  in  [L1-L8,  L10,  MP]  (see  Theorem  2.8.2

below). Hence, if we would drop L9, then, instead of a simple definition

classical logic = constructive logic + L11,

we would need a more complicated one:

constructive logic = classical logic – L11 + L9.

So, let us retain L9 in our list of logical axioms.

But now, the question of questions:

Is the Law of Excluded Middle an independent logical principle?

Are constructive logic and classical logic really different? Of course, they are,
but how could one prove that?

Could we prove the Law of Excluded Middle (the axiom L11: B∨¬ B ) by

using the other axioms [L1-L10, MP] – as we proved L9 in [L1, L2, L8, L10,

L11,  MP]? If  not,  how could we demonstrate that  this  is  impossible? How

could we demonstrate that some logical principle is  independent, i.e., that it
cannot be derived from other principles?

Let  us  assume,  we  have  designed  an  algorithm  q that  calculates for  each
formula A some its "property" q(A) in such a way that:

a) q(L1) is true, q(L2) is true, ..., q(L10) is true (i.e., the axioms L1-L10 possess

the property q).

b) If q(A) is true and q(A→B) is true, then q(B) is true (i.e.,  Modus Ponens
"preserves" the property q).

If so, then q(F) is true for all the formulas F that can be proved in [L1-L10,

MP].
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c) q(L11) is false (i.e., L11 does not possess the property q).

If we could develop such an algorithm q, then this would demonstrate that L11

cannot be proved in [L1-L10, MP], i.e., that the Law of Excluded Middle is an

independent logical principle.

Multi-valued logics

One of the ways way how to introduce remarkable properties of formulas are
the so-called "multi-valued logics" or "many-valued logics", introduced by Jan
Lukasiewicz and Emil Post:

J. Lukasiewicz. O logice trojwartosciowej. Ruch Filozoficzny (Lwow), 1920, vol. 5, pp. 169-
171

E. Post. Introduction to a general theory of elementary propositions. Amer. journ. math., 1921,
vol. 21, pp.163-195

Read  more:  Many-Valued  Logic by  Siegfried  Gottwald in  Stanford  Encyclopedia  of
Philosophy.

For example, let us consider a kind of "three-valued logic", where 0 means
"false", 1 – "unknown" (or NULL – in terms of SQL), and 2 means "true".
Then  it  would  be  natural  to  define  “truth  values”  of  conjunction  and
disjunction as

A∧B=min( A , B) ;
A∨B=max(A , B) .

But how should we define “truth values” of implication and negation?

A B A∧B A∨B A→B

0 0 0 0 i1

0 1 0 1 i2

0 2 0 2 i3

1 0 0 1 i4

1 1 1 1 i5

1 2 1 2 i6

2 0 0 2 i7

2 1 1 2 i8

http://plato.stanford.edu/
http://plato.stanford.edu/
http://plato.stanford.edu/entries/logic-manyvalued/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lukasiewicz.html
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2 2 2 2 i9

A ¬A

0 i10

1 i11

2 i12

Thus,  theoretically,  we  have  here  39 =  19683  variants  of  implication
definitions and 33 = 27 negation definitions.

Do you think, it would be natural to set the values of ¬A and A→B as follows?

A ¬A

0 2

1 1 

2 0

A B A→B 

0 0 2

0 1 2

0 2 2

1 0 1

1 1 1

1 2 2

2 0 0

2 1 1

2 2 2

Yes, it would be natural, if we would try building a natural three-valued logic,
in which "1" would mean, indeed, "unknown". In this way we would obtain
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the “natural” three-valued logic used,  for example,  for handling of  NULL-
values in SQL.

However, for our purpose, we must separate two different classes of formulas
provable  in  the  classical  logic.  For  this  task,  the  above  “natural”  logic  is
useless: under it, the axioms L1- L11 “behave” irregularly (verify).

Thus, here, our aim must be just the opposite to inventing of a “natural” logic
– creating of a “bad” logic.

Let us consider

"under our truth tables, formula A always takes "true" values (the value 2)"

as a kind of the above-mentioned "property" q(A). We are trying to prove that
the axiom L11 cannot be derived from the axioms L1- L10. Hence, we must try

to define our truth tables in such a way that:

a) the axioms L1, L2, ..., L10 always take the value 2,

b) Modus Ponens preserves taking always the valuec2 (i.e., if the formulas A
and A→B are always 2, then B also is always 2),

c) the axiom L11 sometimes takes the value 0 or 1.

As we saw above, the truth tables, having these properties, cannot be 100%
natural. So, we must explore the "unnatural" versions as well.

However, let us retain the “natural” definitions of conjunction and disjunction:

A∧B=min( A , B) ;
A∨B=max(A , B) .

Exercise 2.8.1 (optional). Develop a simple (recursive) computer program receiving as input:

a) any truth tables of implication and negation,

b) Any formula F consisting of letters A, B, C, propositional connectives and parentheses,

and printing out "truth values" of the formula F, for example, if F = B→(A→B):

A B B→(A→B) 

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

http://en.wikipedia.org/wiki/Null_(SQL)
http://en.wikipedia.org/wiki/Null_(SQL)
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1 2 2

2 0 2

2 1 2

2 2 2

In this example the axiom L1 always takes "true" values. Perhaps, we should be interested

only in those variants of our truth tables that "satisfy" at least the axioms L1, L2, ..., L8 forcing

them always to take "true" values. 

Thus, we consider

"under the selected truth tables, formula A always takes "true" values"

as a kind of the "property" q(A).

Will MP preserve this property? If A is "true", and A→B is "true", how could
B be not? Let us consider the relevant part of the truth table for implication
(the part where A is "true"):

A B A→B 

2 0 i7 i7=0,1

2 1 i8 i8=0,1

2 2 i9 2

If we would consider only those variants of our truth tables where i7 = 0 or 1,

i8 = 0 or 1,  and i9 = 2,  then,  if  B would not  be 2 for some values of its

arguments, then A→B also would not be 2 for the same values of arguments.

Hence, if we restrict ourselves to truth tables with i7 = 0 or 1, i8 = 0 or 1, and

i9 = 2,  then  MP preserves  the  property  of  "being true".  i.e.,  from "true"

formulas MP will derive only "true" formulas.

The next idea: if we wish the axiom L6: A→ A∨B always taking the value

2, then, if A≤B, then A→B must be 2. 

Thus, of all the 39 = 19683 possible implication definition variants only the
following 3*2*2 = 12 variants are worth of exploring:

A B A→B 

0 0 2
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0 1 2

0 2 2

1 0 i4=0,1,2

1 1 2

1 2 2

2 0 i7=0,1

2 1 i8=0,1

2 2 2

Exercise 2.8.2. a) Verify that under any of these 12 implication definitions the
axioms L3, L4, L6, L7 always take the value 2, i.e., you do not need testing

these axioms any more. 

b)  For  each  of  the  axioms,  L1,  L2,  L5 and  L8,  determine  all  the  possible

combinations of the values of i4, i7, i8 forcing it to take always the value 2.

Note. The "intersection" of b) consists of 5 variants only.

Exercise 2.8.3 (optional) Extend your previous computer program by adding 6
nested loops: for i4=0 to 2, for i7=0 to 1, for i8=0 to1, for iaa=0 to 2, for ib=0 to

2, for ic=0 to 2. Let the program print out only those variants of truth tables

that make "true" all the axioms L1-L8. (My own program produced 135 such

variants, see the results file #00).

Thus,  now we have 135 variants of truth tables which make "true" all  the
axioms L1-L8 and for which “truth” is retained when MP is applied. So, let us

search among them for the variants that allow proving of axiom independence
results we are interested in.

Axiom L9

In Theorem 2.8.1 we established that the axiom L9: (A→B)→((A→¬B)→¬A)

can be proved in [L1-L8, L10, L11, MP]. Still,

Theorem 2.8.2. The axiom L9 cannot be proved in [L1-L8, L10, MP].

Proof. Let your program print out only those variants of truth tables that make
"true" all the axioms L1-L8, and make: L9 – not "true", and L10 – "true". My

program yields 66 such variants, see the results file #01. Let us consider, for

http://podnieks.id.lv/mlog/kp_log01.txt
http://podnieks.id.lv/mlog/kp_log00.txt
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example, the variant #33 (the unnatural clauses are marked bold):

Implication variant #3:
2 2 2 2 2 2 0 1 2 L1-L8 true. 
Variant #33. Negation: 2 1 0 L9 not true. L10 true. L11 not true.

A B A→B 

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

1 2 2

2 0 0

2 1 1

2 2 2

A ¬A

0 2

1 1

2 0

See the extended results file #1 for this variant.

Under this variant the axioms L1-L8 and L10 are "true". As we know, under

this variant, by MP, from "true" formulas only "true" formulas can be derived.
The axiom L9 is not "true" under this variant:

A B (A→B)→((A→¬B)→¬A)

0 0 2

0 1 2

0 2 2

http://podnieks.id.lv/mlog/kp_log1.txt
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1 0 1

1 1 1

1 2 1

2 0 2

2 1 2

2 2 2

Hence, L9 cannot be proved in [L1-L8, L10, MP]. Q.E.D.

In a similar way, we can obtain some other independence results as well.

Axiom L10

Theorem 2.8.3. The axiom L10: ¬B→(B→C) cannot be proved in the minimal

logic [L1-L9, MP], and even not in [L1-L9, L11, MP].

Proof. Let your program print out only those variants of truth tables that make
"true" all the axioms L1-L8, and make: L9 – "true", L10 – not "true", and L11 –

"true".  My program yields 6 such variants,  see the  results  file #02. Let  us
consider, for example, the variant #1 (the unnatural clauses are marked bold):

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.

See the extended results file #2 for this variant.

Under this variant the axioms L1-L9 and L11 are "true". As we know, under

this variant, by MP, from "true" formulas only "true" formulas can be derived.
The axiom L10 is not "true" under this variant:

A B ¬A→(A→B) 

0 0 2

0 1 2

0 2 2

1 0 2

1 1 2

http://podnieks.id.lv/mlog/kp_log2.txt
http://podnieks.id.lv/mlog/kp_log02.txt
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1 2 2

2 0 0

2 1 1

2 2 2

Hence, L10 cannot be proved in [L1-L9, L11, MP]. Q.E.D.

Axiom L11

Now, let us prove the main result of this section:

Theorem  2.8.4. The  Law  of  Excluded  Middle  L11: B∨¬ B cannot  be

proved  in  the  constructive  propositional  logic  [L1-L10,  MP].  The  Law of

Excluded Middle is an independent logical principle.

Proof. Let your program print out only those variants of truth tables that make
"true" all the axioms L1-L8, and make: L9 – "true", L10 – "true", L11 – not

"true". My program yields only one such variant, see the results file #03:

Implication variant #1 (the unnatural clauses are marked bold):
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 0 0 L9 true. L10 true. L11 not true.

See the  extended results file #3 for this variant. (As we see, the implication
definition coincides here with the one used above to “discredit” L10, but the

negation definition is different.)

Under  this  variant  the  axioms  L1-L10 are  "true".  As  we  know,  under  this

variant, by MP, from "true" formulas only "true" formulas can be derived. The
axiom L11 is not "true" under this variant:

B ¬B B∨¬ B

0 2 2

1 0 1

2 0 2

Hence, L11 cannot be proved in [L1-L10, MP]. Q.E.D.

The results file #03 proves also the following

Theorem 2.8.5 (thanks to Pavels Mihailovs for a correction). The following
classically  provable  formulas  cannot  be  proved  in  the  constructive

http://podnieks.id.lv/mlog/kp_log03.txt
http://podnieks.id.lv/mlog/kp_log3.txt
http://podnieks.id.lv/mlog/kp_log03.txt
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propositional logic [L1-L10, MP]:

¬¬A → A
(¬B → ¬A) → (A→B)
(¬A→B)→(¬B→A)

(¬¬A → ¬¬B) → (A→B)
(A → B)→¬ A∨B

(( A→ B)→ B)→ A∨B
((A→B)→A)→A

¬(A∧¬ B)→( A → B)
¬(A → B)→ A∧¬ B

A∨(A → B)

Indeed, all these formulas take non-"true" values under the truth tables from
the proof of Theorem 2.8.4.

The  following  three  formulas  also  cannot  be  proved  in  the  constructive
propositional  logic,  yet,  unfortunately,  the  truth  tables  from  our  proof  of
Theorem 2.8.4 do not allow proving this: 

¬(A∧B)→¬ A∨¬ B
¬¬( A∨B)→¬¬ A∨¬ ¬ B

(A → B)∨( B → A)

Indeed, under the above truth tables, these formulas always take "true" values
(see  results file #03). However, this failure yields an interesting conclusion:
add these three formulas as additional axioms to [L1-L10, MP] – and L11

will remain still unprovable! 

Thus, we did not succeed in building a three-valued logic that would allow
showing that the latter three formulas cannot be proved in the constructive
propositional logic. Is it possible at all to build a multi-valued logic that would
exactly  separate  constructively  provable  propositional  formulas  from  the
unprovable ones? Kurt Gödel showed in 1932 that this is impossible: none of
the finitely-valued logics "matches" exactly the constructive propositional
logic!

K. Gödel.  Zum intuitionistischen  Aussagenkalkül,  Anzeiger  Akademie  der  Wissenschaften
Wien, Math.-naturwiss. Klasse, 1932, Vol. 69, pp.65-66. 

Exercise 2.8.4 (optional, for smart students).

a)Verify somehow that the latter three formulas cannot be proved in the constructive 
propositional logic [L1-L10, MP]. Or, see Section 4.4 how to do this.

b) Verify that any of the following formulas could be used – instead of B∨¬ B  – as the
axiom L11 of  the  classical  propositional  logic:  i)  (A→ B)→ ¬ A∨B ,  ii)  ¬¬B→B, iii)

¬(A→B)→A (Hint: since all these formulas are provable in [L1-L11, MP], it remains to prove

http://podnieks.id.lv/mlog/kp_log03.txt
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L11 in [L1-L10, MP] + (i), in [L1-L10, MP] + (ii), and in [L1-L10, MP] + (iii)).

c) Verify that with ¬¬B→B instead of L11 the axiom L10 becomes 100% derivable from the

other axioms. Perhaps, this is why many textbooks prefer the combination L1-L9 + ¬¬B→B as

the axiom list  for  the classical  propositional  logic.  But,  then,  we are forced to  define the
constructive propositional logic not as a subset of the classical one, but as the classical logic
with the axiom ¬¬B→B replaced by the axiom L10: ¬B→(B→C)!

Axiom L10 again...

Finally, let us check which of the main results of Section 2.5 (constructive 
logic) and Section 2  .6   (classical logic) depend on the axiom L10. Let your 

program print out only those variants of truth tables that make "true" all the 
axioms L1-L8, and make: L9 – "true", L10 – not "true". My program yields 6 

such variants, see the results file #04. Surprisingly, in all these variants L11 is 

"true" (thus, the results file #04 equals the results file   #02  ). As the most 
productive appears

Implication variant #1:
2 2 2 0 2 2 0 1 2 L1-L8 true. 
Variant #1. Negation: 2 2 1 L9 true. L10 not true. L11 true.

Constructively provable formulas:
Not true: (A∨B)→((¬ A)→ B)
Not true: ((¬ A)∨B)→(A → B)
Not true: ((¬¬A)→(¬¬B))→(¬¬(A→B))
Not true: (¬¬A)→((¬A)→A)
Not true: (A∨(¬ A))→ ((¬ ¬ A)→ A)
Not true: ¬¬((¬¬A)→A)

Classically provable formulas:
True: (¬¬( A∨B))→((¬¬ A)∨(¬ ¬ B))
True: (¬(A∧B))→((¬ A)∨(¬ B))
Not true: (¬¬A)→A
Not true: ((¬B)→(¬A))→(A→B)
Not true: ((¬A)→B)→((¬B)→A)
Not true: ((¬¬A)→(¬¬B))→(A→B)
True: (A → B)→ ((¬ A)∨B)
Not true: (( A→ B)→ B)→ (A∨B)
Not true: ((A→B)→A)→A
Not true: (¬(A∧(¬ B)))→( A→ B)
True: (A→B)→(((¬A)→B)→B)
Not true: (¬(A → B))→( A∧(¬ B))
Not true: A∨(A → B)

http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log02.txt
http://podnieks.id.lv/mlog/kp_log04.txt
http://podnieks.id.lv/mlog/kp_log04.txt
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True: (A → B)∨( B → A)
Not true: (A→B)→(((¬A)→(¬B))→(B→A))

Thus, the following constructively provable formulas cannot be proved in the
minimal  logic  [L1-L9,  MP]  (and  even  not  in  [L1-L9,  L11,  MP]),  i.e.,  they

cannot be proved without the axiom L10:

(A∨B)→(¬ A → B)
¬ A∨B →( A→ B)

(¬¬A→¬¬B) → ¬¬(A→B)
¬¬A → (¬A→A)

A∨¬ A →(¬¬ A → A)
¬¬(¬¬A→A)

And the following classically provable formulas cannot be proved without the
axiom L10 (thanks to Pavels Mihailovs for a correction):

¬¬A→A
(¬B→¬A)→(A→B)
(¬A→B)→(¬B→A)

(¬¬A→¬¬B)→(A→B)
(( A→ B)→ B)→ A∨B

((A→B)→A)→A
¬(A∧¬ B)→( A → B)
¬(A → B)→ A∧¬ B

A∨(A → B)
(A→B)→((¬A→¬B)→(B→A))

But how about the remaining five (classically provable) formulas (thanks to
Stanislav Golubcov for the idea):

a) (A → B)→ ¬ A∨B ,
b) ¬(A∧B)→¬ A∨¬ B ,
c) ¬¬(A∨B)→¬¬ A∨¬¬ B ,
d) (A→B)→((¬ A→B)→B) ,
e) (A → B)∨( B → A) ?

Formulas (a, b, d) can be proved without without L10, see Section 2.6.

Exercise 2.8.5. Show that also the formula (c) can be proved without L10, i.e

prove it in [L1-L9, L11, MP]. Smart students: how about the remaining formula

(e)?

Using computers in mathematical proofs

Do you trust the above “proofs of unprovability”? Of course, you do not need trusting my
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(or your own) program generating the results files #00, #01, #02, #03 and #04. We used these
files only to select the truth table variants allowing to prove our independence results. You
may remove your worries by verifying directly (“manually”) that under all the 3 truth table
variants used above:

a) the axioms L1-L8 are true;

b) the axioms L9, L10, L11 and other formulas are true or not true according to the goal of each

particular proof;

c) in all variants, 2→0 ≠ 2, 2→1 ≠ 2, 2→2 = 2, hence, from true formulas, Modus Ponens can
derive only true formulas.  

After this,  you may forget  about  programs, the result  does not depend any more on their
correctness. 

Unfortunately, in more complicated cases the situation does not allow for the above simple
exit (imanual verification of the solution found by the computer). The historically first and
most famous example is Four Colour Theorem (4CT, see in Wikipedia).

The proof of the Four Colour Theorem was completed in 1976 by Kenneth Appel (1932-2013)
and Wolfgang Haken:

K.  Appel  and  W.  Haken,  ‘Every  map  is  four  colourable’,  Bulletin  of  the  American
Mathematical Society 82 (1976), 711–12.

K. Appel and W. Haken, ‘Every map is four colourable, Part I: Discharging’, Illinois Journal
of Mathematics 21 (1977), 429–90.

K. Appel and W. Haken, ‘Every map is four colourable, Part II: Reducibility’, Illinois Journal
of Mathematics 21 (1977), 491–567. 

"The best-known, and most debated, instance is the use of computer  analysis by Kenneth
Appel and Wolfgang Haken of the University of Illinois in their 1976 proof of the four-colour
conjecture (that four colours suffice to colour in any map drawn upon a plane in such a way
that countries which share a border are given different colours). First put forward in 1852, the
conjecture had become perhaps the most famous unsolved problem in mathematics, resisting a
multitude of efforts at proof for over a century. Appel and Haken's demonstration rested upon
computerized analysis, occupying 1,200 hours of computer time, of over 1,400 graphs. The
analysis of even one of those graphs typically went beyond what an unaided human being
could plausibly do: the ensemble of their demonstration certainly could not be checked in
detail by human beings. In consequence, whether that demonstration constituted "proof" was
deeply controversial..." (according to  Donald MacKenzie.  Computers and the Sociology of
Mathematical  Proof.  In:  Trends  in  the  History  and  Philosophy  of  Mathematics,  Odense:
University of Southern Denmark, 2004, pp.67-86).

Technically, Appel and Haken created a set of 1476 small graphs (“configurations”) and a set
of more than 300 “discharging rules”, such that (put somewhat roughly):

a) every of the 1476 configurations is “reducible” in the sense that if some planar graph G
contains this configuration,  then one can reduce G to a smaller graph G’ such that any four-
coloring of G’ can be extended to a four-coloring of G;

b)  any  minimal non-four-colorable  graph,  “unavoidably”,  contains  one  of  the  1476
configurations, which can be found by applying the “discharging rules”.

Appel in 1998: “It is totally maddening that none of us seem to understand reducibility well
enough  to  prove  good  general  theorems  about  useful  enough  classes  of  reducible

http://en.wikipedia.org/wiki/Wolfgang_Haken
http://en.wikipedia.org/wiki/Kenneth_Appel
https://en.wikipedia.org/wiki/Four_color_theorem


86

configurations  and  thus  computers  must  be  used  to  show  each  individual  configuration
reducible.” See Ken Appel on the 4CT proof, December 1998.

“…  showing  that  a  given  configuration  is  reducible  is  fairly  straightforward,  but  very
laborious:  the  number  of  cases  to  consider  increases  geometrically  to  about  20,000,000”
(Gonthier) for many of the configurations. Thus, Appel and Haken used a computer to verify
and confirm that  each of  their  1476 configurations is  reducible.  In  1976,  this  verification
process took about 1200 hours of computer time.  This is why the correctness of the analysis,
by far, “could not be checked in detail by human beings” (MacKenzie).

In 1995, Neil Robertson, Daniel P. Sanders, Paul Seymour and Robin Thomas proposed an
“elegant … revision of the proof” (as put by Gonthier). They introduced new ideas, allowing
to reduce the set of configurations to be checked to 633, and the set of discharging rules – to
32. However, even after this achievement, still, the proof remained non-human-verifiable: it
“combined  a  textual  argument,  which  could  reasonably  be  checked  by  inspection,  with
computer code that could not [be checked by inspection]” (Gonthier, again). See  The Four
Color  Theo  rem  ,  November  13,  1995,  by  Robin  Thomas (1962-2020),  and  the  official
publication:

N.  Robertson,  D.  Sanders,  P.  Seymour,  and  R.  Thomas. ‘The  Four-Colour  Theorem’,
Journal Combinatorial Theory, Series B 70 (1997), 2–44. 

In 2004, the above-mentioned 1995 proof was revised, improved and formalized by G  eorges  
G  onthier  :

“…   we  have  written  a  formal  proof  script  that  covers  both  the  mathematical  and
computational  parts of the proof.  We have run this script through the Coq proof checking
system..., which mechanically verified its correctness in all respects. Hence, even though the
correctness of our proof still depends on the correct operation of several computer hardware
and software components (the processor, its operating system, the Coq proof checker, and the
Ocaml compiler that compiled it), none of these components are specific to the proof of the
Four Colour Theorem.”

“… the … 60,000 or so lines of the proof can be read for insight or even entertainment, but
need not be reviewed for correctness. That is the job of the Coq proof assistant, a job for
computers.” 

G. Gonthier.  Formal proof–the four-color theorem.  Notices of the AMS 55 (11), December
2008, 1382-1393

G. Gonthier. A computer-checked formalized proof of the Four   Colour Theorem  , 2016, pp.1-
57

But it represented a correct (checked!) proof of 4CT from an accepted set of mathematical
axioms. 

Two other famous computer assisted mathematical proofs:

- In 1989, by using a Cray super-computer, Clement W. H. Lam finished his proof that finite
projective plane of order 10 is impossible (for details see Projective plane in Wikipedia).

-  In  1998,  Thomas  C.  Hales finished  his  proof  of  Kepler  conjecture  about  the  densest
arrangement of equal spheres in space (Johannes Kepler conjectured it in 1611, for details see
Kepler conjecture in Wikipedia).

Visit The Coq Proof Assistant and Coq in Wikipedia.

https://en.wikipedia.org/wiki/Coq
https://coq.inria.fr/
http://en.wikipedia.org/wiki/Kepler_conjecture
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kepler.html
https://en.wikipedia.org/wiki/Thomas_Callister_Hales
http://en.wikipedia.org/wiki/Projective_plane
https://en.wikipedia.org/wiki/Clement_W._H._Lam
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/gonthier-4colproof.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/gonthier-4colproof.pdf
https://en.wikipedia.org/wiki/Georges_Gonthier
https://en.wikipedia.org/wiki/Georges_Gonthier
https://en.wikipedia.org/wiki/Georges_Gonthier
https://en.wikipedia.org/wiki/Georges_Gonthier
https://en.wikipedia.org/wiki/Robin_Thomas_(mathematician)
http://people.math.gatech.edu/~thomas/FC/fourcolor.html
http://people.math.gatech.edu/~thomas/FC/fourcolor.html
http://people.math.gatech.edu/~thomas/FC/fourcolor.html
http://cs.nyu.edu/pipermail/fom/1998-December/002476.html
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3. Predicate Logic

3.1. Proving Formulas Containing Quantifiers and Implication 
only

Theorem 3.1.1. [L1, L2, L12, L13, MP]: ∀ x B(x)→∃z(x+z+1=y). x B (x) . What does it

mean? It prohibits "empty domains".

Proof. Indeed,

(1) ∀ x B (x) Hypothesis assumed.

(2) ∀ x B(x)→ B(x) Axiom L12.

(3) B(x) By MP.

(4) B(x)→∃z(x+z+1=y). x B(x) Axiom L13.

(5) ∃z(x+z+1=y). x B(x) By MP.

Thus, by [L1, L2, MP] Deduction Theorem 2, there is a proof of [L1, L2, L12,

L13, MP]: ∀ x B(x)→∃z(x+z+1=y). x B (x) . Q.E.D.

Theorem 3.1.2.

a) [L1, L2, L12, L14, MP, Gen]: ∀ x (B →C )→(∀ x B → ∀ x C ) . What does

it mean?

b) [L1, L2, L12-L15, MP, Gen]: ∀ x (B →C )→(∃z(x+z+1=y). x B →∃z(x+z+1=y). x C ) . What does

it mean?

Proof. Let us prove(a).

(1) x(B→C)∀ Hypothesis assumed.

(2) xB∀ Hypothesis assumed.

(3) x(B→C)→(B→C)∀ Axiom L12: xF(x)→F(x).∀

(4) B→C From (1) and (3), by MP.
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(5) xB→B∀ Axiom L12: xF(x)→F(x).∀

(6) B From (2) and (5), by MP.

(7) C From (4) and (6), by MP.

(8) xC∀ From (7), by Gen.

In  this  proof,  Gen  is  applied  only  to  x,  which  is  not  a  free  variable  in
∀ x (B → C ) and ∀ x B . Thus, by Deduction Theorem 2, there is a proof

of [L1, L2, L12, L14, MP, Gen]: ∀ x (B →C )→(∀ x B → ∀ x C ) .

Let us prove (b).

(1) x(B→C)∀ Hypothesis assumed.

(2) x(B→C)→(B→C)∀ Axiom L12:  xF(x)→F(x).∀

(3) B→C From (1) and (2), by MP.

(4) C→ xC∃z(x+z+1=y). Axiom L13: F(x)→ xF(x).∃z(x+z+1=y).

(5) B→ xC∃z(x+z+1=y).
From (3) and (4), by transitivity of 
implication [L1, L2, MP].

(6) x(B→ xC)∀ ∃z(x+z+1=y). From (5), by Gen.

(7) x(B→ xC)→( xB→ xC)∀ ∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y).
Axiom L15:

x(F(x)→G)→( xF(x)→G) (no ∀ ∃z(x+z+1=y).
free occurrences of x in xC).∃z(x+z+1=y).

(8) xB→  xC∃z(x+z+1=y). ∃z(x+z+1=y). From (6) and (7), by MP.

In  this  proof,  Gen is  applied  only  to  x,  which  is  not  a  free  variable  in
∀ x (B → C ) . Thus, by [L1, L2, L14, MP, Gen] Deduction Theorem 2, there

is a proof of [L1, L2, L12-L15, MP, Gen]: ∀ x (B →C )→(∃z(x+z+1=y). x B →∃z(x+z+1=y). x C ) .

Q.E.D.

Now, let us prove two theorems allowing to make our proofs shorter.

Theorems 3.1.3. If F is any formula, then:

a) (U-introduction) [Gen]: F (x) ├ ∀ x F (x) .

b)  (U-elimination)   [L12,  MP,  Gen]: ∀ x F (x) ├ F (x) .  What  does  it

mean?
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c)  (E-introduction)   [L13,  MP,  Gen]: F (x) ├ ∃z(x+z+1=y). x F (x ) .  What  does  it

mean?

Proof. Obvious.

Theorems 3.1.4. If F is any formula, and G is a formula that does not contain
free occurrences of x, then:

a) (U2-introduction) [L14, MP, Gen] G → F (x) ├ G →∀ x F (x) . What

does it mean?

b) (E2-introduction) [L15, MP, Gen]: F (x)→G ├ ∃z(x+z+1=y). x F (x )→G . What

does it mean?

Proof. Let us prove (a). The following sequence of formulas represents a proof
of the formula G →∀ xF ( x) from the hypothesis G → F (x) :

(1) G→F(x) Hypothesis given.

(2) x(G→F(x))∀ Follows from (1) by Gen.

(3) x(G→F(x))→(G→ xF(x))∀ ∀
The  axiom  schema  L14 (no  free

occurrences of x in G).

(4) G→ xF(x)∀ From (2) and (3) by MP.

The proof of (b) is similar. Q.E.D.

Attention! Note  that  U-introduction,  U2-introduction  and  E2-introduction
involve  application  of  Gen,  so,  these  rules  fall  under  the  restriction  of
Deduction Theorem 2.

Let us apply the new rules to simplify the proof of Theorem 3.1.2.

(a):

(1) x(B→C)∀ Hypothesis assumed.

(2) xB∀ Hypothesis assumed.

(3) B→C From (1), by U-elimination.

(4) B From (2), by U-elimination.

(5) C From (3) and (4), by MP.

(6) xC∀ From (5), by Gen.

(b):
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(1) x(B→C)∀ Hypothesis assumed.

(2) B→C From (1), by U-elimination.

(3) C→ xC∃z(x+z+1=y). Axiom L13: F(x)→ xF(x).∃z(x+z+1=y).

(4) B→ xC∃z(x+z+1=y).
From (2) and (3), by transitivity of 
implication [L1, L2, MP].

(5) xB→ xC∃z(x+z+1=y). ∃z(x+z+1=y). From (4), by E2-introduction.

Theorem 3.1.5.

a) [L1, L2, L5, L12, L14, MP, Gen]: x yB(x, y) ↔ y xB(x, y). What does∀ ∀ ∀ ∀
it mean?

b) [L1, L2, L5, L13, L15, MP, Gen]: x yB(x, y)↔ y xB(x, y). What does it∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y).
mean?

c) [L1, L2, L12-L15, MP, Gen]: x yB(x, y)→ y xB(x, y). What does it∃z(x+z+1=y). ∀ ∀ ∃z(x+z+1=y).
mean? The converse implication x yB(x, y)→ y xB(x, y) cannot be true.∀ ∃z(x+z+1=y). ∃z(x+z+1=y). ∀
Explain, why.

Proof. 

Exercise 3.1.1. Prove (a) and (c) of Theorem 3.1.5. 

Let us prove (b).

(1) B(x, y)→ xB(x, y)∃z(x+z+1=y). Axiom L13 with F(x) = B(x, y).

(2) xB(x, y)→ y  xB(x, y)∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). Axiom L13 with F(y) = xB(x, y).∃z(x+z+1=y).

(3) B(x, y)→ y xB(x, y)∃z(x+z+1=y). ∃z(x+z+1=y).
From (1) and (2), by transitivity of 
implication [L1, L2, MP].

(4) yB(x, y)→ y  xB(x, y)∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). From (3), by E2-introduction.

(5) x yB(x, y)→ y xB(x, y)∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). From (4), by E2-introduction.

The proof of the converse implication [L1, L2, L13, L15, MP, Gen]: y x B(x,∃z(x+z+1=y). ∃z(x+z+1=y).
y)→ x yB(x, y) is identical.∃z(x+z+1=y). ∃z(x+z+1=y).

By C-introduction [L5, MP] we obtain the equivalence (b). Q.E.D.

Exercise 3.1.2. Prove in the constructive logic,

[L1-L10, L12-L15, MP, Gen]: x(B(x)→C(x))→( xB(x)→ xC(x)).∃z(x+z+1=y). ∀ ∃z(x+z+1=y).
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Dropping quantifiers

Theorem 3.1.6. If the formula B does not contain free occurrences of x, then

[L1-L2,  L12-L15,  MP,  Gen]: (∀ x B)↔ B ;(∃z(x+z+1=y). x B)↔ B ,  i.e.,  quantifiers

∀ x ;∃z(x+z+1=y). x can be dropped or introduced as needed.

Proof. By L12 and L13: ∀ x B → B ; B →∃z(x+z+1=y). x B . By L14 and L15:

 ∀ x (B → B)→(B →∀ x B) ; ∀ x (B → B)→(∃z(x+z+1=y). x B → B) .   By L1 and

L2, MP and Gen: ∀ x (B → B) . Q.E.D. 

3.2. Formulas Containing Negations and a Single Quantifier

Attention:  non-constructive  reasoning! ¬ xB→ x¬B.  This  formula  is∀ ∃z(x+z+1=y).
accepted in the classical logic: if not all x-s possess the property B, then there
is an x that does not possess B. It represents non-constructive reasoning in its
ultimate form: let us assume, all x-s possess the property B, if we succeed in
deriving a contradiction from this assumption, then – what? Is this a proof that
there is a particular x that does not possess the property B? Does our proof
contain a method allowing to build at least one such x? If not, do we have a
"real" proof of x¬B?∃z(x+z+1=y).

How many formulas can be built of the formula B by using negations and a
single quantifier?

¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∀

¬¬¬¬¬¬¬¬¬¬ x¬¬¬¬¬¬¬¬¬¬B∃z(x+z+1=y).

Classical logic

In  the  classical  logic:  [L1-L11,  MP]:├  ¬¬A↔A,  hence,  any  number  of

negations  can  be  reduced  to  zero  or  one,  and  we  have  to  investigate  the
following 8 formulas, in fact, 4 pairs or equivalent formulas:

 ¬ x¬B↔ xB; ¬ xB↔ x¬B; x¬B↔¬ xB; xB↔¬ x¬B; ∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).

All of them are provable in the classical logic. Indeed, the second equivalence
can be obtained from the first one by replacing B by ¬B, the third one – by
Contraposition Law. And finally, the fourth equivalence can be obtained from
the third one by replacing B by ¬B. Thus, we need to prove only the first
equivalence:
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Theorem 3.2.1. In the classical logic,

 [L1-L15, MP, Gen]:  ¬ x¬B ∀ ↔ xB.∃z(x+z+1=y).

Proof. a) ├ ¬ x¬B→ xB (this part can be proved in the classical logic only).∀ ∃z(x+z+1=y).

(1) B→ xB∃z(x+z+1=y). Axiom L13: F(x)→ xF(x).∃z(x+z+1=y).

(2) ¬ xB→¬B∃z(x+z+1=y). From (1), by Contraposition Law.

(3) ¬ xB→ x¬B∃z(x+z+1=y). ∀ From (2), by U2-introduction [L14, Gen]

(4) ¬ x¬B→¬¬ xB∀ ∃z(x+z+1=y). From (3), by Contraposition Law.

(5) ¬ x¬B→ xB∀ ∃z(x+z+1=y).
From (4), in Classical logic,
 ├ ¬¬B → B, and transitivity of 
implication.

b) ├ x B→¬ x¬B (this part can be proved in the constructive logic).∃z(x+z+1=y). ∀

(1) x¬B→¬B∀ Axiom L12: xF(x)→F(x).∀

(2) ¬¬B→¬ x¬B∀ From (1), by Contraposition Law.

(3) B→¬ x¬B∀ From (4), in Constructive logic,
├ B → ¬¬B, and transitivity of implication.

(4)  xB→¬ x¬B∃z(x+z+1=y). ∀ From (3), by E2-introduction [L15, Gen].

Q.E.D.

Constructive logic

Here we have a weaker Theorem 2.4.5 [L1-L9, MP]: ¬¬¬A↔¬A. Hence, any

number of negations can be reduced to zero, one, or two, and thus we obtain
3*2*3 = 18 formulas to be investigated. The following Table 3.2 represents the
results of this investigation from

A.Heyting. On weakened quantification. Journal of Symbolic Logic, 1936, vol.11, pp.119-121
(see also Kleene [1952], Section 3.5).

Legend of Table 3.2. a) In the classical logic, within each of the 4 groups all
formulas are equivalent, for example, in group III: ¬ xB↔ x¬B. Of course,∀ ∃z(x+z+1=y).
formulas belonging to different groups cannot be equivalent (explain, why).

b) Two formulas within a group are constructively equivalent if and only if
they  have  no  separating  lines  between  them.  For  example,  in  group  II:
constructively, ¬ x¬B↔¬¬ xB, but not ¬ x¬B↔ xB (explain, why). All∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).
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the formulas of the group IV are constructively equivalent.

Table 3.2

I

xB∀
--------------------------------------------

¬¬ xB∀
==========================

x¬¬B∀
¬¬ x¬¬B∀

¬ x¬B∃z(x+z+1=y).

III

x¬B∃z(x+z+1=y).
---------------------------------------------

¬¬ x¬B∃z(x+z+1=y).
¬ x¬¬B∀

==========================
¬ xB∀

II

xB∃z(x+z+1=y).
--------------------------------------------

x¬¬B∃z(x+z+1=y).
--------------------------------------------

¬¬ xB∃z(x+z+1=y).
¬¬ x¬¬B∃z(x+z+1=y).
¬ x¬B∀

IV

x¬B∀
¬¬ x¬B∀
¬ x¬¬B∃z(x+z+1=y).

¬ xB∃z(x+z+1=y).

c) If two formulas F1, F2 within a group (F1 – above, F2 – below) are separated

by a single line, then: constructively, F1→F2, and ¬¬(F2→F1), but not F2→F1.

For  example,  in  group  II:  constructively,  xB→¬ x¬B,  and∃z(x+z+1=y). ∀
¬¬(¬ x¬B→ xB), but not ¬ x¬B→ xB (explain, why).∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).

d)  If  two  formulas  F1,  F2 within  a  group  (F1 –  above,  F2 –  below)  are

separated by a double line, then: constructively, F1→F2, but not F2→F1, and

even  not  ¬¬(F2→F1).  For  example,  in  group  III:  constructively,

x¬B→¬ xB, but not ¬ xB→ x¬B, and even not ¬¬(¬ xB→ x¬B) (try∃z(x+z+1=y). ∀ ∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).
explaining,  why).  Thus,  the  implication  ¬ xB→ x¬B  could  be  called∀ ∃z(x+z+1=y).
“super-non-constructive”.

End of Legend.

Let  us  prove  the  implications  necessary  for  the  positive  part  of  the  above
legend to be true.

Note. Proofs necessary for the negative part are not considered in the current
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version of this book. The necessary methods are considered in Section 4.4.

Group I

I-1. Constructively, [L1, L2, L9, MP]: xB→¬¬ xB. ∀ ∀

Immediately, by [L1, L2, L9, MP]: A→¬¬A.

I-2. Constructively, [L1-L9, L12, L14, MP, Gen]: ¬¬ xB→ x¬¬B.∀ ∀

(1) xB→B∀ Axiom L12: xF(x)→F(x)∀

(2) ¬¬ xB→¬¬B∀
Theorem 2.4.7(a) [L1-L9, MP]:

(A→B)→(¬¬A→¬¬B)

(3) ¬¬ xB→ x¬¬B∀ ∀ U2-introduction [L14, Gen]

I-3. Constructively, [L1, L2, L9, MP]: x¬¬B→¬¬ x¬¬B.∀ ∀

Immediately, by [L1, L2, L9, MP]: A→¬¬A.

I-4. Constructively, [L1, L2, L9, L12, L15, MP, Gen]: ¬¬ x¬¬B→¬ x¬B.∀ ∃z(x+z+1=y).

(1) x¬¬B→¬¬B∀ Axiom L12: xF(x)→F(x)∀

(2) ¬¬¬B→¬ x¬¬B∀
Contraposition Law   [L1, L2, L9, 

MP]

(3) ¬B→¬¬¬B [L1, L2, L9, MP]: A→¬¬A

(4) ¬B→¬ x¬¬B∀
Transitivity of implication [L1, L2, 

MP]

(5) x¬B→¬ x¬¬B∃z(x+z+1=y). ∀ E2-introduction [L15, Gen]

(6) ¬¬ x¬¬B→¬ x¬B∀ ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

I-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB.∃z(x+z+1=y). ∀

(1) ¬B→ x¬B∃z(x+z+1=y). Axiom L13: F(x)→ xF(x)∃z(x+z+1=y).

(2) ¬ x¬B→¬¬B∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

(3) ¬¬B→B Classical logic, [L1-L11, MP]: ├ ¬¬A → A
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(4) ¬ x¬B→B∃z(x+z+1=y). Transitivity of implication [L1, L2, MP]

(5) ¬ x¬B→ xB∃z(x+z+1=y). ∀ U2-introduction [L14, Gen] 

Thus, we have proved that in Group I, constructively, F1→F2→F3→F4→F5,

and, in the classical logic, F5→F1, i.e., we have proved that in Group I: a) in

the classical logic, all the formulas are equivalent, and b) constructively, upper
formulas imply lower formulas.

I-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ x¬B→ x¬¬B.∃z(x+z+1=y). ∀

(1) ¬B→ x¬B∃z(x+z+1=y). Axiom L13: F(x)→ xF(x)∃z(x+z+1=y).

(2) ¬ x¬B→¬¬B∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

(3) ¬ x¬B→ x¬¬B∃z(x+z+1=y). ∀ U2-introduction [L14, Gen]

Thus, we have proved that in Group I, constructively, [L1, L2, L9, L12 -L15,

MP, Gen]: F3→F4→F5→F3, i.e., that formulas F3, F4, F5  are constructively

equivalent.

For Group I, it remains to prove 

I-7. Constructively, [L1-L10, MP]: ¬¬(¬¬ xB→ xB).∀ ∀

Immediately, by Theorem 2.5.2(d) [L1-L10, MP]: ¬¬(¬¬A→A).

Group II

II-1. Constructively, [L1, L2, L9, L12-L15, MP, Gen]: xB→ x¬¬B.∃z(x+z+1=y). ∃z(x+z+1=y).

(1) B→¬¬B [L1, L2, L9, MP]: A→¬¬A

(2) x(B→¬¬B)∀ Gen

(3) xB→ x¬¬B∃z(x+z+1=y). ∃z(x+z+1=y).
Theorem 3.1.2(b) [L1, L2, L12-L15, MP, 

Gen]

II-2. Constructively, [L1-L9, L12-L15, MP, Gen]: x¬¬B→¬¬ xB.∃z(x+z+1=y). ∃z(x+z+1=y).

(1) B→ xB∃z(x+z+1=y). Axiom L13: F(x)→ xF(x)∃z(x+z+1=y).

(2) ¬¬B→¬¬ xB∃z(x+z+1=y).
Theorem 2.4.7(a) [L1-L9, MP]:

(A→B)→(¬¬A→¬¬B)
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(3) x(¬¬B→¬¬ xB)∀ ∃z(x+z+1=y). Gen

(4) x¬¬B→¬¬ xB∃z(x+z+1=y). ∃z(x+z+1=y).
Theorem 3.1.2(b) [L1, L2, L12-L15, MP, 

Gen]

II-3. Constructively, [L1-L9, L12-L15, MP, Gen]: ¬¬ xB→¬¬ x¬¬B.∃z(x+z+1=y). ∃z(x+z+1=y).

Immediately  from  II-1,  by  Theorem  2.4.7(a)  [L1-L9,  MP]:

(A→B)→(¬¬A→¬¬B).

II-4. Constructively, [L1-L9, L12, L15, MP, Gen]: ¬¬ x¬¬B→¬ x¬B.∃z(x+z+1=y). ∀

(1) x¬B→¬B∀ Axiom L12: xF(x)→F(x)∀

(2) ¬¬B→¬ x¬B∀ Contraposition Law [L1, L2, L9, MP]

(3) x¬¬B→¬ x¬B∃z(x+z+1=y). ∀ E2-introduction [L15, Gen]

(4) ¬¬ x¬¬B→¬¬¬ x¬B∃z(x+z+1=y). ∀
Theorem 2.4.7(a) [L1-L9, MP]: 

(A→B)→(¬¬A→¬¬B).

(6) ¬¬¬ x¬B→¬ x¬B∀ ∀ Theorem 2.4.5 [L1-L9, MP]: ¬¬¬A↔¬A

(7) ¬¬ x¬¬B→¬ x¬B∃z(x+z+1=y). ∀ Transitivity of implication [L1, L2, MP]

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB.∀ ∃z(x+z+1=y).

(1) ¬ x¬B→¬¬ xB∀ ∃z(x+z+1=y).
II-6 [L1, L2, L9, L13, L14, MP, Gen], see 

below.

(2) ¬¬ xB→ xB∃z(x+z+1=y). ∃z(x+z+1=y). Classical logic, [L1-L11, MP]: ¬¬A → A

(3) ¬ x¬B→ xB∀ ∃z(x+z+1=y).
From (1) and (2), by transitivity of 
implication [L1, L2, MP].

Thus, we have proved that in Group II, constructively, F1→F2→F3→F4→F5,

and, in the classical logic, F5→F1, i.e., we have proved that in Group II: a) in

the classical logic, all the formulas are equivalent, and b) constructively, upper
formulas imply lower formulas.

II-6. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ x¬B→¬¬ xB.∀ ∃z(x+z+1=y).

(1) B→ xB∃z(x+z+1=y). Axiom L13: F(x)→ xF(x).∃z(x+z+1=y).
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(2) ¬ xB→¬B∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

(3) x(¬ xB→¬B)∀ ∃z(x+z+1=y). Gen

(4) ¬ xB→ x¬B∃z(x+z+1=y). ∀ U2-introduction [L14, Gen]

(5) ¬ x¬B→¬¬ xB∀ ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

Thus, we have proved that in Group II, constructively, [L1-L9, L12-L15, MP,

Gen]:  F3→F4→F5→F3,  i.e.,  that  formulas  F3,  F4,  F5  are  constructively

equivalent.

II-7. Constructively, [L1-L10, MP]: ¬¬(¬¬ xB→ xB).∃z(x+z+1=y). ∃z(x+z+1=y).

Immediately, by Theorem 2.5.2, [L1-L10, MP]: ¬¬(¬¬A→A).

Thus,  constructively,  ¬¬(F3→F1),  and  F1→F2→F3→F4→F5→F3.  By

Theorem 2.4.7(d), [L1-L9, MP] ¬¬(A→B), ¬¬(B→C) ├ ¬¬(A→C). Thus, in

fact, we have proved that in Group II, for all i, j, constructively, ¬¬(F i→Fj) (a

kind of "weak equivalence").

Group III

III-1. Constructively, [L1, L2, L9, MP]: x¬B→¬¬ x¬B∃z(x+z+1=y). ∃z(x+z+1=y).

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.

III-2. Constructively, [L1, L2, L9, L12, L15, MP, Gen]: ¬¬ x¬B→¬ x¬¬B.∃z(x+z+1=y). ∀

(1) x¬¬B→¬¬ x¬¬B∀ ∀ I-3 [L1, L2, L9, MP], see above.

(2) ¬¬ x¬¬B→¬ x¬B∀ ∃z(x+z+1=y).
I-4 [L1, L2, L9, L12, L15, MP, Gen], see 

above. 

(3) x¬¬B→¬ x¬B∀ ∃z(x+z+1=y). Transitivity of implication [L1, L2, MP]

(4) ¬¬ x¬B→¬ x¬¬B∃z(x+z+1=y). ∀ Contraposition Law [L1, L2, L9, MP]

III-3. Constructively, [L1-L9, L12, L14, MP, Gen]: ¬ x¬¬B→¬ xB.∀ ∀

(1) xB→¬¬ xB ∀ ∀ I-1 [L1, L2, L9, MP], see above.

(2) ¬¬ xB→ x¬¬B∀ ∀ I-2 [L1-L9, L12, L14, MP, Gen]
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(3) xB→ x¬¬B∀ ∀ Transitivity of implication [L1, L2, MP]

(4) ¬ x¬¬B→¬ xB∀ ∀ Contraposition Law [L1, L2, L9, MP]

III-4. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ xB→ x¬B.∀ ∃z(x+z+1=y).

(1) ¬ x¬B→ xB∃z(x+z+1=y). ∀
I-5: in the classical logic, [L1-L11, L13, L14,

MP, Gen]

(2) ¬ xB→¬¬ x¬B∀ ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

(3) ¬¬ x¬B→ x¬B∃z(x+z+1=y). ∃z(x+z+1=y). Classical logic, [L1-L11, MP]: ├ ¬¬A → A

(4) ¬ xB→ x¬B∀ ∃z(x+z+1=y). Transitivity of implication [L1, L2, MP]

Thus, we have proved that in Group III, constructively, F1→F2→F3→F4, and,

in the classical logic, F4→F1, i.e., we have proved that in Group III: a) in the

classical logic, all the formulas are equivalent,  and b) constructively,  upper
formulas imply lower formulas.

III-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ x¬¬B→¬¬ x¬B.∀ ∃z(x+z+1=y).

(1) ¬ x¬B→ x¬¬B∃z(x+z+1=y). ∀ I-6 [L1, L2, L9, L13, L14, MP, Gen]

(2) ¬ x¬¬B→¬¬ x¬B∀ ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

Thus, we have proved that in Group III, constructively, F2→F3→F2, i.e., that

formulas F2, F3 are constructively equivalent.

III-5. Constructively, [L1-L10, MP]: ¬¬(¬¬ x¬B→ x¬B).∃z(x+z+1=y). ∃z(x+z+1=y).

Immediately, by Theorem 2.5.2 [L1-L10, MP]: ¬¬(¬¬A→A).

Group IV

IV-1. Constructively, [L1, L2, L9, MP]: x¬B→¬¬ x¬B.∀ ∀

Immediately, by Theorem 2.4.4 [L1, L2, L9, MP]: A→¬¬A.

IV-2. Constructively, [L1-L9, L12-L15, MP, Gen]: ¬¬ x¬B→¬ x¬¬B.∀ ∃z(x+z+1=y).

(1) x¬¬B→¬ x¬B∃z(x+z+1=y). ∀
From II-2, II-3, II-4 [L1-L9, L12-L15, MP, 

Gen], by transitivity of implication [L1, L2, 

MP].
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(2) ¬¬ x¬B→¬ x¬¬B∀ ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

IV-3. Constructively, [L1, L2, L9, L12-L15, MP, Gen]: ¬ x¬¬B→¬ xB.∃z(x+z+1=y). ∃z(x+z+1=y).

(1) xB→ x¬¬B∃z(x+z+1=y). ∃z(x+z+1=y). II-1 [L1, L2, L9, L12-L15, MP, Gen]

(2) ¬ x¬¬B→¬ xB∃z(x+z+1=y). ∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

IV-4. Constructively, [L1, L2, L9, L13, L14, MP, Gen]: ¬ xB→ x¬B.∃z(x+z+1=y). ∀

(1) B→ xB∃z(x+z+1=y). Axiom L13: F(x)→ xF(x)∃z(x+z+1=y).

(2) ¬ xB→¬B∃z(x+z+1=y). Contraposition Law [L1, L2, L9, MP]

(3) ¬ xB→ x¬B∃z(x+z+1=y). ∀ U2-introduction [L14, Gen]

Thus, we have proved that in Group IV all the formulas are constructively
equivalent.

And thus, we have proved the positive part of the legend of Table 3.2. The
negative part  of the legend asserts  that the following (classically  provable)
formulas cannot be proved constructively:

(1) ¬¬ xB→ xB∀ ∀ See Group I. Simply, an instance of (the non-
constructive) ¬¬A→A. 

(2) x¬¬B→¬¬ xB∀ ∀ See Group I. Super-non-constructive: even 
¬¬(2) is non-constructive!

(3) ¬¬( x¬¬B→¬¬ xB)∀ ∀ ¬¬(2). See Group I. 

(4) x¬¬B→ xB∃z(x+z+1=y). ∃z(x+z+1=y). See Group II. Nearly, an instance of (the non-
constructive) ¬¬A→A.

(5) ¬¬ xB→ x¬¬B∃z(x+z+1=y). ∃z(x+z+1=y). See Group II. Stronger than simply non-
constructivity of ¬¬A→A?

(6) ¬¬ x¬B→ x¬B∃z(x+z+1=y). ∃z(x+z+1=y). See Group III. Simply, an instance of (the 
non-constructive) ¬¬A→A.

(7) ¬ xB→¬ x¬¬B∀ ∀ See Group III. Super-non-constructive: 
even ¬¬(7) is non-constructive!

(8) ¬¬(¬ xB→¬ x¬¬B)∀ ∀ ¬¬(7). See Group III. 

Still,  the  most  striking  (classically  provable)  non-constructive  quantifier
implications correspond to existence proofs via reductio ad absurdum:
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(8) ¬ x¬B→ xB∀ ∃z(x+z+1=y).

¬¬(8) is constructively provable, but (8) is not,
see Group II. If we know how to derive a 
contradiction from x¬B, then may be, we do ∀
not know how to find a particular x such that 
B.

(9) ¬ x¬B→¬¬ x¬¬B∀ ∃z(x+z+1=y).

(9) is weaker than (8), but still non-
constructive, see Group II. If we know how to 
derive a contradiction from x¬B, then may ∀
be, we do not know how to derive a 
contradiction from ¬ x¬¬B.∃z(x+z+1=y).

(10) ¬ xB→ x¬B∀ ∃z(x+z+1=y).

Even ¬¬(10) is non-constructive, see Group 
III. If we know how to derive a contradiction 
from xB, then may be, we do not know how ∀
to find a particular x such that ¬B.

(11) ¬ xB→¬¬ x¬B∀ ∃z(x+z+1=y).

(11) is weaker than (10), but still super-non-
constructive (i.e., even ¬¬(11) is non-
constructive), see Group III. If we know how 
to derive a contradiction from xB, then may ∀
be, we do not know how to derive a 
contradiction from ¬ x¬B.∃z(x+z+1=y).

3.3. Proving Formulas Containing Conjunction and 
Disjunction

Theorem 3.3.1. 

a) [L1-L5, L12, L14, MP, Gen]: ∀ x (B∧C )↔∀ x B∧∀ x C .

b) [L1, L2, L6-L8, L12, L14, MP, Gen]: ├ ∀ x B∨∀ x C →∀ x(B∨C ) . The

converse  formula ∀ x (B∨C )→∀ x B∨∀ x C cannot  be  true.  Explain,
why.

Proof. Before proving (a), do Exercise 3.3.1.

Exercise 3.3.1. Prove:

a) [L3-L5, L12, MP, Gen]: ∀ x (B∧C ) ├ ∀ x B∧∀ x C ;

b)  [L3-L5, L12, MP, Gen]: ∀ x B∧∀ x C ├ ∀ x (B∧C ) . 

Since,  in your first  proof, Gen has been applied only to x, which does not
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appear as a free variable in ∀ x (B∧C ) , then, by Deduction Theorem 2 [L1,

L2, L14, MP, Gen] we obtain 

 [L1-L5, L12, L14, MP, Gen]: ∀ x (B∧C )→∀ x B∧∀ x C .

Similarly, in your second proof, Gen has been applied only to x, which does
not appear as a free variable in ∀ x B∧∀ x C , then, by Deduction Theorem
2 [L1, L2, L14, MP, Gen] we obtain

 [L1- L5, L12, L14, MP, Gen]: ∀ x B∧∀ x C →∀ x(B∧C ) .

Now, by C-introduction [L5] we obtain the equivalence (a) of Theorem 3.3.1.

Exercise 3.3.2. Use D-elimination to prove (b) of Theorem 3.3.1.

Q.E.D.

Theorem 3.3.2.

a) [L1-L8, L12-L15, MP, Gen]: ∃z(x+z+1=y). x(B∨C )↔∃z(x+z+1=y). x B∨∃z(x+z+1=y). x C .

b)  [L1-L5,  L13-L15,  MP,  Gen]: ∃z(x+z+1=y). x(B∧C )→∃z(x+z+1=y). x B∧∃z(x+z+1=y). x C .  The  converse

implication ∃z(x+z+1=y). x B∧∃z(x+z+1=y). x C →∃z(x+z+1=y). x(B∧C ) cannot be true. Explain, why.

Exercise 3.3.3. a)  Prove (a→) of  Theorem 3.3.2.  (Hint:  start  by assuming
B∨C , apply D-elimination, etc., and finish by E2-introduction.)

b) Prove (a←) of Theorem 3.3.2. (Hint: start by proving B →∃z(x+z+1=y). x (B∨C ) and
C →∃z(x+z+1=y). x (B∨C ) , apply D-introduction and finish E2-introduction.)

c)  Prove  (b)  of  Theorem  3.3.2.  (Hint:  start  by  assuming B∧C ,  derive
∃z(x+z+1=y). x B∧∃z(x+z+1=y). x C ,  and finish by E2-introduction.)

3.4. Replacement Theorems

An example: we know that log xy=log x+ log y . Hence,

log 2a 3b=log 2a+log 3b .

The latter formula represents an instance of the former one. But we know also
that log x y= y⋅log x , hence:

log 2a 3b=log 2a+log 3b=a⋅log 2+b⋅log 3 .

Here,  we  applied  the  formula log x y= y⋅log x to  replace  sub-formulas
log 2a and log 3b by a⋅log 2 and b⋅log 3 .  In  school  algebra,  a  legal

move.
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Now,  logic:  we  know  the  following  theorem  of  the  classical  logic:
(A→ B)↔ ¬ A∨B . This equivalence could be used to replace implications

by negations and disjunctions, for example, in the formula ( X →Y )→ Z .
The first step is straightforward:

( X → Y )→ Z ↔ ¬( X → Y )∨Z . 

But  the  next  step,  allowing  to  obtain  the  formula ¬(¬ X ∨Y )∨Z means
already  that  the  equivalence (A → B)↔¬ A∨B is  applied  to  the  sub-
formula X →Y : it was replaced by ¬ X ∨Y .

We  know  also  that ¬(A∨B)↔¬ A∧¬ B ,  hence,  we  could  continue,
obtaining  further  formulas (¬¬ X ∧¬Y )∨Z and ( X∧¬Y )∨Z (since
¬¬A↔A). Again, we replaced sub-formulas by equivalent formulas.. 

But we would wish to conclude that the final result of our transformations is
equivalent to the initial formula:

( X →Y )→ Z ↔( X ∧¬Y )∨Z .

Until now, in our proofs, we were not allowed to use this very natural kind of
mathematical argument: if we replace sub-formulas of some formula F by
equivalent sub-formulas, then we obtain a formula F ' that is equivalent to
F .

In  this  section  we will  prove  meta-theorems filling  this  gap,  the  so-called
replacement theorems.

We will  prove also that the meaning of a formula does not depend on the
names of bound variables used in it. For example,

 ( xB(x)→C)↔( yB(y)→C).∃z(x+z+1=y). ∃z(x+z+1=y).

Note. To prove all these replacement theorems we will need only the minimal
logic [L1-L9, L12-L15, MP, Gen].

Sub-formulas and Occurrences

Intuitively, B is a sub-formula of the formula C, if B is a formula, and B is a
part  (substring) of C. But note that a sub-formula may appear in the same
formula more than once,  as,  for  example,  in  the following instance  of  the
axiom L1:  xB(x)∃z(x+z+1=y). →( xC(x)→∃z(x+z+1=y). xB(x)∃z(x+z+1=y). ). Thus, it would be more correctly to

speak about occurrences of sub-formulas. In the above example, there are two
occurrences of the formula xB(x).∃z(x+z+1=y).

The formal definition is as follows:

a) o(B) is an occurrence of B in B.
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b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in ¬C, in
C∧D , D∧C ,C∨D , D∨C , C→D, and D→C.

b) If o(B) is an occurrence of B in C, then o(B) is an occurrence of B in xC,∃z(x+z+1=y).
and xC.∀

We can define also the notion of propositional occurrences:

a) o(B) is a propositional occurrence of B in B.

b) If o(B) is a propositional occurrence of B in C, then o(B) is a propositional
occurrence of B in ¬C, in C∧D , D∧C ,C∨D , D∨C , C→D, and D→C.

Intuitively, o(B) is a propositional occurrence of B in C, if, in C, no quantifiers
stand over o(B).

Replacement Lemma 1. In the minimal logic, [L1-L9, MP]:

(a) A↔B├ (A→C)↔(B→C) [L1-L5, MP] 

(b) A↔B├ (C→A)↔(C→B) [L1-L5, MP]

(c) A↔B├ A∧C ↔ B∧C [L1-L5, MP]

(d) A↔B├ C∧A↔C∧B [L1-L5, MP]

(e) A↔B├ A∨C ↔ B∨C [L1-L8, MP]

(f) A↔B├ C∨A↔C∨B [L1-L8, MP]

(g) A↔B├ ¬A↔¬B [L1-L9, MP]

Proof.  To  prove  (a), we  will  first  prove  that  [L1,  L2,  L4,  MP]:  A↔B ├

(A→C)→(B→C).

(1) (A → B)∧( B → A) A↔B – hypothesis assumed.

(2) A→C Hypothesis assumed.

(3) B→A From (1), by Axiom L4.

(4) B→C
From (3) and (2), by transitivity of 
implication [L1, L2, MP]. 

Thus,  by [L1,  L2,  MP]  Deduction  Theorem 1,  [L1,  L2,  L4,  MP]:  A↔B ├

(A→C)→(B→C).

In a similar way, we can prove that
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[L1, L2, L3, MP]: A↔B ├ (B→C)→(A→C).

Now, by C-introduction [L5, MP], we obtain (a).

Exercise 3.4.1. Prove (b, c, d) of Replacement Lemma 1.

Exercise 3.4.2. Prove (e, f, g) of Replacement Lemma 1.

Q.E.D.

Replacement Theorem 1. Let us consider three formulas: B, B', C, where B is
a sub-formula of C, and o(B) is a propositional occurrence of B in C. Let us
denote by C' the formula obtained from C by replacing o(B) by B'. Then, in the
minimal logic,

[L1-L9, MP]: B↔B'├ C↔C'.

Proof. Induction by the "depth" of the propositional occurrence o(B).

Induction base: depth  = 0.  Then C is  B,  and C'  is  B'.  The conclusion  is
obvious.

Induction step. If C is not B, then one of the following holds:

a) C is F→G, and o(B) is in F.

b) C is F→G, and o(B) is in G.

c) C is F∧G , and o(B) is in F.

d) C is F∧G , and o(B) is in G.

e) C is F∨G , and o(B) is in F.

f) C is F∨G , and o(B) is in G.

g) C is ¬F, and o(B) is in F.

Case  (a).  By  induction  assumption,  [L1-L9,  MP]:  B↔B'├  F↔F'.  By

Replacement Lemma 1(a), [L1-L9, MP]: F↔F' ├ (F→G)↔(F'→G). Thus,

 [L1-L9, MP]: B↔B' ├ C↔C'.

Exercise 3.4.3. Repeat the above argument for the remaining cases (b, c, d, e,
f, g).

Q.E.D.

Now, we can use the replacement argument mentioned at the beginning of this
section – at least, for propositional occurrences of equivalent sub-formulas.

Replacement Lemma 2. In the minimal logic, [L1-L9, L12-L15, MP, Gen]:



105

(a) B↔C ├ xB↔ xC∀ ∀ [L1-L5, L12, L14, MP, Gen]

(b) B↔C ├ xB↔ xC∃z(x+z+1=y). ∃z(x+z+1=y). [L1-L5, L12-L15, MP, Gen]

Exercise 3.4.4. Prove Replacement Lemma 2.

Replacement Theorem 2. Let us consider three formulas: B, B', C, where B is
a sub-formula of C, and o(B) is any occurrence of B in C. Let us denote by C'
the formula obtained from C by replacing o(B) by B'. Then, in the minimal
logic,

 [L1-L9, L12-L15, MP, Gen]: B↔B'├ C↔C'.

Proof. Induction by the "depth" of the occurrence o(B).

Induction base: depth  = 0.  Then C is  B,  and C'  is  B'.  The conclusion  is
obvious.

Induction step. If C is not B, then one of the following holds:

a)-g) – as in the proof of Replacement Theorem 1.

h) C is xF, and o(B) is in F.∀

i) C is xF, and o(B) is in F.∃z(x+z+1=y).

Case  (h).  By  induction  assumption,  [L1-L9,  L12-L15,  MP,  Gen]:  B↔B'├

F↔F'.  By  Replacement  Lemma  2(a),  [L1-L9,  L12-L15,  MP,  Gen]:  F↔F'├

xF↔ xF'. Thus, [L∀ ∀ 1-L9, L12-L15, MP, Gen]: B↔B'├ C↔C'.

Case (i). By induction assumption, [L1-L9, L12-L15, MP, Gen]: B↔B'├ F↔F'.

By  Replacement  Lemma  2(b),  [L1-L9,  L12-L15,  MP,  Gen]:  F↔F'├

xF↔ xF'. Thus, [L∃z(x+z+1=y). ∃z(x+z+1=y). 1-L9, L12-L15, MP, Gen]: B↔B'├ C↔C'.

Q.E.D.

Now (only now!),  we may use in our proofs the replacement argument
mentioned at the beginning of this section. And, for any equivalent sub-
formulas!

Finally, let us prove that the meaning of a formula does not depend on the
names of bound variables used in it. Intuitively, it "must be so", but now we
will prove this intuition as a meta-theorem.

Replacement Lemma 3. If the formula B does not contain the variable y, then
(in the minimal logic):

a) [L5, L12, L14, MP, Gen]: xB(x)↔ yB(y);∀ ∀

b) [L5, L13, L15, MP, Gen]: xB(x)↔ yB(y).∃z(x+z+1=y). ∃z(x+z+1=y).
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Proof. a) First, let us prove [L12, L14, MP, Gen]: xB(x)→ yB(y).∀ ∀

(1) xB(x)→B(y)∀
Axiom L12: xF(x)→F(t). B(x) ∀
does not contain y, hence, B(x/y) is 
an admissible substitution.

(2) ( xB(x)→ yB(y))∀ ∀ By U2-introduction [L14, Gen].

The converse [L12, L14, MP, Gen(x)]: yB(y)→ xB(x) is proved in a similar∀ ∀
way. Now, by C-introduction [L5, MP], we obtain (a).

b) First, let us prove [L5, L13, L15, MP, Gen]: xB(x)→ yB(y).∃z(x+z+1=y). ∃z(x+z+1=y).

(1) B(x)→ yB(y)∃z(x+z+1=y).
Axiom L13: F(t)→ yF(y). B(y) does∃z(x+z+1=y).
not contain x, hence, B(y/x) is an 
admissible substitution.

(2) xB(x)→ yB(y)(∃z(x+z+1=y). ∃z(x+z+1=y). By E2-introduction [L15, Gen].

The converse [L13, L15, MP, Gen(x)]: yB(y)→ xB(x) is proved in a similar∃z(x+z+1=y). ∃z(x+z+1=y).
way. Now, by C-introduction [L5, MP], we obtain (b).

Q.E.D.

Replacement Theorem 3. Let y be a variable that does not occur in a formula
F, containing an occurrence of a quantifier x (or x). Let us replace by ∀ ∃z(x+z+1=y). y all
occurrences of the variable  x bound by this particular quantifier occurrence.
Let us denote the resulting formula by F'. Then, in the minimal logic,

 [L1-L9, L12-L15, MP, Gen]:├ F↔F'.

Proof. Thus, the formula F contains a sub-formula xB(x) (or xB(x)), and∀ ∃z(x+z+1=y).
we wish to replace it by y(B(y) (or yB(y)), where y does not occur in F. By∀ ∃z(x+z+1=y).
Replacement  Lemma  3,  in  the  minimal  logic,  xB(x)↔ yB(y),  and∀ ∀

xB(x)↔ yB(y).  Hence,  by Replacement  Lemma 2,  in  the minimal  logic,∃z(x+z+1=y). ∃z(x+z+1=y).
F↔F'. Q.E.D.

Now  let  us  repeat  our  example.  We  know  that  (in  the  classical  logic):
(A → B)↔ ¬ A∨B .  Hence,  the  formula  (X→Y)→Z is equivalent  to
¬( X → Y )∨Z ,  and  to ¬(¬ X ∨Y )∨Z .  We  know  also  that
¬(A∨B)↔¬ A∧¬ B , hence, we can continue: (X→Y)→Z is equivalent to
(¬¬ X ∧¬ Y )∨Z , and to ( X ∧¬Y )∨Z  (since ¬¬A↔A).

Now, in our logic, we can use freely this very natural kind of mathematical
argument. And we will do that in the subsequent sections.
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3.5. Constructive Embedding

Glivenko's  Theorem  (see  Section  2.7)  provides  a  simple  "constructive
embedding"  for  the  classical  propositional  logic:  any  classically  provable
formula can be "proved" in the constructive logic, if you put two negations
before it. This theorem does not hold for the predicate logic. For example (see
Section 3.2),

II-5. In the classical logic, [L1-L11, L13, L14, MP, Gen]: ¬ x¬B→ xB.∀ ∃z(x+z+1=y).

The  double  negation  of  this  formula,  i.e.,  the  formula  ¬¬(¬ x¬B→ xB)∀ ∃z(x+z+1=y).
cannot  be  proved  in  the  constructive  predicate  logic.  Thus,  instead  of  the
simple  operation  ¬¬F,  we must  search  for  a  more  complicated  embedding
operation.

However,

Exercise  3.5.1 (optional,  for  smart  students).  Verify  that  a  formula  F  is  provable  in  the
classical predicate logic if and only if ¬¬F is provable in the constructive predicate logic plus
the following axiom schema: x¬¬B→¬¬ xB (the so-called ∀ ∀ Double Negation Shift schema,
see Intuitionistic Logic by Joan Moschovakis in Stanford Encyclopedia of Philosophy.

The first embedding operation was introduced by  Andrey Nikolaevich Kolmogorov (1903-
1987) in 

A.N.Kolmogorov. On the principle tertium non datur. Matem. sbornik, 1925, vol.32, pp.646-
667 (in Russian).

A quote from A Short Biography of A.N. Kolmogorov by Paul M.B. Vitanyi follows:

"K. got interested in mathematical logic, and in 1925 published a paper in Mathematicheskii
Sbornik on the law of the excluded middle, which has been a continuous source for later work
in mathematical logic. This was the first Soviet publication on mathematical logic containing
(very substantial) new results, and the first systematic research in the world on intuitionistic
logic. K. anticipated to a large extent A. Heyting 's formalization of intuitionistic reasoning,
and  made a  more  definite  correlation between classical  and intuitionistic  mathematics.  K.
defined an operation for `embedding' one logical theory in another. Using this – historically
the first such operation, now called the `Kolmogorov operation' – to embed classical logic in
intuitionistic  logic,  he proved that  application of  the law of the excluded middle in  itself
cannot lead to a contradiction."

See also Kolmogorov Centennial.

We will investigate the following version of an embedding operation: to obtain
O(F), in a formula F, put two negations before: a) every atomic formula, b)
every disjunction, c) every existential quantifier. More precisely, let us define
the following embedding operation O (you may wish to compare it with some
other versions possessing similar properties):

http://kolmogorov.com/Kolmogorov.html
http://www.cwi.nl/~paulv/KOLMOGOROV.BIOGRAPHY.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kolmogorov.html
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/entries/logic-intuitionistic/
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Operation O
Detlovs [1964]

Operation K
Kolmogorov 
[1925]

Operation O'
Gödel [1933],
see Kleene [1952]

Operation Oo 
Gentzen [1936],
see Kleene [1952]

If F is an atomic 
formula, then O(F) 
is ¬¬F.

K(F) is ¬¬F. O'(F) is F. Oo(F) is F.

O(F→G) is 
O(F)→O(G).

¬¬(K(F)→K(G)) ¬(O ' (F )∧¬O ' (G)) Oo(F)→Oo(G)

O (F∧G)  is
O (F )∧O (G ) .

¬¬(K ( F )∧K (G)) O' (F )∧O' (G ) Oo( F )∧O o(G)

O (F∨G)  is
¬¬(O ( F )∨O (G))

¬¬(K ( F )∨K (G)) ¬(¬O ' (F )∧¬O ' (G)) ¬(¬Oo (F )∧¬Oo(G ))

O(¬F) is ¬O(F). ¬¬¬K(F), or ¬K(F)* ¬O'(F) ¬Oo(F)

O( xF) is xO(F).∀ ∀ ¬¬ xK(F)∀ xO'(F)∀ xO∀ o(F)

O( xF) is ∃z(x+z+1=y).
¬¬ xO(F).∃z(x+z+1=y). ¬¬ xK(F)∃z(x+z+1=y). ¬ x¬O'(F)∀ ¬ x¬O∀ o(F)

(*) By Theorem 2.4.5, [L1-L9, MP]: ¬¬¬K(F)↔¬K(F).

For example, let us take the above formula ¬ x¬B→ xB. If B is an atomic∀ ∃z(x+z+1=y).
formula, then

O(¬ x¬B→ xB) is ¬ x¬¬¬B→¬¬ x¬¬B, i.e., ¬ x¬B→¬¬ x¬¬B.∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).

The latter formula is constructively provable (see Section 3.2, Group II).

Lemma 3.5.1. For any formula F, in the classical logic, F↔O(F).

Proof. By induction. Let us remind that [L1-L11, MP]: ¬¬A ↔ A.

1. Induction base: F is an atomic formula. Then O(F) is ¬¬F. Since [L1-L11,

MP]: ¬¬F↔F, in the classical logic, O(F)↔F.

2. Induction step. 

Case 2a: F is B∨C . Then O(F) is ¬¬(O(B)∨O (C )) . 

(1) O(B)↔B Induction assumption.

(2) O(C)↔C Induction assumption.

(3) B∨C ↔O( B)∨C From (1), by Replacement 
Theorem 1.
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(4) O(B)∨C ↔O( B)∨O(C ) From (2), by Replacement 
Theorem 1.

(5) O(B)∨O (C)↔¬¬(O( B)∨O(C )) [L1-L11, MP]: ¬¬A ↔ A.

(6)
B∨C ↔¬¬(O (B)∨O(C )) , i.e., 

F↔O(F)
By transitivity of implication.

Case 2b: F is xB. Then O(F) is ¬¬ xO(B).∃z(x+z+1=y). ∃z(x+z+1=y).

(1) O(B)↔B Induction assumption.

(2) xB↔ xO(B)∃z(x+z+1=y). ∃z(x+z+1=y). From (1), by Replacement Theorem 2.

(3) xO(B)↔¬¬ xO(B)∃z(x+z+1=y). ∃z(x+z+1=y). [L1-L11, MP]: ¬¬A ↔ A.

(4)
xB↔¬¬ xO(B), i.e., ∃z(x+z+1=y). ∃z(x+z+1=y).

F↔O(F)
By transitivity of implication.

Case 2c: F is B→C.

Case 2d: F is B∧C .

Case 2e: F is ¬B.

Case 2f: F is xB.∀

Exercise 3.5.2. Prove (c, d, e, f).

Q.E.D.

Still, the key feature of the formulas having the form O(F) is given in 

Lemma 3.5.2. For any formula F, there is a proof of

[L1-L9, L12, L14, MP, Gen]: ¬¬O(F)↔O(F).

Thus,  in  the minimal logic,  we may drop the double negation before O(F)
(before an arbitrary formula, we can do this only in the classical logic).

Note. In some textbooks, if ¬¬G↔G can be proved in the constructive logic,
then  G  is  called  a  stable  formula.  Thus,  the  embedding  O(F)  is  a  stable
formula for any F.

Proof. [L1, L2, L9, MP]: A→¬¬A. Thus, it remains to prove ¬¬O(F)→O(F).

Let us proceed by induction. 

1.  Induction  base:  F  is  an  atomic  formula.  Then  O(F)  is  ¬¬F,  and
¬¬O(F)→O(F) is ¬¬¬¬F→¬¬F. Let us remind that [L1-L9, MP]: ¬¬¬A↔¬A.

Hence, by taking A = ¬F:
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 [L1-L9, MP]: ¬¬¬¬F→¬¬F, and [L1-L9, MP]: ¬¬O(F)→O(F).

2. Induction step. 

Case 2a: F is B∨C , or xB, or ¬B. Then O(F) is ∃z(x+z+1=y). ¬¬(O( B)∨O(C )) ,
or  ¬¬ xO(B),  or ¬O(B).  Hence,  ∃z(x+z+1=y). ¬¬O(F)→O(F) is ¬¬¬G→¬G, where  G is

¬(O(B)∨O (C)) , or ¬ xO(B), or O(B).  ∃z(x+z+1=y). Let us remind that [L1-L9, MP]:

¬¬¬A↔¬A. Hence,

 [L1-L9, MP]  ¬¬¬G→¬G, and [L1-L9, MP]: ¬¬O(F)→O(F).

Case 2b: F is B→C. Then O(F) is O(B)→O(C). By induction assumption, 

[L1, L2, L12, L14, MP, Gen]: ¬¬O(B)→O(B), and ¬¬O(C)→O(C).

(1) ¬¬O(C)→O(C) Induction assumption.

(2) ¬¬(O(B)→O(C)) ¬¬O(F) – hypothesis.

(3) ¬¬O(B)→¬¬O(C)
By Theorem 2.4.7(b): [L1-L9, MP]: 

¬¬(A→B)→(¬¬A→¬¬B).

(4) O(B)→¬¬O(B) [L1, L2, L9, MP]: A→¬¬A. 

(5)
O(B)→O(C), i.e., 
O(F)

From (4), (3) and (1), by transitivity of 
implication [L1, L2, MP].

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2,

MP] we obtain that [L1-L9, L12, L14, MP, Gen]: ¬¬O(F)→O(F).

Case  2c: F  is B∧C .  Then  O(F)  is O(B)∧O (C) .  By  induction
assumption,

 [L1, L2, L12, L14, MP, Gen]: ¬¬O(B)→O(B), and ¬¬O(C)→O(C).

(1) ¬¬(O( B)∧O(C )) ¬¬O(F) – hypothesis. 

(2) ¬¬O (B)∧¬¬ O(C )
From (1), by Theorem 2.4.8(a), [L1-L9, MP]:

¬¬( A∧B)↔(¬¬ A∧¬¬ B) .

(3) ¬¬O(B) From (2), by Axiom L3.

(4) ¬¬O(C) From (2), by Axiom L4.

(5) O(B) From (3), by induction assumption. 
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(6) O(C) From (4), by induction assumption.

(7)
O(B)∧O (C) , i.e., 

O(F)
From (5) and (6), by Axiom L5.

Hence, since Gen is not applied here at all, by Deduction Theorem 1 [L1, L2,

MP] we obtain that [L1-L9, L12, L14, MP, Gen]: ¬¬O(F)→O(F).

Case 2d: F is xB. Then O(F) is xO(B). By induction assumption∀ ∀ ,

 [L1-L9,  L12,  L14,  MP,  Gen]:  ¬¬O(B)→O(B).  We  must  prove  that

¬¬ xO(B)→ xO(B).∀ ∀

(1)  ¬¬ xO(B)→ x¬¬O(B)∀ ∀
Section 3.2, I-2: [L1-L9, L12, L14, MP, 

Gen]: ¬¬ xB→ x¬¬B∀ ∀

(2) ├ ¬¬O(B)→O(B) Induction assumption

(3) ├ x(¬¬O(B)→O(B))∀ By Gen.

(4) ├ x¬¬O(B)→ xO(B)∀ ∀
From (3), by Theorem 3.1.2(a), [L1, L2, L12,

L14, MP, Gen]: x(B→C)→( xB→ xC).∀ ∀ ∀

(5) ├ ¬¬ xO(B)→ xO(B)∀ ∀
From (1) and (4), by transitivity of 
implication [L1, L2, MP].

Q.E.D.

Lemma 3.5.3. If F is one of the (classical) axioms L1-L11, L12-L15, then, in

the constructive logic, [L1-L10, L12-L15, MP, Gen]: ├ O(F).

Note. The axiom L10 will be used in the proof of Lemma 3.5.3 only once – to

prove that O(L10) is provable in the constructive logic. But, of course, O(L10)

cannot  be  proved  in  the  minimal  logic,  hence,  in  the  Lemma  3.5.3,  the
constructive logic cannot be replaced by the minimal one.

Proof.

Case 1. F (as an axiom schema) does not contain disjunctions and existential
quantifiers, i.e., if F is L1, L2, L3, L4, L5, L9, L10, L12, or L14, then O(F) is an

instance of the same axiom as F, thus, [F]: ├ O(F). For example, if F is L1, i.e.,

B→(C→B), then O(F) is O(B)→(O(C)→O(B)), i.e., O(F) is an instance of the
same axiom L1.

Case 2a. F is L6: B → B∨C . Then O(F) is O(B)→ ¬¬(O(B)∨O(C )) ,
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and [[L1, L2, L6, L9, MP] ├ O(F). Indeed:

(1) O(B)→O(B)∨O (C) Axiom L6.

(2)
 

O(B)∨O (C)→¬¬(O( B)∨O(C ))
[L1, L2, L9, MP]: A→¬¬A.

(3) O(B)→¬¬(O(B)∨O(C ))
By transitivity of implication 
[L1, L2, MP].

Case 2b. F is L7: C → B∨C . Then O(F) is O(C )→¬ ¬(O(B)∨O(C)) ,

and [[L1, L2, L7, L9, MP] ├ O(F). Proof is similar to Case 2a.

Case 2c. F is L8: (B → D)→ ((C → D)→(B∨C → D)) . Then O(F) is

(O(B)→O(D))→ ((O(C )→O(D))→(¬¬(O(B)∨O (C))→O (D))) .

(1) ¬¬O(D)→O(D)
By Lemma 3.5.2, [L1-L9, L12, 

L14, MP, Gen]: ¬¬O(F)→O(F). 

(2) O(B)→O(D) Hypothesis.

(3) (O(C)→O(D) Hypothesis.

(4) ¬¬(O( B)∨O(C )) Hypothesis.

(5)
(O(B)→O(D))→((O(C )→O (D))→(O (B)∨O(C )→O (D))) . 

Axiom L8.

(6) O (B)∨O (C )→O (D) By MP.

(7) ¬¬(O( B)∨O(C ))→¬¬O (D)
From (6), by Theorem 2.4.7(a), 
[L1-L9, MP]:

(A→B)→(¬¬A→¬¬B)

(8) ¬¬O(D) By MP.

(9) O(D) From (1), by MP.

Hence,  since  Gen  is  not  applied  after  hypotheses  appear  in  the  proof,  by
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12,

L14, MP, Gen] ├ O(F).

Case 2d.  F is L11: B∨¬ B .  Then O(F) is ¬¬(O( B)∨¬O( B)) .  Let us

remind Theorem 2.4.6(b): [L1-L9, MP]: ¬¬( A∨¬ A) . Hence, [L1-L9, MP]
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├ O(F).

Case 2e.  F is L13: F(t)→ xF(x). Then O(F) is O(F(t))→¬¬ xO(F(x))), and∃z(x+z+1=y). ∃z(x+z+1=y).
[[L1, L2, L9, L13, MP] ├ O(F). Indeed:

(1) O(F(t))→ xO(F(x))∃z(x+z+1=y). Axiom L13.

(2)
 

xO(F(x))→∃z(x+z+1=y). ¬¬ xO(F(x))∃z(x+z+1=y).
[L1, L2, L9, MP]: A→¬¬A.

(3) ├ O(F(t))→¬¬ xO(F(x))∃z(x+z+1=y).
By transitivity of implication [L1, L2, 

MP].

Case 2f. F is L15: x(F(x)→G)→( xF(x)→G). Then O(F) is∀ ∃z(x+z+1=y).

x(O(F(x))→O(G))→(¬¬ xO(F(x))→O(G)).∀ ∃z(x+z+1=y).

(1) ¬¬O(G)→O(G)
By Lemma 3.5.2, [L1-L9, L12, L14, MP, 

Gen]: ¬¬O(F)→O(F).

(2) x(O(F(x))→O(G))∀ Hypothesis.

(3) ¬¬ xO(F(x))∃z(x+z+1=y). Hypothesis.

(4)
x(O(F(x))→O(G))→ ( xO(F(x))→O(G)). Axiom L∀ ∃z(x+z+1=y). 15: 

x(F(x)→G)→( xF(x)→G).∀ ∃z(x+z+1=y).

(5) xO(F(x))→O(G)∃z(x+z+1=y). By MP.

(6) ¬¬ xO(F(x))→¬¬O(G)∃z(x+z+1=y).
From (4), by Theorem 2.4.7(a), [L1-L9, 

MP]: (A→B)→(¬¬A→¬¬B)

(7) ¬¬O(G) By MP.

(8) O(G) From (1), by MP.

Hence,  since  Gen  is  not  applied  after  hypotheses  appear  in  the  proof,  by
Deduction Theorem 2A [L1, L2, L14, MP, Gen] we obtain that [L1-L9, L12,

L14, L15, MP, Gen] ├ O(F).

Q.E.D.
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Theorem 3.5.4. In the classical logic,

 [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn├ C

if and only if, in the constructive logic, 

[L1-L10, L12-L15, MP, Gen]: O(B1), O(B2), ..., O(Bn)├ O(C).

In particular, a formula F is provable in the classical logic if and only if the
formula O(F) is provable in the constructive logic.

Proof.

1. Let [L1-L11, L12-L15, MP, Gen]: B1, B2, ..., Bn├ C. Induction by the length

of the shortest proof.

Induction base. If C is an axiom, then, by Lemma 3.5.3, in the constructive
logic, ├ O(C). If C is Bi, then O(Bi)├ O(C) in any logic.

Induction step. 

If C is derived by MP from B and B→C, then, by induction assumption, in the
constructive  logic:  O(B1),  O(B2),  ...,  O(Bn)├ O(B),  and  O(B1),  O(B2),  ...,

O(Bn)  ├  O(B→C).  Let  us  merge  these  two  proofs.  Since  O(B→C)  is

O(B)→O(C), then, by MP, in the constructive logic: O(B1), O(B2), ..., O(Bn)├

O(C).

If  C  is  xB(x),  and  is  derived  by  Gen  from  B(x),  then,  by  induction∀
assumption,  in  the  constructive  logic:  O(B1),  O(B2),  ...,  O(Bn)├  O(B(x)).

Hence, by Gen, in the constructive logic:

 O(B1), O(B2), ..., O(Bn)├ xO(B(x)), ∀

i.e., O(B1), O(B2), ..., O(Bn)├ O(F).

Q.E.D.

2. Let in the constructive logic: O(B1), O(B2), ..., O(Bn)├ O(C). By Lemma

3.5.1, in the classical logic, Bi→O(Bi) for all i, and O(C)→C. Hence, in the

classical logic, B1, B2, ..., Bn├ C.

Q.E.D.

Corollary 3.5.5. If, in the classical logic, B1, B2, ..., Bn├ C∧¬C , then, in

the constructive logic, O(B1), O(B2), ..., O(Bn)├ O(C )∧¬O (C) . I.e., if the

postulates  B1,  B2,  ...,  Bn are  inconsistent  in  the  classical  logic,  then  the

postulates O(B1), O(B2), ..., O(Bn) are inconsistent in the constructive logic.
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Or: if the postulates O(B1), O(B2), ..., O(Bn) are consistent in the constructive

logic, then the postulates B1, B2, ..., Bn are consistent in the classical logic.

Corollary 3.5.6. If, for some predicate language, the classical logic would be
inconsistent,  then  so  would  be  the  constructive  logic.  Or:  if,  for  some
predicate  language,  the  constructive  logic  is  consistent,  then  so  is  the
classical logic (Gödel [1933], Gentzen [1936]).

Note.  In  Section  4.3,  we  will  prove  that  the  classical  predicate  logic  is
consistent for any predicate language. This will make Corollary 3.5.6 obsolete.

Attention! Corollary  3.5.6  does  not  extend  immediately  to  first  order
theories, having their own specific non-logical axioms. Consistency must be
verified separately for each theory! For example, 

Exercise  3.5.3 (optional,  for  smart  students).  Verify  that,  if  the  constructive  first  order
arithmetic is consistent, then so is the classical first order arithmetic (Gödel [1933], Gentzen
[1936]). (Hint: verify that, a) atomic formulas of arithmetic are stable – this is the hard part of
the proof, b) if F is an axiom of arithmetic, then so is O(F).)

Thus,  the  non-constructivity  does  not  add  contradictions  (at  least)  to
arithmetic.  If  it  would,  then  we  could  derive  "constructive"  arithmetical
contradictions as well. 

Kurt  Gödel.  Zur  intuitionistischen  Arithmetik  und  Zahlentheorie.  Ergebnisse  eines
mathematischen Kolloquiums, 1933, Vol. 4, pp. 34-38.

Gerhard  Gentzen.  Die  Widerspruchsfreiheit  der  reinen  Zahlentheorie.  Mathematische
Annalen, 1936, Vol. 112, pp. 493-565.

About constructive embedding operations as a general notion see 

Nikolai A.Shanin. Embedding the classical logical-arithmetical calculus into the constructive
logical-arithmetical calculus. Dokladi AN SSSR, 1954, vol. 94, N2, pp.193-196 (in Russian).

https://en.wikipedia.org/wiki/Nikolai_Aleksandrovich_Shanin
http://www-history.mcs.st-and.ac.uk/Mathematicians/Gentzen.html
http://en.wikipedia.org/wiki/Peano_axioms
http://en.wikipedia.org/wiki/Peano_axioms
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4. Completeness Theorems (Model Theory)

4.1. Interpretations and models

In Chapter 1 we formulated the axioms and rules of inference of constructive
and  classical  logic,  and  in  Chapters  2  and  3  we  explored  many  of  their
consequences. However, did we succeed in formulation of  all the necessary
logical axioms and rules of inference, without any omissions? Is the classical
logical  [L1–L15,  MP,  Gen] “complete”?  And,  in  which  sense  could  be

“complete” the constructive logic, in which the formula B∨¬B cannot be
proved? What could such questions mean precisely? 

Moreover, our logics are, in fact, reconstructions, and not copies of “rules of
correct thinking”. Indeed, let us recall that the axioms L1, L10 were introduced

to keep the system simple enough, and not because of their “truth”. How to
define “completeness” of such artificial systems?

In  Section  1.3 we  introduced  the  following  definition  of  completeness:  a
theory is called complete, if it proves or disproves any closed formula of its
language. Most mathematical theories are not complete in this sense (Gödel’s
Incompleteness Theorem). 

However, this definition does not apply, if we wish to define the completeness
of a  logical system (constructive or classical logic). Applied to a particular
predicate language, such a system represents a theory that does not possess
any  specific  axioms.  Such  an  “empty”  theory  cannot  pretend  to  prove  or
disprove  all  the  closed  formulas  of  the  language.  For  example,  no  logical
system  will  be  able  to  prove  or  disprove  the  formula
∀ x (Male( x)∨Female( x)) .

In  Section  1.3 we formulated  the  logical  axioms and rules  of  inference  to
formalize  the  manipulation  of  logical  connectives  and  quantifiers.  These
axioms  and  rules  are  intended  to  be  valid  for  any  predicate  languages,
independently of the “meanings” of the language primitives (object constants,
functions,  predicates).  Hence,  we  could  qualify  a  logical  system  as
“complete”, if this system could prove all the formulas that are valid (“true”)
for any predicate languages, independently of the “meanings” of the language
primitives.

Thus, we must introduce an explicit general definition of “assigning meanings
to the language primitives”.   
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An axiom-less predicate language can limit this assigning only in very limited
ways.

Example for mathematicians

The formal language of first order arithmetic (language primitives are x, y, ...,
0,  1 +, *,  =) can be used not only to discuss natural numbers, but also to
discuss  any  rings,  such  as,  for  example, Z 2={0,1} ,  with  addition  and
multiplication performed modulo 2. Then,

a) variables are thought to range over the set {0, 1} only;

b) the object constant 1 means the object 1, the object constant 0 – the object
0;

c) to the function constant "+" the addition operation in Z 2 is assigned, to
the function constant "*" – the multiplication operation in Z 2 ;

d) to the predicate constant "=" the equality predicate for the set {0,  1} is
assigned.

Thus,

x y x+ y x∗y x= y

0 0 0 0 true

0 1 1 0 false

1 0 1 0 false

1 1 0 1 true

In Z 2 ,  the simplest  axiom of arithmetic: ¬(0= x+1) is  false.  Indeed, in
Z 2 , 1+1=0. 

On the other hand, such unusual formulas as

x+x=0 ; – x=x ; x2=x

are  true  in Z 2 ,  but  they  would  be  false,  if,  instead  of Z 2 ,  the  usual
arithmetic of natural numbers would be used to assign “meanings” to language
primitives (details below).

In  mathematical  logic,  for  axiom-less  predicate  languages,  a  particular
“assignment of meanings to language primitives” is called an interpretation. 

As we see,  if  two different theories share the same language,  then we can
obtain for this language two different interpretations. Some formulas that are
true under one of the interpretations, may become false in the second one, an
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vice versa.

Another example

In Section 1.2, in our "language about people" we used four names of people
(Britney, John, Paris, Peter) as object constants and the following predicate
constants:

Male(x) − means "x is a male person"; 
Female(x) − means "x is a female person";
Mother(x, y) − means "x is mother of y";
Father(x, y) − means "x is father of y";
Married(x, y) − means "x and y are married";
x=y − means "x and y are the same person".

Now, let us consider the following interpretation of the language – a specific
“small four person world”:

a) The domain of interpretation – and the range of variables – is:

 D = {br, jo, pa, pe} (no people, four character strings only!).

Interpretations of predicate constants are defined by the following truth tables:

x Male(x) Female(x)

br false true

jo true false

pa false true

pe true false

x y Father(x, y) Mother(x, y) Married(x, y) x=y

br br false false false true

br jo false false false false

br pa false false false false

br pe false false false false

jo br false false false false

jo jo false false false true

jo pa false false false false

jo pe false false false false
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pa br false true false false

pa jo false true false false

pa pa false false false true

pa pe false false true false

pe br true false false false

pe jo true false false false

pe pa false false true false

pe pe false false false true

As we see, in this interpretation (“in this small world”):

character strings br and pa are female persons, jo and pe – male persons;

pe is father of br and jo;  pa is mother of br and jo;

pe and pa are married;

equality means equality of character strings.

And in this interpretation (“in this small world”) it is true that:

“all  people  are  either  males,  or  females  (but  not  both)”,  because  in  this
interpretation,  the  corresponding  formulas ∀ x(Male(x)∨Female(x)) and
∀ x¬(Male(x)∧Female(x)) qualify as true.  

"all  mothers  are  females":  formula ∀ x ∀ y (Mother (x , y)→ Female (x))
qualifies as true;

"all fathers are married people" (in this interpretation, in this artificial small
world, not in the real world!): the corresponding formula

∀ x ∀ y (Father ( x , y)→∃z(x+z+1=y). z Married (x , z)) qualifies as true. 

But, in this interpretation (“in this small world”), it is not true that

"every  person  possess  a  mother",  because  the  corresponding  formula
∀ x∃z(x+z+1=y). y Mother ( y , x) qualifies as false for x=pe and x=pa.

Exercise 4.1.1. Build another interpretation (a crazy one!) of the above “four
people language”, under which the following formulas would be true: “some
people  are  both  male  and  female”,  “there  are  sexless  people”,  “there  are
persons married on herself”, “there is a person having a sexless father”, “there
is a person having two mothers”. 
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By introducing specific non-logical axioms, i.e., by introducing “theory about
people”  instead  of  pure  axiom-less  “language  about  people”  we  could
disqualify your crazy interpretation of Exercise 4.1.1 – because, for example,
the following axioms of “theory about people” are false under it:

∀ x(Male (x)∨Female(x)) ;
∀ x¬(Male (x)∧Female(x)) .

An interpretation of the language of some theory T under which all axioms of 
T qualify as true, is called a model of T. Thus, models of T form a subset of all
the possible interpretations of the language of T. 

Model theory

Investigation of language interpretations (some of them are models of theories)
is called  model theory. It represents a specific approach to investigation of
formal theories.

Note. For mathematicians: model theory is using (up to) the full power of set theory. In model
theory, formal theories are investigated by using set theory as a meta-theory.

Paul  Bernays,  in  1958:  "As  Bernays  remarks,  syntax  is  a  branch  of  number  theory  and
semantics the one of set theory." See p. 470 of

Hao Wang. EIGHTY YEARS OF FOUNDATIONAL STUDIES. Dialectica, Vol. 12, Issue 3-
4, pp. 466-497, December 1958.

In Sections 4.1-4.3 we will develop a  model theory for the classical logic,
and in Section 4.4 – a model theory for the constructive propositional logic.

Now, let  us  present  an  explicit  general  definition  of  interpretations:  of  the
ways of assigning precise meanings to the language primitives. In the result
we will obtain a precise notion of “true formulas”. Formulas become true or
false only under interpretations. Any particular predicate language allows for
multiple  ways  of  assigning  meanings  to  its  primitives  –  multiple
interpretations.

Interpretation of a language – the language-specific part

Let L be a predicate language containing:

(a possibly empty) set of object constants c1, ..., ck, ... ,

(a possibly empty) set of function constants f1, ..., fm, ..., and

(a non empty) set of  predicate constants p1, ..., pn, .... 

An interpretation J of the language L consists of the following two entities
(a set and a mapping):

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bernays.html
http://en.wikipedia.org/wiki/Set_theory#Axiomatic_set_theory
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a) A non-empty finite or infinite set DJ – the domain of interpretation (it will

serve first of all as the range of object variables). (For infinite domains, set
theory comes in here.)

b) A mapping intJ that assigns: 

- to each object constant ci – a member intJ(ci) of the domain DJ (thus, object

constants denote particular objects in DJ),

- to each function constant fi – a function intJ(fi) from DJ x ... x DJ into DJ (of

course, intJ(fi) possess the same number of arguments as fi),

- to each predicate constant pi – a predicate intJ(pi) on DJ, i.e., a subset of

 DJ x ... x DJ (of course, intJ(pi) possess the same number of arguments as pi).

Thus,  in  a  sense,  the  mapping  intJ assigns  "meanings"  to  the  language

primitives.

Example.  The above interpretation of the “language about people” put in the terms of the
general definition:  

a)  D = {br, jo, pa, pe}.

b) intJ(Britney)=br, intJ(John)=jo, intJ(Paris)=pa, intJ(Peter)=pe.

c) intJ(Male) = {jo, pe}; intJ(Female) = {br, pa}.

d) intJ(Mother) = {(pa, br), (pa, jo)}; intJ(Father) = {(pe, jo), (pe, br)}.

e) intJ(Married) = {(pa, pe), (pe, pa)}.

f) intJ(=) = {(br, br), (jo, jo), (pa, pa), (pe, pe)}.

As  the  next  popular  example  let  us  consider  the  so-called  standard
interpretation S  of  first  order  arithmetic  PA  (it  is  called  also  Peano
arithmetic):

a) The domain is DS = {0, 1, 2, ...} − the set of all natural numbers "as we

know it" (more precisely – as we define it in set theory).

b) The mapping intS assigns:

to the object constant 0 (the letter 0) – the number 0∈DS ;

to the object constant 1 (the letter 1) – the number 1∈DS ;

to the function constant "+" − the function x+y (addition of natural numbers),
to  the  function  constant  "*"  −  the  function  x*y  (multiplication  of  natural
numbers),

to the predicate constant "=" − the predicate x=y (equality of natural numbers).

Yet another interpretation J1 of the same language: 
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a) The domain is DJ1 = {e, a, aa, aaa, ...} − the set of all strings built of the letter "a" (e is the

empty string).

b) The mapping intJ1 assigns:  to the object  constant 0 – the empty string e,  to the object

constant 1 – the string "a", to the function constant "+" − the concatenation function of strings,
to the function constant "*" − y times concatenation of x, to the predicate constant "=" − the
string equality predicate.

Yet  another  interpretation  J2 (there  is  no  way  to  disqualify  it  as  a  formally  correct
interpretation of the axiom-less language of first order arithmetic):

a) The domain is DJ2 = {o} – a single object o.

b) The mapping intJ2 assigns: to the object constant 0 – the object o, to the object constant 1 –

the same object  o, to the function constant "+" − the only possible function f(o, o)=o, to the
function constant "*" − the only possible function f(o, o)=o, to the predicate constant "=" − the
predicate {(o, o)}.

Some  time  later,  we  will  introduce  specific  non-logical  axioms that  will
disqualify (at least some of) the above "inadequate" interpretations.

Having an interpretation J of the language L, we can define the notion of true
formulas (more precisely − the notion of formulas that are  true under the
interpretation J).

As the first step, terms of the language L are interpreted as members of DJ or

as functions over DJ. Indeed, terms are defined as object constants, or object

variables, or their combinations by means of function constants. The term ci is

interpreted as the member intJ(ci) of DJ, in other words, as a constant (zero-

argument) function. The variable xi is interpreted as the function Xi(xi) = xi.

And, if  t  = fi(t1,  ...,  tq),  then intJ(t)  is  defined as the function obtained by

substituting the functions intJ(t1), ..., intJ(tq) into the function intJ(fi).

For example (in first order arithmetic), the standard interpretation of the term
(1+1)+1 is the number 3, the interpretation of (x+y+1)*(x+y+1) is the function
(x+y+1)2.

Important − non-constructivity!  Note that,  for an infinite domain DJ,  the

interpretations  of  function  constants  are  allowed  to  be  non-computable
functions.  However,  if  these  interpretations  were all  computable  (as  in  the
standard interpretation of arithmetic), then we could compute the "value" of
any term t for any combination of values of variables appearing in t.

As the next step, the notion of true atomic formulas is defined. Of course, if
a formula contains variables (as, for example,  the formula x+y=1), then its
"truth-value"  must  be  defined for  each combination  of  the  values  of  these
variables. Thus, to obtain the truth-value of the formula pi(t1, ..., tq) for some
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fixed values of the variables appearing in the terms t1, .., tq, we must first take

(“compute") the values of these terms, and then substitute these values into the
predicate intJ(pi).

For example (in first order arithmetic), under the standard interpretation S, the
formula x+y=1 will be true if and only if either x takes the value 0, and y takes
the value 1, or x takes the value 1, and y takes the value 0. Otherwise, this
formula is false.

Important − non-constructivity!  Note that,  for an infinite domain DJ,  the

interpretations  of  predicate  constants  are  allowed  to  be  non-computable
predicates. However, if these interpretations were all computable  (as in the
standard interpretation of arithmetic), then we could compute the "truth value"
of any atomic formula F for any combination of values of variables appearing
in F.

Interpretations of languages − the standard common part

Finally, we define the notion of  true formulas of the language L under the
interpretation J (of course, for a fixed combination of values of their free
variables – if any):

a) Truth-values of the formulas ¬B , B∧C , B∨C , B →C must be computed
from the  truth-values  of  B and C by using  the  well-known  classical truth
tables (see Section 4.2).

b) The formula ∀x B is true under J if and only if B(c) is true under J for all
members c of the domain DJ.

c) The formula ∃z(x+z+1=y).x B is true under J if and only if there is a member c of the
domain DJ such that B(c) is true under J.

For example (in first order arithmetic), the formula

∃z(x+z+1=y). y((x= y+ y)∨( x=y+ y+1))

is intended to say that "x is even or odd". Under the standard interpretation S
of arithmetic, this formula is true for all values of its free variable x. Similarly,

∀x∀y(x+ y=y+x) is  a  closed  formula  that  is  true  under  this
interpretation.

The notion “a closed formula F is true under the interpretation J” is now
precisely defined. 

Attention! What  about  a  formula  F(x)  containing  x  as  free  variable?  In
principle, under the interpretation J, such formula may be true for some values
of x, and false – for some other values. So, if some formula  contains free
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variables, let us say that it is true under the interpretation J if and only if it is
true for all combinations of the values of its free variables. 

Important − non-constructivity!  It may seem that, under an interpretation,
any closed formula is "either true or false". However, note that, for an infinite
domain  DJ,  the  notion  of  "true  formulas  under  J"  is  extremely  non-

constructive.  To  establish,  for  example,  the  truth-value  of  the  formula
x y(x+y=y+x), we must verify the truth of a+b=b+a for infinitely many∀ ∀

values of a and b. Of, course, such a verification cannot be performed on a
computer. It can only (sometimes) be proved in some theory. The "degree of
constructivity" of the formulas like as x yC(x,y), x y zD(x,y,z) etc. is∀ ∃z(x+z+1=y). ∀ ∃z(x+z+1=y). ∀
even less... 

Empty Domains? Do you think, we should consider also empty domains of interpretation?
According to the axiom L13: (B→B)→ x(B→B), hence, x(B→B). In an empty domain, this∃z(x+z+1=y). ∃z(x+z+1=y).
formula would be false. Thus, to cover the case of empty domain, we would be forced to
modify our axioms of predicate logic. In this way one obtains the so-called  free logic. For
details, see Free logic in Wikipedia, and Section 2.16 in Mendelson [1997].

Three kinds of formulas

If  one  explores  some  formula  F  of  the  language  L  under  various
interpretations, then three situations are possible:

a) F is true in all interpretations of the language L. Formulas of this kind are
called logically valid formulas.

b)  F  is  true  in  some interpretations  of  L,  and  false  −  in  some other
interpretations of L. 

c)  F  is  false  in  all interpretations of  L Formulas  of  this  kind  are  called
unsatisfiable formulas.

Formulas  that  are  "not  unsatisfiable"  (formulas  of  classes  (a)  and (b))  are
called, of course, satisfiable formulas: a formula is satisfiable, if it is true in
at least one interpretation.

Note.  These  definitions  are  pretty  clear  for  a  close formula  F.  However,
remember that, if some formula contains free variables, we say that it is true
under the interpretation J if and only if it is true for all combinations of the
values  of  its  free  variables.  This  convention  allows  to  apply  the  above
definitions also to the formulas containing free variables. In particular, we will
call  a  formula  F,  containing  free  variables,  satisfiable,  if  there  in  an
interpretation under which F is true for some values of its free variables. 

Theorem 4.1.1. a) F is logically valid if and only if ¬ F is unsatisfiable.

b) F is satisfiable if and only if ¬F is not logically valid.

http://en.wikipedia.org/wiki/Free_logic
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Exercise 4.1.2.  a) Verify (a, b) of Theorem 4.1.1.

b) Assume, F contains free variables x1 , ... , xk . Verify that:

F is logically valid if and only if so is ∀ x1 ...∀ xk F ;

F is satisfiable if and only if so is ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). x k F . 

Logically valid formulas

Some formulas are true under all interpretations, for example:

(B →C )∧(C → D)→(B → D) ,

F (x)→∃z(x+z+1=y). x F (x) ,

∀ x F (x)→ F (x) ,

∀ x (F (x)→G (x))→(∀ x F (x)→∀ x G (x)) ,

∀ x (F (x)→G (x))→(∃z(x+z+1=y). x F (x)→∃z(x+z+1=y). x G (x)) ,

∀ x (G (x)∧H (x))→(∀ x G (x)∧∀ x H (x)) ,

∃z(x+z+1=y). x(G (x)∨H (x))→(∃z(x+z+1=y). x G ( x)∨∃z(x+z+1=y). x H (x)) .

Such formulas are called logically valid.

Thus, a logically valid formula is true independently of its "meaning" − the
particular interpretations of constants, functions and predicates used in it. But
note that here, the (classical!) “meanings” of propositional connectives and
quantifiers remain fixed.

Hence, in a sense, logically valid formulas are  “content-free”: being true in
all  interpretations,  they  do  not  provide  any  specific  information  about  the
features of objects they are “speaking” about.

Important − non-constructivity!  The notion of logically valid formulas is
doubly non-constructive in  the  sense  that  the universal  quantifier  "for  all
interpretations"  is  added  to  the  (already)  non-constructive  definition  of  a
formula true in a particular interpretation.

As we will it in  Section 4.3, all the axioms of classical logic [L1–L15, MP,

Gen] are logically valid formulas. And it appears also that, from logically valid
formulas,  the  inference  rules  MP and  Gen  generate  only  logically  valid
formulas. In this way we will prove that all the formulas that can be proved
in the classical logic [L1–L15, MP, Gen], are logically valid (the so-called

soundness theorem of the classical predicate logic, see Section 4.3).

As an example, let us verify in detail that the axiom L12: xF(x)→F(t) (where∀
the substitution F(x/t) is admissible) is logically valid. 
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Let us assume the contrary: that, under some interpretation J, for some values
of its free variables (if any), L12 is false. According to the classical truth tables,

this could happen only, if xF(x) were true, and F(t) were false (under the∀
interpretation J, for the same above-mentioned values of free variables). Let us
"compute" the value of the term t for these values of free variables (since the
substitution  F(x/t)  is  admissible,  t  may  contain  only  these  variables),  and
denote it by c. Thus, F(c) is false. But xF(x) is true, hence, F(a) is true for all∀

a∈D J , i.e., F(c) also is true. Contradiction. Hence, L12 is true under all

interpretations for all combinations of its free variables (if any).

Another example

Let us verify that the following formula

∃z(x+z+1=y). x(G (x)∨H (x))→(∃z(x+z+1=y). x G ( x)∨∃z(x+z+1=y). x H (x))

is  logically  valid  as  well.  Knowing  the  soundness  theorem,  instead  of
verification,  we  could  “simply”  prove  this  formula  in  the  classical  logic.
However, the proof is somewhat complicated. The direct verification is here
much  simpler.

Let us assume that there is an interpretation J such that the formula is false for
some values of its free variables, and let us derive a contradiction.

The implication can be false only if the premise ∃z(x+z+1=y). x(G (x)∨H (x)) is true,
and  the  conclusion ∃z(x+z+1=y). x G ( x)∨∃z(x+z+1=y). x H (x) is  false.  Thus,  there  is  an  object

a∈DJ for which G(a) is true, or H(a) is true. In the first case, ∃z(x+z+1=y). x G ( x)  is
true,  in  the  second  case ∃z(x+z+1=y). x H (x) is  true.  Hence,  in  both  cases
∃z(x+z+1=y). x G ( x)∨∃z(x+z+1=y). x H (x) is true. Contradiction. The formula under question is

logically valid.

Yet another example

Let us verify that the following formula

∀ x (F (x)→G (x))→(∀ x F (x)→∀ x G (x))

is logically valid. Let us assume that there is an interpretation J such that the
formula  is  false  for  some values  of  its  free  variables,  and  let  us  derive  a
contradiction.

The implication can be false only if:

1) the premise ∀ x (F (x)→G (x))  is true, and

2) the conclusion ∀ x F (x)→∀ x G (x) is false.

3) (2) can be false only if ∀ x F (x) is true, and

4) ∀ x G (x) is false.
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5) (4) means that there is an object a∈DJ for which G(a) is false.

6) (5) means that F(a) is true.

7) (6) and (5) mean that F (a)→ G (a) is false, hence, (1) is false as well.

Contradiction. The formula under question is logically valid.

Exercise 4.1.3. Verify in detail that the remaining 4 of the above formulas are
logically valid as well.

Is our axiom system of logic powerful enough to prove ALL the logically
valid  formulas? The  answer  is  positive  −  see  Gödel's  Completeness
Theorem in Section 4.3: if a formula is logically valid, then it can be proved
in the classical predicate logic [L1−L11, L12−L15, MP, Gen].

But, of course, there are formulas that are not logically valid. For example,
negations of logically valid formulas are false in all interpretations, they are
cannot be logically valid. Such formulas are called  unsatisfiable formulas.
But there are formulas that are true in some interpretations (are  satisfiable),
and false − in some other ones (are  not logically valid).  Examples of such
formulas:

– ∀ x(Male(x)∨Female(x)) .  We already know that  this  formula can be
made true or false by choosing a specific interpretation of the “language about
people”.

– The axiom of arithmetic ¬(0=x+1) considered above. It is true under the
standard interpretation S, but it is false in the Z 2 - interpretation (because
under it, 1+1=0, see above). 

To  conclude  that  some  formula  is  not logically  valid,  we  must  build  an
interpretation J such that the formula under question is false (for some values
of its free variables – if any). 

As an example, let us verify that the formula

∀x ( p( x)∨q( x))→∀ x p(x )∨∀ x q(x )

is not logically valid (p, q are predicate constants). Why it is not? Because the
truth-values of p(x) and q(x) may behave in such a way that p (x )∨q (x )  is
always true, but neither x p(x), nor x q(x) is true. Indeed, let us take the∀ ∀
domain D = {a, b}, and set (in fact, we are using one of two possibilities):

x p(x) q(x)

a true false

b false true
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In  this  interpretation, p (a)∨q (a) =  true, p (b)∨q(b) =  true,  i.e.,  the
premise ∀x ( p( x)∨q(x )) is true. But the formulas x p(x), x q(x) both∀ ∀
are false. Hence, in this interpretation, the conclusion ∀x p (x )∨∀x q (x ) is
false, and ∀x ( p( x)∨q( x))→∀ x p(x )∨∀ x q(x ) is false. We have built an
interpretation,  making  the  formula  false.  Hence,  it  is  not  logically  valid.
Q.E.D.

On the other hand, this formula is satisfiable – there is an interpretation under
which it is true. Indeed, let us take D={a} as the domain of interpretation, and
let us set p(a)=q(a)=true. Then all the formulas

∀x ( p( x)∨q( x)) ,∀x p (x ) ,∀x q( x)

become true, and so becomes the entire formula. Q.E.D.

Exercise  4.1.4. Verify  that  the  following  formulas  are  satisfiable,  but  not
logically valid (p, q, r are predicate constants):

a) p (x , y )∧p ( y , z )→ p( x , z ) , 

b) q(x)→ x q(x),∀

c) ( x q(x)→ x r(x))→ x(q(x)→r(x)),∀ ∀ ∀

c1) x(p(x)→B)→( x p(x)→B), where B does not contain x,∃z(x+z+1=y). ∃z(x+z+1=y).

d) x y p(x, y)→ y x p(x, y),∀ ∃z(x+z+1=y). ∃z(x+z+1=y). ∀

e) ∃z(x+z+1=y). x q( x)∧∃z(x+z+1=y). x r ( x)→∃z(x+z+1=y). x (q( x)∧r ( x)) ,

f) ∀x ¬ p(x , x)∧∀ x∀ y ∀z ( p( x , y)∧p( y , z)→ p (x , z ))  →

∀x ∀ y (x= y∨p( x , y)∨p( y , x)) .

Hint. For the domain D={a, b}, it is convenient to use separate tables to define
your interpretations of unary (see above) and binary predicates, for example,

x y r(x, y)

a a false

a b true

b a true

b b false

 

Exercise 4.1.5. Are the following formulas logically valid, or not (p, q are
predicate constants):

 ( x p(x)→ x q(x))→ x(p(x)→q(x));∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y).
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 ( x p(x)→ x q(x))→ x(p(x)→q(x)).∃z(x+z+1=y). ∃z(x+z+1=y). ∀

Satisfiability

We  already  know  that,  in  a  predicate  language  L,  a  formula  F  is  called
satisfiable if and only if  there is an interpretation of the language L such
that F is true for some values of its free variables.

Examples.  a)  Formula  x  p(x)  is,  of  course,  not  logically  valid,  but  it  is∃z(x+z+1=y).
satisfiable,  because  it  is  true  in  the  following  interpretation  J:  DJ={b},

p(b)=true.

b)  Despite  their  importance,  the  formulas  x+0=x,  x+y=y+x  etc.  are  not
logically valid (consider “crazy” interpretations of equality and/or addition),
but  they  are  satisfiable,  for  example,  they  are  true  under  the  standard
interpretation of arithmetic.

A set of formulas A1, ..., An, ...  is called simultaneously satisfiable if and

only if there is an interpretation under which the formulas F1, ..., Fn, ... all are

satisfied.  If  there  is  no  such  interpretation,  the  set  is  called  unsatisfiable
simultaneously (a particular formula of the set can be satisfiable, but there is
no interpretation making true all the formulas of it.)

Lemma  4.1.2. a)  A  finite  set  of  formulas A1, ... , An is  simultaneously
satisfiable if and only if the conjunction A1∧...∧An is satisfiable.

b) If x1 , ... , xk is the set of all the variables appearing as free in the formulas,
A1, ... , An then the set A1, ... , An is simultaneously satisfiable if and only if

the formula ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). x k (A1∧...∧An) is satisfiable.

Exercise 4.1.6. Verify (a, b) of Lemma 4.1.2.

Exercise 4.1.7. a) Verify that the formula ∀ x ∀ y ( p(x)→ p( y)) is true in
all one-element interpretations (the interpretation domain consists of a single
element), but is false in at least one two-element interpretation (p is a predicate
constant).

b) Verify that the formula

∀ x ∀ y ∀ z [( p (x)↔ p( y))∨(q( y)↔ q( z))∨(r ( z )↔r (x))]

is true in all one- and two-element interpretations, but is false in at least one
three-element interpretation (p, q, r are predicate constants).

c) Prove that the formula x y F(x, y) is logically valid if and only if so is the∃z(x+z+1=y). ∀
formula x F(x, g(x)), where g is a function constant that does not appear in F.∃z(x+z+1=y).

d) Prove that the formula x y z F(x, y, z) is satisfiable if and only if so is∀ ∀ ∃z(x+z+1=y).
the formula x y F(x, y, h(x, y)), where h is a function constant that does not∀ ∀
appear in F.



130

The problem of reasoning revisited

At the beginning of Section 1.3 we asked the question:

"formula G follows from the formulas A1, ... , An ",
 what exactly does it mean?

Since we wish to teach reasoning to computers, the answer must be absolutely
explicit.

At the end of Section 1.3, having formulated the logical axioms and rules of
inference, we  arrived at a tentative, but an absolutely precise answer to this
question (let us call it  Explication 1): the assertion “formula G follows from
the formulas A1, ... , An ” means that  there is a correct proof (a sequence of
formulas) that proves

 [L1-L15, MP, Gen]: A1, A2, ..., An├ G (if we intend to use the classical logic),

or proves 

 [L1-L10,  L12-L15,  MP,  Gen]:  A1,  A2,  ...,  An├ G (if  we intend to  use the

constructive logic). 

But  now we have  a  completely  new possibility  to  approach this  question:
“formula G follows from formulas A1, ..., An", what does it mean? Doesn’t it

mean that “if A1, ..., An all are true, then G is true”? We have now a formalized

notion of "true" as "true under an interpretation". Thus, we can now formalize
the notion of consequence as follows (Explication 2):

The assertion “G follows from A1, ..., An“ means that  G is true under any

interpretation, under which A1, ..., An are all true.

Or, equivalently:

The assertion “G follows from A1, ..., An“ means that G is true in any model

of theory {A1, ..., An} (see below).

Lemma 4.1.3. Formula G is true under any interpretation, under which the
formulas A1, ..., An all are true, if and only if the formula A1∧...∧An →G is

logically valid.,

Proof.  a) Assume, G is true under any interpretation, under which A1, ..., An

all are true. Consider A1∧...∧An →G under an arbitrary interpretation J. If
one of the formulas Ai is false under J, then the implication is true.  If all the
formulas Ai are true under J, then so is G and the implication is true. Thus,

A1∧...∧An →G is logically valid. Q.E.D.
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b) Assume, A1∧...∧An →G is logically valid, and all the formulas A1, ..., An

are true under an interpretation J. Since the implication is true under J as well,
so is G. Q.E.D.

Lemma 4.1.4. Assume, G is a closed formula. Then,

[L1-L15, MP, Gen]: A1, A2, ..., An├ G,

if and only if

[L1-L15, MP, Gen]: A1∧...∧An →G .

Proof.  a)  →.  Let  us  start  with A1∧...∧An ,  obtain  by  C-elimination  the
formulas A1, A2, ..., An, insert here the given proof of G from the hypotheses

A1, A2, ..., An, and apply Deduction Theorem 2 (G is closed formula). Q.E.D.

b)  ←. Let us start with the hypotheses A1, ..., An, obtain by C-introduction

A1∧...∧An ,  insert here the given proof of A1∧...∧An →G ,  and apply
MP. Q.E.D.

In Section 4.3 we will prove Gödel’s Completeness Theorem. It will follow
from this theorem that a formula is logically valid if and only if it is provable
in the classical predicate logic. Together with the above lemmas, this means
that (for a closed formula G):

Formula  G  is  true  under  any  interpretation,  under  which  all  the  formulas
A1, ..., An are true, if and only if [L1-L15, MP, Gen]: A1, A2, ..., An├ G.

Thus, for the classical predicate logic, Explication 1 and Explication 2 of the
problem of reasoning are equivalent. 

At first sight, Explication 2 could seem preferable, being simpler and looking
“more  fundamental”,  than  the  very  complicated  (and  therefore,  seemingly
tentative)  Explication  1.  But,  for  the  classical  logic,  both  explications  are
equivalent, so, in fact, Explication 1 is equally “fundamental”. 

Thus,  we can  speak simply  about  “G following from A1 ,… , An ”,  and –
depending on the situation – switch to the more convenient of the explications.

Transitive predicates and recursion

How about the predicate Ancestor(x, y) − "x is an ancestor of y"? Could it be expressed as a
formula  of  our  "language  about  people"?  The  first  idea  −  let  us  "define"  this  predicate
recursively:

∀ x ∀ y (Father (x , y)∨Mother (x , y)→ Ancestor (x , y )) ;
∀ x ∀ y ∀ z ( Ancestor (x , y)∧Ancestor ( y , z)→ Ancestor (x , z)) . 

The second rule declares the transitivity property of the predicate. The above two formulas can
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be used as axioms, allowing to derive essential properties of the predicate Ancestor(x, y). But
how about a single formula F(x, y) in the "language about people", expressing that "x is an
ancestor  of y"? Such a formula should be a tricky combination of  formulas  Father(x,  y),
Mother(x, y) and x=y. But such a formula is impossible! See Transitive closure in Wikipedia,
and Theorem 1.2 (and its proof) in:

Carlos Areces. Logic Engineering. The Case of Description and Hybrid Logics. Ph.D. Thesis,
University of Amsterdam, Amsterdam, The Netherlands, 2000.

Exercise 4.1.7 (optional, for smart students). Explain the precise meaning of the statement: in
the "language about people", formula F(x, y) expresses that "x is an ancestor of y". Such a
formula is impossible, but what does it mean?

Theories and their models

If T is a first order theory, and J is an interpretation of its language, and J
makes true the specific axioms of T, then J is called a model of T.

For non-mathematical people, the term "model of a theory" may seem strange
("upside down"): in other branches of science, theories serve as a basis for
building models of natural phenomena, of technical devices etc. But only the
term is strange here, the process is the same as in other branches of science:
first order theories "generate" their models, and these models can be used for
modeling of natural phenomena, of technical devices etc.

Attention!  Specific  axioms of  a  non-empty first  order  theory  T cannot  be
logically valid formulas! They cannot be true in all interpretations, they can be
true only in the models of T. Models of T form a proper subclass of all the
possible interpretations.

How precisely could the axioms of a theory specify its interpretations? Up to
isomorphism? No, it appears that, for example, there are many non-standard
interpretations making the axioms of  first order arithmetic true! By means
of  first  order  axioms  we  cannot  exclude  the  existence  of  “non-standard”
natural  numbers,  following  after  all  “standard”  numbers.  More  in  Non-
standard model of arithmetic in Wikipedia.

4.2. Completeness of Classical Propositional Logic

Emil Leon Post (1897-1954): "... Post's Ph.D. thesis, in which he proved the completeness and
consistency  of  the  propositional  calculus  described  in  the  Principia  Mathematica by
introducing the truth table method. He then generalised his truth table method, which was
based on the two values "true" and "false", to a method which had an arbitrary finite number
of truth-values." (According to MacTutor History of Mathematics archive).

First, let us consider the classical propositional logic. Here, each formula is
built of some “atoms” B1, B2, ..., Bn by using propositional connectives only:

http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://en.wikipedia.org/wiki/Non-standard_arithmetic
http://en.wikipedia.org/wiki/Non-standard_arithmetic
https://en.wikipedia.org/wiki/Transitive_closure
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B∧C , B∨C ,¬ B , B →C .  Our  axioms  for  this  logic  we  represented  as
axiom schemas L1-L11, and the Modus Ponens rule of inference, in which the

letters B, C, D can be replaced by any formulas.

The problem of completeness

Is our list L1-L11 of classical propositional axiom schemas plus the MP rule of

inference “complete”? Aren't some necessary axiom schemas missing there? If
something necessary would be missing, we should add it to the list of axioms.

This  problem was solved by  Emil  L.  Post in  1920.  He proved that  if  one
would add to the system [L1-L11, MP] any formula that can't be proved

from this system, then one would obtain an inconsistent system in which
all  formulas are provable. Thus,  in fact,  nothing is  missing in  our list  of
classical propositional axioms.

Post proved his theorem by using the so-called  classical truth tables.  Each
propositional atom may take any of two truth-values – true and false. And, if
we already know truth-values of the formulas B, C, then we can use truth
tables to compute truth-values of the formulas B∧C , B∨C ,¬ B , B →C . 

If B is false, and C is false, then B∧C is false.
If B is false, and C is true, then B∧C is false.
If B is true, and C is false, then B∧C is false.
If B is true, and B is true, then B∧C is true.

B C B∧C

0 0 0

0 1 0

1 0 0

1 1 1

If B is false, and C is false, then B∨C is false.
If B is false, and C is true, then B∨C is true.
If B is true, and C is false, then B∨C is true.
If B is true, and C is true, then B∨C is true.

B C B∨C

0 0 0

0 1 1

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
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1 0 1

1 1 1

If B is false, then ¬B is true.
If B is true, then ¬B is false.

B ¬B 

0 1

1 0

No problems so far.

If B is false, and C is false, then B→C is what? True? False? But, why?
If B is false, and C is true, then B→C is what? True? False? But, why?
If B is true, and C is false, then B→C is false, of course.
If B is true, and C is true, then B→C is what? Perhaps, not false? Hence, true?

How to answer these questions? If B is false, then B→C possesses no real
meaning. And, if we already know that B is true, and C is true, then B→C is
not very interesting. But, if a definite "truth-value" for B→C is mandatory in
all cases, then we can greatly simplify the situation by assuming that B→C is
true, except, when B is true, and C is false. Thus:

If B is false, and C is false, then B→C is true.
If B is false, and C is true, then B→C is true.
If B is true, and C is false, then B→C is false.
If B is true, and C is true, then B→C is true.

B C B→C

0 0 1

0 1 1

1 0 0

1 1 1

This  definition  is  equivalent  to  saying  that  B→C  is  true  if  and  only  if
¬(B∧¬ C) is true.

In this way, having any formula F and some assignment of truth-values to its
atoms, we can compute the truth-value of F.
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In fact, this setting represents a specific kind of interpretations – in terms of
the above Section 4.1. Our propositional atoms replace the atomic formulas of
predicate languages – both (atoms and formulas) are either true or false, and
the truth-value of a propositional formula depends on the truth-values of its
atoms only.  Thus,  we are  considering,  in  fact,  interpretations  with  a  fixed
domain D={true , false } , and in every interpretation, each atom possess a
definite truth-value – true or false. 

What would happen to some propositional formula F, if we would try out all
the possible interpretations:  all the possible combinations of truth-values of
the  propositional  atoms  occurring  in  F?  This  corresponds  to  trying  out  a
formula  of  a  predicate  languages  in  all  the  possible  interpretations.  For
example, let us consider the axiom L10: 

B C ¬B B→C ¬B→(B→C) 

0 0 1 1 1

0 1 1 1 1

1 0 0 0 1

1 1 0 1 1

In this table, each row represents a different interpretation.

In general, there are three possibilities:

F takes only true values (F is logically valid);

F takes only false values (F is unsatisfiable);

F takes both of values (F is satisfiable, but not logically valid).

Soundness of the classical propositional logic

Lemma 4.2.1. Under the classical truth tables, all the classical propositional
axioms L1-L11 take only true values (are logically valid).

Proof. First, let us verify L11: 

B ¬B B∨¬ B

0 1 1

1 0 1



136

And L10 is, in fact, verified in the table above.

Exercise 4.2.1. Verify that the axioms L1-L9 take only true values as well. 

Q.E.D.

See also:
"Truth Tables" from The Wolfram Demonstrations Project. Contributed by Hector Zenil.

Lemma 4.2.2. If, under the classical truth tables, the formulas B and B→C
take only true values, then so does C. I. e. from "always true" formulas, Modus
Ponens allows deriving only of "always true" formulas.

Proof. Let us assume that, in some interpretation, C takes a false value. In the
same interpretation, B and B→C take true values. If B is true, and C is false,
then B→C is false. Contradiction. Hence, C takes only true values. Q.E.D.

Note.  In the proof of Lemma 4.2.2, only the third row of implication truth
table was significant: if B is true, and C is false, then B→C is false! 

Theorem 4.2.3 (soundness of the classical propositional logic).

If [L1-L11, MP]:├ F, then, under the classical truth tables, F takes only true

values (is logically valid).

Proof. By induction, from Lemmas 4.2.1 and 4.2.2.

In particular: the classical propositional logic is consistent – in the sense that
one cannot prove both [L1-L11,  MP]:├ G and [L1-L11,  MP]:├ ¬G ,  for

any formula G. Indeed, a formula and its negation cannot both be true.

Completeness of classical propositional logic

How about the converse statement of Theorem 4.2.3: if,  under the classical
truth tables, formula F takes only true values, then [L1-L11, MP]:├ F? Is our

system powerful enough to prove any formula that is  taking only true
values? The answer is "yes":

Theorem 4.2.4 (completeness of the classical propositional logic). Assume,
the  formula  F  has  been  built  of  the  formulas  B1,  B2,  ...,  Bn by  using

propositional  connectives  only.  If,  under  the  classical  truth  tables,  for  any
truth-values of B1, B2, ..., Bn, formula F takes only true values, then: 

a) in the constructive logic, 

 [L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn ├ F,

b) in the classical logic, [L1-L11, MP]:├ F.

http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/TruthTables/
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Of  course,  (b)  follows  from  (a)  immediately  −  all  the  premises
B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn are instances of the axiom L11.

Corollary 4.2.4. The classical propositional logic [L1-L11, MP] is "complete"

also in the sense that if one would add any formula that can't be proved in this
logic, then one would obtain a system, in which all formulas are provable, i.e.,
an inconsistent system.

Proof of the corollary. Indeed, according to the soundness theorem, if some
formula F cannot be proved in [L1-L11, MP], then it takes false value for some

combination  of  truth-values  of  its  atoms.  Replace  each  true  atom  by  the
formula A→A, and each false atom – by ¬(A→A). In this way we obtain a
formula F' that takes only false values, hence, ¬F' takes only true values, and
hence, according to the completeness theorem, it can be proved in [L1-L11,

MP]. Thus, if we would add F to [L1-L11, MP] as an axiom schema, then, in

this  system,  the  formulas  F'  and  ¬F'  will  be  provable,  and  by  L10 –  any

formula will be provable. Q.E.D.

Note. Assume,  the  formula  F  is  built  of  atoms  B1,  B2,  ...,  Bn by  using

propositional  connectives  only.  If,  under  the  classical  truth  tables,  for  any
(possible and impossible) truth-values of B1, B2, ..., Bn, formula F takes only

true values, then F is called a tautology. Thus, Theorem 4.2.4 says that  any
tautology can be proved in the classical propositional logic.

Completeness of the classical propositional logic was first proved by Emil L.
Post in his 1920 Ph.D. thesis, and published as

E. Post.  Introduction to a general  theory of elementary propositions.  American Journal of
Mathematics, 1921, vol. 43, pp.163-185.

About the history, see also:

Richard  Zach.  Completeness  before  Post:  Bernays,  Hilbert,  and  the  development  of
propositional logic. The Bulletin of Symbolic Logic, 1999, vol. 5, N3, pp.331-366.

Now, let us prove Theorem 4.2.2. Following an elegant later idea by  Laszlo
Kalmar we need two simple lemmas before trying to prove the theorem. 

L.  Kalmar.  Über  Axiomatisiebarkeit  des  Aussagenkalküls.  Acta  scientiarium
mathematicarum (Szeged). 1934-35. vol. 7, pp. 222-243.

Lemma 4.2.5. In the constructive logic, one can "compute" the classical truth-
values of ¬ B , B →C , B∧C , B∨C as in the Table 4.1.

Note.  Thus,  to  "compute"  the  classical  truth-values,  the  axiom L11 is  not

necessary!

Proof.

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
https://en.wikipedia.org/wiki/Richard_Zach
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Post.html
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¬B ├ ¬B

Immediately, in any logic.

B ├ ¬ ¬B

By Theorem 2.4.4. [L1, L2, L9, MP]: A→¬¬A.

¬B, C ├ B→C

¬B, ¬C ├ B→C

By axiom L10: ¬B→(B→C) we obtain ¬B ├ B→C. This covers both cases.

B, ¬C ├ ¬(B→C)

This is exactly Theorem 2.4.2(a) [L1, L2, L9, MP].

B, C ├ B→C

By axiom L1: C→(B→C) we obtain C ├ B→C.

Table 4.1.

Negation Implication Conjunction Disjunction 

[ ]:

 ¬B ├ ¬B

[L10, MP]:

 ¬B, ¬C ├ B→C 

[L1, L2, L3, L9, MP]:

 ¬B, ¬C ├
¬(B∧C )

[L1-L4, L8, L9, 

MP]: ¬B,¬C ├
¬(B∨C )  

[L1, L2, L9,

MP]:

 B ├ ¬¬B

[L10, MP]: 

¬B, C ├ B→C 

[L1, L2, L3, L9, MP]:

 ¬B, C ├ ¬(B∧C )

[L7, MP]:

 ¬B, C ├ B∨C

[L1, L2, L9, MP]:

 B, ¬C ├ ¬(B→C)

[L1, L2, L4, L9, MP]:

 B, ¬C ├ ¬(B∧C )

[L6, MP]:

 B, ¬C ├ B∨C

[L1, MP]:

 B, C ├ B→C 

[L5, MP]: 

 B, C ├ B∧C

[L6, MP]:

 B, C ├ B∨C

¬B, ¬C ├ ¬(B∧C )

¬B, C ├ ¬(B∧C )

By axiom L3: B∧C → B and  the  Contraposition  Law  [L1,  L2,  L9,  MP]:

(A→B)→(¬B→¬A) we obtain ¬ B →¬(B∧C) , and ¬B ├
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¬(B∧C ) . This covers both cases.

B, ¬C ├ ¬(B∧C )

By axiom L4: B∧C → C and  the  Contraposition  Law  [L1,  L2,  L9,  MP]:

(A→B)→(¬B→¬A) we obtain ¬C → ¬(B∧C ) , and ¬C ├ ¬(B∧C ) .

B, C ├ B∧C

By axiom L5: B →(C → B∧C ) we obtain B, C ├ B∧C .

¬B, ¬C ├ ¬ (B∨C )

The  most  complicated  case.  By  de  Morgan  Laws,  in  the  minimal  logic:
¬B∧¬C →¬(B∧C ) . You may wish to verify that even less – [L1-L4, L8,

L9, MP] is sufficient.

¬B, C ├ B∨C  

By axiom L7: C → B∨C we obtain C ├ B∨C .

B, ¬C ├ B∨C ; B, C ├ B∨C

By axiom L6: B → B∨C we obtain B ├ B∨C . This covers both cases.

Q.E.D.

As the next step, let us generalize Lemma 4.2.5 by showing how to "compute"
truth-values of arbitrary formula F, which is built of formulas B1, B2, ..., Bn by

using more than one propositional connective.  For example,  let  us take the
formula B∨C → B∧C :

B C B∨C B∧C B∨C → B∧C  

0 0 0 0 1

0 1 1 0 0

1 0 1 0 0

1 1 1 1 1

We will show that, in the constructive logic [L1-L10, MP]:

¬B, ¬C ├ B∨C → B∧C ,
¬B, C ├ ¬(B∨C → B∧C) ,

B, ¬C ├ ¬(B∨C → B∧C) ,

¬B, ¬C ├ B∨C → B∧C .
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Lemma 4.2.6. Assume,  the  formula  F  has  been  built  of  the  formulas  B1,

B2,  ...,  Bn by  using  propositional  connectives  only.  Assume  that,  if  the

formulas B1, B2, ..., Bn  take the truth-values v1, v2, ..., vn respectively, then,

for these values, formula F takes the truth-value w. Then, in the constructive
logic, we can "compute" the truth-value of F in the following sense:

[L1-L10, MP]: v1B1, v2B2, ..., vnBn├ wF,

where: wF denotes F, if w is true, and ¬F, if w is false, and viBi denotes Bi, if

vi is true, and ¬Bi, if vi is false.

Proof. By induction.

Induction base. F is one of the formulas Bi. Then w=vi, and, of course, in any

logic, viBi├ wF.

Induction step. 

Note that Lemma 4.2.5 represents the assertion of Lemma 4.2.6 for formulas
built of B1, B2, ..., Bn by using a single propositional connective.

1. F is ¬G. By the induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn├ w'G, 

where w' represents the truth-value of G. By Lemma 4.2.5,

[L1-L10, MP]: w'G├ wF, hence, [L1-L10, MP]: v1B1, v2B2, ..., vnBn├ wF.

2.  F is  GoH,  where  o  is  implication,  conjunction,  or  disjunction.  By  the
induction assumption,

 [L1-L10, MP]: v1B1, v2B2, ..., vnBn├ w'G,

where w' represents the truth-value of G, and 

[L1-L10, MP]: v1B1, v2B2, ..., vnBn├ w''H,

where w'' represents the truth-value of H. By Lemma 4.2.5,

[L1-L10, MP]: w'G, w''H├ wF,

hence, [L1-L10, MP]: v1B1, v2B2, ..., vnBn├ wF.

Q.E.D.

Proof of Theorem 4.2.4(a). By Lemma 4.2.6:

[L1-L10, MP]: B1, v2B2, ..., vnBn├ F,

[L1-L10, MP]: ¬B1, v2B2, ..., vnBn├ F,
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because F takes only true values. Then, by [L1, L2, L8, MP] D-elimination 

theorem: 

[L1-L10, MP]: B1v¬B1, v2B2, ..., vnBn├ F.

By repeating this operation we obtain Theorem 4.2.4(a):

[L1-L10, MP]: B1∨¬ B1 , B2∨¬ B2 , ... , Bn∨¬ Bn ├ F.

Q.E.D.

The above proof of the Completeness Theorem contains, in fact, an algorithm
allowing to build a (very long) proof of any propositional formula that takes
only true values.

Computational complexity of the problem 

From  now  on,  in  principle,  we  could  forget  our  great  ability  of  proving
formulas in the classical propositional logic that we developed in  Section 2.
Indeed, in order to verify, is a formula provable in [L1-L11, MP], or not, we

can simply check, under the classical truth tables, takes this formula only true
values,  or  not.  If  it  takes,  then,  by the Completeness  Theorem,  formula  is
provable, if not – it is not provable. 

For example, instead of trying to prove Peirce’s Law a la  Section 2, we can
simply verify that it takes only true values: 

A B  A→ B (A→ B)→ A  (( A→ B)→ A)→ A

0 0 1 0 1

0 1 1 0 1

1 0 0 1 1

1 1 1 1 1

Thus, by Theorem 4.2.4 (completeness of the classical propositional logic), 

[L1-L11, MP]: (( A→ B)→ A)→ A .

For formulas containing one, two or three atoms, this method is really simpler
than  direct  proving  of  formulas  in  [L1-L11,  MP].  However,  for  longer

formulas,  this  method allows for building automatically (by using Lemmas
4.2.5 and 4.2.6) only of extremely long proofs. 

Indeed, if the formula F contains n different atoms A, B, C, ..., then its truth
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table contains 2n rows for which the truth values of F must be checked one
by one. Of course, if the formula contains 2 atoms (like as Peirce’s Law, or 3
atoms (like as the Axiom L2), then its truth table consists of 4 or 8 rows − for

most people this is a feasible task. But the truth table for a formula containing
100 atoms contains 2100≈1030 rows to check! 

So, let us try inventing a more efficient algorithm? Unfortunately, until now,
all the attempts have produced only algorithms the running time of which (for
checking of formulas of length n, as n→∞ ), exceeds any power nk .    

And  it  seems,  we  will  never  really  succeed,  because  of  the  Cook-Levin
Theorem proved in 1971.

Cook-Levin  Theorem.  The  problem  of  determining,  is  a  propositional
formula satisfiable, or not, belongs to the complexity class NP-complete.

For details, see Cook-Levin Theorem, Stephen Co  ok   and Leonid Levin in Wikipedia.

Corollary.  The problem of determining, is a propositional formula  provable
in the classical propositional logic,  or not, belongs to the complexity class
co-NP-complete.

Indeed, a propositional formula is provable in the classical propositional logic
if and only if it takes only true values.

It is believed that the running time of any algorithm solving problems of these
two classes (for checking of formulas of length  n, as n→∞ ), exceeds any
power nk . It is believed, but not yet proved (see P versus NP problem in
Wikipedia) – it is one of the “major unsolved problems in computer science”.

The problem of determining the constructive provability of propositional
formulas is believed to be even harder – it belongs to the complexity class
P  SPACE-complete  , as proved by Richard Statman in 1979:

R.  Statman. Intuitionistic  propositional  logic  is  polynomial-space complete,  Theoretical
Computer Science 9 (1979), pp. 67–72 (online copy available).

It is believed that PSPACE-complete problems are strictly harder than co-NP-
complete problems. 

Worst case estimates and practical experience

When trying to assess the performance of some algorithm, for example, of an
algorithm A, which is determining correctly the provability of formulas, we
can start by considering of some abstract functions, such as:

TIME A(F )  – the time that A is spending to process the formula F,

 SPACE A(F )  – the memory space that A is using to process F.

http://deepblue.lib.umich.edu/bitstream/2027.42/23534/1/0000493.pdf
https://en.wikipedia.org/wiki/Richard_Statman
https://en.wikipedia.org/wiki/PSPACE-complete
https://en.wikipedia.org/wiki/PSPACE-complete
https://en.wikipedia.org/wiki/P_versus_NP_problem
https://en.wikipedia.org/wiki/Co-NP-complete
https://en.wikipedia.org/wiki/Leonid_Levin
https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/Stephen_Cook
https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_theorem
https://en.wikipedia.org/wiki/NP-completeness
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Then, the “overall performance” of A can be estimated as follows:     

maxTIME A(n)  – the time that A is spending to process the “worst” of the 
formulas having length n;

 maxSPACE A(n)  – similarly, for the memory space.

For example,  when analyzing the simplest  algorithms,  that  are  determining
correctly the provability of formulas in the classical propositional logic, one
can verify easily that

maxTIME A(n)=2Cn , 

where C is a numerical constant (the less constant, the better the algorithm).

However, this does not imply that all such algorithms are useless in solving of
practical problems. The above estimate represents the so-called  worst case
estimate: there  exist,  indeed,  formulas  of  length  n,  the processing time of
which  by  the  algorithm  is  unacceptable.  But  how  about  the  majority of
formulas?   Or,  about  specific  types of  formulas  appearing  when solving  a
specific  practical  problem?  Experience  shows  that  some  of  the  universal
algorithms showing unacceptable worst case results, perform really good in
many  practical  cases.  For  examples,  see  the  tableaux  method  and  the
resolution method considered in Section 6 and Section 7.

4.3. Classical Predicate Logic − Gödel's Completeness Theorem

Kurt Gödel (1906-1978) "He is best known for his proof of Gödel's Incompleteness Theorems.
In  1931  he  published  these  results  in  Über  formal  unentscheidbare  Sätze  der  Principia
Mathematica und verwandter Systeme .  ...Gödel's  results were a landmark in 20th-century
mathematics, showing that mathematics is not a finished object, as had been believed. It also
implies  that  a computer can never be programmed to answer all  mathematical  questions."
(According to MacTutor History of Mathematics archive).

As David Hilbert and Wilhelm Ackermann published in 

D. Hilbert, W. Ackermann. Grundzüge der theoretischen Logik. Berlin (Springer), 1928

their, in a sense, "final" version of the axioms of classical logic, they noted:
"Whether the system of axioms is complete at least in the sense that all the
logical formulas which are correct for each domain of individuals can actually
be derived from them, is still an unsolved question."

(quoted after
S. C. Kleene. The Work of Kurt Gödel. "The Journal of Symbolic Logic", December 1976, 
Vol.41, N4, pp.761-778
See also: Hilbert and Ackermann's 1928 Logic Book by Stanley N. Burris).

http://www.math.uwaterloo.ca/~snburris/htdocs/scav/hilbert/hilbert.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Ackermann.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Hilbert.html
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Godel.html
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Indeed, as we will verify below,

a) all axioms of the classical logic (L1-L15) are logically valid,

b)  the  inference  rules  MP,  Gen,  from  logically  valid  formulas,  infer  only
logically valid formulas.

Hence,  in  the  classical  logic,  only  logically  valid  formulas  can  be  proved
(soundness theorem). Still, is our list of logical axioms and rules of inference
complete in the sense that all logically valid formulas can be proved? − the
question asked by Hilbert and Ackermann in 1928. The answer is "yes" − as
Kurt  Gödel  established  in  1929,  in  his  doctoral  dissertation  "Über  die
Vollständigkeit  des  Logikkalküls"  (visit  Gödel's  archive  at  the  Princeton
University Library). The corresponding paper was published in 1930:

K. Gödel.  Die Vollständigkeit  der  Axiome des  logischen Funktionenkalküls.  "Monatshefte
fuer Mathematik und Physik", 1930, Vol.37, pp.349-360.

Theorem 4.3.1 (Gödel's Completeness Theorem). In any predicate language,
if a formula is logically valid, then it can be proved by using the classical logic
[L1-L15, MP, Gen].

In fact, a more general theorem can be proved:

Theorem 4.3.2 (Thanks to Sune Foldager for the idea.). If T is a first order
theory with classical logic, then, if some formula F is true in all models of T,
then T proves F.

Thus (as noted in  Section 1.3), in principle, we will never need to introduce
specific (non-logical) rules of inference. All the consequences of the axioms of
a first order theory can be derived by using our logical axioms and two rules of
inference – Modus Ponens and Generalization.

Gödel's Completeness Theorem follows from Theorem 4.3.2 (simply consider
a theory T with an empty set of specific axioms).

Soundness of the classical predicate logic

First, let us prove the Soundness Theorem − that all the formulas that can be
proved by using the classical logic [L1-L15, MP, Gen] are logically valid.

Lemma 4.3.1.  All  the  axioms of  the  classical  logic  (L1-L15)  are  logically

valid.

Proof. 

1) Under the classical truth tables, the propositional axioms L1-L11 take only

true  values  (Lemma  4.2.1).  Hence,  these  axioms  are  true  under  all
interpretations.

http://libweb.princeton.edu/
http://libweb.princeton.edu/
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2a) L12: xF(x)→F(t), where F is any formula, and t is a term such that the∀
substitution F(x/t) is admissible. 

We proved the logical validity of this axiom  in Section 4.1.

2b)  L13: F(t)→ xF(x), where F is any formula, and t is a term such that the∃z(x+z+1=y).
substitution F(x/t) is admissible.

Similarly, do Exercise 4.3.1.

2c)  L14:  x(G→F(x))→(G→ xF(x)), where F is any formula, and G is a∀ ∀
formula that does not contain x as a free variable.

Let us assume that, under some interpretation J, for some values of its free
variables, L14 is false. According to the classical truth tables, this could be

only,  if  x(G→F(x))  were  true,  and  G→ xF(x)  were  false  (under  the∀ ∀
interpretation J, for the same above-mentioned values of free variables)

If x(G→F(x)) is true, then G→F(c) is true for all∀ c∈D J . Since G does not
contain x, this means that if G is true, then F(c) is true for all c∈DJ .

On the other hand, if G→ xF(x) is false, then G is true, and xF(x) is false.∀ ∀
And finally, if xF(x) is false, then F(c) is false for some∀ c∈DJ . But, as we
established above, if G is true, then F(c) is true for all c∈DJ . Contradiction.
Hence,  under all  interpretations, L14 is true for all combinations of its free

variables.

2d)  L15:  x(F(x)→G)→( xF(x)→G), where F is  any formula,  and G is  a∀ ∃z(x+z+1=y).
formula that does not contain x as a free variable.

Similarly, do Exercise 4.3.1.

Q.E.D.

Exercise 4.3.1. Verify that the axioms L13 and L15 are logically valid as well.

Lemma 4.3.2. a)  For any interpretation J,  from formulas  true under J,  the
inference rules MP and Gen allow deriving only of formulas true under J.  

b)  From  logically  valid  formulas,  the  inference  rules  MP and  Gen  allow
deriving only of logically valid formulas.

Proof. Of course, (b) follows from (a). Let us prove (a).

1. Modus Ponens. Assume, B and B→C are true under J. By MP, we derive C.
Assume, C is false under J, for some values of its free variables. For these
values of the free variables of C, the formulas B and B→C are true under J.
Then,  according  to  the  classical  truth  tables,  C  also  must  be  true.
Contradiction. Hence, C is true under J.
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2. Generalization. Assume, F(x) is true under J, but xF(x) is false under J,∀
for some values of its free variables. Hence, under J, for these values of free
variables of xF(x), there is∀ c∈DJ such that F(c) is false. But F(x) is true
under J, i.e., F(c) is true as well. Contradiction. Hence, xF(x) is true under J.∀

Q.E.D.

Theorem 4.3.3 (soundness of the classical predicate logic). All the formulas
that can be proved by using the classical logic [L1-L15, MP, Gen], are logically

valid. 

Proof. Immediately, by Lemmas 4.3.1 and 4.3.2(b).

Corollary 4.3.3. If T is a first order theory with the classical logic, the specific
axioms of which are true under some interpretation J, then:

a) All theorems of T are true under J as well. In other words, theorems of T
are true in any model of T.

b) T is consistent (i.e., it does not prove contradictions).

Proof. a) In T, each proof consists of instances of logical axioms (true under
any interpretation, Lemma 4.3.1), of instances of specific axioms of T (true
under  J),  and  of  formulas  that  can  be  obtained  from  these  by  (repeated)
application of MP and Gen. By Lemma 4.3.2(a), the latter are true under J as
well. 

b) Assume, T proves a contradiction – some formula B and simultaneously –
¬B . Then, by (a) these formulas both are true under J. This is impossible.

Q.E.D.

Completeness of the classical predicate logic

The following 12 pages present a proof of Gödel's Completeness Theorem.

Model Existence Theorem

Gödel's Completeness Theorem (and Theorem 4.3.2) are easy consequences of
the so-called Model Existence Theorem (see below), first proved in the above-
mentioned Gödel's paper of 1930.

Gödel's initial proof was simplified in 1947, when Leon Henkin presented in
his Ph.D. thesis a new proof of the Model Existence Theorem. The result was
published in 1949:

L. Henkin. The completeness  of  the  first-order  functional  calculus.  "J.  Symbolic  Logic",
1949, vol.14, pp.159-166.

https://en.wikipedia.org/wiki/Leon_Henkin
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See also Henkin's later account of his discovery:

L. Henkin.  The discovery of my completeness proofs.  "The Bulletin of Symbolic Logic",
1996, vol.2, N2, pp.127-158.

An even simpler version Henkin's proof was found independently and almost
simultaneously by Gisbert Hasenjäger (during WWII, “was responsible for the
security  of  the  Enigma machine”).  However,  when  publishing,  Hasenjäger
acknowledged Henkin's priority:

G.  Hasenjäger.  Eine  Bemerkung  zu  Henkin's  Beweis  für  die  Vollständigkeit  des
Prädikatenkalküls der ersten Stufe. "J. Symbolic Logic", 1953, vol.18, pp.42-48.

If T is an inconsistent theory, then there are no models of T. Indeed, if T proves
a contradiction, i.e., a formula of the kind B∧¬B , then, in a model of T, the
formula B must be true and false simultaneously. This is impossible.

Hence, if there is a model of T, then T is consistent. 

The converse question: could it be possible that T is a consistent theory, but
there are no models of T? The answer is given in the

Theorem 4.3.4 (Model Existence Theorem). If a first order formal theory
with classical logic is consistent (in the sense that, by using the classical logic,
it does not prove contradictions), then there is a finite or countable model of
this theory (an interpretation with a finite or countable domain, under which
all axioms and theorems of theory are true).

In the 1920s, some people insisted that mere consistency of a theory (in the
syntactic sense of the word − as the lack of contradictions) is not sufficient to
regard  it  as  a  meaningful  theory  −  as  a  "theory  of  something".  Model
Existence Theorem says the contrary − (syntactic!) consistency of a theory is
sufficient: if a theory does not contain contradictions, then it is a "theory
of something" − it describes at least some kind of "mathematical reality". For
example, you may think that Euclidean geometry is "meaningless" − because it
does not describe 100% correctly the spacial properties of the Universe. But
it's your problem, not  Euclid's − use another theory, if necessary. Euclidean
geometry  describes  its  own  kind  of  "mathematical  reality"  –  and  100%
correctly!

Let us assume the Model Existence Theorem (we will prove it later in this
Section).

Proof of Theorem 4.3.2.

If T proves F, then F is true in all models of T (Corollary 4.3.3).

Now, let us assume that some formula F is true in all models of theory T (for
all values of its free variables, if any), yet it cannot be proved in T. Let us

http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Gisbert_Hasenjaeger
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consider the theory T' in the language of T which contains (besides the axioms
of T) an additional non-logical axiom − the negation of F, i.e.,  the formula
¬ x∀ 1... x∀ nF, where x1, .., xn are exactly all the free variables appearing in F

(if F contains free variables x1, .., xn, then, to negate its assertion, we must add

the quantifiers x∀ 1... x∀ n). Since F cannot be proved from the axioms of T, T'

is a consistent theory.

Indeed, if T' would be inconsistent, i.e., we could prove in T' some formula C
and its negation ¬C, then we had proofs of [T]: ¬ x∀ 1... x∀ nF├ C, and [T]:

¬ x∀ 1... x∀ nF├ ¬C.  Since  ¬ x∀ 1... x∀ nF is  a  closed  formula,  by  Deduction

Theorem 2, [T]:├ ¬ x∀ 1... x∀ nF →C, and [T]:├ ¬ x∀ 1... x∀ nF →¬C. Now, by

axiom L9: (B→C)→(B→¬C)→¬B, we obtain that [T]:├ ¬¬ x∀ 1... x∀ nF. By

the (classical) Double Negation Law, this implies [T]:├ x∀ 1... x∀ nF, and by

axiom L12:  xB(x)→B(x)  we  obtain  [T]:├  F.  But,  by  our  assumption,  F∀
cannot be proved in T. Hence, T' is a consistent theory, indeed.

Now,  by  the  Model  Existence  Theorem,  there  is  a  model  of  T'  –  an
interpretation J that makes all  its axioms true. Under this interpretation,  all
axioms of T are true, thus, J is a model of T. And the formula ¬ x∀ 1... x∀ nF (as

an axiom of T') is true under J as well. On the other hand, since F is true in all
models  of  T,  it  is  true  also  under  the  interpretation  J.  Hence,  formulas

x∀ 1... x∀ nF and ¬ x∀ 1... x∀ nF both are true under J. This is impossible, hence,

F must be provable in T. Q.E.D.

Notes. a) Such a simple proof seems almost impossible! We are proving that
the logical axioms and rules of inference are strong enough to prove all the
formulas that are true in all models of T, but where come these axioms in?
They come in − in the proof of the Model Existence Theorem. This theorem
says  that  if  some formal  theory  T does  not  have  models,  then  the  logical
axioms and rules of inference are strong enough to derive a contradiction from
the axioms of T. But the proof of the Model Existence Theorem that we will
consider below, is positive, not negative!

b)  The above simple proof seems to be extremely non-constructive! "If F is
true in all models of T, then it can be proved in T". How could we obtain this
proof? Still, how do we know that F is true in all models of T? Only, if we had
a constructive procedure that is verifying this, we could ask for an algorithm
converting such procedures into proofs in T!

Exercise  4.3.2  (optional,  for  smart  students).  Prove  the  Model  Existence
Theorem  by  using  the  following  smart  ideas  due  to  Gödel,  Henkin  and
Hasenjäger. Let T be a consistent theory. We must build a model of T. What
kind of "bricks" could we use for this "building"? Idea #1: let us use object



149

constants of the language! So, let us add to the language of T an infinite set of
new object constants d1,  d2,  d3,  ...  (and adopt the corresponding additional

instances of logical axioms). Prove that this extended theory T0 is consistent.

The model we are building must contain all "objects" whose existence can be
proved in  T0.  Idea #2: for  each  formula  F  of  T0 having exactly  one  free

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃z(x+z+1=y). i),

where the constant  di is  unique for  each F.  If  T0 proves xF(x),  then this∃z(x+z+1=y).
constant di will  represent in our model the object x having the property F.

Prove that  this  extended theory T1 is  consistent.  Idea #3: prove  the (non-

constructive) Lindenbaum's Lemma: the axiom set of any consistent theory
can be extended in such a  way, that  the extended theory is  consistent  and
complete (the axiom set of this extended theory may be not  algorithmically
solvable, let us allow this). By using this lemma, extend T1 to a consistent

complete theory T2. Idea #4: let us start building of  a model M of T by taking

as  the  domain  of  M the  set  of  all  those  terms  of  T0 that  do  not  contain

variables.  And  let  us  interpret  each  function  constant  f  as  the  "syntactic
constructor function" f', i.e., let us define the value f'(t1, ..., tn) simply as the

character string "f(t1, ..., tn)". Finally, let us interpret each predicate constant p

as a (non-constructive) relation p' such that p'(t1, ..., tn) is true in M if and only

if T2 proves p'(t1, ..., tn). To complete the proof, prove that an arbitrary formula

G is true in M if and only if T2 proves G. Hence, all theorems of the initial

theory T are true in M.

Adolf Lindenbaum (1904-1941), his wife Janina Hosiasson-Lindenbaum (1899-1942).

Lemma 4.3.4 (Lindenbaum's Lemma). Any consistent first order theory can
be  extended  to  a  consistent  complete  theory.  More  precisely,  if  T  is  a
consistent first order theory,  then, in the language of T,  there is a set A of
closed formulas such that T+A is a consistent complete theory.

Note.  a)  By  T+A we  denote  the  first  order  theory  in  the  language  of  T,
obtained from T by adding the formulas of the set A as non-logical axioms.

b) In general, T+A is not a formal theory in the sense of Section 1.1 – the set A
not always is algoritmically solvable.

Exercise 4.3.3. Verify that, in any predicate language L, only countably many
formulas can be generated: produce an algorithm for printing out a sequence
F0, F1, F2, ... containing all the formulas of L.

Proof of Lindenbaum's Lemma (Attention: non-constructive reasoning!)

http://en.wikipedia.org/wiki/Janina_Hosiasson-Lindenbaum
http://en.wikipedia.org/wiki/Adolf_Lindenbaum
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Let us use the algorithm of the Exercise 4.3.3 printing out the sequence F0, F1,

F2,  ...  of  all  formulas  in  the  language  of  T,  and  let  us  run  through  this

sequence, processing only those formulas Fi that are closed.

At the very beginning, the set of new axioms A0 is empty.

At the step i, we already have some set Ai-1 of new axioms. If the formula Fi is

not closed, let us ignore it, and set Ai=Ai-1. Now, let us suppose that Fi is a

closed formula. If T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, then we can ignore

this formula, and set Ai=Ai-1. If T+A does not prove neither Fi, nor ¬Fi, then

let us simply add Fi (or ¬Fi, if you like it better) to our set of new axioms, i.e.,

set Ai=Ai−1∪{F i} . 

Etc.,  ad infinitum.  As  the  result  of  this  process  we obtain  a  set  of  closed
formulas A=A0∪A1∪A2∪...∪Ai∪ ... . 

Let us prove that T+A is a consistent complete theory.

Consistency. If T+A would be inconsistent, we would have a proof of [T+A]:
C∧¬C for some formula C. If, in this proof, no axioms from the set A

would be used, we would have a proof of [T]: C∧¬C ,  i.e.,  T would be
inconsistent. 

Otherwise, the proof of [T+A]: C∧¬C contains a finite number of axioms
B1, ..., Bk from the set A. Let us arrange these axioms in the sequence, as we

added them to the set A. Thus we have a proof of [T]: B1, ..., Bk├ C∧¬C .

Then, by the N-elimination theorem, we have a proof of [T]: B1, ..., Bk-1├

¬Bk. But this is impossible − we added Bk to the set A just because T+Ai-1

could not prove neither Bk, nor ¬Bk. Q.E.D.

Completeness. We must verify that, for any closed formula F in the language
of T, either T+A├ F, or T+A├ ¬F. Let us assume, this is not the case for some
closed formula F. Of course, F appears in the above sequence F0, F1, F2, ... as

some Fi.  If  neither  T+A├ F,  nor  T+A├ ¬F,  then  neither  T+Ai-1├ Fi,  nor

 T+Ai-1├ ¬Fi. In such a situation we would add F or ¬F to the set A, hence, we

would have T+A├ F or  T+A├  ¬F. Q.E.D.

This completes the proof of Lindenbaum's Lemma.

Attention: non-constructive reasoning!  T+A is a somewhat strange theory,
because, in general, we do not have an algorithmic decision procedure for its
set of axioms. Indeed, to decide, is some closed formula F an axiom of T+A,
or not, we must identify F in the sequence F0, F1, F2, ... as some Fi, and after
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this, we must verify, whether T+Ai-1 proves Fi, or T+Ai-1 proves ¬Fi, or none

of these. Thus, in general, T+A is not a formal theory in the sense of Section
1.1.

Proof of the Model Existence Theorem

(Attention: non-constructive reasoning!)

Inspired by the beautiful exposition in Mendelson [1997].

Step 1. We must build a model of T. What kind of "bricks" should we use for
this "building"?  Idea #1: let us use object constants of the language! So, in
order to prepare enough "bricks", let us add to the language of T a countable
set of new object constants d1, d2, d3, ... (and extend the definitions of terms,

atomic formulas and formulas accordingly, and add new instances of logical
axioms accordingly). Let us prove that, if T is consistent, then this extended
theory T0 also is consistent. 

If T0 would be inconsistent, then, for some formula C, we could obtain a proof

of  [T0]: C∧¬C .  If,  in  this  proof,  object  constants  from the set  {d1,  d2,

d3, ...} would not appear at all, then, in fact, we had a proof of [T]: C∧¬C ,

i.e., we could conclude that T is inconsistent. But what, if some of the new
object  constants  do  appear  in  the  proof  of  [T0]: C∧¬C ?  Then,  let  us

replace these constants by any variables of T that do not appear in this proof
(this  is  possible,  since each predicate  language contains  a countable set  of
object variables). After these substitutions, the proof becomes a valid proof of
T, because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the object constants d1,  d2,

d3, ..., so, they do not change.

c) Applications of inference rules MP and Gen remain valid.

Hence, [T]: C ' ∧¬C ' , where the formula C' has been obtained from C by
the above substitutions. Thus, if T0 would be inconsistent, then so would be T.

Step 2. The model we are building must contain all "objects" whose existence
can be proved in T0. Idea #2: for each formula F of T0 having exactly one free

variable (for example, x) let us add to the theory T0 the axiom xF(x)→F(d∃z(x+z+1=y). i),

where the constant di is unique for each F. If T0 proves xF(x), then this d∃z(x+z+1=y). i

will represent in our model the object x having the property F. Let us prove
that, if T is consistent, then this extended theory T1 also is consistent. Note that
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in T1 the same language is used as in T0.

To  implement  the  Idea  #2  correctly,  first  let  us  use  the  algorithm  of  the
Exercise 4.3.3 printing out the sequence F0, F1, F2, ... of all formulas in the

language of T0, and let us run through this sequence, processing only those

formulas Fi that have exactly one free variable. Let us assign to each such

formula Fi a unique constant dc(i) in such a way that dc(i)  does not appear

neither  in  the  non-logical  axioms  of  T,  nor  in  Fi,  nor  in  the  axioms

yF∃z(x+z+1=y). j(y)→Fj(dc(j))  for  all  formulas  Fj preceding  Fi in  the  sequence  F0,  F1,

F2, .... And, if x is the (only) free variable of Fi, let us adopt xF∃z(x+z+1=y). i(x)→Fi(dc(i))

as an axiom of T1.

Now, let us assume that the extended theory T1 is inconsistent, i.e., that, for

some formula C in the language of T0, we have a proof of [T1]: C∧¬C . In

this proof, only a finite number n of axioms xF∃z(x+z+1=y). i(x)→Fi(dc(i)) could be used.

Let us arrange these n axioms in order of increasing indices i, and let us denote
this list by A1, A2, ..., An.

If  n=0,  then we have [T0]: C∧¬C ,  i.e.,  then T0 is  inconsistent.  This  is

impossible.

If n>0, then let us consider An – the last axiom of the list: xF(x)→F(d∃z(x+z+1=y). c(F)).

And, in the proof of [T1]: C∧¬C ,  let  us replace the constant d c(F ) by

some variable y that does not appear in this proof (this is possible, since each
predicate  language  contains  a  countable  set  of  variables).  After  this
substitution, the proof remains a valid proof of T1, because:

a) The logical axioms remain valid.

b) The non-logical axioms of T do not contain the constant c(F), they do not
change.

c)  The  axiom  xF(x)→F(d∃z(x+z+1=y). c(F))  becomes  xF(x)→F(y).  Since  F  does  not∃z(x+z+1=y).
contain the constant c(F), the premise xF(x) does not change.∃z(x+z+1=y).

d) The remaining n-1 axioms yF∃z(x+z+1=y). j(y)→Fj(dc(j)) of T1 , i.e., the formulas of the

list A1, A2, ..., An-1 do not contain the constant d c(F ) , they do not change.

e) Applications of inference rules MP and Gen remain valid.

Thus we have now a new proof of a contradiction: 

[T0]: A1, A2, ..., An-1, xF(x)→F(y)├∃z(x+z+1=y). C '∧¬C ' ,
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where the formula C' has been obtained from C by substituting y for d c(F ) .
Then, by N-elimination theorem, there is a proof:

[T0]: A1, A2, ..., An-1├ ¬( xF(x)→F(y)).∃z(x+z+1=y).

By  Theorem  2.6.5,  [L1-L11,  MP]: ¬(A→ B)→ A∧¬B .  Thus,  from

¬( xF(x)→F(y)) we can conclude∃z(x+z+1=y). ∃z(x+z+1=y). x F (x )∧¬F ( y) , and we have a proof
of xF(x), and a proof of ¬F(y). By applying Gen to the second formula, we∃z(x+z+1=y).
obtain y¬F(y), that is equivalent to ¬ yF(y) (indeed, let us remind ∀ ∃z(x+z+1=y). Section
3.2,  Table  3.2,  Group  IV,  constructively,  x¬B↔¬ xB).  By  Replacement∀ ∃z(x+z+1=y).
Theorem 3, ¬ yF(y) is equivalent to ¬ xF(x). Thus, we have a proof of a∃z(x+z+1=y). ∃z(x+z+1=y).
contradiction ∃z(x+z+1=y). x F (x )∧¬∃z(x+z+1=y). x F (x) , where only the axioms [T0]: A1, A2, ...,

An-1 are used.

Let us repeat the above chain of reasoning another n−1 times to eliminate
all occurrences  of  the  axioms  xF∃z(x+z+1=y). i(x)→F(dc(i))  from  our  proof  of  a

contradiction. In this way we obtain a proof of a contradiction in T0. This is

impossible. Hence, T1 is a consistent theory.

Step 3. Idea #3: let us use the (non-constructive!) Lindenbaum's Lemma, and
extend  T1 to  a  consistent  complete  theory  T2.  Note  that  in  T2 the  same

language is used as in T0.

Step 4. Let us define an interpretation M of the language of T0, in which all

theorems of T2 will  be true.  Since all  theorems of the initial  theory T are

theorems of T2, this will complete our proof.

Idea #4: let us take as the domain DM of the interpretation M the (countable!

−  verify!)  set  of  all  constant  terms  of  T0,  i.e.,  terms  that  do  not  contain

variables (this set of terms is not empty, it contains at least the countable set of
object constants added in Step 1). And let us define interpretations of object
constants, function constants and predicate constants as follows.

a) The interpretation of each object constant c is the constant c itself.

b)  The  interpretation  of  a  function  constant  f  is  the  "syntactic  constructor
function" f’’, i.e., if f is an n-ary function constant, and t1, ..., tn are constant

terms, then the value f”(t1, ..., tn) is defined simply as the character string "f(t1,

..., tn)" (quotation marks ignored).

c) The interpretation of a predicate constant p is the relation p” such, if p is an
n-ary predicate constant, and t1, ..., tn are constant terms, then p”(t1, ..., tn) is
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defined as true in M if and only if T2 proves p(t1, ..., tn) (note that T2 is a

consistent complete theory, it proves either p(t1, ..., tn), or ¬p(t1, ..., tn), but not

both!).

Step 5. To complete the proof, we must verify that, in the language of T0, an

arbitrary formula G is true in M if and only if T2 proves G (let us denote this,

as usual, by T2├ G). This will be done, if we will prove that, if x1, ..., xm is

any list of variables, containing all the free variables contained in the formula
G, and t1, ..., tm are constant terms, then

G(t1, ..., tm) is true in M if and only if T2├ G(t1, ..., tm). 

Note. Since T2 is a consistent and complete theory, this is equivalent to 

G(t1, ..., tm) is false in M if and only if T2├ ¬G(t1, ..., tm). 

Indeed, G(t1, ..., tm) is a closed formula. If F is a closed formula, assume that F

is  true  in  M if  and  only  if  T2├ F.  Then,  a)  if  F  is  false,  then  T2├ F  is

impossible, hence, T2├ ¬F; and b) if T2├ ¬F, then T2├ F is impossible, hence,

F cannot be true, and is false. Thus, F is false if and only if T2├ ¬F.

The  proof  will  proceed  by  induction  on  the  number  of  connectives  and
quantifiers in G.

Induction  base:  Here,  G is  an  atomic  formula  p(s1,  ...,  sn),  where  p  is  a

predicate constant and s1, ..., sn are terms. Then, s1, ..., sn contain some of the

variables x1, ..., xm . In s1, ..., sn, let us substitute for x1, ..., xm the (constant)

terms t1, ..., tm respectively. In this way we obtain constant terms s'1, ..., s'n.

Thus, G(t1, ..., tm) is simply p(s'1, ..., s'n). By definition (see Step 4), p(s'1, ...,

s'n) is true if and only if T2├ p(s'1, ..., s'n), i.e., if and only if T2├ G(t1, ..., tm).

Q.E.D.

Induction step.

Let us consider a  closed formula G(t1,  ...,  tm).  Let us denote G(t1,  ...,  tm),

H(t1, ..., tm), K(t1, ..., tm) simply by G, H, K correspondingly.

Case 1: G is ¬H. Then, H contains exactly the free variables of G, and we can
consider H(t1, ..., tm). According to the classical truth tables, G is true in M if

and only if H is false in M. By the induction assumption and the above note, H
is false in M if and only if T2├ ¬H, i.e., if and only if T2├ G. Q.E.D.

Case 2: G is H→K. Then, H and K contain subsets of the free variables of G,
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and we can consider H(t1, ..., tm) and K(t1, ..., tm). According to the classical

truth tables, G is false in M if and only if H is true in M, and K is false in M.
By the induction assumption and the above note, H is true in M if and only if
T2├ H, and K is false in M if and only if T2├ ¬K. Hence,

G is false in M if and only if T2├ H and T2├ ¬K.

Let us remind Theorem 2.2.1 and an equivalence from Section 2.6:

[L1-L11, MP]: ¬(A→ B)↔ A∧¬B .

In T2, all the axioms of the classical logic are adopted, hence,

G is false in M if and only if T2├ ¬(H→K),

G is true in M if and only if T2├ H→K (by the above note),

 G is true in M if and only if T2├ G. 

Q.E.D.

Case 3: G is H ∧K . Then, H and K contain subsets of the free variables of
G,  and  we  can  consider  H(t1,  ...,  tm)  and  K(t1,  ...,  tm).  According  to  the

classical truth tables, G is true in M if and only if H is true in M, and K is true
in M. By the induction assumption, H is true in M if and only if T2├ H, and K

is true in M if and only if T2├ K. In T2, all the axioms of the classical logic are

adopted, hence, by Theorem 2.2.1, 

T2├ H and T2├ K if an only if T2├ H ∧K ,

G is true in M if and only if T2├ H ∧K ,

G is true in M if and only if T2├ G. 

Q.E.D.

Case 4: G is H∨K . Then, H and K contain subsets of the free variables of
G,  and  we  can  consider  H(t1,  ...,  tm)  and  K(t1,  ...,  tm).  According  to  the

classical truth tables, G is true in M if and only if is true in M, or K is true in
M. By the induction assumption and the above note, H is  false  in M if and
only if T2├ ¬H, and K is false in M if and only if T2├ ¬K (a somewhat smart

idea to consider falsity instead of truth). Let us remind Theorem 2.2.1 and the
Second de Morgan Law:

 [L1-L9, MP]: ¬(A∨B)↔¬ A∧¬ B .

In T2, all the axioms of the classical logic are adopted, hence,
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G is false in M if and only if T2├ ¬(H∨K ) ,

G is true in M if and only if T2├ H ∨K (by the above note),

 G is true in M if and only if T2├ G.

 Q.E.D.

From now on, let us denote G(t1, ..., tm), H(x, t1, ..., tm) simply by G, H(x)

correspondingly.

Case 5: G is xH. Then, H contains all the free variables of G and, probably, x∃z(x+z+1=y).
as a free variable, thus, we can consider H(x). Then, by definition, G is true in
M if and only if H(x) is "true for some x", i.e., if and only if H(t) is true in M
for some constant term t. By the induction assumption, H(t) is true in M if and
only if T2├ H(t). 

If H does not contain x, then H(t) is true in M if and only if G is true in M.
And, by Theorem 3.1.6, 

[L1, L2, L12-L15, MP, Gen]: G ↔ H .

Q.E.D.

If H contains x as a free variable, let us remind our above Step 2. Since H(x) is
a  formula  containing  exactly  one  free  variable,  in  T2 we  have  the  axiom

xH(x)→H(c∃z(x+z+1=y). H), where cH is an object constant. 

First,  let  us assume that  G is  true in  M. Then H(t)  is  true in  M for  some
constant term t in M, hence, T2├ H(t) for this particular t. Remind the axiom

L13: F(t)→ xF(x). Since t is a constant term, this axiom is valid for t. We need∃z(x+z+1=y).
the  following instance  of  L13:  H(t)→ xH(x).  In  T∃z(x+z+1=y). 2,  all  the  axioms of  the

classical  logic  are  adopted,  hence,  T2├  H(t)→ xH(x),  and,  by  MP,  T∃z(x+z+1=y). 2├

xH(x), i.e., T∃z(x+z+1=y). 2├ G.

Now, let us assume that T2├ G, i.e., T2├ xH(x). By the above-mentioned∃z(x+z+1=y).
axiom, T2├ xH(x)→H(c∃z(x+z+1=y). H), where cH is an object constant. Thus, T2├ H(cH).

Since cH is a constant term, by the induction assumption, if T2├ H(cH), then

H(cH) is true in M. Hence, H(cH) is true in M, i.e., xH(x) is true in M, and G∃z(x+z+1=y).
is true in M. Q.E.D.

Case 6: G is xH. Then, H contains all the free variables of G and, probably,∀
x as a free variable, thus, we can consider H(x). Then, by definition, G is true
in M if and only if H(x) is "true for all x", i.e., if and only if H(t) is true in M
for all constant terms t. By the induction assumption, H(t) is true in M if and
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only if T2├ H(t).

Let us prove that

G is false in M if and only if T2├ x¬H(x) ∃z(x+z+1=y).

(a somewhat smart idea to consider falsity instead of truth).

First, let us assume that G is false in M. Then, by definition, H(t) is false in M
for some constant term t. By the induction assumption, and by the above note,
T2├ ¬H(t).  Let  us  remind  the  axiom L13:  ¬H(t)→ x¬H(x).  In  T∃z(x+z+1=y). 2,  all  the

axioms of the classical logic are adopted, hence, by MP, T2├ x¬H(x).∃z(x+z+1=y).

Now, let  us assume that T2├ x¬H(x). Since H(x) is a formula containing∃z(x+z+1=y).
exactly  one  free  variable,  in  T2 we  have  the  axiom  introduced  in  Step2:

x¬H(x)→¬H(c∃z(x+z+1=y). ¬H),  where  c¬H is  an  object  constant.  Hence,  by  MP,  T2├

¬H(c¬H), i.e., T2 does not prove H(c¬H). Then, by the induction assumption

and the above note, H(c¬H) is false in M, i.e., xH(x) is false in M, i.e G is∀
false in M.

Thus, we know that G is true in M if and only if T2 does not prove x¬H(x).∃z(x+z+1=y).
Since T2  is a complete theory, G is true in M if and only if T2├ ¬ x¬H(x).∃z(x+z+1=y).
Now, let us remind from Section 3.2, Table 3.2, Group I, [L1-L15, MP, Gen]:

¬ x¬B↔ xB. In T∃z(x+z+1=y). ∀ 2, all the axioms of the classical logic are adopted, hence,

T2├ ¬ x¬H(x) if and only if T∃z(x+z+1=y). 2├ xH(x), i.e., G is true in M if and only if∀
T2├ G. Q.E.D.

This completes the proof of the Model Existence Theorem.

Attention: non-constructive reasoning! The above construction of the model
M may seem "almost constructive". The domain DM consists of all constant

terms from the language of T0. The axiom set of T1 is algorithmically solvable

(verify!). The interpretations of function constants are computable functions
(verify!). But the interpretations of predicate constants? We interpreted each
predicate constant p as the relation p” such that p”(t1, ..., tn) is true if and only

if T2 proves p(t1, ..., tn). This relation would be, in general, not algorithmically

solvable, even if the axiom set of T2 would be solvable! But, in general, the

axiom set of theory T2 (obtained by means of Lindenbaum's Lemma) is not

algorithmically solvable! Thus, our construction of the model M is essentially
non-constructive.

Exercise 4.3.4  (optional,  course-work for  smart  students).  Verify that  the "degree of  non-
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constructivity" of the Model Existence Theorem is Δ2
0 in the so-called arithmetical hierarchy.

This became possible due to the improvements introduced by G. Hasenjäger. Hint: verify that
all the predicates necessary for the proof are "computable in the limit". A function  p(x) is
called computable in the limit if and only if there is a computable function g(x,n) such that, for

all x, p(x)=lim
n→∞

g (x ,n) ).

Exercise 4.3.5 (optional, course-work for smart students). If the language of first order theory
T contains the equality predicate constant  x=y, how this constant will be interpreted in the
models, built for T according to the Model Existence Theorem? If the axioms of T imply the
basic  properties  of  equality  (reflexivity,  symmetry,  transitivity  and  “indiscernibility  of
identicals”) then only the following is guaranteed for the interpretation of x=y: it will always
be  interpreted  as  some  equivalence  relation  over  the  domain  of  interpretation.  In  some
contexts, the so-called normal models are preferable, where equality interpreted as equality
of domain elements. Re-prove Model Existence Theorem by using normal models only. Or,
see  Mendelson [1997].

Consequences of Gödel's Completeness Theorem

From  now  on,  in  principle,  we  could  forget  our  great  ability  of  proving
formulas  in  the  classical  predicate  logic,  that  we  developed  in  Section  3.
Indeed, in order to verify, is a formula provable in [L1-L15, MP, Gen], or not,

we can, instead of trying to build a proof from the axioms, try to verify, is this
formula  logically  valid,  or  not.  If  it  is,  then,  by  Gödel’s  Completeness
Theorem, it is provable in the classical logic, if not – it is not provable. For
simple formulas, this method is really simpler than proving of formulas in [L1-

L15, MP, Gen]. However, for the general case, this method does not work at all

(see the Unsolvability Theorem below).

A second  consequence  was  derived  at  the  end  of  Section  4.1:  both  our
explications of  the assertion  “G follows from A1,  ...,  An”  are equivalent,

either as

[L1-L15, MP, Gen]: A1 , ... , An ├ G, or as

“G is true under any interpretation, under which A1, ..., An all are true”. 

The  third  consequence:  Gödel’s  Completeness  Theorem  establishes  a
fundamental connection between provability/consistency and satisfiability.

Theorem  4.3.5.  Consider  a  set  of  formulas A1,  ...,  An in  some  predicate

language.

a) It is  consistent in the classical logic, if and only of it is  simultaneously
satisfiable;

http://en.wikipedia.org/wiki/Arithmetical_hierarchy
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b) It is  inconsistent in the classical logic, if and only of it is  unsatisfiable
simultaneously.

c) For any closed formula G, [L1-L15, MP, Gen]: A1 , ... , An ├ G if and only

if the set A1 , ... , An ,¬G is unsatisfiable simultaneously.

Proof. Of course, (b) is a trivial reformulation of (a).

a) First, if a set of formulas is simultaneously satisfiable, i.e., its formulas are
all true under some common interpretation J, then it is consistent according to
Corollary 4.3.3(b).

On the other hand, if the set A1, ..., An is consistent, then, according to the

Model Existence Theorem, there is a model of A1, ..., An, i.e., an interpretation

making all these formulas true.

c) First, assume [L1-L15, MP, Gen]: A1 , ... , An ├ G (Explication 1). This is

equivalent to: G is true under any interpretation, under which A1, ..., An are all

true (Explication 2). Now, assume, there is an interpretation J making true all
the formulas A1 , ... , An ,¬G . Then, since A1, ..., An are all true under J, so is

G.  But  G is  false  under  J.  Contradiction,  hence,  the set A1 , ... , An ,¬G is
unsatisfiable simultaneously.

On the other hand, assume, there is  an interpretation J making true all  the
formulas A1 , ... , An ,¬G . Then, A1, ..., An are all true under J, but G is false

under J. Hence (Explication 2), G does not follow from A1,  ...,  An.  This is

equivalent to: in the classical logic, G cannot be proved from the hypotheses
A1, ..., An (Explication 1). 

Q.E.D.      

When  trying  to  teach  reasoning  to  computers,  the  conclusion  of  Theorem
4.3.5(c) is extremely important: one of the powerful proof procedures that can
be  implemented  on  computers,  the  so-called  Method  of  analytic  tableaux
(Wikipedia), is based on the idea that in many practical situations, verifying of
unsatisfiability  is  easier  than  proof  searching.  This  method is  explained in
Section 6 below.

Extremely significant is also the fourth consequence of Gödel's Completeness
Theorem:  it  shows  that  the  "doubly  non-constructive"  notion  of  logically
validity is at least 50% constructive –  semi-constructive! Semi-solvable for
computers! 

Theorem 4.3.6 (Semi-solvability Theorem). There is an algorithm applicable
to any predicate language and processing its formulas such that:

a) if the formula is logically valid, then the algorithm terminates and returns

https://en.wikipedia.org/wiki/Method_of_analytic_tableaux
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“yes”;

b)  if  the  formula  is  not  logically  valid,  then  the  algorithm terminates  and
returns “no”, or it does not terminate.

Proof. According to  the results  of Exercises 1.1.4 and 1.1.7,  the set  of all
formulas  of  the  predicate  language  L  provable  in  the  classical  logic,  is
algorithmically enumerable. Hence, by Gödel's Completeness Theorem, so is
the  set  of  all  logically  valid  formulas  in  the language L:  we can build  an
algorithm  which,  given  the  definition  of  the  language  L and  working  ad
infinitum,  prints  out  all  the  logically  valid  formulas  of  L (and  only  these
formulas). 

So,  when processing a formula F, let  us start  this  algorithm, and watch its
output:

If we see the formula F printed, let us terminate and return “yes” (then F is,
indeed, logically valid).

If we see the formula ¬F printed, let us terminate and return “no” (then F is
not logically valid, in fact, it is unsatisfiable).

If neither F, nor ¬F will be printed at all, our processing will continue  ad
infinitum (in fact, such F is satisfiable, but not logically valid, but we may
never become aware of it). 

Q.E.D.    

Computational complexity of the problem

Still, unfortunately, logical validity, being “50% constructive”, is not a 100%
constructive  notion.  In  1936,  Alonzo  Church and  Alan  Turing proved that
some predicate languages do not allow for an algorithm determining in all
cases, is a given formula logically valid or not:

A. Church. A note on the Entscheidungsproblem. "Journal of Symb. Logic", 1936, vol.1, pp.
40-41.

A. M. Turing.  On Computable Numbers, with an Application to the Entscheidungsproblem.
“Proceedings of the London Mathematical Society”, 2 (published 1937), 42 (1), pp. 230–265
(see also Turing’s proof in Wikipedia).

By applying a reduction theorem established by L  á  szl  ó   Kalm  á  r  , this result can
be greatly generalized:

L. Kalmar. Die Zurückführung des Entscheidungsproblems auf den Fall  von Formeln mit
einer einzigen, binären Funktionsvariablen. "Compositio Math.", 1937, Vol.4, pp.137-144.

Unsolvability  Theorem.  If  a  predicate  language  contains  at  least  one
predicate constant that is at least binary, then this language does not allow for
an algorithm determining, is a given closed formula of this language logically

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kalmar.html
https://en.wikipedia.org/wiki/Turing's_proof
https://en.wikipedia.org/wiki/Alan_Turing
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Church.html
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valid or not.

For details of the history, see Entscheidungsproblem in Wikipedia.

Thus, none of serious predicate languages allows for such an algorithm (the
languages of first order arithmetic and set theory ZFC included). For details,
see Mendelson [1997].

Of course, Gödel’s Completeness Theorem implies the following equivalent

Unsolvability Theorem. If a predicate language contains at least one predicate
constant  that  is  at  least  binary,  then  this  language  does  not  allow  for  an
algorithm determining, is a given closed formula  provable in the classical
predicate logic, or not.

Unsolvability Theorem and knowledge bases

If  we have our knowledge base built  by using some predicate language L,
then, as noted above, we are interested in a  query processor answering the
questions: 

“does formula G follow from the formulas A1, ..., An?”, 

where  A1, ..., An (axioms)  represent the knowledge stored in the knowledge

base, and G is a query. 

Thus, to build, for our knowledge base, a query processor, we must apply (or,
invent) some algorithm allowing to determine (as fast as possible), given any
formula G, does G follow from the axioms A1, ..., An of the knowledge base,

or not.

How universal could be made such a query processor? Could it be applicable:

a) only to our specific knowledge base A1, ..., An, or

b) to any knowledge base that is using a specific predicate language L, or even,

c) to any knowledge base using any predicate language? 

According  to  Lemma 4.1.3,  G follows  from  A1,  ...,  An if  and only  if  the

formula A1∧...∧An →G is logically valid. Hence:

Semi-solvability  Theorem  for  knowledge  bases. There  is  a  universal
algorithm applicable to  any predicate language L, to  any knowledge bases
A1, ..., An and any queries G in L, such that:

a)  if  G follows from  A1,  ...,  An,  then the algorithm terminates and returns

“yes”;

https://en.wikipedia.org/wiki/Entscheidungsproblem
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b) if ¬G follows from A1, ..., An, then the algorithm terminates and returns

“no”;

c)  otherwise  (i.e.,  neither  G,  nor ¬G follow  from  A1,  ...,  An) then  the

algorithm either terminates and returns “undecidable”, or does not terminate.

Exercise  4.3.6. Verify  this.  (Hint:  refine  the  above  proof  of  the Semi-
solvability Theorem.)

As we already know from the Exercise 1.1.6 (Section 1.1), if the set of axioms
A1, ..., An is complete (in the sense that for any closed formula G, either G, or

¬G follows from the axioms), then the above situation (c) cannot occur:

Solvability Theorem for complete knowledge bases.  If  the set  of axioms
A1, ..., An is  complete, then the universal algorithm of the Semi-solvability

Theorem terminates for any closed formula G giving a correct answer to the
question “does G follow from  A1, ..., An“. 

Thus, the happy situation depends on specific features of the set A1, ..., An. In

general, determining, is our set of axioms complete, or not, usually, is a very
hard task (remind our “language for people” and your attempts to propose
complete system of axioms for it).    

And, in general, the situation (c) cannot be excluded:

Unsolvability Theorem  for  knowledge  bases.  If  a  predicate  language  L
contains at least one predicate constant that is at least binary, then L does not
allow for an algorithm processing  any knowledge bases A1, ..., An, and  any

closed queries G in L, terminating in all cases and giving a correct answer to
the question “does G follow from  A1, ..., An“. 

Exercise 4.3.7. Verify this.

Thus, a serious predicate language L does not allow for a  universal query
processor, applicable to any knowledge bases A1, ..., An using the language L.

Note. We can try to improve the situation by exploring in parallel the queries G
and ¬G . If our algorithm will answer “yes” for ¬G , that will mean the
answer  “no”  for  G  (if  our  the  axioms  stored  in  our  knowledge  base  are
consistent).  But,  if  the  axioms  are  incomplete,  i.e.,  they  do  not  allow to
decide  between  G  and ¬G ,  then  the  process  will  not  terminate,
nevertheless.

This  conclusion  affects  all  the  universal  enough  reasoning  procedures  for
computers  known today,  such as  Tableaux Method and Resolution  Method
considered in Section 6 and Section 7.
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Note. In principle, one can build even a specific knowledge base A1, ..., An that

does not allow for a query processor applicable to any closed queries G. As an
example,  we  can  take  any  finitely  axiomatizable  unsolvable  mathematical
theory,  such as  Von Neumann–Bernays–Gödel  set  theory (NBG).  One  can
prove that, if NBG is consistent, then it is unsolvable: it does not allow for an
algorithm, determining correctly in all cases, is a closed formula provable in
NBG, or not. Thus,  by taking the language of NBG and the (finite)  set  of
axioms of NBG as A1, ..., An, we obtain a single knowledge base that does not

allow for a query processor applicable to any closed queries G.

However, the experience shows that the best universal algorithms (such as the
above-mentioned  Tableaux  Method  and  Resolution  Method)  showing
unacceptable  worst  case results  (this  is  inevitable  because  of  the
Unsolvalility Theorem) perform really good in many practical cases.

Another  approach  allowing  to  build  really  usable  knowledge  bases:  let  us
restrict  our  predicate  language to  make  the  problem  of  reasoning
algorithmically solvable. For a successful attempt of this kind, see D  escription  
logic in Wikipedia.

Skolem's paradox

Initially, the Model Existence Theorem was proved in a weaker form in 1915
(by Leopold Löwenheim) and 1919 (by Thoralf Skolem): if a first order theory
has  a model,  then it  has  a finite  or  countable model  (Löwenheim-Skolem
Theorem). Proof (possible after 1949): if T has a model, then T is consistent,
hence, by Model Existence Theorem, T has a finite or countable model.

L.  Löwenheim. Über  Möglichkeiten  im  Relativkalkül.  "Mathematische  Annalen",  1915,
Vol.76, pp. 447-470.

Th.  Skolem. Logisch-kombinatorische  Untersuchungen  über  die  Erfüllbarkeit  und
Beweisbarkeit  mathematischen  Sätze  nebst  einem  Theoreme  über  dichte  Mengen.
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

Löwenheim-Skolem theorem (and the Model Existence Theorem) is steadily
provoking  the  so-called  Skolem's  Paradox,  first  noted  by  Skolem  in  his
address before the 5th Congress of Scandinavian Mathematicians (July 4-7,
1922):

Th.  Skolem. Einige  Bemerkungen  zur  axiomatischen  Begründung  der  Mengenlehre.
Matematikerkongressen  i  Helsingfors  den  4-7  Juli  1922,  Den  femte  skandinaviska
matematikerkongressen, Redogörelse, Akademiska Bokhandeln, Helsinki, 1923, pp. 217-232. 

Skolem called the effect "relativity of set-theoretic notions". Namely, in all
formal  set  theories  (for  example,  in  ZFC)  we  can  prove  the  existence  of
uncountable  sets.  Still,  according  to  the  Model  Existence  Theorem,  if  our

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Lowenheim.html
http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Description_logic
http://en.wikipedia.org/wiki/Description_logic
https://en.wikipedia.org/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory
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formal set theory is consistent, then there is a countable model in which all its
axioms  and  theorems  are  true.  Thus,  a  theory  proves  the  existence  of
uncountable sets, yet it has a countable model! How could this be possible?
Does it mean that all formal set theories are inconsistent? 

In fact, Skolem's paradox is not a paradox at all.  It should be rather called
Skolem's  effect  −  like  as  the  photoelectric  effect,  it  represents  simply  a
striking phenomenon. Indeed, let J be a countable model of our formal set
theory.  In  this  theory,  we  can  prove  that  the  set  r  of  all  real  numbers  is
uncountable: 

¬ f (f is 1-1 function from r into w), ∃z(x+z+1=y). (1)

where w is the set of all natural numbers. What is the meaning of this theorem
in  the  countable  model  J?  Interpretations  of  rJ and  wJ are  subsets  of  the

domain DJ, i.e., they both are countable sets, hence, 

f (f is 1-1 function from r∃z(x+z+1=y). J into wJ). (2)

Interpretation of (1) in J is 

¬ f((∃z(x+z+1=y). f ∈DJ ) and (f is 1-1 function from rJ into wJ)).

Hence, the mapping f of (2) does exist, yet it exists outside the model J! Do
you think that f of (2) "must" be located in the model? Why? If you are living
(as an "internal observer") within the model J, the set rJ seems uncountable to

you (because you cannot find, in your world J, a 1-1 function from rJ into wJ).

Still, for me (an "external observer") your uncountable rJ is countable − in my

world I have a 1-1 function from rJ into wJ!

Hence, indeed, Skolem's Paradox represents simply a striking phenomenon. It
is worth of knowing, yet there is no danger in it.

4.4. Constructive Propositional Logic – Kripke Semantics

Saul Aaron Kripke

S. Kripke (1965).  Semantical  analysis of intuitionistic logic.  In:  J.  N. Crossley,  M. A. E.
Dummet (eds.), Formal systems and recursive functions. Amsterdam, North Holland, 1965, pp.
92-129.

Let us assume, again, that the formula F has been built of formulas B1, B2, ...,

Bn (“atoms”)  by  using  propositional  connectives  only.  According  to  the

Completeness Theorem, F is provable in the classical propositional logic if

http://en.wikipedia.org/wiki/Saul_Kripke
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and only if it takes true values for any truth value assignments of B1, B2, ...,

Bn. We know that many classically provable formulas cannot be proved in the

constructive logic.  Does that  mean that  constructive logic is  “incomplete”?
The so-called Kripke semantics shows a reasonable sense in which this logic
can be regarded as complete.   

Instead of simply computing truth values of F from truth values of B1,  B2, ...,

Bn, Kripke proposed to consider the  behavior of F when the truth values of

B1, B2, ..., Bn are changing gradually  from false to true according to some

"scenario".

Thus, Kripke proposed to replace the classical semantics (interpretation) of the
propositional connectives (as defined by the classical truth tables) by a more
complicated dynamic semantics.

Instead of simply saying that ¬F is true if and only if F is false, let us say that,
¬F is true at some point in a scenario if and only if, at this point, F is false and
remains false, when the truth values of B1, B2, ..., Bn are changing according

to the scenario.

Let  o  stand  for  implication,  conjunction  or  disjunction.  Instead  of  simply
saying that FoG is true if and only if FoG is true according to the classical
truth tables, let us say that, FoG is true at some point in a scenario if and only
if, at this point, it is true and remains true, when the truth values of B1, B2, ...,

Bn are changing according to the scenario.

Example  4.4.1. Let  us  consider  the  behavior  of  the  classical  axiom  L11:

B∨¬ B in the scenario, where, at first, B is false, and at the next step it
becomes true:

0 -------------- 1

How about ¬B? It becomes false at the next step, so, it cannot be qualified as
true at the starting point, and must be qualified as false. Here we see the main
idea: at the next step, ¬B becomes false, therefore, in a Kripke scenario, ¬B is
qualified as false at the starting point as well. For a formula to be qualified as
true at some point, it must remain true at all the subsequent points. 

Since, at the starting point, B and ¬B both are qualified as false, then, at this
point, the formula B∨¬ B must be qualified as false as well.    

Thus, there is a simple Kripke scenario in which, at some point, B∨¬ B is
false. Surprisingly, some time later (Lemma 4.4.3), we will derive from this
simple  fact  that B∨¬ B cannot  be  proved  in  the  constructive  logic  (we
already know a much more complicated way of proving this fact from Section
2.8).
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Example  4.4.2. Let  us  consider  the  behavior  of  that  half  of  the  First  de
Morgan  Law: ¬(A∧B)→¬ A∨¬ B ,  that  we  failed  to  prove  in  the
constructive logic. Let us consider a Kripke scenario, in which, at first, A and
B both are false, and at the next step, two branches appear in the scenario: in
the  first  branch:  A remains  false,  and  B  becomes  true,  and  in  the  second
branch: A becomes true, and B remains false:

├--01
00-├---------

├--10

At the starting point: A is false, ¬A – also is false (for ¬A to be true, A must
remain false at the next step, but in the second branch it doesn't). Similarly, at
the starting point: B is false, ¬B – also false (for ¬B to be true, B must remain
false at the next step, but in the first branch it doesn't). This means that, at the
starting point, ¬ A∨¬ B is false, but ¬(A∧B) is true (because A∧B is
false, and it remains false in the both of branches), hence, at the starting point,

¬(A∧B)→¬ A∨¬ B is false. Thus, there is a  Kripke scenario in which, at
some  point, ¬(A∧B)→¬ A∨¬ B is  false.  Surprisingly,  some  time  later
(Lemma 4.4.3), we will derive from this simple fact that the this half of the
First de Morgan Law cannot be proved in the constructive logic. We failed to
do this at all in Section 2.8!

Exercise 4.4.1. Investigate, in appropriate Kripke scenarios, the behavior of
the following (only) classically provable formulas:

¬¬( A∨B)→¬¬ A∨¬ ¬ B ,
(A→ B)→((¬A → B)→ B) ,

(A → B)∨( B → A) ,

and verify that, in some Kripke scenarios, these formulas are not true. Some
time  later  (Lemma 4.4.3),  we  will  derive  from this  simple  fact  that  these
formulas cannot be proved in the constructive logic. We failed to do this at all
in Section 2.8! (Hint: consider the most simple scenarios first: 00--01, 00-10,
00-11, etc.)

More precisely, the definition of the  Kripke semantics for the propositional
language is as follows. Assume, the formula F has been built of the formulas
B1, B2, ..., Bn (“atoms”) by using propositional connectives only. Instead of

simply considering truth values of F for all the possible assignments of truth
values to B1, B2, ..., Bn, let us consider the behavior of F in all the possible

Kripke scenarios, defined as follows.

Definition of Kripke scenarios. Each scenario s is a triple (b,  ≤, t) of the
following objects. First, b is a finite set of objects called nodes (or, states).

The second member ≤ is a partial ordering relationship between the nodes, i.e.,
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for all x , y , z∈b : x≤ y →( y≤z → x≤z )  (transitivity).

The third member t of the triple is a function (t means "true"). It associates
with each node x a "growing" set t(x) of atoms, i.e., a subset of {B1, B2, ...,

Bn}  in  such  a  way  that  for  all x , y∈b : x≤ y →t (x)⊆t ( y) .  If

B i∈t( x) , we say that Bi is true at the node x.

Note. In some other textbooks, Kripke scenarios are called Kripke models, or
Kripke structures.

Thus, Bi is true at the node x if and only if B i∈t( x) . We will denote this

fact as x |= Bi ("at x, Bi is true", or "x forces Bi"). Since t is monotonic, if x |=

Bi, then y |= Bi for all y after x, i.e., for all y∈b such that x≤ y . Thus, if

Bi is true at some node x, then Bi remains true at all nodes after x.

Let us define the truth value of x |= F ("F is true at x", or "x forces F") for any
formula F that has been built of the atoms B1, B2, ..., Bn by using propositional

connectives only.

1.  Negation.  Suppose,  the  truth  value  of  x  |=  F  is  already  defined  for  all
x∈b . Then, x |= ¬F is defined to be true if and only if, for all y∈b such

that x≤ y , y |= F is false (i.e., ¬(y |= F) is true according to the classical
truth table of the negation connective). Else,  x |= ¬F is defined to be false. 

2. Implication, conjunction or disjunction. Suppose, the truth values of x |= F
and x |= G are already defined for all x∈b . Then, x |= FoG is defined to be
true if and only if, for all y∈b such that x≤ y , (y |= F)o(y |= G) is true
according to the classical truth table of the connective o. Else, x |= FoG is
defined to be false. 

Lemma 4.4.1. For any formula F, any Kripke scenario (b, ≤, t), and any node
x∈b : if x |= F, then y |= F for all y∈b such that x≤ y . Thus, if, in a

Kripke scenario, a formula becomes true at some node, then it remains true at
all the subsequent nodes. And, if a formula is false at some node in a Kripke
scenario, then it is false at the starting node of this scenario as well.

Proof. By induction.

Induction base. See the definition above: if x |= Bi, then y |= Bi for all y after

x, i.e., for all y∈b such that x≤ y .

Induction step.

1. Negation. Assume that x |= ¬F is true, i.e., that y |= F is false for all y∈b
such that x≤ y . If x≤ y , then is y |= ¬F true or false? By definition, y |=
¬F would be true if and only if z |= F would be false for all z∈b such that
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y≤z .  By  transitivity  of  ≤,  if x≤ y and y≤z ,  then x≤z .  By  our
assumption, if x≤z , then z |= F is false. Hence, y |= ¬F is true. Q.E.D.

2. Implication, conjunction or disjunction. Assume, x |= FoG, i.e., according
to the truth table of the connective o, (y |= F)o(y |= G) is true for all y∈b
such that x≤ y . If x≤ y , then is y |= FoG true or false? By definition, y |=
FoG would be true if and only if (z |=F)o(z |= G) would be true for all z∈b
such that y≤z .  By transitivity of ≤,  if x≤ y and y≤z ,  then x≤z .
By our assumption, if x≤z , then (z |= F)o(z |= G) is true. Hence, y |= FoG.
Q.E.D.

Exercise 4.4.2. Verify that if x is a maximal node in a scenario (b, ≤, t), then
x |= F if and only if F is true at x according to the classical truth tables.

Kripke  established  that  a  formula  is  provable  in  the  constructive
propositional  logic  if  and  only  if  it  is  true  at  all  nodes  in  all  Kripke
scenarios.

Theorem 4.4.2 (S. Kripke, completeness of the constructive propositional
logic). A formula F is provable in the constructive propositional logic (i.e.,
[L1-L10, MP]:├ F) if and only if F is true at the starting point of any Kripke

scenario. 

As usual, the hard part of the proof is establishing that "true is provable", i.e.,
if F is true at all nodes in all Kripke scenarios, then [L1-L10, MP]:├ F (see

Corollary 4.4.7 below). The easy part of the proof is, as usual, the soundness
lemma:

Lemma 4.4.3. If [L1-L10, MP]:├ F, then F is true at all nodes in all Kripke

scenarios.

This lemma will follow from

Lemma 4.4.4. If F is any of the constructive axioms L1-L10,  then, for any

Kripke scenario (b, ≤, t), and any node x∈b : x |= F. Thus, the constructive
axioms are true at all nodes in all Kripke scenarios.

and

Lemma 4.4.5. If, in a Kripke scenario (b, ≤, t), at the node x∈b : x |= F and
x |= F→G, then x |= G. Hence, if F and F→G are true at all nodes in all Kripke
scenarios, then so is G.

Proof of Lemma 4.4.3. Indeed, by Lemma 4.4.4, all the constructive axioms
L1-L10 are true at all nodes in all scenarios, and, by Lemma 4.4.5, the Modus

Ponens rule preserves the property of being "true at all nodes in all scenarios".
Q.E.D.
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Note.  Let  us  return  to  the  above  Example  4.4.2  and  Exercise  4.4.1.  We
established that formulas

¬(A∧B)→¬ A∨¬ B ;
¬¬( A∨B)→¬¬ A∨¬ ¬ B ;

(A→B)→((¬A→B)→B)

are false  at  the starting nodes of some scenarios.  Hence,  by  Lemma 4.4.3,
these formulas cannot be proved in the constructive logic [L1-L10, MP]. We

failed to prove this fact in Section 2.8!

Proof of Lemma 4.4.5. We know that x |= F→G means that (y |= F)→(y |= G)
is true (according to the truth table of implication) for all y∈b such that

x≤ y .  By  Lemma 4.4.1,  we  know  that  y  |=  F  for  all y∈b such  that
x≤ y . Hence, if y |= G would be false, then (y |= F)→(y |= G) also would

be false. Hence, x |= G. Q.E.D.

Proof of Lemma 4.4.4.

L1: B→(C→B)

x |= B→(C→B) is true if and only if (y |= B)→(y |= C→B) is true for all y≥x. 

x |= B→(C→B) is false if and only if (y |= B)→(y |= C→B) is false for some
y≥x. 

How could (y |= B)→(y |= C→B) be false for some y≥x? According to the
classical implication truth table, this could be only if and only if y |= B is true,
and y |= C→B is false.

y |= C→B is true if and only if (z |= C)→(z |= B) is true for all z≥y.

y |= C→B is false if and only if (z |= C)→(z |= B) is false for some z≥y.

How could (z |= C)→(z |= B) be false for some z≥y? According to the classical
implication truth table, this could be if and only if z |= C is true, and z |= B is
false.

Summary:

x |= B→(C→B) is false
if and only if

y≥x (∃z(x+z+1=y). y |= B is true and y |= C→B is false)
if and only if

z≥y (z |= C is true and ∃z(x+z+1=y). z |= B is false)

Hence, if x |= B→(C→B) is false, then there are y and z such that: x≤y≤z, y |=
B is true, z |= C is true, and z |= B is false. By Lemma 4.4.1, if y≤z and y |= B
is true, then z |= B is true. Contradiction with "z |= B is false". Thus, x |=
B→(C→B) is true.

file:///C:/Users/Karlis/OneDrive/GRAMATAS/Detlovs%20Podnieks/ml2.htm#s28
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L10: ¬B→(B→C)

x |= ¬B→(B→C) is false if and only if (y |= ¬B)→(y |= B→C) is false for
some y≥x, i.e., if and only if y |= ¬B is true, and y |= B→C is false.

y |= ¬B is true if and only if z |=B is false for all z≥y.

y |= B→C is false if and only if (z |= B)→(z |= C) is false for some z≥y, i.e., if
and only if z |= B is true, and z |= C is false.

Summary:

x |= ¬B→(B→C) is false
if and only if

y≥x (y |= ¬B is true and y |= B→C is false)∃z(x+z+1=y).
if and only if if and only if

z≥y (∀ z |=B is false) z≥y (∃z(x+z+1=y). z |= B is true and z |= C is false)

Hence, if x |= ¬B→(B→C) is false, then there is y≥x such that: a) z≥y (∀ z |=B
is false), and b) z≥y (∃z(x+z+1=y). z |= B is true). Contradiction. Thus, x |= ¬B→(B→C)
is true. 

L3: B∧C → B

x |= B∧C → B is false
if and only if

y≥x (y |=∃z(x+z+1=y). B∧C is true and y |= B is false)
if and only if

z≥y ∀ (z |=B is true and z |= C is true)

Hence, there is y such that x≤y and y |= B is false. From z≥y ∀ (z |=B is true)
we obtain that y |= B is true. Contradiction. Thus, x |= B∧C → C is true. 

L4: B∧C →C

Similarly.

L5: B →(C → B∧C )

x |= B →(C → B∧C ) is false
if and only if

y≥x (∃z(x+z+1=y). y |=B is true and y |= C → B∧C is false)
if and only if

z≥y ∃z(x+z+1=y). (z |=C is true and z |= B∧C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= C is true, and z |=
B∧C is false. Then, by Lemma 4.4.1, u |= B is true, and u |= C is true, for

all  u≥z,  i.e.,  z  |= B∧C is  true.  Contradiction.  Thus,  x  |=
B →(C → B∧C ) is true.
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L6: B → B∨C

x |= B → B∨C is false
if and only if

y≥x (∃z(x+z+1=y). y |=B is true and y |= B∨C is false)
if and only if

z≥y (∃z(x+z+1=y). z |= B is false and z |= C is false)

Hence, there are y, z such that x≤y≤z, y |= B is true, and z |= B is false. By
Lemma 4.4.1, this is a contradiction. Thus, x |= B → B∨C is true.

L7: C → B∨C

Similarly.

L8: (B → D)→((C → D)→( B∨C → D))

x |= (B → D)→ ((C → D)→(B∨C → D)) is false
if and only if

y≥x (∃z(x+z+1=y). y |=B→D is true and y |= (C → D)→( B∨C → D) is false)
if and only if

z≥y (∃z(x+z+1=y). z |= C→D is true and z |= B∨C → D is false)
if and only if

u≥z (u |=∃z(x+z+1=y). B∨C is true and u |= D is false)

Hence, there are y, z, u such that x≤y≤z≤u, y |= B→D is true, z |= C→D is
true, and u |= D is false. By Lemma 4.4.1, u |= B→D is true, and u |= C→D is
true. Thus, if u |= B would be true, then u |= D also would be true. Hence, u |=
B is false. Similarly, u |= C also is false. Hence, u |= B∨C is false. But we
know that it is true. Contradiction. Thus, x |= L8 is true.

L2: (B→(C→D))→((B→C)→(B→D))

x |= (B→(C→D))→((B→C)→(B→D)) is false
if and only if

y≥x (y |= B→(C→D) is true and y |= (B→C)→(B→D) is false)∃z(x+z+1=y).
if and only if if and only if

z≥y ((z |= B)→(z |= C→D))∀

z≥y (z ∃z(x+z+1=y). |= B→C is true and z |= B→D is false)
if and only if if and only if

u≥z ((u |= B)→(u |= C))∀ u≥z (u |= B is true and u |= D is false)∃z(x+z+1=y).

Hence, there are y, z, u such that x≤y≤z≤u, u |= B is true and u |= D is false.
From u≥z ((u |= B)→(u |= C)) we obtain that u |=C also is true, and from∀

z≥y ((z |= B)→(z |= C→D)) – that z |= C→D is true. Then, by ∀ Lemma 4.4.1,
u |= C→D also is true, i.e., v≥u ((v |= C)→(v |= D)), in particular, (u |=∀
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C)→(u |= D). Hence, u|= D is true. Contradiction. Thus, x |= L2 is true.

L9: (B→C)→((B→¬C)→¬B)

x |= (B→C)→((B→¬C)→¬B) is false
if and only if

y≥x (y |= B→C is true and y |= (B→¬C)→¬B is false)∃z(x+z+1=y).
if and only if if and only if

z≥y ((z |= B)→(z |= C))∀ z≥y (z |= B→¬C is true and z |= ¬B is false)∃z(x+z+1=y).
if and only if if and only if

u≥z ((u |= B)→(u |= ¬C))∀ u≥z (∃z(x+z+1=y). u |= B is true)

Hence, there are y, z, u such that x≤y≤z≤u , and u |= B is true. From z≥y ((z∀
|= B)→(z |= C)) we obtain that u |= C is true. From u≥z ((u |= B)→(u |=∀
¬C))  we obtain that u |= ¬C is true, i.e.,  v |= C is false for some v≥u. By
Lemma 4.4.1, if u |= C is true, then v |= C is true. Contradiction with "v |= C is
false". Hence, x |= L9 is true.

Exercise 4.4.3.  Verify that,  in the above recursive definition of x |= F, the
item 

2. Implication, conjunction or disjunction: x |= FoG is defined to be true if and
only if, according to the truth table of the connective o, (y |= F)o(y |= G) is
true for all y∈b such that x≤ y .

can be replaced by 

2a. Implication ("non-monotonic" connective): x |= F→G is defined to be true
if and only if, according to the truth table of implication, (y |= F)→(y |= G) is
true for all y∈b such that x≤ y .

2b. Conjunction or disjunction ("monotonic" connectives): x |= FoG is defined
to  be true if  and only if,  according to  the  truth table  of  the connective  o,
 (x |= F)o(x |= G) is true.

The hard part of the proof

Now, let us prove that, if F is true at all nodes in all Kripke scenarios, then F is
provable in the constructive propositional logic. We will follow the paper 

Judith L. Underwood.  A Constructive Completeness Proof for Intuitionistic Propositional
Calculus. TR-90-1179, December 1990, Department of Computer Science, Cornell University.

The smart idea is to generalize the problem in the following way. Instead of
considering  constructive  provability  of  single  formulas,  let  us  consider  the
constructive  provability  of  D1,  D2,  ...,  Dm├ C1∨C2∨...∨Cn for  arbitrary

formulas D1, D2, ..., Dm, C1, C2, ..., Cn, i.e., let us consider ordered pairs of
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sets ({D1, D2, ..., Dm}, {C1, C2, ..., Cn}). Let us call such pairs sequents. If S1,

S2 are sets of formulas (S1 may be empty), let us call the sequent (S1, S2)

constructively provable  if  and only  if  [L1-L10,  MP]:  S1├ VS2,  where  VS2

denotes the disjunction of formulas contained in S2. Moreover, let us consider

sets of sequents. This will allow to carry out a specific induction argument
(considering  single  formulas  or  single  sequents  does  not  allow  such  an
argument!).

Let us say that a Kripke scenario (b, ≤, t) contains a counterexample for the
sequent (S1, S2) if and only if the sequent is false at some node in the scenario

(or,  more  precisely,  if  and only  if  there  is x∈b such  that  x  |=  F  for  all
formulas F∈S1 and not x |= G for all formulas G∈S 2 ).

Additionally, let us apply Corollary 8.1.2(b) of Theorem 8.1.1 to replace all
negations ¬F by F→f, where f is an atomic formula, which is "always false",
i.e.,  which,  in  a  sequent  (S1,  S2),  never  belongs  to  S1.  Thus,  formulas

mentioned  in  the  proof  of  the  following  Theorem  4.4.6  do  not  contain
negations (but they may contain the specific atomic formula f).

Theorem  4.4.6. For  any  set  S  of  sequents,  either  some  sequent  of  S  is
constructively provable, or there is a Kripke scenario (b, ≤, t), which contains
counterexamples for each sequent in S.

Proof.  Let us start  with a  proof overview.  We will  consider the following
cases:

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬( A∈S1∧B∈S 1) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S1,  i.e.,  by replacing (S1,  S2)  by ( S 1∪{A , B} ,  S2).  Let  us verify that  if

Theorem is true for S', then it is true for S...

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S2, i.e., by replacing (S1, S2) by (S1, S 2∪{A} ). b) S'' – obtained from S

by adding the formula B to S2, i.e., by replacing (S1, S2) by (S1, S 2∪{B} ).

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬( A∈S1∨B∈S 1) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S1, i.e., by replacing (S1, S2) by ( S 1∪{A} , S2). b) S'' – obtained from

S by adding the formula B to S1, i.e., by replacing (S1, S2) by ( S 1∪{B} ,

S2). Let us verify that if Theorem is true for S' and S'', then it is true for S...
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Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S2,  i.e.,  by  replacing  (S1,  S2)  by  (S1, S 2∪{A , B} ).  Let  us  verify  that  if

Theorem is true for S', then it is true for S...

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us

consider the following two sets: a) S' – obtained from S by adding the formula
A to S2, i.e., by replacing (S1, S2) by (S1, S 2∪{A} ). b) S'' – obtained from S

by adding the formula B to S1, i.e., by replacing (S1, S2) by ( S 1∪{B} , S2).

Let us verify that if Theorem is true for S' and S'', then it is true for S...

Case  6. S  contains  (S1,  S2)  such  that A → B∈S 2 and  for  every  sequent

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) .  Let  us  consider  the  set  S'
obtained from S by adding the sequent ( S 1∪{A} , B) to it. Let us verify that
if Theorem is true for S', then it is true for S...

Case 7. None of the above cases hold for S. Then, Theorem is true for S – easy
to verify...

The first six cases represent the induction argument: proving of Theorem for a
sequent set  S is reduced to proving it for some other sets – S' and S". By
iterating  this  reduction,  we  always  arrive  happily  to  the  Case  7,  where
Theorem is easy to verify.

Indeed,  let  us  denote by universe (S1, S2) the set  of  all  formulas  and sub-
formulas  (of  the  formulas)  contained  in S 1∪S2 .  Let  us  denote  by

universe (S ) the union of the universes of sequents from S.

Exercise 4.4.4. Verify that:

a)  When, in the Cases 1-5,  the sequent (S1,  S2) is  replaced by some other

sequent (T1, T2), then

universe (T 1, T 2)⊆universe (S 1, S 2) .

b)  When,  in  the  Case  6,  because  of  the  sequent  (S1,  S2),  the  sequent

(S1∪{A}, B)  is added to S, then

universe (S1∪{A}, B)⊆universe(S 1, S 2) .

c)  For  a  given universe (S ) ,  there  exist  no  more  than N=2∣universe(S )∣+ 1

different sequents (S1, S2) such that universe (S1 , S2)≤ universe (S ) . And, no

more than 2N different sets of sequents. 

Thus, any chain of iterated Cases 1-6 cannot be longer than 2N+1 – either we
will arrive at a set of sequents already built at a previous step, or we will arrive
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at the Case 7.

Now – the proof as it should be.

Case 1. S contains (S1, S2) such that A∧B∈S 1∧¬( A∈S1∧B∈S 1) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S1, i.e., by replacing (S1, S2) by (S1∪{A ,B }, S 2) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is
(S1∪{A ,B }, S 2) or some other sequent. If it is some other sequent, then it

belongs  to  S,  i.e.,  some  sequent  of  S  is  constructively  provable.  If
(S1∪{A ,B }, S 2) is constructively provable, then so is (S1, S2). Indeed, if

S 1∪{A , B} ├ VS2 is constructively provable, how to prove S1├ VS2? Since

S1 contains A∧B , by axioms L3 and L3 we can derive A and B. After this,

we  can  apply  the  proof  of S 1∪{A , B} ├  VS2.  Hence,  S1├  VS2 is

constructively provable.

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e., (b, ≤, t) contains
a counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1∪{A ,B }, S 2) , i.e.,

for some x∈b , x |= F for all formulas F∈S1∪{A , B} and not x |= G for
all formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1,

S2). Q.E.D.

Case 2. S contains (S1, S2) such that A∧B∈S 2∧¬(A∈S 2∨B∈S2) . Let us

consider the following two sets:

a) S' – obtained from S by adding the formula A to S2, i.e., by replacing (S1,

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S2, i.e., by replacing (S1,

S2) by (S1 , S2∪{B}) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other
sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
The sequent of S'' is (S1 , S2∪{B}) or some other sequent. If it is some other
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sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
So,  let  us  consider  the  situation,  when (S1 , S2∪{A}) and (S1 , S2∪{B})
both are constructively provable.

If  S1├ A∨S 2  and S1├ B∨S 2 both are constructively provable,  how to

prove S1├ VS2 (we know that S2 contains A∧B )? 

By Theorem 2.3.1, conjunction is distributive to disjunction:

[L1-L8, MP]: (A∧B)∨C ↔(A∨C)∧(B∨C) .

 Hence, [L1-L8, MP]: (A∨S 2)∧(B∨S2)→ (A∧B)∨S 2 . So, let us merge the

proofs  of  S1├ A∨S 2 and  S1├ B∨S 2 ,  and  let  us  append  the  proof  of

Theorem 2.3.1. Thus, we have obtained a proof of S1├ (A∧B)∨S 2 .

From  Section  2.3 we know that  in  [L1-L8,  MP] disjunction  is  associative,

commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8, MP] A↔B ├ A∨C ↔ B∨C . Since S2 contains A∧B , these facts

allow, from a proof of S1├ (A∧B)∨S 2 , to derive a proof of S1├ VS2.

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e., (b, ≤, t) contains
a counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e., for

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2).

Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case 3. S contains (S1, S2) such that A∨B∈S 1∧¬( A∈S1∨B∈S 1) . Let us

consider the following two sets: 

a) S' – obtained from S by adding the formula A to S1, i.e., by replacing (S1,

S2) by (S1∪{A}, S 2) .

b) S'' – obtained from S by adding the formula B to S1, i.e., by replacing (S1,

S2) by (S1∪{B}, S2) .
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Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1∪{A}, S 2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
So,  let  us  consider  the  situation,  when (S1∪{A}, S 2) and (S1∪{B}, S2)
both are constructively provable.

Let us remind Exercise 2.3.2 [L1, L2, L8, MP]: if A1, A2, ..., An, B├ D, and A1,

A2, ..., An, C├ D, then A1, A2, ..., An , B∨C ├ D. Thus, if S 1∪{A} ├ VS2

and S 1∪{B} ├ VS2 both are constructively provable, then (since S1 contains

A∨B ) so is S1U{B}├ VS2.

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e., (b, ≤, t) contains
a counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it is contains counterexample for (S1∪{A}, S 2) , i.e., for

some x∈b ,  x  |= F for all  formulas F∈S1∪{A} and not  x  |=  G for all
formulas G∈S 2 . Hence, (b, ≤, t) contains a counterexample also for (S1,

S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for
each sequent in S'', then it is also contains counterexample for each sequents in
S. The argument is similar to the above.

Case 4. S contains (S1, S2) such that A∨B∈S 2∧¬(A∈S 2∧B∈S 2) . Let us

consider the set S' obtained from S by adding the "missing" formulas A, B to
S2, i.e., by replacing (S1, S2) by (S1 , S2∪{A , B}) .

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is
(S1 , S2∪{A , B}) or some other sequent. If it is some other sequent, then it

belongs  to  S,  i.e.,  some  sequent  of  S  is  constructively  provable.  If
(S1 , S2∪{A , B}) is constructively provable, then so is (S1, S2). Indeed, if

S1├ (A∨B)∨S 2 is constructively provable, how to prove S1├ VS2 (where

S2 contains A∨B )?

From  Section  2.3 we know that  in  [L1-L8,  MP] disjunction  is  associative,
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commutative and idempotent. And, by Replacement Lemma 1(e):

[L1-L8,  MP]:  A↔B├ A∨C ↔ B∨C .  Since  that  S2 contains  AvB,  these

facts allow, from a proof of S1├ (A∨B)∨S 2 , to derive a proof of S1├ VS2.

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e., (b, ≤, t) contains
a counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A , B}) , i.e.,

for  some x∈b ,  x  |=  F  for  all  formulas F∈S1 and  not  x  |=  G  for  all
formulas G∈S 2∪{A , B} . Hence, (b, ≤, t) contains a counterexample also
for (S1, S2). Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case 5. S contains (S1, S2) such that A → B∈S 1∧¬(A∈S 2∨B∈S1) . Let us

consider the following two sets: 

a) S' – obtained from S by adding the formula A to S2, i.e., by replacing (S1,

S2) by (S1 , S2∪{A}) .

b) S'' – obtained from S by adding the formula B to S1, i.e., by replacing (S1,

S2) by (S1∪{B}, S2) .

Let us verify that if Theorem is true for S' and S'', then it is true for S.

Assume, some sequent of S' and some sequent of S'' is constructively provable.
The sequent of S' is (S1 , S2∪{A}) or some other sequent. If it is some other
sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
The sequent of S'' is (S1∪{B}, S2) or some other sequent. If it is some other
sequent, then it belongs to S, i.e., some sequent of S is constructively provable.
So,  let  us  consider  the  situation,  when (S1 , S2∪{A}) and (S1∪{B}, S2)
both are constructively provable. 

We have two proofs:  S1├ A∨S 2 and S1,  B├ VS2,  and we know that  S1

contains A→B. How to derive a proof of S1├ VS2? 

Since S1 contains A→B, we have a proof of S1, A├ B. Together with S1, B├

VS2 this yields a proof of S1, A├ VS2. Of course, VS2├ VS2. Now, let us

remind Exercise 2.3.2 [L1, L2, L8, MP]:
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If A1, A2,  ..., An,  B ├ D, and A1, A2,  ..., An,  C ├ D, then A1,  A2, ...,  An,

B∨C ├  D.  Thus,  S1, A∨S 2 ├  VS2.  Since  we  have  a  proof  of  S1├

A∨S 2 , we have also a proof of S1├ A∨S 2 .

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S', then it contains also a counterexample
for each sequent in S. Indeed, a sequent in S is either (S1, S2), or some other

sequent. If it is some other sequent, then it belongs to S', i.e., (b, ≤, t) contains
a counterexample for it. Does (b, ≤, t) contain a counterexample also for (S1,

S2)? We know that it contains a counterexample for (S1 , S2∪{A}) , i.e., for

some x∈b , x |= F for all formulas F∈S1 and not x |= G for all formulas
G∈S 2∪{A} . Hence, (b, ≤, t) contains a counterexample also for (S1, S2).

Q.E.D.

If there is a Kripke scenario (b, ≤, t),  which contains a counterexample for
each sequent in S'', then it contains also a counterexample for each sequent in
S. The argument is similar to the above.

Case  6. S  contains  (S1,  S2)  such  that A → B∈S 2 and  for  every  sequent

(T 1, T 2)∈S , ¬(S 1⊆T 1∧A∈T 1∧B∈T 2) .  Let  us  consider  the  set  S'
obtained from S by adding the sequent (S1U A , B) to it.

Let us verify that if Theorem is true for S', then it is true for S.

Assume,  some  sequent  of  S'  is  constructively  provable,  then  it  is
(S1∪{A}, B) or  some other  sequent.  If  it  is  some other  sequent,  then  it

belongs  to  S,  i.e.,  some  sequent  of  S  is  constructively  provable.  If
(S1∪{A}, B) is constructively provable, then so is (S1, S2). Indeed, if S1,

A├ B is constructively provable, then, by Deduction Theorem 1, S1├ A→B,

and S1├ VS2 (since S2 contains A→B).

On the other hand, if there is a Kripke scenario (b, ≤, t), which contains a
counterexample for each sequent in S',  then,  since S is  a subset of S',  this
scenario contains also a counterexample for each sequent in S. 

Case  7. None  of  the  above  cases  hold  for  S.  Hence,  for  every  sequent
(S1 , S2)∈S the following holds:

1) If A∧B∈S 1 , then A∈S 1∧B∈S1 ,

2) If A∧B∈S 2 , then A∈S 2∨B∈S 2 ,

3) If A∨B∈S 1 , then A∈S 1∨B∈S1 ,

4) If A∨B∈S 2 , then A∈S 2∧B∈S 2 ,
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5) If A → B∈S 1 , then A∈S 2∨B∈S1 ,

6) If A → B∈S 2 , then there is

(T1 , T2)∈S such that S 1⊆T 1∧A∈T 2∧B∈T 2 .

For this kind of sequent sets we have a very simple situation:

a) If, in some sequent (S1 , S2)∈S the sets S1, S2 contain the same formula

A, then  from L6: A → A∨B we can derive  easily  that  [L1-L8,  MP]:  S1├

VS2.

b) If the sets S1, S2 are disjoint for all sequents (S1 , S2)∈S , then we must

(and will) build a scenario, containing a counterexample for each sequent in S.

So, let us suppose that the sets S1, S2 are disjoint for all sequents (S1, S 2)∈S

, and let us define the following Kripke scenario (b, ≤, t):

b = S,

x≤y must be defined for every two members x, y of b,  i.e.,  for every two
sequents (S1, S2) and (T1, T2) in S. Let us define (S1, S2) ≤ (T1, T2) if and only

if S 1⊆T 1 . Of course, '⊆' is a partial ordering of b.

t must be a monotonic mapping from members of b to sets of atomic formulas.
Let us define t(S1, S2) as the set of all atomic formulas in S1. Of course, t is

monotonic for '⊆' . (And, of course, f – our atomic "false", never belongs to
t(S1, S2)).

Thus,  (b,  ≤,  t)  is  a  Kripke  scenario.  Let  us  prove  that  it  contains  a
counterexample for each sequent in S. In fact,  we will  prove that for each
sequent (S1 , S2)∈S , and each formula F:

If F∈S1 , then (S1, S2) |= F.

If F∈S2 , then not (S1, S2) |= F.

This will mean that, (S1, S2) represents a counterexample for (S1, S2).

Of course, our proof will be by induction along the structure of the formula F.

a) F is an atomic formula.

If F∈S1 ,  then F∈t (T 1, T 2) for  every (T 1 , T 2)∈S such  that  (S1,

S2)≤(T1, T2). Hence, (S1, S2) |= F.

If F∈S2 ,  then,  since  S1 and  S2 are  disjoint  sets, F∉S1 ,  and

F∉t (S1, S 2) , i.e., not (S1, S2) |= F.
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b) F is A∧B .

If F∈S1 , then, by (1), A∈S 1∧B∈S1 . Hence, by induction assumption,
(S1, S2) |= A and (S1, S2) |= B, i.e., by Exercise 4.4.3, (S1, S2) |= A∧B .

If F∈S2 ,  then,  by  (2), A∈S 2∨B∈S 2 .  If A∈S 2 ,  then,  by  induction
assumption, not (S1, S2) |= A, i.e., by Exercise 4.4.3, not (S1, S2) |= A∧B .

If B∈S 2 – the argument is similar.

c) F is A∨B .

If F∈S1 ,  then,  by  (3), A∈S 1∨B∈S1 .  If A∈S 1 ,  then,  by  induction
assumption,  (S1,  S2)  |=  A,  i.e.,  by  Exercise  4.4.3,  (S1,  S2)  |= A∨B .  If

B∈S 1 – the argument is similar.

If F∈S2 , then, by (4), A∈S 2∧B∈S 2 . By induction assumption, not (S1,

S2) |= A and not (S1, S2) |= B, i.e., by Exercise 4.4.3, not (S1, S2) |= A∨B .

d) F is A→B. 

d1) F∈S1 . We must prove that (S1, S2) |= A→B, i.e., that (T1, T2) |= A→B

for each (T 1 , T 2)∈S such that (S1, S2)≤(T1, T2). So, let us assume that not

(T1,  T2)  |= A→B, i.e.,  that (U1,  U2) |= A and not (U1,  U2) |= B for some

(U 1,U 2)∈S such that (T1, T2)≤ (U1, U2).

Since A → B∈S 1 , then also A → B∈U 1 , and, by (5), A∈U 2∨B∈U 1 .
By induction assumption, this means that not (U1, U2) |= A or (U1, U2) |= B.

Contradiction, hence, (S1, S2) |= A→B.

d2) F∈S2 .  We must  prove  that  not  (S1,  S2)  |=  A→B, i.e.,  that  there  is

(T 1,T 2)∈S such that (S1, S2)≤(T1, T2) and (T1, T2) |= A and not (T1, T2) |=

B.

Since A→ B∈S 2 , by (6), there is (T 1, T 2)∈S such that (S1, S2)≤(T1, T2)

and A∈T 1 and B∈T 2 . By induction assumption, this means that

(T1, T2) |= A and not (T1, T2) |= B. Q.E.D.

This completes the proof of Theorem 4.4.6.

Note. The above proof contains an algorithm allowing to find, for each set S
of sequents,  either  a constructive proof of some sequent of S,  or a Kripke
scenario containing counterexamples for each sequent of S.

Corollary 4.4.7. If  a  formula F is  true at  the starting node of any Kripke
scenario,  then  [L1-L10,  MP]:├  F  (i.e.,  F  is  provable  in  the  constructive
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propositional logic).

Indeed, let us consider the set of sequents {(0, {F})} consisting of a single
sequent (0, {F}), where 0 is empty set. By Theorem 4.4.6, either the sequent
(0,  {F})  is  constructively  provable,  or  there  is  a  Kripke scenario  (b,  ≤,  t),
which contains a counterexample for (0, {F}). Since F is true at all nodes in all
Kripke scenarios, it cannot have counterexamples; hence, the sequent (0, {F})
(i.e., the formula F) is constructively provable.

Together with Lemma 4.4.3 this Corollary implies the above Theorem 4.4.2 –
Kripke's theorem on the completeness of the constructive propositional
logic: F is true at the starting point of any Kripke scenario if and only if F is
provable in the constructive propositional logic.

It implies also

Corollary 4.4.8 (solvability of the constructive propositional logic).  There
is an algorithm allowing to determine for any propositional formula F, is this
formula provable in the constructive propositional logic [L1-L10, MP], or not. 

Thus, we have proved what Gerhard Gentzen established in 1934: 

G.  Gentzen.  Untersuchungen  über  das  logische  Schliessen  II. Mathematische  Zeitschrift,
1934, Vol. 39, pp. 405-431.

The  problem  solved  by  this  algorithm  (determining  the  constructive
provability  of  propositional  formulas)  belongs  to  the  complexity  class
P  SPACE-complete  , as established by Richard Statman in 1979:

R.  Statman.  Intuitionistic  propositional  logic  is  polynomial-space complete,  Theoretical
Computer Science 9 (1979), pp. 67–72 (online copy available).

Corollary 4.4.9. If F∨G is true at the starting point of any Kripke scenario,
then so is F, or so is G.

Proof.  Assume, there is a scenario (b1, ≤1, t1) such that x1 |= F is false for

some x1∈b1 , and a scenario (b2, ≤2, t2) such that x2 |= G is false for some

x2∈b2 . We may assume that the (node) sets b1 and b2 do not intersect. Let

us merge these scenarios by adding a new common starting node x0, where all

Bi are  false.  Then,  x0 |=  F  is  false  (Lemma  4.4.1),  and  x0 |=  G  is  false

(similarly). Hence, according to the disjunction truth table, x0 |= F∨G  is

false. But, x |= F∨G is true. Hence, x |= F is true, or x |= G is true. Q.E.D.

Now, we can prove a remarkable result established by Kurt Gödel in 1932:

K. Gödel.  Zum intuitionistischen  Aussagenkalkül.  Akademie  der  Wissenschaften  in  Wien,
Mathematisch- naturwissenschaftliche Klasse, Anzeiger, 1932, Vol.69, pp.65-66.

http://deepblue.lib.umich.edu/bitstream/2027.42/23534/1/0000493.pdf
https://en.wikipedia.org/wiki/Richard_Statman
https://en.wikipedia.org/wiki/PSPACE-complete
https://en.wikipedia.org/wiki/PSPACE-complete
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Gentzen.html
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Theorem  4.4.10.  If  [L1-L10,  MP]:├ B∨C ,  then  [L1-L10,  MP]:├  B  or

 [L1-L10, MP]:├ C. Thus, if the disjunction B∨C is constructively provable,

then one of the formulas B, C also is constructively provable.

Proof. If [L1-L10, MP]: ├ B∨C , then, by Kripke's Completeness Theorem

4.4.2, B∨C is true at all nodes in all scenarios. Then, by Corollary 4.4.9, so
is B or so is C. By Kripke's Completeness Theorem 4.4.2, this means that one
of the formulas B, C is constructively provable. Q.E.D.

Let us remind the constructive interpretation of disjunction from Section 1.3:

- To prove B∨C constructively, you must prove B, or prove C. To prove
B∨C classically, you may assume ¬(B∨C ) as a hypothesis, and derive a

contradiction.  Having only such a  "negative" proof,  you may be unable to
determine, which part of the disjunction B∨C is true – B, or C, or both.

Thus, according to Theorem 4.4.10, the constructive propositional logic [L1-

L10, MP] supports the constructive interpretation of disjunction.

Exercise 4.4.5 (optional, for smart students). By adding the schema (B →C)∨(C → B) to
the axioms of the constructive logic, we obtain the so-called Gödel-Dummett logic (Michael
Dummett). Verify, that a propositional formula F is provable in Gödel-Dummett logic if and
only if F is true at all nodes in all linear Kripke scenarios (i.e., in the scenarios that do not
allow  for  branching).  See  also  Intuitionistic  Logic by  Joan  Moschovakis  in  Stanford
Encyclopedia of Philosophy.

http://plato.stanford.edu/contents.html
http://plato.stanford.edu/contents.html
http://plato.stanford.edu/entries/logic-intuitionistic/
https://en.wikipedia.org/wiki/Michael_Dummett
https://en.wikipedia.org/wiki/Michael_Dummett
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5. Normal Forms

Attention! The principal results of this Section are only valid for the classical
logic.

The  algorithms  solving  the  problem  of  reasoning  and  implementable  on
computers, include, as the first step, transformation of formulas to more or less
equivalent  specific  forms  (the  so-called  normal  forms)  that  are  more
convenient for efficient processing. 

5.1. Negation Normal Form

See also Negation normal form in Wikipedia.

The first  and simplest  steps are  elimination of equivalence and implication
connectives. 

Step 1: eliminate equivalence

We can  eliminate  all  equivalence  connectives,  because B ↔C is  only  an
abbreviation for (B →C)∧(C → B) . Why should we? Because, proving of
B↔C consists  of  proving of  B→C and proving (frequently,  by a  different
method)  of  C→B.  However,  note  that  replacing  of B ↔C by
(B →C)∧(C → B) (or,  by  two  formulas:  B→C and  C→B)  doubles  the

length of formulas to be processed.

Step 2: eliminate implication

After  Step1,  our  formula  will  contain  only  implication,  conjunction,
disjunction  and  negation  connectives.  As  the  next  step,  we  can  eliminate
implications. 

Why should we eliminate implications?  Because conjunction and disjunction
are associative and commutative operations – very much like the addition and
multiplication of numbers! See the example below.

The classical logic allows to do that. In Section 2.6 we proved that,

[L1-L11, MP]: (A → B)↔¬ A∨B .

By  using  this  equivalence  and  replacement  theorems,  we  can  completely
eliminate  implication  connectives,  introducing  negations  and  disjunctions

https://en.wikipedia.org/wiki/Negation_normal_form
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instead.  For example,  the formula B →(C → D) can be transformed, first,
into ¬B∨(C → D) , and then – into ¬ B∨(¬ C∨D) . The latter formula is
equivalent (in the classical logic only!) to the initial B →(C → D) .

Step 3: move negations down to atoms

Thus,  after  Step  2,  our  formula  contains  only  conjunction,  disjunction  and
negation connectives. Now, let us remind the two de Morgan Laws:

 [L1-L11, MP]: ¬( A∧B)↔¬ A∨¬ B ;

 [L1-L9, MP]: ¬( A∨B)↔¬ A∧¬ B ,

and the classical quantifier rules:

[L1-L15, MP, Gen]: ¬∃z(x+z+1=y). x F (x)↔ ∀ x¬F (x) ;

[L1-L15, MP, Gen]: ¬∀ x F (x)↔∃z(x+z+1=y). x¬F (x) .

By using these equivalencies, we can shift negations down – until the atoms of
the formula. For example, let us transform the formula

(( A→ B)→C)→ B∧C .

First, eliminate implications:

¬(( A→ B)→C)∨(B∧C) ,
¬(¬( A → B)∨C)∨(B∧C ) ,
¬(¬(¬ A∨B)∨C)∨(B∧C ).

Apply de Morgan Laws:

(¬¬(¬ A∨B)∧¬ C)∨(B∧C ) ,
(¬(¬¬ A∧¬ B)∧¬C )∨( B∧C ) ,

((¬ ¬¬ A∨¬¬ B)∧¬C )∨(B∧C) .

Now, let us remind the equivalence involving the classical  Double Negation
Law:

 [L1-L11, MP]: ¬¬A ↔ A.

It allows dropping of the excessive negations – we can replace ¬¬¬A by ¬A
and ¬¬B – by B:

((¬ A∨B)∧¬C )∨( B∧C ) .

This kind of formulas is called  negation normal forms (NNF).  Namely,  a
formula is in a negation normal form, if it is built of atoms with or without
negations by using conjunctions and disjunctions only. A formula in negation
normal  form  contains  only  conjunctions,  disjunctions  and  negations,  and
negations are located at the atoms only. Thus, we have obtained:

Theorem 5.1.1. In the classical logic, any formula of a predicate language can
be transformed to an  equivalent  formula in a  negation normal form.  More
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precisely, if F is a formula, then, following a simple algorithm, a formula F'
can be constructed such that:

a) F' is in a negation normal form,

b) F' has the same free variables as F,

c) [L1-L15, MP, Gen]: F↔F'. If F does not contain quantifiers, then [L1-L11,

MP, Gen]: F↔F'. 

Proof. All  the  above-mentioned  operations  are  replacing  sub-formulas  by
equivalent formulas (in the classical logic). By Replacement Theorem 2, in
this way, we obtain a formula that is equivalent to the initial formula. Q.E.D.

Negation normal  forms represent  the starting point  for  one of the efficient
practical methods of reasoning that is implemented on computers – the so-
called Method of Analytic Tableaux. This method is explained in Section 6.

Exercise 5.1.1. Transform to negation normal form the following formulas:

a) (( A→ B)→ A)→ A (Peirce’s Law);

b) Axioms L14 and L15.

Length of NNF

Exercise 5.1.2 (optional, for smart students). Verify that Step 2 and Step 3
increase  the  length  of  the  formula  linearly,  and  that  these  steps  can  be
performed in linear time (see Time complexity in Wikipedia).

5.2. Conjunctive and Disjunctive Normal Forms

The next step is applicable to formulas or sub-formulas that do not contain
quantifiers, i.e.,  to propositional formulas. After our formula is transformed
into negation normal form, we can apply the following 

Step 4: two algebras

After Step 3, our formula is built up by using:

a) atoms or atomic formulas

b) atoms or atomic formulas preceded by a negation,

c) conjunction and disjunction connectives.

Conjunction and disjunction are associative and commutative operations. By
the  behavior  of  "truth  values",  conjunction  seems  to  be  a  kind  of
multiplication:

https://en.wikipedia.org/wiki/Time_complexity
http://en.wikipedia.org/wiki/Method_of_analytic_tableaux


187

0∧0=0,0∧1=1∧0=0,1∧1=1 ,

and disjunction – a kind of addition:

0∨0=0,0∨1=1∨0=1,1∨1=1 .

However, for these operations  two distributive laws are valid (Section   2.3  ) –
conjunction  is  distributive  to  disjunction,  and  disjunction  is  distributive  to
conjunction:

[L1-L8, MP]: (A∧B)∨C ↔(A∨C)∧(B∨C) ,

[L1-L8, MP]: (A∨B)∧C ↔(A∧C)∨(B∧C) .

Thus, both of the two decisions are justified:

1)  (Our  first  "algebra")  Let  us  treat  conjunction  as  multiplication  and
disjunction – as addition (+). Then the above formula

((¬ A∨B)∧¬C )∨(B∧C ) takes the form ((A'+B)C')+BC (let us replace ¬A
by the "more algebraic"  A').  After  this,  the usual  algebraic  transformations
yield  the  formula  A'C'+BC'+BC.  By  the  transformation  back  to  logic  we
would obtain: (¬A∧¬C)∨(B∧¬C )∨(B∧C ) .

2)  (Our  second  "algebra")  Let  us  treat  conjunction  as  addition  (+)  and
disjunction – as multiplication. Then the above formula

((¬ A∨B)∧¬C )∨( B∧C ) takes  the  form (A'B+C')(B+C).  After  this,  the
usual algebraic transformations yield the formula A'BB+A'BC+C'B+C'C. By
the transformation back to logic we obtain:

(¬A∨B∨B)∧(¬A∨B∨C)∧(¬C∨B)∧(¬C∨C ) .

However, additional non-numerical simplifying rules can be applied in these
"algebras".

First rule – conjunction and disjunction are idempotent operations: 

[L1- L5, MP]: A∧A ↔ A  (see Section 2.2).

[L1, L2, L5, L6-L8, MP]: A∨A ↔ A  (see Section 2.  3  ).

Thus, in both of our "algebras": A+A = AA = A.

Second rule – A∧¬ A (i.e., "false") is a kind of "zero" in the first "algebra",
and a kind of "one" – in the second "algebra" (see Section 2.5):

[L1-L10, MP]: B∨( A∧¬ A)↔ B ;

[L1-L10, MP]: (( A∧¬ A)∧B)∨C ↔C .

Indeed, in the first "algebra", these formulas mean B+AA' = B and AA'B+C =
C, i.e., we may think that AA'=0, B0=0, C+0=C. In the second "algebra", these
formulas mean B(A+A') = B and (A+A'+B)C = C, i.e.,  we may think that
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A+A'=1, B1=B, C+1=1.

Third rule – A∨¬ A (i.e., "true") is a kind of "one" in the first "algebra", and
a kind of "zero" – in the second "algebra"  (see Section 2.5):

[L1-L11, MP]: B∧( A∨¬ A)↔ B ;

[L1-L11, MP]: (( A∨¬ A)∨B)∧C ↔C .

Indeed,  in  the  first  "algebra",  these  formulas  mean  B(A+A')  =  B  and
(A+A'+B)C = C, i.e., we may think that A+A'=1, B1=1, C+1=1. In the second
"algebra". these formulas mean B+AA' = B and AA'B+C = C, i.e., we may
think that AA'=0, B0=0, C+0=C.

Thus, in both algebras, 

AA'=0, B0=0, C+0=C, A+A'=1, B1=B, C+1=1.

Let us continue our example:

1)  (The  first  "algebra")  The  formula  A'C'+BC'+BC  is  equivalent  to
A'C'+B(C'+C)  = A'C'+B,  or,  if  we return  to  logic: (¬ A∧¬C )∨B .  Such
disjunctions consisting of conjunctions are called  disjunctive normal forms
(DNFs). In a DNF, each conjunction contains each atom no more than once –
either without negation, or with it. Indeed, if it contains some atom X twice,
then: a) replace XX by X, or b) replace X'X' by X', or c) replace XX' by 0 (in
the latter case – drop the entire conjunction from the expression).

In this way, for some formulas, we may obtain "zero", i.e., an empty DNF. Of
course,  such formulas  take  only  false  values  ("false"  is  "zero"  in  the  first
"algebra"), i.e., are unsatisfiable.

And for some formulas, we may obtain "one", i.e., a kind of a  "full" DNF.
Such formulas take only true values ("true" is "one" in the first "algebra"), i.e.,
are logically valid.

2) (The second "algebra") The formula A'BB+A'BC+C'B+C'C is equivalent to
A'B+A'BC+BC'  =  A'B(1+C)+BC'  =  A'B+BC',  or,  if  we  return  to  logic:
(¬ A∨B)∧(B∨¬ C) .  Such  conjunctions  consisting  of  disjunctions  are

called  conjunctive  normal  forms (CNFs).  In  a  CNF,  each  disjunction
contains each atom no more than once – either without negation, or with it.
Indeed, if it  contains some atom X twice, then: a) replace XX by X, or b)
replace X'X' by X', or c) replace XX' by 0 (in the latter case – drop the entire
disjunction from the expression).

In this way, for some formulas, we may obtain "zero", i.e., an empty CNF. Of
course,  such formulas take only true values ("true" is "zero" in the second
"algebra"), i.e., are logically valid.

And for some formulas, we may obtain "one", i.e., a kind of "full" CNF. Such
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formulas take only false values ("false" is "one" in the second "algebra"), i.e.,
are unsatisfiable. 

Thus, we have proved the following

Theorem 5.2.1. In  the  classical  logic,  every  propositional  formula  can  be
transformed  into  an  equivalent  DNF  and  into  an  equivalent  CNF.  More
precisely, assume, the formula F has been built of the formulas B1, B2, ..., Bn

by using propositional connectives only. Then:

a) There is a formula F1, which is in a (possibly empty or full) disjunctive

normal form over B1, B2, ..., Bn such that [L1-L11, MP]: F ↔ F1.

b) There is a formula F2, which is in a (possibly empty or full) conjunctive

normal form over B1, B2, ..., Bn such that [L1-L11, MP]: F ↔ F2.

Proof. All  the  above-mentioned  operations  are  replacing  sub-formulas  by
equivalent formulas (in the classical logic). By Replacement Theorem 1, in
this way, we obtain a formula that is equivalent to the initial formula. Q.E.D.

Exercise 5.2.1. a) Build DNFs and CNFs of the following formulas:

¬(A∧B →C ) ,
(A → B)↔ (C → D) ,

A∨B ↔C∨D ,
A∧B ↔C∧D .

b) Build DNFs and CNFs of the following formulas:

¬(A∨¬ A) ,
(( A→ B)→ A)→ A ,

(A → B)→ ((¬ A → B)→ B) .

The notion of disjunctive normal form was known already in 1885 to Oscar Howard Mitchell:

O. H. Mitchell. On a New Algebra of Logic. In: Studies in Logic by Members of the Johns 
Hopkins University, 1885, pp. 72-106.

Length of CNF and DNF

Application of Step 4 may increase the length of the formula  exponentially
(see CNF example and DNF example in Wikipedia).

https://en.wikipedia.org/wiki/Disjunctive_normal_form#Conversion_to_DNF
https://en.wikipedia.org/wiki/Conjunctive_normal_form#Conversion_into_CNF
https://www.jstor.org/stable/40320486?seq=1
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5.3. Prenex Normal Form

Let us consider an interpretation J of some predicate language L, such that the
domain DJ contains an infinite set of objects. Under such interpretation, the

"meaning"  of  formulas  containing  quantifiers  may  be  more  or  less  non-
constructive, or, at least, "constructively difficult".

For example,  the formula xB(x) will  be true,  if  B(x) will  be true for all∀
objects  x  in  the  (infinite!)  set  DJ.  Thus,  it  is  impossible  to  verify  directly

("empirically"),  is  xB(x)  true  or  not.  Saying  that  the  formula∀
x y(x+y=y+x)  is  true  under  the  standard  interpretation  of  first  order∀ ∀

arithmetic,  does  not  mean that  we have verified this  fact  empirically  – by
checking x+y=y+x for all  pairs  of natural numbers x, y.  Then, how do we
know that x y(x+y=y+x) is true? We could either postulate this feature of∀ ∀
natural  numbers  directly  (i.e.,  derive  it  inductively  from partial  "empirical
evidence"), or prove it by using some set of axioms (i.e., derive it from other
postulates).  But,  in  general,  formulas  having  the  form  xB(x),  are∀
"constructively difficult".

The formula x yC(x, y) may appear even more difficult: it will be true, if∀ ∃z(x+z+1=y).
for each x in DJ we will be able to find y in DJ such that C(x, y) is true. Thus,

thinking constructively, we could say that x yC(x, y) is true, only, if there is∀ ∃z(x+z+1=y).
an algorithm, which, for each x in DJ can find y in DJ such that C(x, y) is true.

For example,  under the standard interpretation of first  order arithmetic,  the
formula 

∀ x∃z(x+z+1=y).(x< y∧ prime( y))

is true ("there are infinitely many prime numbers"). How do we know this?
This “fact” was proved in 6th century BC. But a similarly quantified formula 

,

represents  the  famous  twin  prime conjecture.  Is  it  true  or  not?  Until  now,
nobody knows the answer.

Exercise 5.3.1 (optional). Verify that the "meaning" of the formulas ∀ x∃z(x+z+1=y). y ∀ z D (x , y , z)
and ∀ x∃z(x+z+1=y). y ∀ z ∃z(x+z+1=y).u F ( x , y , z , u) may be even more non-constructive.

But  how  about  the  formula  xG(x)→ yH(y)?  Is  it  constructively  more∃z(x+z+1=y). ∃z(x+z+1=y).
difficult  than  x yC(x,  y),  or  less?  In  general,  we  could  prove  that∀ ∃z(x+z+1=y).

xG(x)→ yH(y) is true, if we had an algorithm, which, for each∃z(x+z+1=y). ∃z(x+z+1=y). x∈D J

such  that  G(x)  is  true,  could  find y∈DI such  that  H(y)  is  true,  i.e.,  if
x y(G(x)→H(y))  would  be  true.  We  will  establish  below,  that,  in  the∀ ∃z(x+z+1=y).

classical logic, if G does not contain y, and H does not contain x, then the

https://en.wikipedia.org/wiki/Twin_prime
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formula  xG(x)→ yH(y)  is  equivalent  to  x y(G(x)→H(y)).  Thus,  in∃z(x+z+1=y). ∃z(x+z+1=y). ∀ ∃z(x+z+1=y).
general, the formula xG(x)→ yH(y) is constructively as difficult as is the∃z(x+z+1=y). ∃z(x+z+1=y).
formula x y(G(x)→H(y)).∀ ∃z(x+z+1=y).

To generalize this approach to comparing "constructive difficulty" of predicate
formulas, the so-called prenex normal forms have been introduced:

a formula is in a prenex normal form if and only if it has all its quantifiers
gathered in front of a formula that does not contain quantifiers. An example:
∀ x∃z(x+z+1=y). y ∀ z∃z(x+z+1=y).u F (x , y , z ,u) ,  where  the  formula  F  does  not  contain

quantifiers.

It appears, that in the classical logic, each formula can be transformed to an
appropriate equivalent formula in a prenex normal form. To obtain this normal
form, the following Lemmas 5.3.1–5.3.3 are used.

Lemma 5.3.1. If the formula G does not contain x as a free variable, then:

a) [L1, L2, L5, L12, L14, MP, Gen]: (G→ xF(x)) ∀ ↔ x(G→F(x)).∀

b) [L1, L2, L5, L12-L15, MP, Gen]: (∃z(x+z+1=y).xF(x)→G) ↔ ∀x(F(x)→G). What does 

it mean precisely? 

c) [L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) ↔ x(G→F(x)). More precisely:∃z(x+z+1=y). ∃z(x+z+1=y).

[L1-L11, L12-L15, MP, Gen]: (G→ xF(x)) → x(G→F(x)). This formula ∃z(x+z+1=y). ∃z(x+z+1=y).
cannot be proved constructively! Explain, why. But the converse formula can 
be proved constructively:

[L1, L2, L13-L15, MP, Gen]: x(G→F(x)) → (G→ xF(x)). ∃z(x+z+1=y). ∃z(x+z+1=y).

d) [L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) ↔ ∃z(x+z+1=y).x(F(x)→G). What does it 

mean precisely? More precisely:

[L1-L11, L12-L15, MP, Gen]: (∀xF(x)→G) → ∃z(x+z+1=y).x(F(x)→G). This formula 

cannot be proved constructively! Explain, why. But the converse formula can 
be proved constructively:

[L1, L2, L13-L15, MP, Gen]: ∃z(x+z+1=y).x(F(x)→G) → (∀xF(x)→G).

Proof. First, let us note that (a)← is an instance of the axiom L14, and that 

(b)← is an instance of the axiom L15.

Prove (a)→, (b)→, (c)←, (d)← as the Exercise 5.3.2 below.

It remains to prove (c)→ and (d)→ in the classical logic (constructive proofs
are impossible here).

Let us prove (c)→: (G→ xF(x)) → x(G→F(x)).∃z(x+z+1=y). ∃z(x+z+1=y).
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First, let us prove: ¬G → ((G→ xF(x))→ x(G→F(x)))∃z(x+z+1=y). ∃z(x+z+1=y).

(1) ¬G→(G→F(x)) Axiom L10.

(2) (G→F(x))→ x(G→F(x))∃z(x+z+1=y). Axiom L13: F(x)→ xF(x).∃z(x+z+1=y).

(3) ¬G→ x(G→F(x))∃z(x+z+1=y). From (1) and (2).

(4)
¬G → ((G→ xF(x)) → ∃z(x+z+1=y).

x(G→F(x)))∃z(x+z+1=y).
By L1: B→(C→B).

Now, let us prove: G → ((G→ xF(x))→ x(G→F(x)))∃z(x+z+1=y). ∃z(x+z+1=y).

(5) G Hypothesis assumed.

(6) G→ xF(x)∃z(x+z+1=y). Hypothesis assumed.

(7) xF(x)∃z(x+z+1=y). From (5) and (6).

(8) F(x)→(G→F(x)) L1: B→(C→B).

(9) x(F(x)→(G→F(x)))∀ Gen.

(10) xF(x)→ x(G→F(x))∃z(x+z+1=y). ∃z(x+z+1=y).
By [L1, L2, L12-L15, MP, Gen]: 

x(B→C)→( xB→ xC), ∀ ∃z(x+z+1=y). ∃z(x+z+1=y).
Section 3.1.

(11) x(G→F(x))∃z(x+z+1=y). From (7) and (10).

(12)
G → ((G→ xF(x))→ ∃z(x+z+1=y).

x(G→F(x)))∃z(x+z+1=y).
By Deduction Theorem 2 (x is not a 
free variable in G and in G→ xF(x).∃z(x+z+1=y).

(13)
Gv¬G → ((G→ xF(x))→ ∃z(x+z+1=y).

x(G→F(x)))∃z(x+z+1=y).
From (4) and (12), by L8. The total is

[L1, L2, L8, L10, L12-L15, MP, Gen]

(14) (G→ xF(x)→ x(G→F(x))∃z(x+z+1=y). ∃z(x+z+1=y). L11: Gv¬G.

Finally, let us prove (d)→: (∀xF(x)→G) → ∃z(x+z+1=y).x(F(x)→G). Let us denote this
formula by H.

First, let us prove: xF(x)∀ →H

(1) xF(x)∀ Hypothesis assumed.

(2) xF(x)→G∀ Hypothesis assumed.
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(3) G From (1) and (2).

(4) F(x)→G By L1: B→(C→B).

(5) x(F(x)→G)∃z(x+z+1=y). By L13: F(x)→ xF(x).∃z(x+z+1=y).

(6) xF(x) →H∀ By Deduction Theorem 2.

Now, let us prove: x¬F(x)∃z(x+z+1=y). →H

(5) ¬F(x) Hypothesis assumed.

(6) ¬F(x)→(F(x)→G) L10.

(7) F(x)→G From (5) and (6).

(8) x(F(x)→G)∃z(x+z+1=y). By L13: F(x)→ xF(x).∃z(x+z+1=y).

(9) ( xF(x)→G) → x(F(x)→G)∀ ∃z(x+z+1=y). By L1: B→(C→B).

(10) ¬F(x)→H By Deduction Theorem 2.

(11) x¬F(x)∃z(x+z+1=y). →H
Gen and L15: x(¬F(x)→H)→ ∀
( x¬F(x)→H).∃z(x+z+1=y).

(12) ¬ xF(x)∀ →H

By Section 3.2, III-4. [L1-L11, 

L13, L14, MP, Gen]: 

¬ xF(x)→ x¬F(x). ∀ ∃z(x+z+1=y). Axiom L11 

is used here!

(13) xF(x) v ¬ xF(x)∀ ∀  → H From (4) and (12), by L8.

(14) H By L11: xF(x) v ¬ xF(x)∀ ∀

Q.E.D.

Exercise 5.3.2. a) Prove (a)→ of Lemma 5.3.1.

b) Prove (b)→ of Lemma 5.3.1.

c) Prove (c)← of Lemma 5.3.1. (Hint: prove (G→F(x))→(G→ xF(x)), apply∃z(x+z+1=y).
Gen and L15.)

d) Prove (d)← of Lemma 5.3.1. (Hint: prove(F(x)→G)→(∀xF(x)→G), apply
Gen and L15.)
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Lemma 5.3.2. If the formula G does not contain x as a free variable, then

a) [L1-L5, L13-L15, MP, Gen]: ∃z(x+z+1=y). x F (x)∧G ↔∃z(x+z+1=y). x (F (x )∧G ) .

b) [L1-L5, L12, L14, MP, Gen]: ∀ x F (x)∧G ↔∀ x (F ( x)∧G) .

c) [L1-L8, L13-L15, MP, Gen]: ∃z(x+z+1=y). x F (x)∨G ↔∃z(x+z+1=y). x (F (x )∨G ) . 

d) [L1-L8, L12, L14, MP, Gen]: ∀ x F (x)∨G ↔∀ x (F ( x)∨G) .

Proof. 

Prove (a, b, c, d) as the Exercise 5.3.3 below.

Q.E.D

Exercise 5.3.3. a) Prove (a, b) of Lemma 5.3.2. (Hint: to prove (a)→, first
prove F ( x)→(G →∃z(x+z+1=y). x (F (x )∧G)) , and apply L15.) 

b)  Prove  (c)  of  Lemma  5.3.2.  (Hint:  to  prove  (c)→,  first  prove
F (x)→∃z(x+z+1=y). x(F (x)∨G ) , apply Gen and Axiom Axiom L15; to prove (c)←,

first prove F (x)∨G →∃z(x+z+1=y). xF (x)∨G , apply Theorem 2.3.1, if necessary.)

c) Prove (d) of Lemma 5.3.2. (Hint: to prove (d)→, apply D-elimination; to
prove  (d)←,  apply  L12 and  D-elimination  to  obtain ∀ x (F (x)∨G ) ├

∀ x F (x)∨G .)

Lemma 5.3.3. a) [L1-L10, L12-L15, MP, Gen]: ¬∃z(x+z+1=y).xF(x) ↔ ∀x¬F(x).

b) [L1-L11, L12-L15, MP, Gen]: ¬∀xF(x) ↔ ∃z(x+z+1=y).x¬F(x). More precisely:

[L1-L11, L13, L14, MP, Gen]: ¬∀xF(x) →  ∃z(x+z+1=y).x¬F(x). This formula cannot be

proved constructively! Why? But,

[L1-L10, L13, L14, MP, Gen]: ∃z(x+z+1=y).x¬F(x) → ¬∀xF(x).

Proof. 

a) See Section 3.2, Group IV.

b)→. This is exactly Section 3.2, III-4.

b)←. See Section 3.2, Group III.

Q.E.D.

Let us remind that a formula is in a prenex normal form if and only if it has all
its quantifiers gathered in front of a formula that does not contain quantifiers.

Theorem 5.3.4. In the classical logic, any formula of a predicate language can
be transformed into an  equivalent  formula in a  prenex normal form. More
precisely, if F is a formula, then, following a simple algorithm, a formula F'
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can be constructed such that:

a) F' is in a prenex normal form,

b) F' has the same free variables as F,

c) [L1-L15, MP, Gen]: F↔F'.

Proof. Let us start by an example:

xG(x)→ yH(y).∃z(x+z+1=y). ∃z(x+z+1=y).

If H did not contain x as a free variable, then, by Lemma 5.3.1(b): ∃z(x+z+1=y).xF(x)→G
↔  ∀x(F(x)→G),  i.e.,  this  formula  would  be  equivalent  to

x(G(x)→ yH(y)). Now, let us consider the sub-formula G(x)→ yH(y). If G∀ ∃z(x+z+1=y). ∃z(x+z+1=y).
did not contain y as a free variable, then, by Lemma 5.3.1(c): G→ xF(x) ↔∃z(x+z+1=y).

x(G→F(x)),  the  sub-formula  would  be  equivalent  to  y(G(x)→H(y)).∃z(x+z+1=y). ∃z(x+z+1=y).
Hence, by Replacement Theorem 2, x(G(x)→ yH(y)) would be equivalent∀ ∃z(x+z+1=y).
to x y(G(x)→H(y)).∀ ∃z(x+z+1=y).

But, if H would contain x as a free variable, and/or G would contain y as a free
variable? Then our "shifting quantifiers up" would be wrong – the formula

x y(G(x)→H(y)) would ∀ ∃z(x+z+1=y). not be equivalent to xG(x)→ yH(y).∃z(x+z+1=y). ∃z(x+z+1=y).

To avoid this problem, let us use Replacement Theorem 3, which says that the
meaning of a formula does not depend on the names of bound variables used
in it. Thus, as the first step, in xG(x), let us replace x by another variable x∃z(x+z+1=y). 1

that does not occur neither in G, nor in H. Then, by Replacement Theorem 3,
xG(x)  is  equivalent  to  x∃z(x+z+1=y). ∃z(x+z+1=y). 1G(x1),  and  by  Replacement  Theorem  2,

xG(x)→ yH(y) is equivalent to x∃z(x+z+1=y). ∃z(x+z+1=y). ∃z(x+z+1=y). 1G(x1)→ yH(y).∃z(x+z+1=y).

Now, x∀ 1(G(x1)→ yH(y)) is really equivalent to x∃z(x+z+1=y). ∃z(x+z+1=y). 1G(x1)→ yH(y). As the∃z(x+z+1=y).
next step, in yH(y), let us replace y by another variable y∃z(x+z+1=y). 1 that does not occur

neither in G, nor in H. Then, by Replacement Theorem 3, yH(y) is equivalent∃z(x+z+1=y).
to y∃z(x+z+1=y). 1H(y1), and by Replacement Theorem 2, G(x1)→ y∃z(x+z+1=y). 1H(y1) is equivalent

to  y∃z(x+z+1=y). 1(G(x1)→H(y1)).  And,  finally,  xG(x)→ yH(y)  is  equivalent  to∃z(x+z+1=y). ∃z(x+z+1=y).
x∀ 1 y∃z(x+z+1=y). 1(G(x1)→H(y1)).

Now, we can start the general proof. In the formula F, let us find the leftmost
quantifier having a propositional connective over it. If such a quantifier does
not exist, the formula is in a prenex normal form. If such a quantifier exists,
then F is in one of the following forms:

QqQq...Qq(...(¬QxG)...), or QqQq...Qq(...(QxGooH)...), or QqQq...Qq(...

(GooQxH)...),

where QqQq...Qq are the quantifiers "already in the prefix", Q is the quantifier
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in question, and oo is the propositional connective standing directly over Q.

In the first case, by Lemma 5.3.3, ¬QxG is equivalent to Q'x¬G, where Q' is
the  quantifier  opposite  to  Q.  By  Replacement  Theorem  2,  QqQq...Qq(...

(¬QxG)...) is then equivalent to QqQq...Qq(...(Q'x¬G)...), i.e., Q' has now one

propositional connective less over it ( (than had Q).

In  the  second case,  as  the  first  step,  in  QxG,  let  us  replace  x  by  another
variable  x1 that  does  not  occur  in  the  entire  formula  F  at  all.  Then,  by

Replacement Theorem 3, QxG is equivalent to Qx1G1, and by Replacement

Theorem  2,  QqQq...Qq(...(QxGooH)...)  is  equivalent  to  QqQq...Qq(...

(Qx1G1ooH)...). Now, we can apply the appropriate case of Lemma 5.3.1 or

Lemma 5.3.2, obtaining that Qx1G1ooH is equivalent to Q'x1(G1ooH), where

Q' is the quantifier determined by the lemma applied. Then, by Replacement
Theorem  2,  QqQq...Qq(...(Qx1G1ooH)...)  is  equivalent  to  QqQq...Qq(...

(Q'x1(G1ooH))...), i.e.,  Q' has now one propositional connective less over it

(than had Q).

In the third case, the argument is similar.

By iterating this operation a finite number of times, we arrive at a formula F'
which  is  in  a  prenex  normal  form,  and  which  is  (in  the  classical  logic)
equivalent to F. Q.E.D.

Note. In  principle,  the  above-mentioned  operations  may  be  applied  to  the
quantifiers of the formula in a different  order.  This is  why many formulas
admit several different prenex normal forms. For example, the above formula

xG(x)→ xH(x) is equivalent not only to x∃z(x+z+1=y). ∃z(x+z+1=y). ∀ 1 x∃z(x+z+1=y). 2(G(x1)→H(x2)), but also to

x∃z(x+z+1=y). 2 x∀ 1(G(x1)→H(x2)) (verify). This may come as a surprise, but it should

not: G(x1) does not contain x2, but H(x2) does not contain x1. 

As an example, let us obtain a prenex normal form of the following formula:

∀ x B(x)∨∀ x C ( x)→∀ x D(x)∧(¬∀ x F (x)) .

First, assign unique names to bound variables:

∃z(x+z+1=y). x1 B(x1)∨∀ x2 C (x2)→∀ x3 D(x3)∧(¬∀ x4 F (x4)) .

Process disjunction:

∃z(x+z+1=y). x1∀ x2(B(x1)∨C (x2))→∀ x3 D (x3)∧(¬∀ x4 F (x 4)) .

Process negation (  changes to !∀ ∃z(x+z+1=y). ):

∃z(x+z+1=y). x1∀ x2(B(x1)∨C (x2))→∀ x3 D (x3)∧∃z(x+z+1=y). x4¬F (x4) .
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Process conjunction:

∃z(x+z+1=y). x1∀x2( B(x1)∨C (x2))→∀x3∃z(x+z+1=y). x4( D(x3)∧¬ F (x4)) .

Process implication premise (  changes to ,  changes to ∃z(x+z+1=y). ∀ ∀ ∃z(x+z+1=y).):

∀ x1∃z(x+z+1=y). x2(B(x1)∨C (x2)→∀ x3∃z(x+z+1=y). x4(D (x3)∧¬F (x4))) .

Process implication conclusion:

∀ x1∃z(x+z+1=y). x2∀ x3∃z(x+z+1=y). x4(B(x1)∨C (x2)→ D (x3)∧¬F (x 4)) .

The last two steps could be performed in the reverse order as well.

Attention! The step “assign unique names to bound variables” is essential!
Without it,  senseless results would be obtained. For example, converting of
∀ x G (x)∨∀ x H (x) into ∀ x ∀ x(G ( x)∨H (x))  is  senseless.  In  less

emotional  terms:  formally, ∀ x ∀ x(G ( x)∨H (x)) is  equivalent  to  the
formula ∀ x (G (x)∨H (x)) that  is  not  equivalent  to
∀ x G (x)∨∀ x H (x) .

Exercise 5.3.4. Transform each of the following formulas into prenex normal
forms. Write down every single step of the process. (Hint: the algorithm is
explained in the proof of Theorem 5.3.4.)

a) ∃z(x+z+1=y). x B(x)→(∃z(x+z+1=y). x C (x)→∃z(x+z+1=y). x D(x)) ,

b) ∀ x∃z(x+z+1=y). y B(x , y)∧∃z(x+z+1=y). x C (x)→∀ y∃z(x+z+1=y). x D(x , y) , 

c) ∀ x B(x , y , z )→∀ x C (x , y)∨∃z(x+z+1=y). y D ( y , z ) ,

d) ∀ x B(x)→(∀ x C (x)→(∀ x D (x)→∀ x F (x))) ,

e) ((∃z(x+z+1=y). x B(x)→∃z(x+z+1=y). x C (x))→∃z(x+z+1=y). x D (x))→∃z(x+z+1=y). x F (x) .

Note. From a programmer's point of view, prenex normal forms are, in a sense,
a crazy invention. In computer programming, you always try to reduce loop
bodies, not to extend them as much as possible!

Exercise 5.3.5 (optional, for smart students). We may use transformation to prenex normal
forms in proofs. More precisely, let us try extending the classical logic by introducing of the
following additional inference rule (let us call it  PNF-rule): given a formula F, replace it by
some its prenex normal form F'. Verify, that, in fact, this rule does not extend the classical
logic, i.e., if there is a proof of F1, F2, ..., Fn├ G in [L1-L15, MP, Gen, PNF-rule], then there is

a  proof  of  the  same  in  [L1-L15,  MP,  Gen].  (In  some  other  texts,  such  rules  are  called

admissible rules. Thus, the PNF-rule is an admissible rule in the classical logic.)

The  notion  of  prenex normal  forms  and a  version  of  Theorem 5.3.4  were
known to Charles S. Peirce in 1885:

C. S. Peirce. On the algebra of logic: A contribution to the philosophy of notation. American
Journal of Mathematics, 1885, vol.7, pp.180-202.

As noted by Alasdair Urquhart in the message  [FOM] Prenex Normal Forms, Jul 14, 2007

https://cs.nyu.edu/pipermail/fom/2007-July/011720.html
https://en.wikipedia.org/wiki/Charles_Sanders_Peirce
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(FOM is an automated e-mail list for discussing foundations of mathematics):

"On page 196 of that article, he [Peirce] gives a brief sketch of conversion to prenex normal
form, remarking that it "can evidently be done."".

5.4. Skolem Normal Form

Skolem normal form was first introduced by Thoralf Skolem in 1928:

Th.Skolem. Über  die  mathematische  Logik.  "Norsk  matematisk  tidsskrift",  1928,  vol.10,
pp.125-142.

But the first very important idea was proposed by Skolem already in 1920:

Th.  Skolem. Logisch-kombinatorische  Untersuchungen  über  die  Erfüllbarkeit  und
Beweisbarkeit  mathematischen  Sätze  nebst  einem  Theoreme  über  dichte  Mengen.
Videnskabsakademiet i Kristiania, Skrifter I, No. 4, 1920, pp. 1-36.

In the previous sections, we considered only equivalent transformations: if the
formula F is transformed into F’, then [L1-L15, MP, Gen]: F ↔ F ' . Skolem

proposed to consider a wider class of transformations having the following
property: if F is transformed into F’, then the transformed formula F’ is only
“loosely equivalent” to the initial formula F. It appears that in this way we
obtain the possibility of further “normalization” of formulas.

Let us remind that, in a predicate language L, a formula F is called satisfiable
if and only if there is an interpretation of the language L under which F is true
for some values of its  free variables (if  any).  Skolem proposed to develop
transformations having the following property:  the transformed formula F’
is satisfiable if and only if so is the initial formula F. Thus, two formulas F
and  F’ are  considered  as  “loosely  equivalent”,  if  we  can  prove  that  F  is
satisfiable, if and only so is F’.

Such transformations can be used in refutation proofs: to prove G, we assume
¬G and  try  to  derive  a  contradiction.  Indeed,  it  follows  from  Gödel’s

Completeness Theorem that G is provable in the classical logic if and only if
¬G is  unsatisfiable.  Thus,  instead  of  trying  to  build  a  proof  of  a

contradiction, we may try to detect, is ¬G satisfiable or not. Hence, if we
will transform ¬G into a “better normalized” formula G’ by retaining only
satisfiability, then G’ will be unsatisfiable if and only so is ¬G , i.e., if and
only if G is provable.

Skolem's second idea: introduction of new object constants and function
constants  allows  to  eliminate  existential  quantifiers.  This  idea  can  be
demonstrated on the following example: how could we simplify the formula
∀ x∃z(x+z+1=y). y F ( x , y) ? It asserts that for each x there is y such that F(x, y) is

true. Thus, it asserts, that there is a function g, which selects for each value of

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Skolem.html
https://cs.nyu.edu/mailman/listinfo/fom
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x a value of y such that F(x, y) is true. Thus, in a sense, ∀ x∃z(x+z+1=y). y F ( x , y) is
"equivalent"  to ∀ x F (x , g (x)) .  In  which  sense?  Exactly  in  the  above-
mentioned sense of “loose equivalence”: 

∀ x∃z(x+z+1=y). y F ( x , y) is satisfiable if and only if ∀ x F (x , g (x)) is satisfiable.

Indeed,

1. If  ∀ x∃z(x+z+1=y). y F ( x , y) is satisfiable, then there is an interpretation J under
which it is true, i.e., for each value of x there is a value of y such that F(x, y) is
true.  This  allows  us  to  define  the  following  interpretation  of  the  function
constant g: g(x) is one of y-s such that F(x, y) is true under J. If we extend J by
adding  this  interpretation  of  the  function  constant  g,  then  we  obtain  an
interpretation  J'  under  which ∀ x F (x , g (x)) is  true,  i.e.,  this  formula  is
satisfiable.

2. If  ∀ x F (x , g (x)) is satisfiable, then there is an interpretation J under
which it is true, i.e., for each value of x the formula F(x, g(x)) is true. Hence,
in this interpretation, for each value of x there is a value of y (namely, g(x))
such that F(x, y) is true in J. Thus, ∀ x∃z(x+z+1=y). y F ( x , y) is true under J, i.e., this
formula is satisfiable.

Note. In the first part of this proof, to define the function g, we need, in general, the Axiom of
Choice. Indeed, if there is a non-empty set Yx of y-s such that F(x, y) is true, to define g(x),

we must choose a single element of Yx. If we know nothing else about the interpretation J, we

are  forced  to  use  the  Axiom of  Choice.  But,  if  we  know that  the  interpretation  J  has  a
countable domain, then we can define g(x) as the "least" y from the set Yx. In this way we can

avoid the Axiom of Choice.

The third idea is even simpler: the formula ∃z(x+z+1=y). x F (x) asserts that there is x
such that F(x) is true, so, let us denote by (an object constant) c one of these x-
s, thus obtaining F(c) as a "normal form" of ∃z(x+z+1=y). x F (x) . Of course (verify),

∃z(x+z+1=y). x F (x) is satisfiable if and only if F(c) is satisfiable.

These ideas allow for transformation of any quantifier prefix Qx1...Qxn into a

sequence of universal quantifiers only:

Theorem 5.4.1 (Th.  Skolem).  Let  L be a  predicate  language.  There  is  an
algorithm allowing to construct, for each closed formula F of this language, a
closed formula F' (in a language L' obtained from L by adding a finite set of
new object constants and new function constants – depending on F) such that:

a) F' is satisfiable if and only if F is satisfiable,

b)  F'  is  in  the  form ∀ x1 ...∀ xnG ,  where  n≥0,  and  G does  not  contain
quantifiers. 

If  a  formula  is  in  the  form ∀ x1 ...∀ xnG ,  where  n≥0,  and  G  does  not
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contain  quantifiers,  let  us  call  it  Skolem normal  form.  Thus,  each  closed
formula can be transformed into a Skolem normal form in the following sense:
for each closed formula F of a language L there is a Skolem normal form |F|Sk

(in the language L extended by a finite set of Skolem constants and Skolem
functions), which is satisfiable if and only if so is F.

Note.  Computer  science  slang:  the  transformation  procedure  leading  to
Skolem normal forms is called "skolemization".

Note. Theorem 5.4.1  does not assert that a formula and its Skolem normal
form are equivalent. It asserts only that the satisfiability problem of the first
formula is equivalent to the satisfiability problem of the second formula. As
already mentioned above, this is enough to allow using of skolemization in
refutation proofs.

If  we  are  interested  in  determining  the  satisfiability  of  formulas,  then
transformation  to  Skolem normal  forms  seems  to  be  a  promising  method.
Indeed, formulas ∀ x1 ...∀ xnG (where G does not contain quantifiers) are,
perhaps,  easier  to  analyze  than  formulas  involving  more  complicated
combinations of different quantifiers.

Proof of Theorem 5.4.1 First, let us obtain a prenex normal form F1  of the

formula  F  (see  Section  5.  3  ).  Indeed,  by  Theorem 5.3.4,  there  is  a  simple
algorithm, allowing to construct a closed formula F1 such that F1 is a prenex

normal form, and, in the classical logic, F↔F1. Of course, F1 is satisfiable if

and only if so is F.

If the quantifier prefix of F1 starts with a sequence of existential quantifiers (

∃z(x+z+1=y).∃z(x+z+1=y). ...∃z(x+z+1=y).∀ .. . ),  we  will  need  the  following  lemma  to  eliminate  these
quantifiers:

Lemma 5.4.2. A closed formula ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xn H (x1 , ... , xn) is satisfiable if and
only  if H (c1 , ... , cn) is  satisfiable,  where c1 , ... , cn are  new  object
constants that do not occur in H.

After  this  operation,  we have a  closed prenex formula H (c1 , ... , cn) (in  a
language obtained from L by adding a finite set of new object constants, called
Skolem constants), which is satisfiable if and only if so is F1 (and F). The

quantifier prefix of H (c1 , ... , cn) (if any) starts with a sequence of universal
quantifiers ( ∀ ∀ ...∀∃z(x+z+1=y). .. . ).

To proceed, we need the following

Lemma  5.4.3.  A  closed  formula ∀ x1 ...∀ xn∃z(x+z+1=y). y K (x1 , ... , xn , y) is
satisfiable  if  and  only  if ∀ x1 ...∀ xn∃z(x+z+1=y). y K (x1 , ... , xn , , g ( x1 , ... , xn)) is
satisfiable, where g is a new n-ary function constant (called Skolem function),
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which does not occur in K.

By iterating these lemmas, we can transform the entire quantifier  prefix of
H (c1 , ... , cn) to a sequence of universal quantifiers only ( ∀ ∀ ...∀ ).

For example, the formula

∃z(x+z+1=y). t∀ x∀ y∃z(x+z+1=y). z∀u∃z(x+z+1=y).w F(t , x , y , z , u ,w)

is satisfiable if and only if so is

∀ x∀ y∃z(x+z+1=y). z∀u∃z(x+z+1=y).wF (c , x , y , z ,u ,w)

(where c is a constant that does not occur in F), and if and only if so is

∀ x∀ y∀u∃z(x+z+1=y).w F (c , x , y , g(x , y) , u ,w) ,

and finally if and only if so is the Skolem normal form:

∀ x∀ y∀u F(c , x , y , g(x , y),u ,h(x , y , u)) ,

where g and h are functions that do not occur in F.

Exercise 5.4.1. a) Prove Lemma 5.4.2. 

b) Prove Lemma 5.4.3.

How  many  new  object  constants  and  new  function  constants  (Skolem
constants  and  functions)  do  we  need  to  obtain  the  final  formula  F'?  The
number of new symbols is determined by the number of existential quantifiers
in the quantifier prefix of the prenex formula F1. Indeed, a) the number of new

object constants is determined by the number of existential quantifiers in front
of the prefix, and b) the number of new function constants is determined by
the number of existential quantifiers that follow after the universal ones.

This completes the proof of Theorem 5.4.1.

Exercise 5.4.2.  Obtain Skolem normal forms of the formulas mentioned in
Exercise 5.3.4.

See also:
"Skolemization" from The Wolfram Demonstrations Project. Contributed by Hector Zenil.

Now, let us obtain the existential form of Skolem’s theorem.

Let  F  be  a  closed  formula.  F  is  logically  valid  if  and  only  if ¬F is
unsatisfiable. Obtain a Skolem normal form of ¬F : ∀ x1 ...∀ xnG (where
n≥0,  and  G  does  not  contain  quantifiers).  Hence,  by  Theorem 5.4.1,  F  is
logically valid if and only if  ∀ x1 ...∀ xnG is unsatisfiable, hence, if and
only if ¬∀ x1...∀ x nG is logically valid. Thus, F is logically valid if and
only so is ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xn¬G . 

Thus we have proved the following 

http://demonstrations.wolfram.com/
http://demonstrations.wolfram.com/Skolemization/
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Theorem 5.4.4. Let L be a predicate language. There is an algorithm allowing
to construct, for each closed formula F of this language, a closed formula F' (in
a language L' obtained from L by adding a finite set of new object constants
and new function constants – depending on F) such that:

a) F' is logically valid (or, provable in the classical logic) if and only if F is
logically valid (or, provable in the classical logic), 

b)  F'  is  in  form ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xn G ,  where  n≥0,  and  G  does  not  contain
quantifiers.

Exercise  5.4.3 (optional,  for  smart  students).  In  his  above-mentioned  1920  paper,  for
quantifier elimination, Skolem proposed  introduction of  new predicate constants (to the
idea that function constants will do better, he arrived only in the 1928 paper). Do not read
neither Skolem's papers, nor the above-mentioned online comments, and prove yourself that
by introduction of new predicate constants, the satisfiability problem of any closed formula
can  be  reduced  to  the  satisfiability  problem  of  a  formula  having  the  form
∀ x1 ...∀ xm∃z(x+z+1=y). y1...∃z(x+z+1=y). yn G , where m, n≥0, and G does not contain quantifiers. Thus,

function constants "will do better", indeed, see Theorem 5.4.1.

Exercise 5.4.4 (optional, compare with Exercise 5.3.5). Since, in general, Skolem normal form
is not equivalent to the initial formula, we cannot use transformation to Skolem normal forms
in the usual ("positive", or affirmative) proofs. But we may use it in "negative" (or, refutation)
proofs, i.e., in proofs aimed at deriving a contradiction! More precisely, let us try extending
the classical logic by introducing of the following additional inference rule (let us call it SNF-
rule): given a formula F, replace it by some its Skolem normal form F' (such that the newly
introduced object constants and function constants do not occur in the proof before F'). Verify,
that, in fact, this rule does not extend the classical logic for refutation proofs, i.e., if, from a set
of formulas F1, F2, ..., Fn, one can derive a contradiction by using [L1-L15, MP, Gen, SNF-

rule],  then  one  can  do  the  same  by  using  [L1-L15,  MP,  Gen].  (Thus,  the  SNF-rule  is

admissible for refutation proofs in the classical logic.)

5.5. Clause Form

Attention! The principal results of this Section are valid only for the classical
logic!

Clause forms of propositional formulas

Which  form is  more  "natural"  –  DNF,  or  CNF? Of  course,  CNF is  more
natural. Indeed, a DNF D1∨D 2∨...∨Dm asserts  that one (or more) of the
formulas Di is true. This is a very complicated assertion – sometimes D1 is

true,  sometimes  D2 is  true,  etc.  But,  if  we  have  a  CNF  instead  –

C1∧C2∧...∧Cn ? It asserts that all the formulas Ci are true, i.e.,  we can
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replace the long formula C1∧C2∧...∧Cn by a set of shorter formulas C1,

C2, ..., Cn. For human reading and for computer processing, a set of shorter

formulas is much more convenient than a single long formula.

Let us return to our example formula (( A→ B)→C)→ B∧C of Section 5.  2  ,
for which we obtained a DNF (¬ A∧¬C )∨B and a CNF:

(¬ A∨B)∧( B∨¬ C) .

Without a transformation, DNF may be hard for reading and understanding.
The  CNF  is  more  convenient  –  it  says  simply  that ¬ A∨B is  true  and

B∨¬ C is true.

As another step, making the formulas easier to understand, we could apply the
following equivalences:

[L1-L11, MP]: ¬ A∨B ↔ A → B ,

[L1-L11, MP]: ¬ A∨¬ B∨C ↔ A∧B →C ,

[L1-L11, MP]: ¬ A∨B∨C ↔ A→ B∨C , 

[L1-L11, MP]: ¬ A∨¬ B∨C∨D ↔ A∧B →C∨D , 

etc.

Exercise 5.5.1. Verify these equivalences by proving that,  generally (in the
classical logic),

[L1-L11, MP]: ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ↔

(A1∧A2∧...∧Am → B1∨B2∨...∨Bn) .

Thus,  we can replace our set  of two formulas ¬ A∨B , B∨¬C by the set
A → B ,C → B . The conjunction of these two formulas is equivalent to the

initial formula (( A→ B)→C)→ B∧C .

Formulas having the form

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

or, equivalently,

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn ,

where A1, A2, ... , Am, B1, B2, ... , Bn are atoms, are called clauses. Clauses are

well suited for computer processing. Indeed, in the computer memory, we can
represent the above formula simply as a pair of sets of atoms – the negative set
{A1, A2, ... , Am} and the positive set {B1, B2, ... , Bn}.

What, if one (or both) of these sets is (are) empty?
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If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m = 0
and n > 0, then, of course, this formula asserts simply that B1∨B2∨...∨Bn ,
i.e., "converting" it into an implication with empty premise

→ B1∨B2∨...∨Bn

leads us to the following definition: the clause → B1∨B2∨...∨Bn means the
same as B1∨B2∨...∨Bn .

If, in the formula ¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn , we have m > 0
and  n  =  0,  then,  of  course,  this  formula  asserts  simply  that

¬ A1∨¬ A2∨...∨¬ Am , i.e., "converting" it into an implication with empty
consequence 

A1∧A2∧...∧Am →

leads us to the following definition: the clause A1∧A2∧...∧Am → means the
same as ¬(A1∧A2∧...∧Am) . 

If m=n=0, then, as an empty disjunction, the clause must be qualified as false.

Note. Clauses are similar to sequents – pairs of sets of formulas (S1, S2), used in the proof of

Theorem 4.4.5  (completeness  of  the  constructive  propositional  logic)  in  Section 4.4.  In  a
sequent (S1, S2), the sets S1, S2 could contain arbitrary formulas, but, in a clause, S1, S2 are

sets of atoms.

Sets (i.e., conjunctions) of clauses are called  clause forms (in some texts –
clausal  forms).  By  Theorem  5.2.1,  every  propositional  formula  can  be
transformed to  a  (possibly  empty,  i.e.,  true)  CNF. Since  every  conjunction
member  of  a  CNF  represents,  in  fact,  a  clause,  we  have  established  the
following

Theorem 5.5.1.  In  the  classical  logic,  every  propositional  formula  can  be
transformed to an equivalent clause form. More precisely, assume, the formula
F is built of formulas B1, ..., Bn by using propositional connectives only. Then

there is a (possibly empty) clause form F' (i.e., a set of clauses) over B1, ..., Bn

such that [L1-L11, MP]: F ↔ conj(F'), where conj(F') denotes the conjunction

of the clauses contained in the set F'.

For  example,  as  we  established  above,  the  set ¬ A∨B ,B∨¬C (or,
alternatively, A → B ,C → B )  is  a  clause  form  of  the  formula
(( A→ B)→C)→ B∧C .

Exercise 5.5.2. Obtain clause forms of the formulas mentioned in the Exercise
5.2.1.

Clause forms (in a sense, “clouds of simple disjunctions”) are well suited for
computer processing. In the computer memory, every clause
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¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn

can be represented as a pair of sets of atoms:

(−{A1, A2, ..., Am}, +{B1, B2, ..., Bn}), 

and every clause form – as a set of such pairs – i.e., it means less character
string processing and less expression parsing.

Clause forms of predicate formulas

Of course (unfortunately),  if  we would insist  that  the clause form must  be
equivalent  to  the  initial  formula,  then  nothing comparable  to  clause  forms
could  be  obtained for  predicate  formulas.  Still,  transformation  of  predicate
formulas to "clause forms" becomes possible, if we drop this requirement, and
replace  it  by  the  requirement  that  the  clause  form must  be simultaneously
satisfiable if and only if the initial formula is satisfiable (or, equivalently, if
proceeding, we wish only to retain the possibility of deriving contradictions).
And – if we allow the Skolem style extending of the language by adding new
object constants and new function constants.

Then, by Skolem's Theorem (Theorem 5.4.1), for each  closed formula F, we
can obtain a Skolem normal form ∀ x1 ...∀ xk G , where k≥0, the formula
G does not contain quantifiers, and this form is satisfiable if and only if so is F.

As the next step, let us drop the universal quantifiers in front of G. In this
way  the  satisfiability  is  retained:  G  is  satisfiable  if  and  only  if  so  is
∀ x1 ...∀ xk G . (Remember that G, as a formula containing free variables,

is  considered  as  true  in  an  interpretation  if  and  only  if  it  is  true,  in  this
interpretation, for all values of its free variables.) 

Exercise 5.5.3. There is another way how to verify this. Use the Gen-rule and
the axiom L12 to verify that G allows for deriving of contradictions if and only

if ∀ x1 ...∀ xk G allows for it.

Thus, if we drop the universal quantifiers, then nothing is lost. The possibility
of deriving contradictions is retained.

As the next step, by Theorem 5.2.1, let us convert G into a CNF, and then –
into a clause form G', i.e., into a set of clauses  G' = {C1, C2, ..., Cm}  (with

atomic sub-formulas of G playing the role of atoms B1,  B2,  ...,  Bn).  Since

conj(G') is equivalent to G, conj(G') is satisfiable if and only if so is F. Thus,
the possibility of deriving contradictions is retained, again.

However, one more step is necessary to make processing of clauses easier:
their  “meanings” can be separated completely  by renaming of  variables  in
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such a way that no two clauses contain common variables. 

Indeed,  remember  that  we  obtained  the  clauses  from  a  closed  formula  in
Skolem normal form: ∀ x1 ...∀ xk G . Since conj(G') is equivalent to G,

 ∀ x1 ...∀ xk conj (G ' ) is equivalent to ∀ x1 ...∀ xk G .

 But ∀ x1 ...∀ xk conj (G ' ) is equivalent to

(∀ x1 ...∀ xk C 1)∧...∧(∀ x1 ...∀ xk C m) .

According  to  the  Replacement  Theorem  3,  we  will  obtain  an  equivalent
formula, if we will rename the variables xi in such a way that no two clauses
will contain common variables.

Let us denote by G'' = {C'1, C'2, ..., C'm} the set of separated clauses obtained

by renaming of variables. The set G'' is called a clause form of the formula F.

Remember that clauses are disjunctions of atomic formulas (with, or without
negation),  i.e.,  disjunctions  of  formulas  having  the  form p (t 1,... , tm) ,  or
¬ p(t 1, ... , tm) ,  where  p  is  a  predicate  constant,  and  t1,  ...,  tm are  terms

(containing variables and/or object constants).

In general, we are calling  clause form any set of clauses, in which no two
clauses contain common variables. 

Thus, we have proved the following

Theorem 5.5.2. Let L be a predicate language. There is an algorithm allowing
to construct, for each closed formula F of this language, a clause form, i.e., a
finite set S of clauses (in a language L' obtained from L by adding a finite set
of new object constants and new function constants – depending on F), such
that no two clauses contain common variables, and the set S is simultaneously
satisfiable if and only if F is satisfiable.

As an example, let us consider the formula asserting (in the language of first
order arithmetic) that there are infinitely many prime numbers:

prime ( x) : x>1∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y>1∧ z>1∧x= y∗z ) ,

∀ u∃z(x+z+1=y). x (x>u∧ prime(x)) ,

∀ u∃z(x+z+1=y). x (x>u∧x>1∧¬∃z(x+z+1=y). y∃z(x+z+1=y). z ( y>1∧z>1∧x=y∗z)) . (1)

First, let us convert it into a prenex normal form:

∀ u∃z(x+z+1=y). x ∀ y ∀ z (x>u∧x>1∧¬( y>1∧ z>1∧x= y∗z )) .

After this, let us eliminate x by introducing a Skolem function x=g(u):∃z(x+z+1=y).

∀ u∀ y∀ z (g (u)>u∧g (u)>1∧¬( y>1∧z>1∧g (u)= y∗z )) .

This is a Skolem normal form, so, let us drop the universal quantifiers:
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g (u)>u∧g (u)>1∧¬( y>1∧z>1∧g (u)=y∗z) ,

and let us convert this quantifier-free formula into a conjunctive normal form:

g (u)>u∧g (u)>1∧(¬( y>1)∨¬( z>1)∨¬(g (u)=y∗z )) .

By dropping the conjunctions we obtain 3 clauses:

g (u)>u , g (u)>1 , ¬( y>1)∨¬( z>1)∨¬(g (u)= y∗z ) .

As the last  step,  we must rename the variables in such a way that no two
clauses contain common variables:

g (u1)>u1 ,
g (u2)> 1 ,

¬( y> 1)∨¬(z> 1)∨¬(g (u3)= y∗z) .

or, alternatively,

→ g (u1)> u1 ,
→ g (u2)> 1 ,

y> 1, z> 1, g (u3)= y∗z → .

These  sets  of  3  formulas  are  clause  forms  of  the  formula  (1).  They  are
simultaneously satisfiable if and only if satisfiable is the initial formula (1).

By  renaming  of  variables,  the  “meanings”  of  clauses  become  completely
separated.  For  example,  the  clause g (u1)> u1 means ∀ u1 g (u1)>u1 ,
independently of what is meant in other clauses.

Exercise 5.5.4. Obtain clause forms of the formulas mentioned in the Exercise
5.3.4 (assume that B, C, D, F are predicate constants).

Clause form of a set of formulas

Knowledge bases are, as a rule, large sets of closed formulas F 1 , F 2 , ... , F n ,
i.e.,  theoretically,  large  conjunctions F1∧F 2∧...∧F n of  closed  formulas.
The clause form of this set  can be obtained, simply as the  union of clause
forms  of  separate  formulas  Fi.  However,  each  formula  must  be  “kept

separated” during the entire process:

a) when transforming to Skolem normal forms, the name of each new Skolem
constant  and  Skolem  function  must  be  chosen  as  “completely  new”  with
respect to the entire process;

b) when renaming clause variables, at the end, we must guarantee that no two
clauses of the entire process contain common variables.

If  these  conditions  are  respected,  then  a  clause  form  of  the  set
F 1 , F 2 , ... , F n is simultaneously satisfiable if and only if so is the set itself:
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Theorem 5.5.3. Let L be a predicate language. There is an algorithm allowing
to construct, for each finite set of  closed formulas F={F 1 , ... , F n} of this
language, a clause form, i.e., a finite set S of clauses (in a language L' obtained
from  L by  adding  a  finite  set  of  new  object  constants  and  new  function
constants  –  depending  on  F),  such  that  no  two  clauses  contain  common
variables, and the set S is simultaneously satisfiable if and only if so is F. 
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6. Tableaux Method

Attention! The principal results of this section are valid only for the classical
logic!

In Section 6 and Section 7, we consider two practical methods for solving the
problem of reasoning for the classical logic (in other words: how to build a
query processor for knowledge bases that are using predicate languages and
the classical logic).

Let us remind the problem: given a predicate language L, we are interested in
methods allowing to answer the following questions:

“does some formula G (a query) follow from the formulas A1 ,… , An

(the axioms, stored in a knowledge base)?”

In  Section 1.3 and  Section 4.1 we introduced two different  explications of
these informal questions:

1) Can the formula F be derived from the hypotheses A1 ,… , An by using the
classical predicate logic? In other words, does there exist a proof 

 [L1-L15, MP, Gen]: A1 ,… , An ├ G?

2) Is the formula G true in every interpretation of the language L, in which are
true all the formulas A1 ,… , An ?

It follows from Gödel’s Completeness Theorem, that these two explications
are  equivalent  (see  Section  4.3).  Thus,  we  can  speak  simply  about  “G
following from A1 ,… , An ”, and – depending on the situation – switch to the
more convenient of the explications.

However,  a  serious  obstacle  is  posed  by  the  Unsolvability  Theorem:  no
algorithm will be able solve all cases of the reasoning problem correctly, i.e.,
in all cases answer the above questions correctly, “yes” or “no”. On the other
hand,  the  Semi-solvability  Theorem  guarantees  at  least  the  possibility  of
algorithms giving correctly  the positive answers  “yes”.  We will  notice this
phenomenon in the algorithms of both of the above-mentioned methods: if the
formula F follows, indeed, from the formulas A1 ,… , An ,  then algorithms
will  terminate  and  answer  “yes”,  but  otherwise  the  processing,  instead  of
answering “no”, frequently, will not terminate.

Note. We can try to improve the situation by exploring in parallel the queries G
and ¬G . If our algorithm will answer “yes” for ¬G , that will mean the
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answer  “no”  for  G  (if  our  the  axioms  stored  in  our  knowledge  base  are
consistent). But, if the axioms are incomplete, i.e., they do not allow to decide
between G and ¬G , then the process will not terminate, nevertheless.

Both methods will  start  by applying one of the well  known approaches  to
proving theorems in mathematics – and, it appears, it is especially convenient
for  computers  as  well  –  the  so-called  refutation  proofs (reductio  ad
absurdum) – proofs by deriving a contradiction: assume ¬G , i.e., consider
the set of formulas A1 ,… , An ,¬G and try deriving a contradiction within it
(Resolution Method). Or, equivalently (Theorem 4.3.5.(c)), try showing that
the set A1 ,… , An ,¬G is unsatisfiable simultaneously (Tableaux Method).

Re-read the text around Theorem 4.3.5 in Section 4.3. This will make reading
of Section 6 more convenient.

Tableaux method was proposed by Evert Willem Beth and Jaakko Hintikka in
1955 and Kurt Schütte in 1956.

E. W. Beth (1955).  Semantic entailment and formal derivability. Mededelingen Koninklijke
Nederlandse Akademie van Wetenschappen, Nieuwe Reeks, 18, 13, 309-342. 

K.  J.  J.  Hintikka (1955).  Form and  content  in  quantification  theory.  Acta  Philosophica
Fennica, 8, 7–55.

K. Schütte (1956). Ein  System des verknüpfenden Schließens.  Archiv  für  mathematische
Logik und Grundlagenforschung, Bd. 2 Heft 2–4, 34–67.

More about Beth – see EVERT W. BETH by Giorgio T. Bagni, Dipartimento di Matematica -
Università di Torino.

The exposition below follows the elegant formulation of the method proposed
by Raimond Smullian:

R. Smullyan (1968). First-Order Logic. Springer, New York. 

See also Method of analytic tableaux in Wikipedia.

6.1. Tableaux Method for Propositional Formulas

Given the propositional formulas (i.e., formulas built of atoms by using logical
connectives only) A1 ,… , An , G , we wish to establish, does G follow from

A1 ,… , An , or not.   

Of course,  the  case  n=0 is  included here:  we may wish to  establish,  is  G
provable in the classical propositional logic, or not.

Phase 1. Instead of trying to build a proof

https://en.wikipedia.org/wiki/Method_of_analytic_tableaux
http://www.icmihistory.unito.it/portrait/beth.php
https://en.wikipedia.org/wiki/Kurt_Sch%C3%BCtte
https://en.wikipedia.org/wiki/Jaakko_Hintikka
http://en.wikipedia.org/wiki/Evert_Willem_Beth


211

 [L1-L11, MP]: A1 ,… , An ├ G,

let us assume ¬G, and consider the set of formulas A1 ,… , An ,¬G , trying to
determine, is this set simultaneously satisfiable, or not. 

If  the  set A1 ,… , An ,¬G is  simultaneously  satisfiable (i.e.,  if  there  is  an
assignment of truth values to atoms such that all the n+1 formulas become
true), then G does not follow from A1 ,… , An (adding of ¬G does not cause
contradictions). 

If A1 ,… , An ,¬G is  unsatisfiable  simultaneously,  then  G  follows from
A1 ,… , An (adding  of ¬G to A1 ,… , An leads to contradictions).  

Phase 2. Let us apply the method described in Section 5.1 to transform all the
formulas A1 ,… , An ,¬G into their negation normal forms (NNFs), i.e., let
us obtain a set of formulas equivalent to the respective initial formulas, that
(the set) consists of atoms, conjunctions, disjunctions and negations (the latter
are located at the atoms only).  An example: 

(¬A∨B)∧(¬B∨(¬C∧D))∧(A∨B∨C) .

Because of the equivalence, the set of NNFs is true under the same truth-value
assignments, as the initial set, In particular, the set of NNFs is simultaneously
satisfiable, if and only so is initial set.

Phase 3.  In  order  to reduce the satisfiability  of  our  set  of formulas  to  the
satisfiability of their sub-formulas, let us  build a specific tree of formulas.
Indeed:

A∧B is satisfiable, if A and B both are  simultaneously satisfiable, so, we

could follow the pattern:
A∧B

A
B

.

A∨B is  satisfiable,  if  A is  satisfiable,  or  B  is  satisfiable,  so,  we  could

follow the branching pattern: A∧B
A B

.

Before proposing a general algorithm, let us first consider an example, starting
with the formula

(A∨¬B)∧(B∨¬C ) .

This  formula  will  be  satisfied,  if  both  of  conjunction  members  will  be
satisfied:

( A∨¬B)∧( B∨¬C )
A∨¬B
B∨¬C
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Further, A∨¬B will be satisfied, if one of the disjunction members will be
satisfied:

( A∨¬B)∧( B∨¬C )
A∨¬B
B∨¬C
A ¬B

B∨¬C will be satisfied, if one of the disjunction members will be satisfied.
But,  since  we  must  ensure  that A∨¬B and B∨¬C are  satisfied
simultaneously, the branching to B ;¬C must be performed twice – after A,
and after ¬B :

( A∨¬B)∧( B∨¬C )
A∨¬B
B∨¬C
A ¬B

B ¬C B ¬C

This represents the entire tree that will be built by the tableaux method for the
formula (A∨¬B)∧(B∨¬C ) . It contains four branches:

1) In the first branch, assigning B=1 makes B∨¬C true, an assigning A=1
makes A∨¬B true, hence, all that makes (A∨¬B)∧(B∨¬C ) true.

2) In the second branch, assigning C=0 and A=1 does the same.

3) The third branch contains a contradiction: both B and ¬B .

4) In the fourth branch, assigning C=0 and B=0 make (A∨¬B)∧(B∨¬C )
true, like as in the first and second branches.

Thus, if, in a tree, all formulas are reduced to atoms, then, it seems, each of the
branches that  does not contain contradictions yields an assignment of truth
values to atoms making the root formula true, i.e., such a branch proves that
the root formula is satisfiable. 

But what about unsatisfiable formulas? If our above guess is valid and every
branch without contradictions makes the root formula true, then the tree built
for an unsatisfiable formula must contain contradictions in every branch! 

Let us consider an example of such a formula – the negation of the axiom L8:

¬[(B → D)→((C → D)→(B∨C → D))] , or, in the negation normal form:
(¬B∨D)∧(¬C∨D)∧(B∨C )∧¬D .  The  corresponding  tree  looks  as

follows:
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¬B∨D
¬C∨D
B∨C
¬D

¬B D
¬C D ¬C D

B C B C B C B C

Each  of  the  eight  branches  contains  a  contradiction  (verify).  In  fact,  to
conclude this, building of an incomplete smaller tree would be enough:

¬B∨D
¬C∨D
B∨C
¬D

¬B D
¬C D .
B C .

So,  our  guess  seems  to  be  confirmed:  the  tree  built  for any  unsatisfiable
formula will, indeed, contain contradictions in every branch.

Now we can formulate the tree-building algorithm in full generality:

1) The tree starts with a single chain containing the negation normal forms of
the  formulas A1 ,… , An ,¬G .  This  corresponds  to  the  processing  rule  for
conjunctions (see below), because a set of formulas is meant as equivalent to
the conjunction of all its formulas.

2) Now let us describe the processing step. Each step is processing of a single
formula located in the tree. After this, the formula is marked as “processed” (in
the above examples the processed formulas are marked bold). For the next
step, one of the unprocessed formulas is selected.

2a)  If  the  outer  connective  of  the  selected  formula  F  is  conjunction:
F 1∧...∧F k , then the sequential pattern F 1 , ... , F k is appended to  each

branch of the tree traversing the node of the formula F. 

2b)  If  the  outer  connective  of  the  selected  formula  F  is  disjunction:

F 1∨...∨F k , then the branching pattern F 1∨...∨F k

F 1 F 2 ... F k

is appended

to each branch of the tree traversing the node of the formula F. 

3) The  tree is terminated,  if  no formulas to be processed are left.  At this
moment,  its  nodes  contain  either  processed  formulas,  or  atoms  (with  or
without negations). See the above examples.

Phase 4. Let us explore the branches of the tree and draw conclusions. If a
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branch  contains,  for  some  atom  A,  both  A and ¬A ,  such  a  branch  is
qualified as  closed.  Otherwise, i.e.,  if  a branch contains, for every atom A,
either A, or ¬A , or none of these, then it is qualified as open. 

We will prove below Theorem 6.1.2 allowing us to conclude the following: 

a)  If  the  tree  contains  an  open  branch,  then  the  set  of  formulas
A1 ,… , An ,¬G is  satisfiable  simultaneously,  and  hence,  the  formula  G

does not follow from the formulas A1 ,… , An . For the case n=0 this means
that G is not provable in the classical logic. 

b)  If  all  branches  of  the  tree are  closed,  then  the  set  of  formulas
A1 ,… , An ,¬G is  unsatisfiable simultaneously, and hence, the formula G

follows from the formulas A1 ,… , An . For the case n=0 this means that G
is provable in the classical logic. 

Note. The tableaux method, as described above, can be used also for checking
the consistency of a set of formulas (the set of axioms of our knowledge base,
for example). Indeed, the set is consistent, if and only of it is simultaneously
satisfiable. Thus, we must simply start the process with the set A1 ,… , An . In
Phase 4, the case (a) will correspond to the consistency of the set, the case (b)
– to inconsistency.

Exercise 6.1.1. Use the tableaux method to determine:

a)  Is  the  following  formula  provable  in  the  classical  propositional  logic:
(B →(C → D))→((B →C )→(B → D)) ?

b) Does the formula B →C follow from B∨D→C∨D ?

Now we will prove a theorem that will justify our conclusions in the Phase 4.

Lemma 6.1.1. (Hintikka’s Lemma 1). Consider a finite set S of propositional
formulas, all in the negation normal form. Assume, it possess the following
properties:

–  with  every  its  member-formula F 1∧...∧F k ,  it  contains  also  all  the
formulas F 1 , ... , F k ,

– with every its member-formula F 1∨...∨F k , it contains also at least one of
the formulas F 1 , ... , F k ,

– for every atom A, it contains either A, or ¬A , or none of these (but not
both).

Then the set  S is  simultaneously satisfiable,  i.e.,  there is  an assignment of
truth-values to atoms making true all the formulas of S.

Proof. Let  us  assign  the  truth-values  to  all  atoms appearing in  S (with or
without negation) in the following way: if A appears in it, then assign A=1, if
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¬A  appears, then assign A=0, if none of both appear, the truth value of A
can be set  arbitrary.  Under  this  assignment  (let  us  denote it  by  Γ)),  all  the
“atomic” members of S (i.e., atoms with or without negations) are true.

Let us verify, that all the other member-formulas of S are true under Γ) as well.
Indeed, if  some members of S are false,  let  us consider among these false
members the “smallest” one containing the minimum number of conjunctions
and disjunctions. If this minimal false formula is F 1∧...∧F k , then one of
the formulas F 1 , ... , F k must be false as well. This is impossible, because S
contains  all  these  “smaller”  formulas.  If  the  minimal  false  formula  is

F 1∨...∨F k , then all the formulas F 1 , ... , F k must be false as well. This
is impossible, because S contains at least one of these “smaller” formulas.

Contradiction. Thus, all the member-formulas of S are true under Γ).

Q.E.D.

Theorem 6.1.2 (convergence, correctness and completeness of the tableaux
method). For  any  set  of  propositional  formulas,  the  tableaux  method
terminates being generated a finite tree of formulas such that:

a)  If  the  tree  contains  an  open  branch,  then  the  set  is  simultaneously
satisfiable, and hence, consistent.

b)  If  all  branches  of  the  tree  are  closed,  then  the  set  is  unsatifiable
simultaneously, and, hence,  inconsistent.

Proof. 1) Convergence.  The method terminates for any set of propositional
formulas. Indeed, each of the (finite number of) conjunctions an disjunctions
contained in  the negation normal  forms of the formulas,  is  processed only
once.  

2) Assume, the generated tree contains an open branch O, and consider the set
S of all formulas located at the nodes of O. Let us show that S satisfies all the
conditions of Hintikka’s Lemma 1. Then, according to this lemma, the set S is
simultaneously satisfiable. And then, so is also a subset of S – the initial set of
formulas for which the tree was generated.

Indeed, if S contains F 1∧...∧F k , then, when processing this formula, all
the  formulas F 1 , ... , F k will  appear  in  every  branch  traversing

F 1∧...∧F k ,  hence,  in  the  branch O as  well.  Thus,  all  of  F 1 , ... , F k

belong to S.

If S contains F 1∨...∨F k , then, when processing this formula, the branching

pattern F 1∨...∨F k

F 1 F 2 ... F k

will  appear  in  every  branch  traversing

F 1∨...∨F k ,  hence,  one  of  the  formulas F 1 , ... , F k will  appear  on  the
branch O. This formula belongs to S.



216

Now, consider an atom A. Since O is an open branch, A and ¬A cannot both
appear on it, hence, they cannot both belong to S.

Q.E.D.

3)  Now,  on  the  other  hand,  assume  that  the  initial  set  of  formulas  is
simultaneously satisfiable, i.e., all these formulas are true for a single common
assignment  Γ)  of  truth-values  to  atoms.  Let  us  show  that  then,  the  tree
generated by the tableaux method, contains an open branch.

Let  us  scan  the  generated  tree  in  breadth-first  mode,  erasing  all  sub-trees,
starting at the formulas that are false under the assignment Γ). At the root of the
tree – all the initial formulas will remain, of course.

Now,  consider  any  other  moment:  the  scan  process  has  reached  a  node
containing a true formula H. All the other nodes in the branch until H, contain
true formulas as well (see below). What could follow after H in the tree? Two
situations are possible:

a) There follows a sequential pattern F 1 , ... , F k generated when processing
some true formula F 1∧...∧F k (in the branch of H, or H itself). Then all the
formulas F 1 , ... , F k are  true  es  well.  Continue  scanning,  i.e.,  process  the
next formula at the level of H (if any), or the left formula of the next level (if
any).

b)  There  follows  a  branching  pattern F 1∨...∨F k

F 1 F 2 ... F k

generated  when

processing some true formula F 1∨...∨F k (in the branch of H, or H itself).
Then at least one of the formulas F i is true as well, so, let us erase all the
false  formulas F i together  with  their  sub-trees.  Continue  scanning,  i.e.,
process the next formula at the level of H (if any), or the left formula of the
next level (if any).

After scanning-erasing is finished, the reduced tree cannot contain incomplete
branches, i.e., branches that are extended in the original tree. Indeed, if, in the
original tree, some branch is extended after a true formula H, then so is the
branch in the reduced tree.

And all  branches  of  the  reduced tree  are  open –  this  tree  consists  of  true
formulas only, hence, contradictions in its branches are impossible. Hence, the
initial tree contains at least one open branch.

Q.E.D. 

Possible improvements

1. When generating a tree, after inserting a formula F (or ¬F ) into it, we
might  notice  that  the  branch  already  contains ¬F (or,  F).  Usually,  this
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happens when F is  an atom. In any such case,  we can stop extending the
branch by marking it as already closed. This could save both generation time
and space.

2.  If  there  is  a  choice,  process  conjunctions F 1∧...∧F k first,  processing
disjunctions F 1∨...∨F k as late as possible. This could make the resulting
tree smaller.

Computational complexity

The time and space used by the tableaux method depends mainly on the size of
the tree that  is  generated for a particular set  of formulas A1 ,… , An ,¬G .
Estimating roughly, the size of the tree is most affected by the number  d of
disjunctions in NNFs of the given formulas. In the worst case, the number of
nodes in the tree does not exceed p (l)2d , where l is the total length of the
formulas A1 ,… , An ,¬G , and p – a polynomial.  

Exercise 6.1.2 (optional, for smart students). Verify this.

This estimate corresponds well to the general complexity problem, mentioned
at  the  end  of  Section  4.2:  the  problem  of  determining,  is  a  propositional
formula provable in the classical propositional logic,  or not, belongs to the
complexity  class  co-NP-complete.  Of  course,  tableaux  method  cannot
overcome this problem.

But  in  many  practical  situations,  experience  shows  that  tableaux  method
solves its task in an acceptable time.

6.2. Tableaux Method for Pure Predicate Formulas

Attention! Tableaux  method  applies  only  to  the  so-called  pure  predicate
languages.

Such languages  do not contain functions constants, thus, their only kinds of
terms are object variables and object constants (if any). 

Given a set of formulas A1 ,… , An , G in some pure predicate language, we
wish to establish, does G follow from A1 ,… , An , or not.   

Of course, the case n=0 is included here: trying to establish, is G provable in
the classical logic, or not.

Of course, solving of our new task will be more complicated when compared
with the case of propositional formulas considered in the previous section. 

https://en.wikipedia.org/wiki/Co-NP-complete
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Phase 1. Instead of trying to build a proof

 [L1-L15, MP, Gen]: A1 ,… , An ├ G,

let us assume ¬G, and consider the set of formulas A1 ,… , An ,¬G , trying to
determine, is this set simultaneously satisfiable, or not. 

If  the  set A1 ,… , An ,¬G is  simultaneously  satisfiable (i.e.,  if  there  is  an
interpretation under which all the n+1 formulas are true), then G does not
follow from A1 ,… , An (adding of ¬G does not cause contradictions). 

If A1 ,… , An ,¬G is  unsatisfiable  simultaneously,  then  G  follows from
A1 ,… , An (adding  of ¬G to A1 ,… , An leads to contradictions).

For predicate formulas, the following additional step is necessary in Phase 1: if
some  of  the  formulas A1 ,… , An ,¬G contain  free  variables,  for  example,

x1 ,… , x m , then replace the entire set by a single formula

∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xm( A1∧…∧An∧¬G ) .              (*)

Exercise 6.1.3. Verify that this  formula is  satisfiable if  and only if  the set
A1 ,… , An ,¬G is simultaneously satisfiable.

Thus,  we  can  assume  that  all  the  formulas  to  be  processed  are  closed
formulas.

Phase 2. Let us apply the method described in Section 5.1 to transform all the
formulas A1 ,… , An ,¬G (or the  formula  (*)) into  their  negation  normal
forms (NNFs), i.e., let us obtain a set of formulas, equivalent to the respective
initial  formulas,  that  consist  of  atomic  formulas,  quantifiers,  conjunctions,
disjunctions and negations (the latter are located at the atomic formulas only).
An example: 

∀ x (¬ p(x)∨∃z(x+z+1=y). y(q( y)∧∀ z (¬r (x , z)∨s ( z)))) .

Because  of  the  equivalence,  the  set  of  NNFs  is  true  under  the  same
interpretations  as  the  initial  set.  In  particular,  the  set  of  NNFs  is
simultaneously satisfiable, if and only so is initial set.

Phase 3.  In  order  to reduce the satisfiability  of  our  set  of formulas  to  the
satisfiability of their sub-formulas, let us build a specific tree of formulas.

Let us formulate the tree-building algorithm at once in full generality:

1) The tree starts with a single chain containing the negation normal forms of
the  formulas A1 ,… , An ,¬G (or,  with  the  negation  normal  form  of  the
formula (*)).

2) Now let us describe the  processing step. Each step is processing a single
formula located in the tree. After this, the formula is marked as “processed”.
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For the next step, one of the unprocessed formulas is selected.

The first two variants of the step coincide with the propositional case.

2a)  If  the  outer  connective  of  the  selected  formula  F  is  conjunction:
F 1∧...∧F k , then the sequential pattern F 1 , ... , F k is appended to  every

branch of the tree traversing the node of the formula F. Motivation: to make
F 1∧...∧F k true,  we  must  first  ensure  that F 1 , ... , F k are  true  all

simultaneously.

2b)  If  the  outer  connective  of  the  selected  formula  F  is  disjunction:

F 1∨...∨F k , then the branching pattern F 1∨...∨F k

F 1 F 2 ... F k

is appended

to every branch of the tree traversing the node of the formula F. Motivation: to
make F 1∨...∨F k true,  we  must  ensure  that  at  least  one  formula  of

F 1 , ... , F k is true.

The remaining two variants are new.

2c) If the selected formula is  an  existential one – ∃z(x+z+1=y). x F (x) ,  then a new
object  constant c is  introduced,  and  the  formula F (c) is  appended  to
every  branch  of  the  tree  traversing  the  node  of  the  formula ∃z(x+z+1=y). x F (x) .
“New”  means  here  that c does  not  appear  in  the  branch,  ending  in
∃z(x+z+1=y). x F (x) . Motivation: if, in some interpretation F (c) will be made true,

then so will be ∃z(x+z+1=y). x F (x) .

2d)  If  the  selected  formula  is  a  universal one  – ∀ x F (x) ,  then  the
following sequential pattern is appended to every branch of the tree traversing
the node of the formula ∀ x F (x) :

F (c) , F (d ) , ... ,∀ x F (x) .

Here: c, d, ... are  all  the object constants that appear in the branch, and for
which, the instances F (c) , F (d ) , .. . have not yet been placed in the branch.
(If no object constants appear in the branch ending in ∀ x F (x) , then a new
constant c is introduced. See Example 3 below how this works.) As we see,
here, the formula ∀ x F (x) is repeated at the end of the pattern. Motivation:
to make ∀ x F (x) true, we must ensure that F(c) is true at least for all the
constants appearing in the branch. And, since new constants may appear in the
branch over and again, ∀ x F (x) must be repeated over and again as well!

3)  A  branch is  marked as  terminated (i.e.,  closed)  immediately,  when a
contradiction appears in it. The  tree is terminated, if all of its branches are
marked  as  terminated,  or,  if  no  formulas  to  be  processed  are  left.
Unfortunately,  because  of  the  steps  (2d)   repeatedly  processing  universal
quantifiers, in some cases, the termination may not occur. Then, we can only
imagine “termination in infinity” and infinite branches in the tree. 
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However,  we  will  prove  below  that,  if  the  initial  set  of  formulas  is
unsatisfiable simultaneously, then the tree will terminate after a finite number
of  steps,  with  contradictions  in  all  of  its  branches  (i.e.,  with  all  branches
closed).   

Phase 4. Let us imagine, we are exploring the branches of the tree and try
drawing conclusions. Sometimes, we can only imagine this – because, as noted
above, some of the branches may grow infinitely.

We will prove below Theorem 6.2.2 allowing us to conclude the following: 

a)  Assume,  the set A1 ,… , An ,¬G is  unsatisfiable  simultaneously,  i.e.,  the
formula  G  follows  from  the  formulas A1 ,… , An (for  the  case  n=0  this
means that G is provable in the classical logic). Then and only then,  the tree
terminates  after  a  finite  number  of  steps,  with  contradictions  in  all  of  its
branches (i.e., with all branches closed).

Hence, if the formula G follows from the formulas A1 ,… , An , the tableaux
method allows to establish this after a finite number of steps.

b)  If  the  tree  contains  an  open  (finite  or  infinite)  branch,  then  the  set  of
formulas A1 ,… , An ,¬G is  simultaneously  satisfiable,  and  hence,  the
formula G does not follow from the formulas A1 ,… , An . For the case n=0
this means that G is not provable in the classical logic. 

Unfortunately,  not always, the situation (b) can be recognized after a finite
number of steps.

Example 1. Let n=0 and G be ∃z(x+z+1=y). x p∨∃z(x+z+1=y). x q→∃z(x+z+1=y). x( p∨q) .

Negation normal form of ¬G : (∃z(x+z+1=y). x p∨∃z(x+z+1=y). x q)∧∀ x(¬ p∧¬q) .

Let the tableaux method to start processing:

∃z(x+z+1=y). x p∨∃z(x+z+1=y). x q
∀ x (¬ p∧¬q)
∃z(x+z+1=y). x p ∃z(x+z+1=y). x q
p(c1) q (c1)

¬p(c1)∧¬q(c1) ¬ p(c1)∧¬q(c1)
¬ p(c1) ¬q(c1)

No  need  to  continue:  both  branches  are  closed  already.  Thus, ¬G is
unsatisfiable, and G –  provable in the classical logic (compare with  Section
3.3).

Example 2. Let n=0 and G be ∃z(x+z+1=y). x p∧∃z(x+z+1=y). x q→∃z(x+z+1=y). x( p∧q) .

Negation normal form of ¬G : (∃z(x+z+1=y). x p∧∃z(x+z+1=y). x q)∧∀ x(¬ p∨¬q) .

Let us start processing:
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∃z(x+z+1=y). x p∧∃z(x+z+1=y). x q
∀ x (¬p∨¬q)

∃z(x+z+1=y). x p
∃z(x+z+1=y). x q
p (c1)
q(c2)

¬ p(c1)∨¬q(c1)
¬p(c2)∨¬q(c2)
∀ x (¬ p∨¬q)

¬p(c1) ¬q (c1)
closed ¬ p(c2) ¬q(c2)

closed

Formally, in the branch after ¬p(c2) , we must process the marked formula
∀ x (¬ p∨¬q) again,  but in fact,  this  is not necessary: no new constants

have  appeared  in  the  branch.  Thus,  we see  that  our  tree  contains  an open
branch. Hence, the formula ¬G is satisfiable, and  G cannot be proved in
the classical logic – “as it should be” (explain, why). 

From the  open  branch,  we can  derive  an  interpretation  making ¬G true.
Indeed, take: D={c1 , c2}; p(c1)=1,q (c2)=1,q(c1)=0, p(c2)=0 (verify).

Here we have the happy situation being able to detect an open branch after a
finite  number  of  steps.  In  general,  this  is  impossible  –  because  of  the
Unsolvability  Theorem.  There  are  formulas  that  can  be  satisfied  only  in
infinite  domains.  The  tableaux-trees  of  such  formulas  will  contain  infinite
open branches only.

Exercise 6.2.1 (optional, for smart students). Construct a formula that can be satisfied only in
an nfinite domain. Try processing with the tableaux method. 

Example 3. Let n=0 and G be ∀ x p(x)→∃z(x+z+1=y). x p(x) .

Negation normal form of ¬G : ∀ x p(x)∧∀ x¬ p(x) .

Let us start processing:

∀ x p(x)
∀ x¬ p(x)

p(c0)
¬ p(c0)

No  need  to  continue:  the  only  branch  is  closed  already.  Thus, ¬G is
unsatisfiable, and G –  provable in the classical logic (compare with  Section
3.1). As noted above in the description of step (2d): to enable processing of the
universal quantifier, we were forced here to introduce a new object constant.
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Exercise 6.2.2. Use the tableaux method to determine which of the following
formulas are provable in the classical logic (G does not contain x as a free
variable):

a) ∀ x (F (x)→G)→(∃z(x+z+1=y). x F (x)→G ) ;

b) ∃z(x+z+1=y). x( p∧q)→∃z(x+z+1=y). x p∧∃z(x+z+1=y). x q ? 

Now let us prove the theorem that will justify our conclusions in the Phase 4.

Lemma 6.2.1. (Hintikka’s Lemma 2). Consider a (finite or infinite) set S of
closed formulas in some predicate language, all in the negation normal form.
Assume, it possess the following properties:

–  with  every  its  member-formula F 1∧...∧F k ,  it  contains  also  all  the
formulas F 1 , ... , F k ,

– with every its member-formula ∃z(x+z+1=y). x F (x) and ∀ x F (x) , it contains also
at least one  formula F (c) , where c is an object constant,

– with every its  member-formula ∀ x F (x) ,  it  contains also at  least  one
formula F(c), and all the formulas F (c) for all object constants appearing in
S,

– for every atomic formula p (c1, ... , ck) , where p is a predicate constant, and
c i are object constants, it contains either p (c1, ... , ck) , or ¬p(c1, ... ,c k) ,

or none of these (but not both).

Then, the set S is simultaneously satisfiable, i.e., there is an interpretation of
the language making true all the formulas of S.

Proof. Let us take as the domain of the desired interpretation the set D of all
object constants appearing in S. And let us assign the truth-values to predicate
constants in the following way:

if an atomic formula p (c1, ... , ck)  appears in S, then set p (c1, ... , ck)=1 , 

if, instead, ¬p(c1, ... ,c k) appears, then set p (c1, ... , ck)=0 ,

if none of both appear, the truth-value of p (c1, ... , ck) can be set arbitrary.

Note. If the set S is infinite, we may never get to know, when to apply the third of the above
rules. In this situation, we can guarantee only that the interpretation of the predicate constant p
is  an  algorithmically (recursively)  enumerable predicate,  but  cannot  guarantee  that  this
predicate is algorithmically solvable (recursive, computable). 

Under the above interpretation (let us denote it by J), all the “atomic” members
of S (i.e., atomic formulas with or without negations) are true.

Let us verify, that all the other member-formulas of S are true under J as well.
Indeed, if some members of S are false under J, let us consider among these
false  members  the  “smallest”  one  containing  the  minimum  number  of



223

conjunctions, disjunctions and quantifiers.

If  this  minimal  false  formula  is F 1∧...∧F k ,  then  one  of  the  formulas
F 1 , ... , F k must be false as well. This is impossible, because S contains all

these “smaller” formulas.

If  the  minimal  false  formula  is F 1∨...∨F k ,  then  all  the  formulas
F 1 , ... , F k must be false as well. This is impossible, because S contains at

least one of these “smaller” formulas.

The minimal false formula cannot be ∃z(x+z+1=y). x F (x) , because S contains at least
one formula F (c) , which is true.

The minimal false formula cannot be ∀ x F (x) as well, because S contains
at least one formula F (c) , and all formulas F (c) in S are true. 

Contradiction. Thus, all the member-formulas of S are true under J.

Q.E.D. 

Theorem 6.2.2  (correctness,  completeness  and  semi-convergence  of  the
tableaux method). For any set of formulas in some predicate language, the
tableaux method generates a finite or infinite tree of formulas such that:

a) If the set is unsatisfiable simultaneously, then the method terminates after a
finite number of steps, the generated tree is finite, and all of its branches are
closed.

 b) If the set is simultaneously satisfiable, then the generated tree contains at
least one, finite or infinite, open branch.

Proof. 1)  First,  assume that  the  generated  tree  contains  an  open (finite  or
infinite) branch O, and consider the set S of all formulas located at the nodes
of O. Let us show that S satisfies all the conditions of Hintikka’s Lemma 2.
Then, according to this lemma, the set S is simultaneously satisfiable.  And
then, so is also a subset of S – the initial set of formulas for which the tree was
generated.

Indeed, if S contains F 1∧...∧F k , then, when processing this formula, all
the  formulas F 1 , ... , F k will  appear  in  every  branch  traversing

F 1∧...∧F k ,  hence,  in  the  branch O as  well.  Thus,  all  of  F 1 , ... , F k

belong to S.

If S contains F 1∨...∨F k , then, when processing this formula, the branching

pattern F 1∨...∨F k

F 1 F 2 ... F k

will  appear  in  every  branch  traversing

F 1∨...∨F k ,  hence,  one  of  the  formulas F 1 , ... , F k will  appear  on  the
branch O. Then, this formula belongs to S.
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If S contains ∃z(x+z+1=y). x F (x) , then, when processing this formula, some formula
F (c) will  appear  in  every  branch  traversing ∃z(x+z+1=y). x F (x) ,  hence,  in  the

branch O as well. This formula belongs to S.

If  S  contains ∀ x F (x) ,  then,  processing  this  formula  repeatedly,  the
formulas F (c) , for all the object constants c appearing in O will appear
in every branch traversing ∀ x F (x) , hence, in the branch O as well. Thus,
all these formulas belong to S.

Now, consider an atomic formula p (c1 , ... , ck ) . Since O is an open branch,
p (c1 , ... , ck ) and ¬p(c1 , ... , ck) cannot  both  appear  on  it,  hence,  they

cannot both belong to S. Q.E.D.

2)  Now,  on  the  other  hand,  assume  that  the  initial  set  of  formulas  is
simultaneously  satisfiable,  i.e.,  all  these  formulas  are  true  under  some
interpretation  J.  Let  us  show that  then,  the  tree  generated  by  the  tableaux
method contains an open branch.

Since each level of the generated tree contains a finite number of nodes, let us
scan the entire tree in the breadth-first mode, level by level, erasing all sub-
trees, that are starting at the formulas that are false under J. At the root of the
tree – all the initial formulas will remain, of course.

The interpretations of all the object constants appearing in the initial formulas,
are already defined in J.

Now,  consider  any  other  moment:  the  scan  process  has  reached  a  node
containing  a  true  formula  H.  All  the  other  nodes  in  the  branch  above  H,
contain true formulas as well. What could follow immediately after H in the
tree? Four situations are possible:

a) There follows a sequential pattern F 1 , ... , F k generated when processing
some true formula F 1∧...∧F k (in the branch above H, or H itself). Then all
the formulas F 1 , ... , F k are true es well. Thus, H is immediately followed by
true formulas only.  Continue scanning, i.e.,  process the next formula at the
level of H (if any), or the left formula of the next level (if any).

b)  There  follows  a  branching  pattern F 1∨...∨F k

F 1 F 2 ... F k

generated  when

processing  some  true  formula F 1∨...∨F k (in  the  branch  above  H,  or  H
itself). Then at least one of the formulas F i is true as well, so, let us erase all
the false formulas F i together with their sub-trees. Thus, after erasing, H is
immediately followed by true formulas only. Continue scanning, i.e., process
the next formula at the level of H (if any), or the left formula of the next level
(if any).

c)  There  follows the formula F (c) generated when processing some true
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formula ∃z(x+z+1=y). x F (x) (in  the  branch  above  H,  or  H  itself).  Since  the  object
constant  c was  introduced  as  new  for  the  entire  branch,  we  can  freely
define the interpretation of c as one of the objects of J making ∃z(x+z+1=y). x F (x)
true. Then the formula F (c) will be true as well. Thus, H is immediately
followed by a true formula. Continue scanning, i.e., process the next formula
at the level of H (if any), or the left formula of the next level (if any).

d) There follows a sequence of formulas

F (c) , F (d ) , ... ,∀ x F (x)

generated,  when  processing  some  true  formula ∀ x F (x) (in  the  branch
above H, or H itself). Here: c, d, ... are all the object constants that appear in
the branch of H, and for which, the instances F (c) , F (d ) , .. . have not yet be
placed in the branch. The interpretations of c, d,… are already defined earlier.
If no object constants appear in the branch ending in ∀ x F (x) , then a new
constant c was introduced, the interpretation of it now can be defined freely
as any object of J (all of them make F (x) true). Thus, H is followed by true
formulas only.

After scanning-erasing is finished (maybe, “in the limit” only), the reduced
tree  contains  only  formulas  that  are  true  under  the  interpretation  J,  hence,
contradictions in its branches are impossible. Thus, all branches of such a tree
(finite or infinite ones) are open. And such a tree cannot contain incomplete
branches, i.e., branches that are extended in the original tree. Indeed, if, in the
original  tree,  some  branch  is  extended  after  a  true  formula  H,  then  so  is
extended the branch of the reduced tree. Hence, the initial tree contains at least
one open branch. Q.E.D. 

3)  Thus,  we have proved that  the initial  set  of  formulas  is  simultaneously
satisfiable if and only if, the tree generated by the tableaux method, contains a
(finite or infinite) open branch.

Hence, the initial set is unsatisfiable simultaneously if and only if, all branches
of the generated tree are closed. A closed branch is finite – it is marked as
closed immediately when a contradiction appears in its nodes. According to
K  ő  nig’s Lemma  , an infinite finitely branching tree contains an infinite branch.

See D  énes Kőnig   in Wikipedia.

The generated tree is finitely branching, indeed (see above the only branching
steps (2b)). Hence, if the initial set is unsatisfiable simultaneously, then the
generated tree is finite – and, of course, this can be established after a finite
number of steps.  

If the initial set is simultaneously satisfiable, then the generated tree contains
an open (finite or infinite) branch. In this case, the process may or may not
terminate. Q.E.D.

https://en.wikipedia.org/wiki/D%C3%A9nes_K%C5%91nig
https://en.wikipedia.org/wiki/K%C5%91nig's_lemma
https://en.wikipedia.org/wiki/K%C5%91nig's_lemma
https://en.wikipedia.org/wiki/K%C5%91nig's_lemma
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Computational complexity

The latter  conclusions  correspond well  to  the  general  complexity  problem,
mentioned  at  the  end  of  Section  4.3:  by  the  Unsolvability  Theorem,  the
problem  of  determining,  is  a  predicate  formula  provable  in  the  classical
predicate  logic,  or  not,  is  not  algorithmically solvable.  Tableaux  method
represents a universal algorithm that terminates and answers correctly “yes” in
all  positive  cases  (G  follows  from A1 , ... , An ,  i.e.,  the  initial  set

A1 , ... , An ,¬G is  unsatisfiable  simultaneously).  In  the  negative  cases  (G
does  not  follow  from A1 , ... , An ,  i.e.,  the  initial  set A1 , ... , An ,¬G is
simultaneously satisfiable) the algorithm may terminate and answer correctly
“no”, but it may not terminate as well. 

But experience shows that in many practical situations, the tableaux method
solves its task, and – in an acceptable time.

Attention: non-constructive reasoning! If the tree generated by the tableaux
method and contains  a  finite open branch,  then,  from this  branch,  a  finite
interpretation can be extracted that is making true all the formulas of the initial
set. However, if the open branch is  infinite, then the interpretation extracted
from it, may have in infinite domain of objects, and – correspondingly – the
interpretations of the predicate constants may be or may not be computable
(see the above note about the algorithmic enumerability). To understand this in
detail – do Exercise 4.3.5 in Section 4.3. 
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7. Resolution Method

Attention! The principal results of this Section are valid only for the classical
logic!

To start, re-read the introductory part of Section 6.

Main steps

Let us consider only refutation proofs as a means to derive consequences and
prove theorems. Thus, in order to prove that some formula G follows from a
set  of  formulas  F1,  ...,  Fn,  let  us  add  ¬G  to  the  set  and  try  deriving  a

contradiction.

Let us try developing a practical method of deriving contradictions from an
inconsistent set of assumptions. This (at first glance – trivial) decision is one
of the most important steps in the whole story – it will allow for conversion of
the  formulas  F1,  ...,  Fn,  ¬G  into  a  form that  does  not  contain  existential

quantifiers  (Skolem normal  form,  see  Section  5.4).  And  after  this,  having
universal  quantifiers  only,  we  will  simply  drop  them  at  all,  and  continue
working with quantifier-free formulas only (clause forms, see Section 5.  5  ).

Thus,  when  trying  to  prove  that  F1,  ...,  Fn,  ¬G  is  an  inconsistent  set  of

formulas, let us first "normalize" these formulas as far as possible.

The first step is reducing into the so-called prenex normal form – moving all
the quantifiers to left. For example, the formula

((∃z(x+z+1=y). x B(x)→∃z(x+z+1=y). x C (x))→∃z(x+z+1=y). x D (x))→∃z(x+z+1=y). x F (x)

is equivalent (in the classical logic) to the following formula in prenex normal
form:

∀ x1∃z(x+z+1=y). x2∀ x3∃z(x+z+1=y). x4(((B(x1)→C (x2))→ D (x3))→ F (x 4)) .

When moving quantifiers to left, some of them must be changed from  to ,∃z(x+z+1=y). ∀
or from  to  (see ∀ ∃z(x+z+1=y). Section 5.  3  ).

The  second  step  allows  elimination  of  existential  quantifiers.  Indeed,
∀ x1∃z(x+z+1=y). x2  means  that x2= f ( x1) ,  and ∀ x1∀ x3∃z(x+z+1=y). x4 means  that
x4=g ( x1, x3) , where f and g are some functions (see  Section 5.  4  ). In this

way  we  obtain  the  so-called  Skolem  normal  form,  containing  universal
quantifiers only:
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∀ x1∀ x3((B (x1)→C ( f (x1))→ D (x3))→ F (g (x1, x3))) .

Note that a formula and its Skolem normal form  are not equivalent in the
classical logic,  they are only "loosely equivalent":  a set of formulas allows
deriving of contradictions if and only if the set of their Skolem normal forms
allows deriving of contradictions as well (and conversely).

Now, since, our formula, in its prefix, contains universal quantifiers only, we
may drop these quantifiers:

(B( x1)→ C ( f (x1))→ D (x3))→ F (g ( x1, x3)) .

Nothing is lost here. The possibility of deriving contradictions is retained – the
quantifiers can be restored by applying the Gen-rule.

The  third  step  –  reduction  of  quantifier-free  formulas  to  the  so-called
conjunctive  normal  form (CNF,  a  conjunction  of  disjunctions  of  atomic
formulas – with or without negations, see Section 5.  2  ). For example, the above
formula can be reduced to the following form:

(¬ B (x1)∨C ( f (x1))∨F (g (x1, x3)))∧(¬ D( x3)∨F (g ( x1, x3))) .

By assuming that a set of formulas means a conjunction of these formulas, we
can drop the conjunction(s) obtaining a set of the so-called clauses:

¬ B(x1)∨C ( f (x1))∨F (g (x1, x3)) ;

¬ D(x3)∨F (g (x1, x3)) .

Each clause is a disjunction of atomic formulas – with or without negations.

To  separate  clearly  the  meaning  of  each  clause,  let  us  note  that
∀ x (B(x)∧C (x))↔∀ x B(x)∧∀ y C ( y) (see  Section  3).  Thus,  we  can

rename some of  the  variables  –  and  no two clauses  will  contain  common
variables:

¬ B (x1)∨C ( f ( x1))∨F ( g (x1, x3)) ;

¬ D(x5)∨F (g (x4, x5)) .

In this way, instead of our initial set of assumptions F1, ..., Fn, ¬G, we obtain a

set of separate clauses, which allows for deriving of contradictions if and only
if the initial set F1, ..., Fn, ¬G allows for it.

The last step is working with the obtained set of clauses – “a large cloud of
simple disjunctions”.

It appears that a set of clauses allows deriving of contradictions if and only if a
contradiction can be derived from it by using  term substitution and the so-
called resolution rule:
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F∨C , ¬ C∨G
F∨G

.

Details below.

History

J. A. Robinson.  Theorem-proving on the computer. "Jour. Assoc. Comput. Mach.", vol.10,
N2, 1963, pp.163-174

J. A. Robinson.  A machine-oriented logic based on the resolution principle,  "Jour. Assoc.
Comput. Mach.", vol.12, N1, January 1965, pp.23-41 (available online, Russian translation
available: "Kib. sbornik (novaya seriya)", 7, 1970, pp.194-218)

John Alan Robinson:  "Born in Yorkshire in 1930, Robinson came to the United States in
1952  with  a  classics  degree  from  Cambridge  University.  He  studied  philosophy  at  the
University of Oregon before moving to Princeton where he received his PhD in philosophy in
1956.  Temporarily  ``disillusioned  with  philosophy,``  he  went  to  work  as  an  operations
research analyst for Du Pont, where he learnt programming and taught himself mathematics.
Robinson moved to Rice University in 1961, spending his summers as a visiting researcher at
the Argonne National Laboratory's Applied Mathematics Division. Its then Director, William
F. Miller, pointed Robinson in the direction of theorem proving...

Miller showed Robinson a 1960 paper by Martin Davis and Hilary Putnam (coincidentally, the
latter had been Robinson's PhD supervisor) proposing a predicate-calculus proof procedure
that  seemed  potentially  superior  to  Gilmore's,  but  which  they  had  not  yet  turned  into  a
practical  computer program. Miller suggested that Robinson use his programming skills to
implement Davis and Putnam's procedure on the Argonne IBM 704. Robinson quickly found
that  their  procedure  remained  very  inefficient.  However,  while  implementing  a  different
procedure also suggested in 1960 by Dag Prawitz, Robinson came to see how the two sets of
ideas could be combined into a new, far more efficient, automated proof procedure for first-
order predicate logic:  "resolution"..." (According to  D. A. MacKenzie,  The Automation of
Proof: A Historical and Sociological Exploration, "IEEE Annals of the History of Computing",
vol.17, N3, 1995, pp. 7-29).

Almost  at  the  same  time  when  J.  A.  Robinson  invented  the  resolution  method,  Sergei
Yur  i  evich   Maslov   invented his inverse method, which has a similar range of applications:

S. Yu. Maslov.  An inverse method of  establishing deducibilities  in  the classical  predicate
calculus, "Soviet Mathematics, Doklady", 1964, N5, pp.1420-1423. 

See also: Maslov S. Y. (1939-1982), human rights activist in ENCYCLOPAEDIA OF SAINT
PETERSBURG. 

About the history of the problem see:

J. A. Robinson. Computational Logic: Memories of the Past and Challenges for the Future.
Computational Logic – CL 2000, First International Conference, London, UK, 24-28 July,
2000, Proceedings, Springer, Lecture Notes in Computer Science, 2000, Vol. 1861, pp. 1-24
(online copy).

M. Davis. The Early History of Automated Deduction.In: Handbook of Automated Reasoning,
ed. by A. Robinson and A. Voronkov, Elsevier Science, 2001, vol. I, pp. 3-15.

http://www.voronkov.com/
http://en.wikipedia.org/wiki/Martin_Davis
http://www.computational-logic.org/iccl/downloads/Robinson-CL2000.pdf
http://www.encspb.ru/en/
http://www.encspb.ru/en/
http://www.encspb.ru/en/article.php?kod=2804023792
http://www.mathsoc.spb.ru/pers/maslov/
http://www.mathsoc.spb.ru/pers/maslov/
http://www.mathsoc.spb.ru/pers/maslov/
http://www.mathsoc.spb.ru/pers/maslov/
http://www.mathsoc.spb.ru/pers/maslov/
http://en.wikipedia.org/wiki/John_Alan_Robinson
http://portal.acm.org/citation.cfm?doid=321250.321253
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7.1. Resolution Method for Propositional Formulas

The Method

Propositional formulas are built of atoms by using logical connectives only.
Accordingly,  their  clause  forms  consist  of  disjunctions  of  atoms  with  or
without negations.

How to work with a “cloud” of such disjunctions efficiently?

Assume that, in a set of clauses, two clauses are contained such that an atom C
appears as a positive member in the first clause, and as a negative member in
the second one:

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn∨C , (1)

¬C∨¬ D1∨¬ D 2∨...∨¬ Dp∨E1∨E2∨...∨Eq , (2)

or, simply,

F∨C , (1a)

¬C∨G . (2a)

If C is false, then (1a) yields F, and, if C is true, then (2a) yields G. Thus, from
(1a)  and  (2a)  we  have  derived F∨G ,  i.e.,  deriving  of F∨G from

F∨C and ¬C∨G is "logically correct", and it is called the  resolution
rule (J. A. Robinson proposed to use it in the above 1963 paper):

F∨C ,¬C∨G
F∨G

.

Taking into account the rule (of the classical logic) ¬ A∨B ↔( A→ B) , we
can obtain an alternative form of the resolution rule:

¬F →C ,C → G
¬F →G

.

In  the  classical  logic,  this  form  is  equivalent  to  the Law  of  Syllogism
(transitivity of implication).

If F is empty, then this form derives G from C and C→G, i.e., resolution rule
includes Modus Ponens as a special case.

If G is empty, then from ¬ F∨C ,¬ C  (i.e., F→C, ¬C), the resolution rule
derives ¬F, i.e., it includes Modus Tollens as a special case.

Exercise 7.1.1.  a)  Derive the resolution rule  in the constructive logic,  i.e.,
prove that [L1-L10, MP]: F∨C ,¬C∨G ├ F∨G .



231

b) (optional, for smart students) Verify that it cannot be proved in the minimal logic [L1-L9,

MP].  (Hint:  in  the  positive  part  –  use  Theorem  2.5.1(b)  [L1,  L2,  L8,  L10,  MP]:

F∨C , ¬C ├ F .  In  the  negative  part  –  verify  that  in  the  minimal  logic,  the
resolution rule allows proving of L10, see Section 2.5).

Thus,  from the  clauses  (1)  and  (2),  resolution  rule  allows  deriving  of  the
following clause:

¬ A1∨¬ A2∨...∨¬ Am∨¬ D1∨¬ D2∨...∨¬ D p∨B1∨B2∨...∨Bn∨E1∨E 2∨...∨Eq

At first glance, this approach leads to nothing, because this formula seems to
be much longer than (1), and than (2). Still, this is not 100% true, because,
additionally,  we  can  reduce  the  repeating  atoms,  and,  finally,  the  set  of
different atoms, used in a clause form, is fixed! If, in our set of clauses, there
are  N  different  atoms,  then  none  of  the  clauses  (initial,  or  generated  by
resolution  rule)  will  contain  more  than  N  atoms  (each  with  or  without
negation).  And the  total  number  of  different  clauses  will  never  exceed 3N

(missing, without negation, with negation). Thus, repeated applications of the
resolution rule will "rotate" within this restricted "search space".

The smart idea behind the resolution rule is as follows: it is a universal tool
for  deriving of contradictions from inconsistent sets of clauses! No other
axioms and rules of inference are necessary! More precisely, it is universal, if
used together with the following trivial rules of inference:

F∨C∨D∨G
F∨D∨C∨G

(permutation),

F∨C∨C∨G
F∨C∨G

 (reduction).

The permutation rule allows for arbitrary reordering of atoms in a clause (for
example, moving C to the right, and moving ¬C to the left). The reduction rule
allows for reduction of repeating identical atoms.

Exercise  7.1.2.  Derive  these  inference  rules  in  the  minimal  logic,  namely,
prove that:

a) [L1-L8, MP]: F∨C∨D∨G ├ F∨D∨C∨G .

b) [L1-L8, MP]: F∨C∨C∨G ├ F∨C∨G .

Theorem 7.1.1 (J. A. Robinson). In the classical propositional logic [L1-L11,

MP],  a  finite  set  of  propositional  clauses  is  inconsistent  if  and only if  the
resolution  rule  (together  with  permutation  and  reduction  rules)  allows  for
deriving of a contradiction from it.

Note.  In some other texts, this fact is called "the refutation-completeness of the resolution
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rule" for the propositional logic.

Proof. 1. As you have proved in the Exercises 7.1.1 and 7.1.2, all the formulas,
derived  from  a  set  of  formulas K 1 , K 2 , ... , K s by  using  the  permutation,
resolution and reduction rules are consequences of K 1 , K 2 , ... , K s . Hence, if
these rules allow deriving a contradiction from this set of formulas, then it (the
set) is inconsistent.

2. Now, let us assume that a set of propositional clauses K 1 , K 2 , ... , K s is
inconsistent, i.e., a contradiction A∧¬ A  can be derived from it:

[L1-L11, MP]: K 1 , K 2 , ... , K s ├ A∧¬ A .

Then, under the classical truth tables, the conjunction K1∧K2∧...∧K s takes
only false values (Completeness Theorem). Let us mark one of the atoms (the
atom C) in it. Let us denote:

- by C∨F i – the clauses containing C without negation, 

- by ¬C∨G j – the clauses containing C with negation, 

- by Hk – the clauses that do not contain C.

All  the  formulas  Fi,  Gj,  Hk are  disjunctions  of  atoms  (with  or  without

negations) that do not contain the atom C.

Thus K1∧K2∧...∧K s is equivalent to

conj(C∨F i)∧conj(¬ C∨G j)∧conj(H k ) .  (4)

Let us apply (the strange) one of the logical distribution rules:

 [L1-L8, MP]├ (A∧B)∨C ↔(A∨C )∧(B∨C ) .

Hence, K1∧K2∧...∧K s is equivalent to

(C∨conj(F i))∧(¬C∨conj(G j))∧conj (H k) .

If  C is  false,  then this  formula is  equivalent to conj( F i)∧conj (H k ) ,  i.e.
conj( F i)∧conj (H k ) takes  only  false  values.  If  C  is  true,  then  it  is

equivalent  to conj (G j)∧conj (H k ) ,  i.e. conj (G j)∧conj (H k ) takes  only
false values. Thus the disjunction

(conj (F i)∧conj(H k))∨(conj(G j)∧conj (H k )) (5)

also  takes  only  false  values.  Now, let  us,  apply  (the  "normal")  one of  the
logical distribution rules:

[L1-L8, MP] ├ (A∨B)∧C ↔(A∧C)∨(B∧C) ,

obtaining that (5) is equivalent to
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(conj (F i)∨conj(G j))∧conj (H k ) , (6)

i.e., this formula also takes only false values. And – important note! – it does
not contain the atom C at all.

Finally, by applying, again, (the strange) one of the distribution rules we can
conclude that  (6) is  equivalent to conj (conj(F i∨G j))∧conj(H k ) ,  i.e.,  to
the set of clauses F i∨G j and Hk (where i, j, k run over their initial ranges). 

What  does  this  achievement  mean?  If  the  set  of  propositional  clauses
K 1 , K 2 , ... , K s is inconsistent,  then there is a set of clauses F i∨G j and

Hk (where i, j, k run over their initial ranges), which is inconsistent as well, but

which contains one different atom less than K 1 , K 2 , ... , K s .

Now, imagine, that, in the clause form (4), we have applied the resolution rule
for  the  atom  C in  all  the  possible  ways (before  applying,  apply  the
permutation rule to reorder atoms moving C to right, and ¬C – to left):

F i∨C ,¬C∨G j

F i∨G j
.

After this, apply the permutation and reduction rules to reduce identical atoms.
In this way we have obtained exactly the above-mentioned inconsistent set of
clauses F i∨G j and Hk (where i, j, k run over their initial ranges).

Thus,  if  some set  of propositional  formulas K 1 , K 2 , ... , K s is  inconsistent,
then the resolution rule (together with the permutation and reduction rules)
allows to derive from it  another  inconsistent  set  of propositional  formulas,
which contains one different atom less.

By iterating this process, at the end of it, we will have an inconsistent set of
propositional formulas built of a single atom B. In a clause form, there can be
only one such set – the set B, ¬B. This set represents a contradiction.

Q.E.D.

As an example, let us use the resolution rule to prove that

B∨C ,C → B , B → D ├ B∧D .

Let  us  add ¬(B∧D) to  the  premises B∨C ,C →B , B → D .  We  must
prove that  this  set  of  4  formulas  is  inconsistent.  First,  let  us  obtain clause
forms:

B∨C in clause form is B∨C ,

C → B in clause form is ¬C∨B ,

B → D in clause form is ¬ B∨D ,

¬(B∧D) in clause form is ¬ B∨¬ D .
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Now,  let  us  apply  resolution  to  derive  a  contradiction  from this  set  of  4
clauses: B∨C ,¬C∨B ,¬B∨D ,¬B∨¬D :

From B∨C ,¬ C∨B we derive B, and have now 5 clauses:

B∨C ,¬C∨B ,¬ B∨D ,¬ B∨¬ D , B .

From ¬ B∨D ,¬ B∨¬ D we derive ¬B, and have now 6 clauses:

B∨C ,¬C∨B ,¬ B∨D ,¬ B∨¬ D , B ,¬ B .

We have derived a contradiction: B, ¬B. This proves that the formula B∧D
follows from B∨C ,C → B , B → D . Q.E.D.

Exercise 7.1.3. Use the resolution rule to prove the following:

a) A→B, ¬A→B ├ B.
b) (A→B)→A ├ A (Peirce's Law).
c) B→(C→D), B→C ├ B→D (Axiom L2).

d) B→D, C→D ├ B∨C → D . (Axiom L8).

e) A∨B∨C , B → A∨C , A→C ├ C.

For really usable general resolution algorithms for propositional logic that can
be implemented on computers, see Davis–Putnam algorithm in Wikipedia. 

Computational complexity

The  resolution  method  cannot  overcome  the  general  complexity  problem,
mentioned  at  the  end  of  Section  4.2:  the  problem  of  determining,  is  a
propositional  formula provable  in  the  classical  propositional  logic,  or  not,
belongs to the complexity class  co-NP-complete. Indeed, imagine a set S of
clauses  of  summary  length  n.  A closer  analysis  shows  that,  in  the  worst
possible  case,  the  time  required  for  the  resolution  method  to  derive  a
contradiction from S is exponential – about 2nC

seconds (where C>0 is an
absolute constant), see:

Ran  Raz.  Resolution  lower  bounds  for  the  weak  pigeonhole  principle.  Journal  of  the
Association for Computing Machinery 51(2) (2004) pp. 115-138.

But in many  practical situations,  experience shows that resolution method
solves its task in an acceptable time.

https://en.wikipedia.org/wiki/Co-NP-complete
https://en.wikipedia.org/wiki/Davis%E2%80%93Putnam_algorithm
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7.2. Resolution Method for Predicate Formulas

If we are interested only in deriving of contradictions from inconsistent sets of
formulas,  then  we  can  note  that  a  set  of  closed  predicate  formulas  is
inconsistent (i.e., allows deriving a contradiction in the classical logic) if and
only if the conjunction of these formulas is unsatisfiable. Thus, instead of the
initial set,  we can analyze the set of  clause forms of these formulas. If we
derive a contradiction from (the union of) the set of clause forms, then this
union is unsatisfiable, i.e., by Theorem 5.5.2, so is the initial set, and hence,
the initial set is inconsistent. And conversely, if the initial set of formulas is
consistent,  then  it  is  simultaneously  satisfiable,  i.e.,  so is  the set  of  clause
forms, i.e., we will be not able to derive a contradiction from it.

Note  that  clauses  are  disjunctions  of  atomic formulas  (with  or  without
negations), and, in clause forms, no two clauses  contain common variables.
Thus, clauses are completely separated, and this separation  greatly simplifies
processing of clauses by means of term substitution (see below).

Attention! To  retain  this  principle  working  during  the  entire  process  of
derivation, from now on, we must:

a) after any application of permutation and reduction rules: mark the processed
clause as “processed”, and replace it by the newly obtained one;

b) after any application of the  resolution  rule: in the newly obtained clause,
rename  all  its  variables,  giving  them  names  never  used  before.  This  is
equivalent to applying an appropriate (invertible) substitution.

Will the resolution rule remain a universal tool for deriving contradictions also
from inconsistent sets of predicate formulas (after reduction, from sets of non-
quantified clauses)?

Imagine, we have derived the following two clauses (p is a unary predicate
constant, 0 – an object constant):

p (x1)∨F ( x1 , y1) , ¬ p(0)∨G (x2 , y2) .

To apply the resolution rule, we must first, in p(x1), substitute 0 for x1:

p (0)∨F (0, y1) , ¬ p(0)∨G (x2 , y2) .

Now, we can apply the resolution rule, obtaining the clause

F (0, y1)∨G ( x2 , y2) .

And finally, to keep the meaning of the newly obtained clause separate from
the meanings of all the other ones, let us rename its variables giving them
names never used before, for example: F (0, y3)∨G (x3 , y4) .
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Surprisingly, this simple idea of "unification by substitution" is sufficient to
make the resolution rule a universal tool for deriving of contradictions from
inconsistent sets of predicate formulas!

Note. In fact, unification is a very general phenomenon in human and computer reasoning – it
appears to be one of the main components in deductive, inductive and analogical reasoning:

John F. Sowa, Arun K. Majumdar.  Analogical Reasoning. In:  Conceptual Structures for
Knowledge Creation and Communication, Proceedings of ICCS 2003, LNAI 2746, Springer-
Verlag, Berlin, 2003, pp. 16-36. (available online).

In general, the  substitution rule allows, for any formula F, and any term  t
such  that F(x/t)  is  an  admissible  substitution,  replace  by t  all  the  free
occurrences of the variable x. The result of the substitution is denoted usually
by F(t).

Exercise  7.2.1.  Derive  the  substitution  rule,  namely,  show that   [L12,  MP,

Gen]: F (x) ├ F (t) .

Theorem 7.2.1 (J. A. Robinson). In the classical predicate logic [L1-L15, MP,

Gen],  a  set  of  predicate  clauses  (containing  no  common  variables)  is
inconsistent  if  and only if  the  resolution rule (together  with  substitution,
permutation and reduction rules) allows for deriving a contradiction from it.

Note.  In some other texts, this fact is called "the refutation-completeness of the resolution
rule". 

Proof.  Let  us  denote  our  set  of  clauses  by S={C1 , ... ,C k } .  Imagine  a
process during which the substitution, resolution, permutation and reduction
rules are applied iteratively to the clauses C i . If the set S is consistent, then
none of such processes can lead to contradictions. 

However, having in mind Herbrand's Theorem (Theorem 8.2.4), let us restrict
the process in the following way: select a number n, and in the  first stage,
apply only the substitution rule – n times to each clause, substituting terms
from  the  Hebrand’s  universe  HUS.  And,  in  the  second  stage,  apply  only

resolution, permutation and reduction rules. 

Since no two clauses contain common variables, let us denote by xij the j-th
variable  appearing  in  the  clause C i ,  i.e.,  we  can  put C i as C i(x i) ,
where x i is the list of variables xij appearing in C i . Then, the result of
the  first  stage  represents  a  set  of  nk ground  clauses

C i(t is)(1≤i≤k ,1≤s≤n) ,  where t is is the s-th of n lists of terms t ijs

replacing the variables of C i and taken from HUS. Thus, from each clause

C i n ground clauses C i( t is)(1≤s≤n) are generated. 

http://www.jfsowa.com/pubs/analog.htm
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Clauses that do not contain variables, are called ground clauses. 

The first stage is determined by the number n and a finite collection T of terms
t ijs(1≤i≤k ,1≤s≤n) from HUS ( t ijs is the s-th replacement for the j-th

variable in the i-th clause C i ).

By Lemma 8.2.5, the set of ground clauses C i(t is)(1≤i≤k ,1≤s≤n) cannot
be satisfied simultaneously if and only if, considered as a set of propositional
clauses, it cannot be satisfied simultaneously under the classical truth tables,
i.e., if and only if this set of propositional clauses is inconsistent. By Theorem
7.1.1,  a  finite  set  of propositional clauses is  inconsistent  if  and only if  the
resolution  rule  (together  with  permutation  and  reduction  rules)  allows  for
deriving a contradiction from it.

So, let us, in the second stage, apply the algorithm of Theorem 7.1.1 involving
only resolution, permutation and reduction rules. 

To summarize:

a) In the first stage, we select a number n and a finite collection T of terms
t ijs(1≤i≤k ,1≤s≤n) from HUS. And, by applying the substitution rule n

times (1≤s≤n) to  each  clause C i ,  we  substitute  each t ijs for  the  j-th
variable of C i , obtaining kn ground clauses as the result.

b) In the second stage, we apply the algorithm of Theorem 7.1.1, using only
resolution,  permutation  and  reduction  rules,  and  deriving  (or  not)  a
contradiction from the set of ground clauses obtained in the first stage.

By Herbrand's  Theorem (Theorem 8.2.4), the collection T can be selected in
such a way that the set of  kn ground clauses C i(t is)(1≤i≤k ,1≤s≤n) will
not be satisfiable simultaneously if and only if the set S is not. So, let us select
the collection T for the first stage of our process exactly in this way.

A  set  of  formulas  is  inconsistent  if  and  only  if  it  cannot  be  satisfied
simultaneously. Hence, in the second stage of the process a contradiction will
derived  if  and  only  if  the  above  collection  of  ground  clauses  cannot  be
satisfied simultaneously. And hence, if and only the initial set S cannot.  

To summarize: the initial  set  S of clauses is inconsistent if and only if  the
resolution rule  (together  with substitution,  permutation and reduction rules)
allows for deriving a contradiction from it.

Q.E.D.

However, the “proof strategy” proposed in the above proof, is hopeless! 

Indeed,  to  achieve  our  goal  (deriving  a  contradiction,  if  the  set  S  is
inconsistent)  we must try out (in parallel) all the possible (finite) sets  of



238

terms t ijs taken from the infinite set HUS, and for each of them, try to derive

a  contradiction  by  using  resolution,  permutation  and  reduction  rules.  By
Herbrand's  Theorem  (Theorem  8.2.4),  in  this  way,  if  the  initial  set  S  is
inconsistent, then we will succeed, indeed (will derive a contradiction). But
here, there is a huge performance problem that does not destroy our theoretical
considerations, but makes their result practically useless. The smart ideas #1
and #2 introduced below, will allow to restrict the substitution search space for
the sets of terms t ijs considerably and in many practical cases – make the
task feasible.

Unifiers

Imagine,  we  succeed  in  the  second  stage,  deriving  a  contradiction:
po(t 0) ,¬p0(t o) ,  where p0 is  a  predicate  constant.  By  applying  the

resolution rule once again to these formulas we can obtain an empty formula.

Let us follow this derivation back to the ground clauses obtained in the first
stage. In this way, we will mark the minimal subset G of all ground clauses
involved in the derivation. 

Now,  imagine,  we  are  starting  the  second  stage  with  the  formulas  of  the
contradiction-involved subset G only,  and the process ends up in an empty
formula.  This  means  that  each  occurrence  of  an  atomic  formula p (t )
participating in the ground clauses of G will be eliminated by some application
of reduction or resolution rules: 

F∨ p(t )∨ p( t )∨H
F∨ p(t )∨H

;
F∨¬ p(t )∨¬ p(t)∨H

F∨¬ p( t)∨H
;

F∨ p(t ) ,¬ p(t )∨H
F∨H

.

In  the  clauses  of  set  G  (subset  of  S),  the  occurrences  of p (t ) were
represented  by  some  atomic  formulas p (x1 , t1) , p(x2 , t 2) , ... .  After  the
substitutions  of  the  first  stage  all  these  formulas  became equal  to p (t ) .
Thus, the useful substitutions of the first stage possess a specific property –
they are unifiers of atomic formulas.

Smart idea #1: to derive a contradiction (if it exists), we can do with one
specific kind of the substitution rule – the unification rule:

a) Take one or two clauses such that one can mark in them two positive atoms
p (x j , t j) , p( xk , t k) , or two negative ¬p( x j , t j) ,¬ p(xk , t k) , or positive

and  negative p (x j , t j) ,¬ p(xk , t k) atoms  containing  the  same  predicate
constant. 

b) Try to find for these clauses (or, one clause) a substitution sb  making the
marked atomic formulas p (x j , t j) , p( xk , t k) equal. 



239

c) If successful, perform the substitutions sb. This can be done safely because
no two clauses of S contain common variables.

After this operation, the following situations are possible:

1) We have two identical atomic formulas p (t )∨ p( t ) or ¬p(t )∨¬ p(t)
in a single clause. Then, apply the reduction rule.

Note. In some other texts, such a combination of unification and reduction is
called factoring,  

2) We have two opposite atomic formulas p (t )∨¬ p(t) in a single clause.
Then,  drop this  clause – being logically valid,  it  is  useless when trying to
derive a contradiction.

3) We have two identical atomic formulas p (t ) (or two ¬p(t ) ) in two
different clauses. Then, nothing can be done.

4) We have two opposite atomic formulas p (t ) and ¬p(t ) in two different
clauses. Then, apply the resolution rule.

Substitution "algebra"

Let us generalize the setting.

In general, a substitution involves a list of distinct variables x1, ..., xk and a list

of terms t1, ...,tk  (which may contain variables again). All occurrences of the

variable  xi are  replaced  by  the  term  ti.  Thus,  this  operation  can  be  most

naturally  represented  by the  list  of  pairs  {  x1/t1,  ...,  xk/tk }.  The result  of

application of some substitution sb to some expression F (term, formula, or a
set of them), is denoted by F.sb.

For example, if F is p(x, f(y)) and sb = { x/f(z), y/z }, then F.sb is p(f(z), f(z)).

The empty list of pairs {} represents the empty substitution. Of course, F.{} is
F, for any expression F.

The most important operation on substitutions is composition. If sb1 and sb2

are two substitutions, then sb1.sb2 denotes the composed substitution "apply

first sb1, and after this, apply sb2". For example, if

 sb1 = { x/f(z), y/z };  sb2 = { z/f(w) },

 then

 sb1.sb2 = { x/f(f(w)), y/f(w), z/f(w) }.
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Lemma 7.2.2. Assume, the clause K is obtained from the clause K’ by a chain 
of substitutions, permutations and reductions. This derivation can be converted
into a proof starting with a single substitution followed by a chain of 
permutations and reductions.

Exercise 7.2.2. Prove Lemma 7.2.2.

Most general unifier (mgu)

How do behave unifiers in the substitution "algebra"? Assume, sb1 and sb2 are

two different unifiers of the same pair of expressions F and G:

F.sb1 = G.sb1 ; F.sb2 = G.sb2. 

If there would be a substitution sb’ such that sb2=sb1.sb’, then we could say

that sb1 is a more general unifier than sb2 (“no less general” would be here a

more appropriate term). For example, let us try to unify the first members of
the following two formulas:

p (x1)∨F ( x1 , y1) , ¬ p( f ( x2))∨G( x2, y2) .

It would be natural to use the substitution sb1={x1 / f ( z ) , x2 / z} , obtaining

p ( f (z ))∨F ( f (z ) , y1) , ¬ p( f (z ))∨G( z , y2) .

But,  in  principle,  one  could  use  also  the  substitution
sb2={x1/ f ( f ( z )) , x 2/ f ( z)} , obtaining

p ( f ( f (z )))∨F ( f ( f (z )) , y1) , ¬ p( f ( f ( z)))∨G( f (z ) , y2) .

Of course, sb1 is "better", because sb2 = sb1.{ z/f(z) }. Why? If our purpose

was unifying p(x1) with p(f(x2)), then sb1 performs this (as well as sb2), but it

"leaves  more  space"  for  subsequent  substitutions  (than  sb2).  Indeed,  to

continue after sb1, instead of sb2 = sub1.{ z/f(z) }, we can choose also sub3 =

sub1.{ z/g(z) } etc. Thus, using a more general unifier is preferable.

So, let us call a unifier sb of a finite set F of (two or more) expressions a most
general unifier (mgu) of F if and only if, for any other unifier sb' of F, there
is a substitution sb'' such that sb' = sb.sb''.

Let  us  generalize  the  setting  even  further:  let  us  consider  a  set F of
expression lists F i ,  where F i={F i 1 , F i 2 , ...} ,  and let  us ask:  are  these
expressions lists unifiable? A unifier must unify each of the following sets of
expressions {F 11 , F 12 , ...}; {F 21 , F 22 , ...}; .. .  



241

Lemma 7.2.3.  There is an algorithm allowing to detect, is the given set of
expression lists unifiable, or not, and, if they are, constructing an mgu. 

Proof. The  proof  below presents  the  idea  of  the  original  Robinson’s  1965
algorithm.

Let  us  call  symbols all  object  constants,  variables,  function  and  predicate
constants appearing in the lists.

Algorithm MGU-R (parameter F: set of expression lists; returns false or mgu)

Let us parse the lists F i in parallel, symbol by symbol, from left to right. If
all lists are identical (as sequences of symbols), then they are unifiable, and
their mgu is the empty substitution {}. Return {}.

Else, the empty substitution sb={} will be our starting point. In the process of
parsing, we will add to sb a list of new susbtitutions (building, in the result, an
mgu of the list).

If not all of the lists are identical, then, when parsing, we will arrive at the
leftmost difference.

The following cases are possible:

a) One of the lists ends before an other one. Such lists are not unifiable. Return
false.

b) We have arrived at two different constants c and c’, or at a constant c and a
function f, or at two different functions/predicates f and f’. Then the lists are
not unifiable. No substitution will be able to change this difference. Return
false.

c) We have arrived at a set of variables x (each in its list) and a set of equal
constants c. Then any unifier of  F must contain the substitutions  x/c. Let us
perform these substitutions all over in  F.  And let us append  x/c to  sb. The
number of distinct variables in F is decreased at least by one, and F does not
contain the variables affected by substitutions.

d) We have arrived at a set of variables only. Any unifier of  F must replace
these variables by identical terms. But the most general way to unify these
variables  is  replacing  them  by  a  single  variable,  for  example,  by  a  new
variable z that does not appear in F. Let us perform these substitutions all over
in  F. And let us append them to  sb. The number of distinct variables in  F is
decreased at least by one, and  F does not contain the variables affected by
substitutions.

e) We have arrived at a function/predicate f, followed by one or more different
argument lists – lists of terms: f (t j) , or f (t j 1 , ... , t kk) . Then, any unifier
of F must unify the set of lists {t1 , t 2 , ...} . To do this, let us call recursively
our algorithm MGU-R (this can be done safely because the set {t1 , t 2 , ...}
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does not contain the variables affected by the previous substitutions included
in sb). If it returns false, do the same.

If it returns mgu – a substitution sb’, then let us perform sb’ all over in F and
append sb’ to sb. The number of distinct variables in F is decreased at least by
one, and F does not contain the variables affected by substitutions.

d) We have arrived at a set of variables x and a function/predicate f, followed
by one or more different argument lists – lists of terms: f (t j) . If one of
these lists, say t j , contains a variable x from the set x, then no substitution
will be able to unify x and f (t j) . In this case,  F is not unifiable. Return
false. 

e) But if none of the lists t j contain the variables of x, then any unifier of F
must, first of all, unify the set of lists {t1 , t 2 , ...} , obtaining the unified list

t ,  and  replace  all  the  variables  of  x by f (t ) .  To do this,  let  us  call
recursively  our  algorithm  MGU-R (this  can  be  done  safely  because
{t1 , t 2 , ...} does  not  contain  the  variables  affected  by  the  previous

substitutions included in sb).  If it returns false, do the same.

If it returns mgu – a substitution sb’, then let us perform sb’ all over in F and,
after this, let us replace all the variables of x by f (t ) . Also, append sb’ and

x / f (t ) to sb. The number of distinct variables in F is decreased at least by
one, and F does not contain the variables affected by substitutions.

Having  resolved  the  first  difference,  let  us  start  the  process  from  the
beginning, parsing the modified  F.  Of course,  if  the lists  of  F are still  not
identical, then, by parsing, we will stop at the next difference following after
the place where the first difference occurred.

Let us try repeating these parsing steps until no more differences are found,
i.e., until all the modified lists of F are identical. If the process will not exit by
returning  false,  then  this  will  happen inevitably  because  each modification
decreases  the  number  of  distinct  variables  in  F.  If  it  happens,  return  the
substitution sb.

End of algorithm MGU-R.

Exercise 7.2.3. a) Verify that the above resulting substitution sb is an mgu of
the set F. b) Verify that any mgu of F can be obtained from any other one by
renaming variables.

Q.E.D.

The above proof presents the idea of the original Robinson’s 1965 algorithm.
For  faster  algorithms  invented  later  see  Unification  (computer  science) in
Wikipedia.

Let us return to our main task.

https://en.wikipedia.org/wiki/Unification_(computer_science)
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Smart idea #2: to derive contradictions,  we can do with an even more
specific kind of the unification rule – the mgu-rule.

To formulate  this  rule,  we can simply repeat  the above formulation of the
unification rule – replacing “substitutions sb“ by  mgu. The analysis of four
above-mentioned situations with application of reduction and resolution rules
remains the same.

Lemma 7.2.4.  Any proof K 1 , K 2 , ... , K s ├ K (all K-s are clauses, they do
not  contain  common  variables),  where  only  permutation,  reduction,
substitution and  resolution  rules  are  used,  can  be  converted  into  a  proof

K 1 , K 2 , ... , K s ├ K' such that:

a)  in  the  proof,  only  permutation,  reduction, mgu and  resolution  rules  are
used;

b) K can be obtained from K' by a single substitution followed by a chain of
permutations and reductions.

Proof.  Induction  by  the  number  n  of  resolutions  applied  in  the  proof
K 1 , K 2 , ... , K s ├ K.

Induction base: n=0, i.e., no resolutions applied in the proof K 1 , K 2 , ... , K s

├ K. Then K is obtained from some Ki by a chain of permutations, reductions

and  substitutions.  Let  us  build  an  "empty"  proof K 1 , K 2 , ... , K s ├ K i .
And let us compose all the substitutions used in the initial proof into a single
substitution converting K i into K.

Induction  step.  Assume,  we have  a  proof K 1 , K 2 , ... , K s ├ K,  containing
n+1  resolutions.  Imagine  the  last  resolution  in  this  proof  (C  is  an  atomic
formula):

F∨C ,¬C∨G
F '∨G '

(*).

The  formula F '∨G ' has  been  obtained (F∨G) . sb0 where  the
substitution sb0 is uniquely renaming all variables of F∨G . In the proof,
the  step  (*)  is  followed  by  a  chain  of  permutations,  reductions  and
substitutions. Hence, K is derived via such a chain either from the formula

F '∨G ' , or from a formula preceding (*).

In the latter case, we can drop from the proof the step (*)  and all the formulas
derived from F '∨G ' .  In this  way, we obtain a proof of K containing n
resolutions only, and so, can refer directly to the induction assumption.   

It remains to consider the case when K has been obtained exactly from the
formula F '∨G ' by a chain of permutations, reductions and substitutions. 

The  proofs  of  the  formulas F∨C ,¬C∨G contain  no  more  than  n
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resolutions each. Thus, by induction assumption, we can convert these proofs
into  permutation-reduction-mgu-resolution  proofs  of  some  formulas

F 1∨C1,¬C 2∨G2 such that:

a) F∨C is obtained from F 1∨C 1 as (F 1∨C1) . sb1 by some substitution
sb1. Under sb1, the atomic formula C1 is converted into C.

b) ¬C∨G can be obtained from ¬C 2∨G2 as (¬C 2∨G2) . sb2 by some
substitution sb2. Under sb2, the atomic formula C2 is converted into C.

Since the clauses F 1∨C 1 ,¬C2∨G2 do not contain common variables, the
substitutions sb1 and sb2 do not intersect, hence, their union sb=sb1∪sb2 is

a unifier of C1 and C2. Thus, by Lemma 7.2.3, there exists an mgu12 of C1

and C2. Then, sb=mgu12 . sb ' , where sb‘ is some substitutions. 

Let  us  append  to  the  permutation-reduction-mgu-resolution  proofs  of  the
clauses F 1∨C1,¬C 2∨G2 :

a)  two  applications  of mgu12 obtaining  the  formulas F 1 .mgu12∨C ,
¬C∨G2.mgu12 ;

b1)  an  application  of  the  resolution  rule  obtaining  the  formula
F 1.mgu12∨G2. mgu12 ;

b2)  an  application  of  some substitution  sb’’ ensuring  that  the  variables  of
F 1.mgu12∨G2. mgu12 are uniquely renamed.

In this way we have obtained a permutation-reduction-mgu-resolution proof of
the formula (F 1. mgu12∨G2. mgu12) . sb ' ' .

At this point, to complete the proof, we must build a substitution converting
formula (F 1. mgu12∨G2. mgu12) . sb ' ' into formula F '∨G ' . Let us apply
the substitution (sb ' ' )−1 . sb ' . sb0 ,  After (sb ' ' )−1 we obtain the formula

F 1.mgu12∨G2. mgu12 , after sb’  (because sb=mgu12 . sb ' ) – the formula
(F 1∨G2) . sb , i.e., F∨G . And, finally, (F∨G) . sb0  is F '∨G ' .

Since the clause K has been obtained from the formula F '∨G ' by a chain
of permutations, reductions and substitutions,  let  us take as  K’ the formula
(F 1. mgu12∨G2. mgu12) . sb ' ' , and compose with (sb ' ' )−1. sb ' . sb0 all the

substitutions  used  in  the  above  chain,  obtaining  the  substitution  SB.  By
Lemma 7.2.2,  K can be obtained from  K’.SB by a chain of reductions and
permutations. 

Q.E.D.
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Theorem 7.2.5 (J. A. Robinson). In the classical predicate logic [L1-L11, L12-

L15,  MP, Gen],  a set  of predicate  clauses is  inconsistent  if  and only if  the

resolution rule (together with mgu-, permutation and reduction rules) allows
deriving a contradiction from it.

Proof. Assume, the set of clauses K1, K2, ...  , Ks is inconsistent. Then, by

Theorem 7.2.1, there are two proofs K1, K2, ... , Ks ├ B, K1, K2, ... , Ks ├ ¬B,

where where only permutation,  reduction,  substitution and resolution rules
are used. From clauses, these rules allow deriving only of clauses. Hence, B is
an atomic formula.

By Lemma 7.2.4, both proofs can be converted into proofs K1, K2, ... , Ks ├

B1,  K1,  K2,  ...  ,  Ks ├  ¬B2 such  that:  a)  in  the  proofs,  only  permutation,

reduction, mgu and resolution rules are used; b1) B can be obtained from B1

by a single (possibly empty) substitution (permutations and reductions do not
apply to atomic formulas), b2) B can be obtained from B2 by a single (possibly

empty) substitution. 

Thus, B1 and B2 are unifiable. Let us take their  mgu, and apply it.  As the

result, we obtain a contradiction B', ¬B', where B' is B1.mgu (= B2.mgu). And

we have obtained this contradiction from the clauses K1, K2, ... , Ks by using

only permutation, reduction, mgu- and resolution rules.

Q.E.D.

Why is this refinement of Theorem 7.2.1 important? After Theorem 7.2.1, we
were  forced  to  try  out  all  the  possible  sets  of  substitutions  on  Hebrand’s
universe  HS.  Theorem 7.2.5 allows to  restrict  the  substitution search  space
considerably.  Indeed,  now,  we  can  concentrate  on  searching  for  mgu-s
unifying the pairs  of atomic formulas (having the same predicate constant)
appearing in our clauses.

The next step – development of really working resolution strategies, for an
overview, see 

Stanford Introduction to Logic. An Online Course on Symbolic Logic. Stanford University,
2021, Section 12.9 “Strategies”.

Computational complexity

The  resolution  method  cannot  overcome  the  general  complexity  problem,
mentioned  at  the  end  of  Section  4.3:  by  the  Unsolvability  Theorem,  the
problem  of  determining,  is  a  predicate  formula  provable  in  the  classical
predicate  logic,  or  not,  is  not  algorithmically solvable.  And  indeed,  all

http://intrologic.stanford.edu/homepage/index.html
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computer programs implementing the resolution method run into loop in many
situations, when the set of clauses to be processed, in fact, does not contain
contradictions (and hence, they cannot be derived). But experience shows that
in many practical situations, the resolution method solves its task, and – in an
acceptable time.

For additional references, see Resolution (logic) in Wikipedia.

Horn clauses

The problem of deriving a contradiction (if  it  exists)  from a set  of clauses
becomes somewhat less complicated, if in clauses 

¬ A1∨¬ A2∨...∨¬ Am∨B1∨B2∨...∨Bn

( Ai , B j are atomic formulas), or, alternatively,

A1∧A2∧...∧Am → B1∨B2∨...∨Bn ,

we allow only n=1 or n=0. Then, we consider

¬ A1∨¬ A2∨...∨¬ Am∨B ,

or alternatively A1∧A2∧...∧Am → B , or even (n=0): A1∧A2∧...∧Am .

Such clauses are called Horn clauses and they were named after Alfred Horn,
who first noticed their significance:

A. Horn.  "On sentences which are true of direct unions of algebras", Journal of Symbolic
Logic, 1951, 16, 14-21.

There are formulas that cannot be reduced to Horn clauses.

The resolution rule refined for Horn clauses (the so-called SLD resolution) is
used to implement the programming language Prolog. 

For  more  details  and  references,  see  Horn  clause and  SLD  resolution in
Wikipedia.

https://en.wikipedia.org/wiki/SLD_resolution
http://en.wikipedia.org/wiki/Horn_clause
https://en.wikipedia.org/wiki/SLD_resolution
http://en.wikipedia.org/wiki/Alfred_Horn
https://en.wikipedia.org/wiki/Resolution_(logic)
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8. Miscellaneous 

8.1. Negation as Contradiction or Absurdity

The idea behind this approach is as follows: let us define ¬B (i.e., "B is false")
as "B implies absurdity". So, let us add to our first order language a predicate
constant f (meaning "false", or "absurdity"),  and let us replace all negation
expressions  ¬F  by  F→f.  Then,  the  three  negation  axioms  will  take  the
following forms:

L9: (B→C)→((B→¬C)→¬B), 

L9': (B→C)→((B→(C→f))→(B→f)), 

L10: ¬B→(B→C),

L10': (B→f)→(B→C),

L11: B∨¬ B ,

L11': B∨(B → f ) .

After this, surprisingly, the axiom L9' becomes derivable from L1-L2! Indeed,

(1) B→C Hypothesis assumed.

(2) B→(C→f) Hypothesis assumed.

(3) B Hypothesis assumed.

(4) C→f By MP, from (2) and (3)

(5) C By MP, from (1) and (3)

(6) f By MP, from (4) and (5)

Hence, by Deduction Theorem 1,

 [L1, L2, MP]: (B→C)→((B→(C→f))→(B→f)).

Second observation. The axiom L10': (B→f)→(B→C) can be replaced simply
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by f→C. Indeed, if we assume f→C, then L10' becomes derivable:

(1) B→f Hypothesis assumed.

(2) B Hypothesis assumed.

(3) f By MP, from (1) and (2)

(4) f→C f→C

(5) C By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, f→C, MP]: (B→f)→(B→C).

Third  observation.  As  we  know  from  Section  2.4:  [L1,  L2,  L9,  MP]:

¬B→(B→¬C),  i.e.,  in  the  minimal  logic  we  can  prove  50%  of  L10:

"Contradiction implies that  all  is  wrong".  After  our  replacing negations  by
B→f the formula (B→f)→(B→(C→f) becomes derivable from L1-L2. Indeed,

(1) B→f Hypothesis assumed.

(2) B Hypothesis assumed.

(3) f By MP, from (1) and (2)

(4) f→(C→f) Axiom L1

(5) C→f By MP, from (3) and (4)

Hence, by Deduction Theorem 1, [L1, L2, MP]: (B→f)→(B→(C→f)).

Thus, we see that L1 (and not L9!) is responsible for the provability of the 50%

"crazy" formula  ¬B→(B→¬C).  Is  L1 50% as  "crazy"  as  L10?  Yes!  Let  us

compare:

L10: ¬B→(B→C) states that "Contradiction implies anything". 

L1: B→(C→B) states that "If B is true, then B follows from anything".

Let us remind our "argument" in favour of L10 in  Section 1.3: "...we do not

need to know, were C "true" or not, if ¬B and B were "true" simultaneously.
By assuming that "if ¬B and B were true simultaneously, then anything were
true" we greatly simplify our logical apparatus."

Now, similarly: if B is (unconditionally) true, then we do not need to know,
follows B from C or not. By assuming that "if B is true, then B follows from



249

anything" we greatly simplify our logical apparatus.

In  a  sense,  the  axiom L9 "defines"  the  negation  of  the  minimal  logic,  the

axioms L9 and L10 "define" the negation of the constructive logic, and L9-L11

"define" the negation of the classical logic. Is our definition of ¬B as B→f
equivalent to these "definitions"? Yes!

Theorem 8.1.1. For any formula F, let us denote by F' the formula obtained
from F by replacing all  sub-formulas ¬G by G→f. Then, for any formulas
B1, ..., Bn, C: 

[L1-L9, MP]: B1, ..., Bn├ C if and only if [L1-L8, MP]: B'1, ..., B'n├ C'.

Proof. 

1) →.

Let us consider a proof of [L1-L9, MP]: B1, ..., Bn├ C. In this proof:

− let us replace each formula G by its "translation" G',

− before each instance of L9, let us insert a proof of the corresponding instance

of L'9 in [L1, L2, MP] (see above).

In this way we obtain a proof of [L1-L8, MP]: B'1, ..., B'n├ C'. Indeed,

a) If some formula B is an instance of L1-L8, then B' is an instance of the same

axiom (verify!).

b) (B→D)' is B'→D', hence, if the initial proof contains a conclusion by MP
from B and B→D to D,  then,  in  the  derived proof,  it  is  converted  into  a
conclusion by MP from B' and B'→D' to D'.

c)  If  the  initial  proof  contains  an  instance  of  L9,  then  the  derived  proof

contains the corresponding instance of L'9 preceded by its proof in [L1, L2,

MP].

Q.E.D.

2) ←.

Let us remind the above translation operation: for any formula F, we denoted
by F' the formula obtained from F by replacing all sub-formulas ¬G by G→f.
Now,  let  us  introduce  a  kind  of  a  converse  operation  –  the  re-translation
operation: for any formula F, let us denote by F" the formula obtained from F:
a) by replacing all sub-formulas G→f by ¬G, and after this, b) by replacing all
the  remaining  f's  (f  means  "false"!)  by  ¬(a→a),  where  a  is  some  closed
formula of the language considered. 
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Of course, for any formula F, (F')" is F (verify).

Note. Replacing f by a formula preceded by negation, is crucial – it will allow
applying  of  [L1-L9,  MP]:  ¬B→(B→¬C)  instead  of  the  Axiom  L10:

¬B→(B→C).

Now, let us consider a proof of [L1-L8, MP]: B'1, ..., B'n├ C'. In this proof, let

us replace each formula G by its re-translation G". Then C' becomes C, and
B'1,  ...,  B'n become  B1,  ...,  Bn,  but  what  about  the  remaining  formulas

contained in the proof?

a) Instances of the axioms L1-L8.

L1: B→(C→B)

If B is not f, then (B→(C→B))" is B"→(C"→B"), i.e., re-translation yields
again an instance of L1.

If B is f, then (f→(C→f))" is ¬(a→a)→¬C". This formula is provable in [L1-

L9, MP]. Indeed,

(1) ¬(a→a) Hypothesis assumed.

(2) ¬(a→a)→((a→a)→¬C") [L1-L9, MP]: ¬B→(B→¬C)

(3) a→a [L1-L2, MP]: A→A

(4) ¬C" By MP, from (1), (2) and (3).

Thus, re-translation of any instance of L1 is provable in [L1-L9, MP].

L2: (B→(C→D))→((B→C)→(B→D))

If C and D are not f, then re-translation yields again an instance of L2.

If C is f, and D is not, then re-translation yields

 (B"→(¬(a→a)→D"))→(¬B"→(B"→D")). 

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→(¬(a→a)→D") Hypothesis assumed.

(2) ¬B" Hypothesis assumed.

(3) B" Hypothesis assumed.
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(4) ¬(a→a)→D" By MP, from (1) and (3).

(5)  ¬B"→(B"→¬(a→a)) [L1,L2, L9, MP]: ¬B→(B→¬C)

(6) ¬(a→a) By MP, from (2), (3) and (5).

(7) D" By MP, from (4) and (6).

Hence, by Deduction Theorem 1,

 [L1-L9, MP]: (B"→(¬(a→a)→D"))→(¬B"→(B"→D")).

If D is f, and C is not, then re-translation yields

 (B"→¬C")→((B"→C")→¬B").

This formula is provable in [L1-L9, MP]. Indeed,

(1) B"→¬C" Hypothesis assumed.

(2) B"→C" Hypothesis assumed.

(3) ¬B" By MP, from Axiom L9.

Hence, by Deduction Theorem 1,

 [L1-L9, MP]: (B"→¬C")→((B"→C")→¬B").

If C and D both are f, then re-translation yields

 (B"→¬¬(a→a))→(¬B"→¬B").

 This formula is provable in [L1-L9, MP]. Indeed,

(1) ¬B"→¬B" [L1-L2, MP]: A→A

(2)
 (¬B"→¬B")→ 
(X→(¬B"→¬B"))

Axiom L1.

(3)  X→(¬B"→¬B") By MP, X is B"→¬¬(a→a).

Thus, re-translation of any instance of L2 is provable in [L1-L9, MP].

L3: B∧C → B

If B is not f, then re-translation yields again an instance of L3.

If  B  is  f,  then  re-translation  yields  via ¬( f ∧C)  the  formula
¬(¬(a→ a)∧C ) . This formula is provable in [L1-L9, MP]. Indeed,
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(1) ¬(a →a)∧C →¬(a→ a) Axiom L3.

(2) ¬¬(a →a)→¬(¬(a→ a)∧C ) From (1), by Contraposition Law.

(3)  (a→a)→¬¬(a→a) [L1, L2, L9, MP]: A→¬¬A

(4)  a→a [L1-L2, MP]: A→A

(5) ¬(¬(a→ a)∧C ) By MP, from (3), (4) and (2).

Thus, re-translation of any instance of L3 is provable in [L1-L9, MP].

L4: B∧C → C

Similarly to L3 – re-translation of any instance of L4 is provable in [L1-L9,

MP].

L5: B →(C → B∧C )

Re-translation yields again an instance of L5.

L6: B → B∨C

Re-translation yields again an instance of L6.

L7: C → B∨C

Re-translation yields again an instance of L8.

L8: (B → D)→((C → D)→(B∨C → D))

If D is not f, then re-translation yields again an instance of L8.

If D is f, then re-translation yields ¬ B →(¬C →¬(B∨C )) . This formula is
provable in [L1-L9, MP].

Exercise 8.1.1. Verify that.

Thus, re-translation of any instance of L8 is provable in [L1-L9, MP].

Hence, re-translations of all (i.e., L1-L8) axiom instances are provable in [L1-

L9, MP]. What about applications of MP in the initial proof? If the initial proof

contains  a  conclusion  by MP from B and B→D to  D,  then  the  following
situations are possible:

a) If B and D are not f, then, in the derived proof, this conclusion is converted
into a conclusion by MP from B" and B"→D" to D".
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b)  If  B  is  f,  and  D  is  not,  then,  in  the  derived  proof,  this  conclusion  is
converted into a conclusion by MP from ¬(a→a) and ¬(a→a)→D" to D".

c)  If  D  is  f,  and  B  is  not,  then,  in  the  derived  proof,  this  conclusion  is
converted into three formulas: B", ¬B", ¬(a→a). To derive ¬(a→a) from B"
and ¬B", we can use MP and

 [L1-L9, MP]: ¬B"→(B"→¬(a→a)).

d)  If  B  and  D  are  both  f,  then,  in  the  derived  proof,  this  conclusion  is
converted into three formulas: ¬(a→a), ¬¬(a→a), ¬(a→a). Simply drop the
third formula from the proof.

Thus, the re-translation operation, when applied to all formulas of a proof of
[L1-L8, MP]: B'1, ..., B'n├ C', yields a sequence of formulas that are provable

in [L1-L9, MP] from hypotheses B1, ..., Bn. Hence, so is C.

Q.E.D.

This completes the proof of Theorem 8.1.1.

Corollary 8.1.2. a) A formula C is provable in the minimal propositional logic
[L1-L9, MP] if and only if [L1-L8, MP]:├ C'.

b) A formula C is provable in the constructive propositional logic [L1-L10,

MP] if and only if [L1-L8, f→B, MP]:├ C'.

c) A formula C is provable in the classical propositional logic [L1-L11, MP] if

and only if [L1-L8, f→B, L'11, MP]:├ C'.

Proof. a) Consider an empty set of hypotheses in Theorem 8.1.1.

b) If [L1-L10, MP]:├ C, then [L1-L9, MP]: B1, ..., Bn├ C, where hypotheses

are instances of the axiom L10. By Theorem 8.1.1,

 [L1-L8, MP]: B'1, ..., B'n├ C'.

 As established above, B'1, ..., B'n can be proved by using the axiom schema

f→B, i.e., [L1-L8, f→B, MP]:├ C'. Q.E.D.

Now, if [L1-L8, f→B, MP]:├ C', then, 

c) If [L1-L11, MP]:├ C, then [L1-L9, MP]: B1, ..., Bn├ C, where hypotheses

are instances of the axioms L10 and L11. Return to case (b). Q.E.D.

Corollary 8.1.3. a) A formula C is provable in the minimal predicate logic
[L1-L9, L12-L15, MP, Gen] if and only if [L1-L8, L12-L15, MP, Gen]:├ C'.
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b) A formula C is provable in the constructive predicate logic [L1-L10, L12-

L15, MP, Gen] if and only if [L1-L8, f→B, L12-L15, MP, Gen]:├ C'.

c) A formula C is provable in the classical predicate logic [L1-L11, L12-L15,

MP, Gen] if and only if [L1-L8, f→B, L11', L12-L15, MP, Gen]:├ C'.

Exercise 8.1.2. Prove Corollary 6.1.3.

8.2. Herbrand's Theorem

Attention! The principal results of this Section are valid only for the classical 
logic!

Jacques Herbrand (1908-1931) "... After leaving Göttingen, Herbrand decided on a holiday in
the Alps before his intended return to France. However he was never to complete his plans for
he died in a mountaineering accident in the Alps only a few days after his holiday began. His
death at the age of 23 in one of the tragic losses to mathematics." (according to  MacTutor
History of   Mathematics archive  ).

Herbrand proved his famous theorem in 1929:

J.Herbrand. Recherches sur la théorie de la démonstration. Ph.D. Thesis, University of Paris,
1930 (approved in April 1929).

Unlike the proof presented below, the original proof of Herbrand's Theorem does not depend
on Gödel's Completeness Theorem (or Model Existence Theorem). Herbrand completed his
Ph.D.  thesis  in  1929.  In  the  same  1929  Gödel  completed  his  doctoral  dissertation  about
completeness  (see  Section  4.3).  In  fact,  Herbrand's  method  allows  proving  of  Gödel's
Completeness Theorem, but he (Herbrand) "did not notice it". Why? See

Samuel R. Buss.  On Herbrand's Theorem.  "Lecture Notes in Computer Science", Vol. 960,
1995, Springer-Verlag, pp.195-209 (available online).

The flavor of Hebrand’s theorem can be best presented in its simplest version.
In this version, F(x) is a quantifier-free formula containing only one variable x
in  a  predicate  language,  containing  at  least  one  object  constant.  Then,
Herbrand's Theorem says: 

The formula ∃z(x+z+1=y). x F (x) is provable in the classical logic if and only if there is
a  finite  set  of  constant  terms  t1,  ...,  tn such  that  the  disjunction

F ( t1)∨...∨F (t n) is provable in the classical logic.

As we will see in the proof, Herbrand's theorem is "caused" by the simple fact
that in any proof of ∃z(x+z+1=y). x F (x) only a finite set of terms can be used.

Now, more precisely:

Let L be a predicate language, containing at least one object constant, and let F

http://math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Herbrand.html
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be a quantifier-free formula.

Idea #1. The formula p (c1)∧q(c2 , f (x )) is quantifier-free (c1, c2 are object

constants, f – a function constant, p, q – predicate constants). In a sense, any
"closed" interpretation domain for this formula must contain objects denoted
by the terms c1, c2, f(c1), f(c2), f(f(c1)), f(f(c2)),...

So, let us define the so-called Herbrand's universe of the formula F (let us
denote it by HUF) as the minimum set of all constant terms such that:

a) If c is an object constant occurring in F, then c is in HUF.

b)  If  F does not contain object  constants,  then one of the constants of the
language L is in HUF.

c) If terms t1, ..., tk are in HUF, and f is a k-ary function constant occurring in

F, then the term f(t1, ..., tk) is in HUF.

Exercise 8.2.1. Verify that HUF is a non-empty finite or countable set (provide

an algorithm generating all members of HUF).

Theorem  8.2.1  (Herbrand's  Theorem  –  the  simplest  case  I).  Let  L be  a
predicate language, containing at least one object constant, and let F(x) be a
quantifier-free formula containing only one free variable x. Then the formula
∃z(x+z+1=y). x F (x) is provable in the classical predicate logic if and only if there is

a finite set of terms t1, ..., tn from the Herbrand’s universe HUF such that the

disjunction F ( t1)∨...∨F (t n) is provable in the classical predicate logic.

Proof. A formula is provable in the classical logic if and only if it is logically
valid (Gödel’s Completeness Theorem).

So,  let  us  assume  the  contrary  –  that  none  of  the  disjunctions
F ( t1)∨...∨F (t n) is  provable  in  the  classical  logic  (ti-s  are  terms  from

HUF). Idea #2 – then the following theory T is consistent:

T = { ¬F(t) | t is a term from HUF}.

Indeed, if  T would be inconsistent, then there would be a T-proof of some
formula B∧¬B . In this proof, only a finite set of the axioms ¬F(t) would be
used, i.e., for some terms t1, ..., tn from HUF: 

[L1-L15, MP, Gen]: ¬F (t 1) , ... ,¬F (t n) ├ B∧¬ B .

Hence, by Deduction Theorem 2 (it is applicable here, because F(x) contains
only one free variable,  and ti-s are constant terms, i.e.,  every ¬F (t i) is a
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closed formula): 

[L1-L15, MP, Gen]:├ ¬F (t1)∧...∧¬F (t n)→ B∧¬B ,

[L1-L15, MP, Gen]:├ ¬(F (t1)∨...∨¬F (t n))→ B∧¬B ,

and thus,

[L1-L15, MP, Gen]:├ F ( t1)∨...∨F (t n) .

This  contradicts  our  assumption,  that  none  of  the  disjunctions
F ( t1)∨...∨F (t n) is provable. Hence, T is a consistent theory.

Idea #3 – if T is consistent, then, by the Model Existence Theorem, there is a
model J of T. In this model, all the axioms of T are true, i.e., so are all the
formulas ¬F (t )  with t from HUF.

Idea #4 – let us restrict the domain of the model J to those elements of it,
which  are  interpretations  of  terms from HUF,  and let  us  restrict  the entire

interpretation  correspondingly.  Let  us  denote  this  new interpretation  by J1.

Then,

a)  All  the  formulas ¬F (t )  (with  t  from  HUF)  are  true  in  J1.  Indeed,

¬F (t ) contains only constant terms from HUF (idea #1 working!), and all

of  them  have  the  same  interpretations  in  J1 that  they  had  in  J.  Thus,  if

¬F (t ) was true in J, it remains true in J1.

b) Hence, the formula ∀ x¬F (x) is true in J1 (because the domain of J1

consists only of those elements, which are interpretations of terms from HUF).

c) Hence, the formula ∃z(x+z+1=y). x F (x) is false in J1.

This contradicts the logical validity of ∃z(x+z+1=y). x F (x) .

Q.E.D.

Exercise  8.2.2. Repeat  the  above  proof,  proving  a  more  general  form  of
Herbrand's Theorem:

Theorem  8.2.2  (Herbrand's  Theorem  –  the  simplest  case  II).  Let  L be  a
predicate  language,  containing  at  least  one  object  constant,  and  let

F (x1 , ... , xm) be a quantifier-free formula containing only m free variables
x1 , ... , xm .  The  formula ∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xm F (x1 , ... , xm) is  provable  in  the

classical  predicate  logic if  and  only  if  there  is  a  finite  set  of  m-tuples
t 1 , ... , t n of terms from Herbrand’s universe HUF such that the disjunction

F (t 1)∨...∨F (t n) is provable in the classical predicate logic.
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Any formula G is  logically  valid  if  and only if  ¬G is  unsatisfiable.  Thus,
∃z(x+z+1=y). x1 ...∃z(x+z+1=y). xm F (x1 , ... , xm) is logically valid if and only if its negation

∀ x1 ...∀ xm¬F (x1 , ... , xm)

is unsatisfiable. On the other hand, F (t 1)∨...∨F (t n) is logically valid if and
only if its negation ¬F (t 1)∧...∧¬F (tn) is unsatisfiable. Now, let us replace
F by ¬F, and we have proved 

Theorem 8.2.3 (Herbrand's Theorem – a more useful alternative form). Let L
be  a  predicate  language,  containing  at  least  one  object  constant,  and  let

F (x1 , ... , xm) be a quantifier-free formula containing only m free variables
x1 , ... , xm . The formula ∀ x1 ...∀ xm F (x1 , ... , xm) is  unsatisfiable if and

only if there is a finite set of m-tuples t 1 , ... , t n of terms from HUF such that

the formulas F (t 1) , ... , F (tn) cannot be satisfied simultaneously.

Why is this form "more useful"? Let us try applying it to sets of formulas in
clause form. An interesting effect!

1) A clause is a disjunction of atomic formulas or their negations. For example,
¬ p(c1)∨p (c2)∨q (x , f ( y )) , or p ( z)∨¬ q(u , f (w)) . A clause form is

a set of clauses, in which no two clauses contain common variables. 

2)  As  we  know  from  the  Section  5.  5  ,  any  finite  set  of  closed formulas
F 1 , F 2 , ... , F k can be reduced to a clause form, i.e., a set S={C1 , ... ,C K }

of  clauses  (in  a  language  obtained  by  adding  a  finite  set  of  new  object
constants and new function constants) that cannot be satisfied simultaneously
if and only if the set F 1 , F 2 , ... , F k cannot.

3) Formally,  a  set  S of clauses represents a single formula – a  universally
quantified conjunction of all clauses from S. For the above example, it would
be the formula:

∀ x ∀ y ∀ z∀ u∀ w (¬ p(c1)∨ p(c2)∨q (x , f ( y )))∧( p( z )∨¬q(u , f (w)))

So, let us apply to the set S the above form of Herbrand's Theorem (Theorem
8.2.3). 

Let x1 , ... , xm be the complete list of variables appearing in S. Since no two
clauses  contain  common  variables,  let  us  denote  by xij the  j-th  variable
appearing in the clause C i , i.e., we can put C i as C i(x i) .

Thus, S represents the formula ∀ x1 ...∀ xm D(x1 , ... , xm) ,  where D is the
conjunction C1( x1)∧...∧C K (x K ) and x1∪...∪xK={x1 , ... , xm} .

Now,  let  us  apply  Theorem  8.2.3:  there  exists  a  collection  of  m-tuples
t s(1≤s≤n) of  terms from  Herbrand’s  universe  HUS such  that  the  set
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D(t 1) , ... , D(t n) cannot be satisfied simultaneously if and only if  the set S
cannot.

In fact,  we have here a collection of terms t ijs(1≤i≤K ,1≤s≤n) ,  where
t ijs is  substituted  for  the  j-th  variable  of  the  clause C i in  the  formula
D( t s) . By re-grouping these terms by j as t is(1≤i≤K ,1≤s≤n) , we can

rewrite D( t s) as C1(t 1 s)∧...∧C K(t Ks) .  Thus,  we  have  obtained  a
collection of nK variable-free clauses C i(t is)(1≤i≤K ,1≤s≤n) that cannot
be  satisfied  simultaneously  if  and  only  if  the  initial  set  of  formulas

F 1 , F 2 , ... , F k cannot.

If we take a clause, and substitute some terms from HUS for all its variables,

then we obtain a  variable-free clause, the so-called  ground clause of S. For
example, if 

S = { ¬ p(c1)∨p (c2)∨q( x , f ( y)) ; p ( z)∨¬ q(u , f (w)) },

then  the  substitution f (c1)/ x ; c2/ y ; c1/ z ; c2/u ; f (c2)/w yields  the
following two ground clauses:

¬ p(c1)∨p (c2)∨q ( f (c1) , f (c2)) , p (c1)∨¬ q (c2, f ( f (c2))) .

Thus, we have obtained

Theorem 8.2.4  (Herbrand's Theorem – an even more useful form, author –
Herbert B.Enderton?). Let L be a predicate language, and F 1 , F 2 , ... , F k be a
set of of closed formulas in L. Let us obtain a clause form of this set – a set

S={C1 , ... ,C K }  of K clauses in the language obtained from L by adding a
finite set of new object constants and new function constants. Then there exists
a  number  n  and  a  finite  set  of  terms t ijs(1≤i≤K ,1≤s≤n) from  the
Herbrand’s  universe HUS such  that  after  substituting  each t ijs for  the  j-th

variable  of C i we  obtain  a  set  of  Kn  ground  clauses
C i(t is)(1≤i≤K ,1≤s≤n) , that cannot be satisfied simultaneously if  and

only if the initial formulas F 1 , F 2 , ... , F k cannot.

Now, it remains one final step, and we will obtain Herbrand’s original result –
a kind of “reduction of predicate logic to propositional logic”.

The above example set of ground clauses: 
¬ p(c1)∨p (c2)∨q( f (c1) , f (c2)) ,

p (c1)∨¬ q (c2, f ( f (c2))) ,

contains 4 different atomic formulas:

p (c1) , p(c2) , q( f (c1) , f (c2)) , q (c2, f ( f (c2))) .

http://en.wikipedia.org/wiki/Herbert_Enderton
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Let us denote these atoms by Q1 , Q2 ,Q3 ,Q4 . In this way, we have obtained
two propositional clauses:

¬Q1∨Q2∨Q3 ;
Q1∨¬Q4 .

1. If these formulas could not be satisfied simultaneously under the classical
truth tables, then we could not assign truth values to predicates p, q in a way
making the respective ground clauses simultaneously true.

2. But, in fact, these formula can be satisfied under the classical truth tables –
we can find a truth-value assignment making it true, for example:

Q1=false (this makes the first disjunction true),

Q4=false (this makes the second disjunction true).

After  this,  we  can  define  the  following  interpretation  J  making  all  the
respective ground clauses true:

DJ = { c1, c2, f(c1), f(c2), f(f(c1), f(f(c2), ... } (Herbrand’s universe);

interpretations of predicate constants: 

p(c1)=false,

q(c2, f(f(c2))=false.

These assignments make both ground clauses true. All the other truth-values of
p and q are irrelevant, so, we can define them in an arbitrary way (all as true,
for example).

Now, the general case: 

Lemma  8.2.5.  A  finite  set  of  ground  clauses  cannot  be  satisfied
simultaneously  if  and  only  if  these  clauses  considered  as propositional
clauses cannot be satisfied simultaneously under the classical truth tables.

Proof. We have a set of ground clauses C1 ,C 2 , ... ,C B . Let us denote the
atomic  formulas  contained  in  them  by Q1 ,Q2 , .. . .  In  this  way  clauses
become propositional clauses G1 ,G2 , ... ,G B . In every interpretation of out
predicate language, every atom Qi obtains a definite truth value. 

There are two possibilities:

a) Under the classical truth tables, the set G1 ,G2 , ... ,G B cannot be satisfied
simultaneously.  Then no interpretation can make all  of  our  ground clauses

C1 ,C 2 , ... ,C B true. 

b)  The set G1 ,G2 , ... ,G B can be satisfied  simultaneously.  Then there  is  a
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truth-value assignment to Q1 ,Q2 , .. . making every clause G j true. Let us
define  the  following  interpretation  J  making  true  all  the  ground  clauses

C1 ,C 2 , ... ,C B :

DJ = Herbrand's universe of the terms (as character strings) contained in
our ground clauses.

Each Qi is  an  atomic  formula p (t1 , ... , t r) ,  where  p  is  a  predicate
constant,  and t i are  terms  –  elements  of DJ .  So,  let  us  define  the
interpretation of p (t1 , ... , t r) as true or false according to the truth-value of

Qi .  These  assignments  are  consistent  because  each Qi represents  a
different formula. All the other truth-values of predicates do not matter and
can be defined (for example) as true.

Let us define interpretations of function constants like as in the proof of the
Model Existence Theorem – as the "syntactic constructor functions", i.e., if f is
an k-ary function constant, and t1, ..., tk are constant terms, then the interpreted

value  f(t1,  ...,  tk)  is  defined  simply  as  the  character  string  "f(t1,  ...,  tk)"

(quotation marks ignored).

And  interpretations  of  object  constants  we  define  as  these  constants
themselves.

The  interpretation  J  makes  all  our  ground  clauses C1 ,C 2 , ... ,C B  true,
indeed. So, they can be satisfied simultaneously.

Q.E.D.
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