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Dr. Karlis Podnieks studied mathematics at the University of Latvia from 1966-71. In 1979, he  
received his Ph.D. in mathematics from the Computing Centre of the USSR Academy of Sciences in  
Moscow, where he did research on machine learning algorithms. Initially, his research interests  
included work on the foundations of mathematics. In 1980, he turned his attention to the theoretical  
and  practical  aspects  of  computation,  including  computer  programming,  database  design,  
information  systems,  and  graphical  tool  development  for  business  process  modeling.  He  has,  
however, continued to write about the philosophical foundations of mathematics, and his writings  
are  notable  for  their  insight,  humor,  and  originality.  He  became  Professor  of  Information  
Technologies at the University of Latvia in 2005. This interview took place during April of 2009.

J.T. > Professor Podnieks, some mathematicians talk about "discovering" mathematics. Others talk 
about  "creating"  mathematics.  The  difference  is  important.  One  discovers  things  that  have  an 
existence of their own. Most people would agree that one discovers planets, for example, or species 
of birds. By contrast, one creates things that did not exist prior to the act of creation – symphonies, 
for example, or automobiles. Do you think that mathematics is created or discovered? Or to put it 
another way: How much of mathematics has an objective existence, and how much do we simply 
imagine into existence?

K.P.> I would prefer the term "inventing" instead of "creating". Speaking strictly, one discovers 
neither planets nor species of birds. One is inventing models of the world – or of parts of it. Some 
time  ago,  planets  were  thought  of  as  lights  attached  to  crystal  spheres.  Were  these  spheres 
"discovered"  or  invented?  Some time  later,  a  new model  was  invented  in  which  planets  were 
thought  of  as  massive  bodies  orbiting  the  Sun.  This  picture  remains  stable  after  essential 
refinements  of  the  model  due  to  Kepler,  Newton,  Einstein  et.al.,  and  after  the  new  evidence 
obtained recently by Gagarin, Apollo crews, etc. In fact, this stable part of model evolution is what 
people are calling "discovered final truth". As to symphonies and automobiles – after creation, they 
can be discovered just as planets were. Staying with the usual naive notion of "discovering truth 
about reality", we will never be able to understand the nature of mathematics.

J.T.> I thought of using the word "invent" rather than "create," but I think that some decisions about 
mathematics  – the choice of axioms for a  particular  discipline,  for example,  and the choice of 
problems to study – depend on aesthetics. Mathematicians sometimes make these choices because 
the results that they obtain appeal to their sense of beauty. In this sense, mathematics has a good 
deal  in  common  with  art.  But  I  can  see  that  some  mathematics  may  better  be  described  as 
"invented"  because  it  is  developed  in  response  to  specific,  often  predetermined  problems  – 
especially those arising in engineering and the sciences. Anyway, that was my thinking...

K.P.> On the above human “modeling panorama”,  where should the place of mathematics  be? 
Physicists, chemists, biologists, economists, psychologists et.al. are inventing models for their “part 
of the world”. Then, what are mathematicians doing?

For many years, I have been promoting the broadest possible notion of mathematical models. Many 
people think that mathematical models are built using well-known “mathematical things” such as 
numbers and geometry. But since the 19th century, mathematicians have investigated various non-
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numerical and non-geometrical structures: groups, fields, sets, graphs, algorithms, categories etc. 
What could be the most general distinguishing feature that would separate mathematical models 
from non-mathematical ones?

I would describe this feature by using such terms as autonomous, isolated, stable, self-contained, 
and – as a summary – formal.  Autonomous and isolated – because mathematical models can be 
investigated “on their own” in isolation from the modeled objects. And one can do this for many 
years without any external information flow. Stable – because any modification of a mathematical 
model is qualified explicitly as defining a new model. No implicit modifications are allowed. Self- 
contained – because all properties of a mathematical model must be formulated explicitly. The term 
“formal model” can be used to summarize all these features.

For example, toy automobiles are autonomous, isolated and stable models of “big” automobiles, but 
they are  not  self-contained  because,  as  physical  objects,  toys  possess  a  huge number  of  very 
complicated physical properties that a) are explained by complicated physical theories; b) do not 
play any role in modeling; c) are not separated explicitly from the properties really involved in 
modeling.  Thus,  to  make  our  toy  model  self-contained,  we  should  include  (at  least)  quantum 
electrodynamics as part of it! 

J.T.> I’m not sure I understand the analogy. First, do you mean that mathematical models should 
retain only essential features of the objects that they model? And second, by “self-contained,” do 
you mean that these mathematical models should be complete within themselves in the same way, 
for example, that Euclidean geometry is complete? Euclidean geometry is whatever can be deduced 
from the axioms, and if a result cannot be deduced from Euclid’s axioms then it is not part of  
Euclidean  geometry.  In  this  sense,  it  is  self-contained.  Is  this  what  you  mean  when  you  say 
mathematical models should be self-contained?   

K.P.> As with most models, formal models may include inessential and even “wrong” properties. 
For example, many good models of the Solar System represent planets not as massive bodies but 
“wrongly” as massive points. Thus, from the “goodness” point of view, mathematical models are as 
good or as bad as any other products of human intelligence.

Yes,  indeed,  the  description  of  a  self-contained model  must  include  ALL assumptions  that  are 
allowed  to  derive  new  information  (prove  theorems)  about  the  model.  Thus,  to  make  a  self-
contained model of a toy automobile, you must do one of two things: a) either separate explicitly, 
which properties of the toy are included in the model (for example, if you are interested only in the 
shape of the vehicle, then declare this explicitly, scan the shape into your computer, and allow the 
use of analytical geometry to derive information); or b) include in the model all physical, chemical  
etc. theories necessary to draw conclusions about physical properties of the toy (for example, how 
would it behave under very high temperatures, high gamma radiation, etc.). Following the first way, 
you will  obtain a simple mathematical model containing only a few (but almost only essential) 
properties  of  the  vehicle.  Following  the  second  way,  you  would  obtain  a  very  complicated 
mathematical model, containing a huge number of inessential properties.          

Now,  the  move  from mathematical  models  to  mathematics  is  as  follows:  For  me,  the  task  of 
mathematics  is  developing methods for creating and exploring mathematical models as defined 
above. As put by Morris Kline: “More than anything else mathematics is a method.”

J.T.> So with respect to modeling sets, would you say that there is a sort of world of sets, and 
mathematicians  develop  mathematical  models  of  this  world?  (This  is  the  mathematician  as  an 
explorer of the mathematical landscape.) To use a specific example, would you call the theory of 
sets that arises from the axioms of Ernst Zermelo a mathematical model? That gets to the heart of 



the  question.  To quote what  you said about  physicists  and chemists,  is  Zermelo’s  set  theory a 
mathematical model for the mathematician’s “part of the world?”

K.P.> In the philosophy of science, models and theories are treated as different categories. Theories 
are a popular means of model-building. For example, by using the theory of Newtonian mechanics 
with the Gravitation Law included, one can build models of various systems of “particles”: planet 
systems, galaxies etc. 

From the axiom and theorem point of view, mathematical theories and models are very similar – 
any of both can be represented as a set of axioms and rules of inference allowing one to generate 
theorems.

Zermelo-Fraenkel set theory (ZFC) arose, indeed, as a model – the second attempt to describe the 
vision of “the world of sets” invented by Georg Cantor in the 1870s. The first attempt at axiomatic  
description failed. The simplest possible system of set axioms (in fact, a single axiom – the so-
called unrestricted comprehension schema) leads quickly to contradictions (the famous Russell's 
Paradox and some others). Is ZFC a “correct description” of Cantor's intuitive vision of sets? Or 
was  Russell's  Paradox  already  “built”  into  Cantor's  vision,  and  hence,  ZFC represents  a  new 
“better” version of the world of sets that is not identical to Cantor's world? Anyway, in ZFC, one 
can re-build all of the common mathematics (all except some exotic highly theoretical results that 
need additional axioms, for example, the so-called large cardinal axioms). 

Is ZFC a model of the mathematicians’ “part of the world”? I would answer “no” - it is not a model,  
it IS the mathematicians’ part of the world, they do not know any better one.

J.T.> This seems inconsistent with what you said before. Do you mean that you think the ZFC 
model for sets is the best model that is currently available, or do you mean that it is an example of  
discovered final truth, a concept that you mentioned earlier?

K.P> Your question,  as  well  as  my sudden turn “off  the  modeling” come close  to  the  biggest  
controversy in the philosophy of mathematics. ZFC started, indeed, as an attempt to describe a 
vision of the world of sets. The unrestricted comprehension axiom schema led to paradoxes. So 
Zermelo introduced a restricted set of comprehension axioms that wouldn't allow reproduction of 
the known paradoxes, but should be sufficient for the reproduction of theorems already proved 
about sets. Zermelo's idea was extremely successful. Even now, one hundred years later, ZFC still  
dominates the market of set theories. 

After this, should we still think of ZFC as a model of some more prominent structure that exists  
independently of  the  axioms  of  ZFC? Cantor's  intuitive  “world  of  sets  with  Russell's  Paradox 
inside” is not a good candidate for such a prominent structure. Thus, have mathematicians invented 
another world of sets, one that is better than Cantor's, and that is described correctly in the axioms 
of ZFC but exists independently of these axioms? Or has this “better world of sets” existed since the 
Big Bang, and mathematicians (starting with Cantor) have been trying to build a correct model of 
it?

This fantastic chain of questions can be answered in two ways. The minimalist way: cut the chain at  
the very beginning. ZFC, after being formulated, and after one hundred years of continued success, 
does not need any more prominent structure behind. The axioms of ZFC themselves ARE the best 
world of sets known to mathematicians. This point of view is called the “formalist philosophy of 
mathematics”.

But there is also the maximalist way: Let us believe that, indeed, the “best” world of sets has existed 



since the Big Bang, and mathematicians are simply trying to build a correct model of it. This point  
of view is called the “Platonist philosophy of mathematics”. (Plato introduced the “world of ideas” 
as something separate from the “world of things” 2,400 years ago.) At least until now, the so-called 
theory of large cardinals seems to support this point of view.

J.T.>  To  make  the  discussion  more  concrete...  Bertrand  Russell  wrote  a  short  article  called 
"Definition of Number" in which he defines what is meant – or at least what he meant – by a natural 
number. In it, he describes the number 3 as something that all "trios" have in common. (When he 
says "trio," he means a set with three objects. Three particular people, three particular stones, and 
the set consisting of the words "paper, rock, scissors" are examples of trios.) Each such set is an 
"instance" of the number 3. When I read the article, I enjoyed it, and it made sense to me. But then I 
began to think about very large integers – integers, for example,  that are much larger than the 
number of all the atoms in the universe. What would be an instance of this size number? And if 
there is no instance of such a large integer, in what sense does the integer exist?

K.P.>  Of course, the (now-called) natural numbers 1, 2, 3, ..., billion, etc. arose from the human 
practice of counting.  In mathematics,  this  human process of “number creation” ended with the 
axioms (for example, the so-called Peano axioms) describing the infinite natural number sequence 
as a whole. There is no problem with the existence of the axioms – one can write them down on 
paper.  But  what  about  the  existence  of  the  very very large  numbers  predicted  by the  axioms? 
According to the axioms, the number 101000 can be obtained by adding 1 to 0 many times. But 
physicists  know that  the  universe,  as  a  computer,  could  not  perform this  “computation,”  even 
working continually since the Big Bang. Thus, the mathematical “world of numbers” is, in part, a 
kind of Disneyland – most really big numbers are of the Tom and Jerry kind.

J.T.> What do you mean “the universe, as a computer,”? And if large numbers are a sort of fiction, 
is it because they are too large to obtain by counting or because to the best of our knowledge no 
instance of such a number exists? For large enough numbers, of course, both properties must be 
true.

K.P.> Of course, most probably, the universe is not a computer (at least not a usable one). But if you 
could imagine a computer as big as the universe, how many bits could it store, and how many 
operations could it have performed since the Big Bang? Physicists say no more than 10120 bits and 
no more than 10120 operations (Seth Lloyd)!

But if we represent numbers not as people of primitive times (as sequences of 1's), but as normal 
computers (i.e., in binary notation), then operating with numbers of size 101000 is not a problem (just 
use 3,500 bits to represent a single number, and use the well-known simple algorithms to add and 
multiply such numbers). 

J.T.> But no matter  how large the largest numbers that  can be stored within a  computer,  most 
numbers will be bigger still – 

K.P.> Yes, for example, the “tower of four tens” – 10^(10^(10^10)), where ^ stands for the power 
operation – never will be represented either in the binary or in the decimal notation. We can operate 
with  such  “numbers”  only  in  a  very limited  sense.  Aren't  we,  in  fact,  operating  with  number 
expressions rather than with numbers?          

J.T.> Another way of thinking about the natural numbers is that they are "closed under addition." 
Most people accept the reality of small natural numbers and they accept the requirement that it is 
always possible to add 1 to a natural number to obtain the natural number that is "the next one 
over," but then the larger natural numbers must exist, because they are logical consequences of this 



closure requirement. We only need to begin with 1 and then we just add 1 until we have generated  
large natural numbers. But this, it seems to me, is closer to Aristotle's idea of the infinite. In his 
book  Physics he  wrote  about  the  infinite  in  geometry.  He  said,  "In  point  of  fact  they 
[mathematicians] do not need the infinite and do not use it.  They postulate only that the finite  
straight line may be produced as far as they wish." What do you think?

K.P.> Most mathematicians do not agree with Aristotle, and they use the Axiom of Infinity to obtain 
big and bigger actually infinite sets. But, of course, Aristotle was a brilliant thinker of his time, and 
his idea that, in fact, mathematicians do not need the actual infinite (only the potential one) is not 
completely wrong. Moreover, today, we know (as you say, “to the best of our knowledge”) that the 
finite straight line CANNOT be produced as far as we wish - in the universe, because of gravity,  
there are no very long straight lines at all. Potentially infinite straight lines are idealizations, but 
they appear to be very good for building useful mathematical models and – to some extent – the 
same is true of actually infinite sets.
      
J.T.>  How  have  your  ideas  about  the  reality  of  mathematics  affected  your  own  mathematical 
research?

K.P> Unfortunately, I left mathematics for computer science at the age of 35 (now I'm 60). My 
recent  25-year  experience includes  the theory and practice of  computer  programming,  database 
design, graphical tool development for business system modeling etc. If I would be allowed to carry 
out  mathematical  research,  I  would  try to  build  a  new arithmetic  that  would  use  arithmetical 
expressions and not numbers as the fundamental notion. But it seems I won't, so I would invite 
younger people to try this idea that was inspired by my life-long philosophical development.     

There is  another  philosophical  idea that  I  would be happy to develop mathematically.  Reading 
Henri Poincare, I realized that arithmetic “should be” inconsistent, i.e. there should be a way to 
derive a contradiction from the axioms of arithmetic. The idea is as follows. In trying to axiomatize 
the notion of natural numbers, we are building a vicious circle: The notion of proof from the axioms 
includes the so-called mathematical induction, but this induction also represents the main feature of 
the natural number system that we are trying to axiomatize.

The most serious partial results in this direction were obtained by Edward Nelson. But, if we try 
searching  the  web  for  possible  contradictions  in  mathematics,  then  we  can  find  a  serious 
announcement by Nikolai Belyakin: If we add to Zermelo-Fraenkel set theory the second weakest 
large cardinal axiom, then we obtain a contradiction. However, the full proof of this result is not yet 
published.    

Of course, an inconsistency proof of arithmetic will not put an end to the banking business. Nor will 
this mean that Intel processors are built on a “wrong theory”. No harm will be done to applications 
of  mathematics  because  it  is  only  the  “Tom  and  Jerry  part”  of  arithmetic  that  “should  be” 
inconsistent!  

J.T.> Mathematics seems to be a sort of cross-cultural language. Of course, there are people who 
find math inaccessible, but mathematicians from around the world usually seem to agree on when a 
theorem has been proved. This is remarkable to me because mathematicians often share no common 
spoken language and have very different cultural backgrounds. Depending on their backgrounds, 
they may approach mathematics in different ways, but they still agree on the main points – at least 
that is how it seems to me. Do you agree, and if so, do you think that this reveals more about how 
the human brain works than about anything that mathematics purports to describe?

K.P.> As I have been trying to promote for many years, the task of mathematics is developing 



methods of creating and exploring mathematical models (in the broadest possible sense). Are the 
general features of the “world of all the possible mathematical models” determined by the features 
of how the human brain works or by the features of  how the physical world is or both? Could an  
alien civilization design its world of mathematical models in a radically different way from our 
way? For example, would they use the same kind of natural numbers that we are using? I guess that 
the answer should be “yes”. But could we try proving this as a mathematical theorem? Would it be a 
theorem of our mathematics or theirs?  

J.T.> Thank you for sharing your considerable insight into the nature of mathematics. I’ve enjoyed 
our conversation.


