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In Nozick’s rendition of the decision situation given in Newcomb’s Paradox dominance
and the principle of maximum expected utility recommend different strategies. While
evidential decision theory (EDT) seems to be split over which principle to apply and how
to interpret the principles in the first place, causal decision theory (CDT) seems to go for
the solution recommended by dominance (“two-boxing”). As a reply to the CDT proposal
by Wolfgang Spohn, who opts for “one-boxing” by employing reflexive decision graphs, I
will draw on the framework of causal knowledge patterns, i.e., Bayes net causal models
(cf. e.g. Pearl 2000), augmented by non-causal knowledge (epistemic contours), to finally
arrive at “one-boxing” - more intuitively and more closely to what actually is in Nozick’s
story. This proposal allows the careful re-examination of all relevant concepts in the
original story and might cast new light on the following questions: How may causality in
general be understood to allow causal inference from hybrid patterns encoding subjective
knowledge? How can the notion of prediction be analyzed - philosophically and formally?
And what’s the decision-maker’s conceptualization of the situation he will act upon?

Keywords: evidential vs causal decision theory, Newcomb’s paradox, causal models,

interventionist account of causation

Decision theory in general examines the rational principles guiding the
decisions that aim at the attainment of one’s goals. Causal decision theory
does so by taking one’s act’s consequences into account – rationally choosing
an option must be based on the available knowledge about the causal rela-
tions in the respective situation, so the argument goes. One of the principles
taken to be a measure for rationality is the option of maximizing the utility
of the outcome, i. e., by making the outcome equal or better than if one had
chosen a different alternative for action. Probabilities and utilities are used
to compute an act’s expected utility such that – as emphasized in causal
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decision theory – dependence between acts and outcomes are understood as
of causal (asymmetrical) character – contrary to a merely evidential theory
of decision making. A second principle of rationality dictates choosing the
course of action that is better, regardless of what the world is like. This
principle of dominance seems to be in conflict with the above-mentioned
principle of expected-utility maximization in the curious case of Newcomb’s
paradox.

Newcomb, Nozick, and a problem

Referring back to the physicist William Newcomb, who first formulated this
dilemma for decision theory, Robert Nozick elaborates on – as he calls it
– Newcomb’s problem, in which two principles of rational choice seemingly
conflict each other, at least in the numerous renditions in the vast literature
on this topic.1

In Newcomb’s problem some human-like agent plays a game against some
daemon predictor that influences the course of the game upon predicting his
opponent’s move. The agent may choose to take either one or two boxes in
front of him – either box 1 only or box 1 and 2 together. In doing so he has
no knowledge about the contents of the opaque box 1, but he can see one
thousand dollars lying in box 2. If the daemon predicts that the agent will
take only one box (i. e., box 1), he will put one million dollars in the opaque
box 1. The daemon will put nothing in box 1, though, if he foresees the agent
taking both boxes. The prediction is reliable, or as Nozick introduces the
predictor, “[o]ne might tell a longer story, but all this leads you to believe
that almost certainly this being’s prediction about [the agent’s] choice in the
situation to be discussed will be correct.”2 Moreover, the agent has perfect
knowledge of all these features of the decision game he finds himself in.3

The possible outcomes of the game are presented in table 1 where the rows
stand for the agent’s options, the columns partition the world in possible
states, and each cell contains the sum our agent receives upon choosing an

1Cf. Nozick (1969) for the original presentation of the paradox and Weirich (2008) for
an overview on various suggestions of how to solve the Newcomb case.

2Cf. (Nozick, 1969, p. 114).
3Note that for reasons of simplicity this presentation of the Newcomb game situation

slightly (but inessentially) differs from the way Nozick originally presents it in Nozick
(1969).
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action in some state of the world.

prediction: one-boxing prediction: two-boxing

take box 1 $ 1M $ 0

take box 1 and 2 $ 1M + $ 1T $ 1T

Table 1: Possible outcomes in Newcomb’s problem for the options of taking
box 1 only (taking boxes 1 and 2, respectively) and for correct and incorrect
predictions made by the daemon.

Now, what makes Newcomb’s case so problematic is the fact that the choice
of action seems to depend on the choice of the principle one applies in ratio-
nalizing the situation. Two principles seem to be concurring candidates in
reasoning about Newcomb’s problem, which – although unrealistic – seems
to trigger solid intuitions about the decision theoretic norms to be applied
here.4 The rationales of maximizing expected utility and of choosing domi-
nating options are defined in the following.

Definition 0.1 (Maximum Expected Utility Principle)5

Among those actions available to a person, he should perform an action with
maximal expected utility.
The expected utility EU (A) of an action A yielding the exclusive outcomes
O1, . . . , On with probabilities P (O1), . . . , P (On) and corresponding utilities
U(O1), . . . , U(On) is calculated by the weighted sum

n∑

i=1

P (Oi)× U(Oi).

Definition 0.2 (Dominance Principle)6

If there is a partition of world states such that, relative to it, action A weakly
dominates action B, then A should be performed rather than B.
Action A weakly dominates action B for person P iff, for each state of the

4
Nozick himself obviously put the story on the test bench: “I should add that I have

put this problem to a large number of people, both friends and students in class. To
almost everyone it is perfectly clear and obvious what should be done. The difficulty
is that theses people seem to divide almost evenly on the problem, with large numbers
thinking that the opposing half is just being silly.” – cf. (Nozick, 1969, p. 117).

5This definition is adapted from (Nozick, 1969, p. 118).
6This definition is adapted from (Nozick, 1969, p. 118).
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world, P either prefers the consequence of A to the consequence of B, or is
indifferent between the two consequences, and for some state of the world, P

prefers the consequence of A to the consequence of B.

Let us take ‘reliable’ (as ascribed to the daemon’s faculty of foreseeing
future events) at face value and compute the expected utility for the outcome
of each specific course of the game – the unit of the expected utility being
dollars in our case. Assuming a reliable daemon basically amounts to saying
that the act of taking one or both boxes and the prediction of this very act
are highly correlated such that acts in states of the world with incorrect
predictions receive a probability of 0, whereas matching acts and predictions
receive the probability of 1. Table 2 shows the expected utilities for all
four thinkable courses of the game with one option clearly to be preferred
over all others: The agent should take only the opaque box and can then
be certain of winning $ 1M, which clearly supercedes the alternatives as
maximum expected utility.

prediction: one-boxing prediction: two-boxing

take box 1 $ 1M $ 0

take box 1 and 2 $ 0 $ 1T

Table 2: Computing expected utilities in the case of a perfectly reliable pre-
diction yields the utility of $ 0 for all cells representing incorrect predictions.
Maximizing this expected utility amounts to choosing only box 1.

Pondering a different approach to maximizing the outcome of the game,
Nozick tweaks the story a little: The predictor did make his prediction
a week ago, and it is now the agent’s turn to make up his mind and take
either only the opaque box 1 or on top of that also the transparent second
box 2, which contains one thousand dollars openly visible to the agent. The
money is already there and will not be taken out of the boxes anymore after
the agent has made a decision. So, regardless of the daemon’s prediction,
adopting the principle of dominance forces the agent to take both boxes – he
will always end up with one thousand dollars more than if he had only taken
one box. Taking both boxes even strictly dominates the act of taking only
one box as can be read off table 1 by comparing an entry in the second line
to the entry in the first line within the same partition of the world’s states.

Obviously, the principle of maximizing expected utilities and the princi-
ple of dominance yield opposing recommendations to the deliberating agent.
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While standard evidential decision theory seems to lean towards one-boxing
(taking an agent’s act as a sign of what the prediction must have been), causal
decision theorists clearly position themselves on the side of two-boxing, re-
jecting backward causation and understanding the agent’s deliberate decision
as cutting any connection between act and prediction. This very idea of cut-
ting links by deliberately setting event variables to specific values has been
made mathematically precise in network models by, e. g., Peter Spirtes,
Clark Glymour, and Richard Scheines, and is most elaborately presented
in Judea Pearl’s “Causality” (2000): The concept of causally efficacious
control is formally understood as an intervention on a certain node in the
network, mathematically expressed as a transformation of the model, and
represented as a local surgery in the graph. When Pearl within this in-
terventionist account of causal reasoning discusses model-internal observed
acts and model-altering actions from outside, he also comes to reflect upon
the conceptual difficulties hidden in Newcomb’s problem:

The confusion between actions and acts has led to Newcomb’s paradox
(Nozick 1969) and other oddities in the so-called evidential decision
theory, which encourages decision makers to take into consideration
the evidence that an action would provide, if enacted. This bizarre the-
ory seems to have loomed from Jeffrey’s influential book The Logic of
Decision (Jeffrey 1965), in which actions are treated as ordinary events
(rather than interventions) and, accordingly, the effects of actions are
obtained through conditionalization rather than through a mechanism-
modifying operation like do(x).7

When Pearl goes on by comparing the maxims of evidential and causal
decision theory, he baldly comments in a footnote:

I purposely avoid the common title “causal decision theory” in order to
suppress even the slightest hint that any alternative, noncausal theory
can be used to guide decisions.8

To reconcile the dominance principle with the expected-utility principle –
and hence to dissolve the paradox in Newcomb’s case – has been the aim of
quite a few proposals, which nevertheless arrive at different conclusions.

7Cf. (Pearl, 2009, p. 108). Pearl’s do(·)-operator precisely does the job of setting
a variable X to a constant value x, thereby deactivating the functional relation between
this variable and its parents in the structure.

8Cf. (Pearl, 2009, p. 108, footnote 1).
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Conditionals and causal graphs

In A Theory of Conditionals (1968) Robert Stalnaker suggests a formal
framework for analyzing the truth of counterfactual statements (subjunctive
conditionals) quite similar to Lewis’ proposal sketched above – ‘If A, then B’
is assigned a truth value in accordance with the following informal condition:

Consider a possible world in which A is true, and which otherwise
differs minimally from the actual world. ‘If A, then B’ is true (false)
just in case B is true (false) in that possible world.9

The subjunctive connective ‘>’ is subsequently equipped with the more for-
mal semantical rules

A > B is true in α if B is true in f(A,α) and
A > B is false in α if B is false in f(A,α),

where α is a possible world, the base world, and β = f(A,α) represents
the selected world minimally differing from the actual world in which B

is evaluated (with f being the selection function operating on a suitable
similarity ordering of possible worlds).

Now, in his Letter to David Lewis (1972) Stalnaker suggests a way of
calculating expected utilities in the Newcomb problem that uses probabilities
of subjunctive conditionals instead of standard conditional probabilities.10

The expected utility of some action A would then be computed the following
way:

EU (A) =

n∑

i=1

P (A > Si)× U(A& Si),

where n signifies the amount of states S the world is partitioned into, i. e.,
n = 2 for the two possible predictions ‘one-boxing’ (i = 1) and ‘two-boxing’
(i = 2). As Stalnaker argues, the agent’s action does not cause the
daemon’s prediction made in the past, and hence the probability of the
conditional equals the probability of the prediction alone. But this sets all
probability terms in the sum formula above to equal values – the utilities can
just be read off the corresponding cells in table 1. Two-boxing’s expected
utility will always be greater then one-boxing’s expected utility. Following

9Cf. (Stalnaker, 1968, p. 169).
10Cf. for this and the following (Weirich, 2008, sect. 2.2).
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Robert Stalnaker’s suggestion of interpreting the involved probabilities
causally, the maximization of expected utility and the dominance principle
recommend taking the same action: two-boxing.

Applying causal decision theory to Newcomb’s problem has been criti-
cized by many authors – mainly because it yields the counter-intuitive rec-
ommendation of taking both boxes, which nevertheless remains as the only
rationally explained choice given the circumstances of Newcomb’s problem
with decisions screening off acts from any previous events, as causal decision
theorists claim. In his seminal book The Foundations of Causal Decision
Theory James Joyce clearly states his position on the issue:

When the evidential and the causal import of actions diverge [. . . ], the
evidential theory tells decision makers to put the pursuit of good news
ahead of the pursuit of good results. Many philosophers, I among them,
see this as a mistake. Rational agents choose acts on the basis of their
causal efficacy, not their auspiciousness; they act to bring about good
results even when doing so might betoken bad news.11

While, e. g., David Lewis and Brian Skyrms in their accounts mark at-
tainable situations by building causal information into states of the world
and thereby reconcile the above otherwise diverging principles of rational
choice in the recommendation of two-boxing, Ellery Eells in his consid-
erations arrives at the same conclusion without drawing on the notion of
causality. He claims that mere reflection on the available evidence will force
the agent to rationally go for both boxes – even more direct without the re-
course to any causal theory. Quite in this line of reasoning Richard Jeffrey

also eliminates any hint of a causal nexus between the events in Newcomb’s
problem for the sake of a less metaphysically charged analysis. Pondering
the Newcomb case Jeffrey seems to oscillate between one-boxing and two-
boxing to later arrive at the conclusion that the story, presented this way, is
a somehow illegitimate decision problem with the freely deliberating agent
not capable of freeing his decision from being correlated with the predictor’s
prediction.12 Terry Horgan and Paul Horwich take the Newcomb plot
at face value and promote one-boxing, simply because one-boxers ultimately
take more money home, as the story is told. Paul Weirich diagnoses dryly:
“The main rationale for one-boxing is that one-boxers fare better than do
two-boxers. Causal decision theorists respond that Newcomb’s problem is

11Cf. (Joyce, 1999, p. 146).
12Cf. e. g. Joyce (2007).
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an unusual case that rewards irrationality. One-boxing is irrational even if
one-boxers prosper.”13

Having developed his ranking theory as a tool for epistemology and causal
analysis,14 Wolfgang Spohn positions himself on the side of causal (vs. ev-
idential) decision theory and had been a strong advocate of two-boxing for
a long time before he started “Reversing 30 Years of Discussion” by pre-
senting an elaborate argumentation “Why Causal Decision Theorists Should
One-Box.”15 Spohn’s primal commitment can be found in the title of his
paper “Bayesian nets are all there is to causal dependence” (2000). In such
Bayes net causal models (generic) events are encoded as random variables
and graphically represented by single nodes. A node X is connected to
its parents by a set of directed edges, which jointly mark the causal mech-
anism responsible for bringing about some specific value x. In Pearl’s
framework these mechanisms are defined as deterministic functions poten-
tially also computing some disturbance variable as an argument to represent
(observational) uncertainty in the model. The Markov compatibility of the
graph and the corresponding probabilistic model can in causal terms be in-
terpreted as causal Markov condition: Causes screen off their direct effects
particularly from prior influences and more generally from changes in any
other event that is represented as a non-descendant in the graphical rendi-
tion (when the graph encodes precisely the perceived causal independencies
of the modeled situation).

Now, figure 1 illustrates the golden thread in Spohn’s chain of reasoning in
the Newcomb case. Time evolves from top to bottom in all three Bayes net
diagrams. The left diagram (i) shows the standard rendition used by causal
decision theorists for the analysis of the paradox – this mutilated causal graph
contains the node P representing the daemon’s prediction as the first event
in time before action node B (representing the agent taking one or two
boxes) and the bottom node M (for monetary outcome). The diagram is
mutilated quite in agreement with Pearl’s interventionist framework: The
hypothetical local surgery, i. e., the intervention on B, prunes any arrows
possibly pointing towards B, thereby freeing this node from the influence
of any other node in the model and making the corresponding variable an
exogenous one. The course of action can now be chosen on the basis of

13Cf. (Weirich, 2008, sect. 2.5).
14Cf. Spohn: Ranking Theory (forthcoming).
15The quotations here refer to the title of Spohn (ming).
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Figure 1: Wolfgang Spohn discusses the usual manipulated (mutilated)
causal graph (i) employed by causal decision theorists for the analysis of
the Newcomb problem, the decision graph (ii) for the same situation, and
the reflexive decision graph (iii) augmented by the decision node B∗.

this decision graph, in which the wiggled variable is graphically represented
by the square node. This rendition follows the two decision theoretic prin-
ciples highlighted by Spohn in this context: “acts are exogenous” and –
derived from the first – “no probabilities for acts.” Of course, Spohn’s acts
have to be interpreted as Pearl’s actions (i. e., acts in mutilated models).
Whatever the connection between nodes P and B might have been in some
graphical rendition of the original causal relations understood as represent-
ing the Newcomb plot (e. g., with P as a direct cause of B), graph (i) in
figure 1 represents the variables’ dependencies once the agent deliberately
takes action. P and B are d-separated (by the collider in P → M ← B),
which makes the choice of taking both boxes rational – whatever has been
put into the boxes (based upon the prediction early in the game) will not
become less by choosing either one or, alternatively, two boxes (later in the
game). Spohn declares himself dissatisfied with this analysis and brings up
the mind-bugging questions about the reliability of the daemon, again:

What about the remarkable success of the predictor that suggests that
given you one-box it is very likely that she will have predicted that you
will one-box, and likewise for two-boxing? How do [these considera-
tions] enter the picture? They don’t. [Causal decision theorists] do not
deny them, but they take great pains to explain that they are not the
ones to be used in practical deliberation calculating expected utilities;
and they diverge in how exactly to conceive of the subjective probabili-
ties to be used instead.16

16Cf. (Spohn, ming, p. 4).
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If the causal graph contained one more arrow from B to P , making the
agent’s action a direct cause of the daemon’s prediction (as illustrated in
figure 1, diagram (ii)), we would inevitably introduce backward causation
into the analysis. Spohn wants to avoid this but interprets graph (ii) as
the decision-guiding pattern which the agent uses to choose between alterna-
tive actions – in Spohn’s terms: the ordinary decision graph for Newcomb’s
problem. How are the causal relations laid out, however? If neither the pre-
diction causes the agent’s act nor this act can cause the daemon’s prediction,
we have to infer the existence of an earlier third event as a common cause of
both P and B – quite in accordance with Reichenbach’s Common Cause
Principle. Spohn’s straightforward suggestion is to understand the decision
situation the agent finds himself in as the common cause in question. This
decision situation B∗ (as introduced into graph (iii) in figure 1) might con-
sist of all the agent’s beliefs, prior knowledge, or rational principles the agent
may not even be aware of (the daemon is, however) but which he will with-
out fail employ in deciding about his strategy B when standing before the
two boxes. In particular, B∗ also contains the full ordinary decision-guiding
pattern (ii), which makes graph (iii) a reflexive decision graph containing
a reduced version of itself.17 Making this move, Spohn openly rejects the
“acts are exogenous” principle. An agent’s strategic deliberation about alter-
native courses of action does not decouple the act from past or future events
– he might, quite on the contrary, make his deliberations depend on (i. e.,
graphically speaking, link them to) predecessor nodes in the diagram. He
might, on top of that, also be aware of the probabilities of different actions
he may choose from, knowing what he usually does or intentionally avoids
in normal cases etc. There might be probabilities for the agent’s act, after
all. Querying Spohn’s reflexive decision graph on the ground of all these
considerations ultimately yields the recommendation of one-boxing – after
reflecting on the current situation (in B∗), the rational agent must come to
the unequivocal conclusion that deciding to one-box and acting accordingly
simply maximizes the utility of his act B.

Let us compare Spohn’s analysis with Pearl’s causal maxims, once
more. The ordinary decision graph (as displayed in figure 1.ii) fully complies
with what Pearl would devise for strategic reasoning, i. e., a graph that
simulates possible outcomes of hypothetical interventions. Setting B tells us
the value of M . B is an exogenous variable such that the “acts are exogenous”

17
Spohn gives clear rules for the step-wise reduction of a reflexive decision graph to its

ordinary counterpart possibly containing backward links – cf. (Spohn, ming, sect. 3).
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principle is adhered to – act and action amount to the same consequence in
this case. The evidential and the causal approach perfectly concord in this
diagram, were it not for the directed backward edge B → P . This is the
reason for Pearl to think directly in terms of the mutilated graph (given in
figure 1.i) and for Spohn to call diagram 1.ii not causal but reduced, ordinary
decision graph. In the further step of construing the reflexive decision graph
1.iii, Spohn must reject the “acts are exogenous” principle and convincingly
argues for his case: The hypothetical intervention on the variable B must not
be performed within the reflexive decision graph. This graph makes explicit
what it means for the agent to be rational, i. e., he acts on his knowledge,
principles, and rational considerations given in B∗. Pruning the link B∗

→ B

would make the agent plainly irrational and ignorant of his own situation,
since the deliberation process is pushed into the model.

Technical answers to questions about how to properly reduce reflexive
decision graphs to their ordinary, structural counterparts can all be found
in Spohn’s explications. Conceptual questions remain, however. Firstly,
the introduction of a common cause for B and P essentially adds to the
Newcomb’s story the idea of being (perhaps physically determinately) pre-
disposed. In a way, this metaphysically overloads the already artificially
construed plot with another element just by drawing on Reichenbach’s
principle of the common cause. Moreover, it forces Spohn to set apart the
agent’s inclinations to take certain actions from the acts themselves. Deci-
sion making in the game is consequently re-interpreted as only discovering
one’s previously fixed inclinations (where discovery is not something brought
about actively, e. g., such that it would manifest itself in hypothetical test
interventions, but simply a feature of persistent rationality becoming evi-
dent). This rendition seems very far from the much more intuitive interven-
tionist framework, which merely requires the agent to bear a confined mini
laboratory in his head and turn the knobs therein – knowledge about the
mechanisms will yield unique virtual outcomes and guide decision making.
Nevertheless, Spohn’s complex reflexive decision graph does rest in its core
on the very simple ordinary reduced decision graph (figure 1.ii) to which the
whole burden of explanation is shifted, which shall be looked at more closely
in the following. What can be the content of this reduced graph, after all?
If the link B → P is dismissed as causal relation, of what nature can it be?
If it, on the other hand, does stand for some hidden causal connection and
is dismissed as backward causation, it must represent a causal link through
some obscure common cause. If this common parent node of both P and B is
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the decision situation again – just as in the reflexive graph on the meta level
– analysis enters an infinite regress at this point. Only the interventionist
approach could prevent this from happening by pruning B → P , but then
this would already apply on the upper level in the reflexive decision graph
and conflict with Spohn’s final conclusion. If the supposed common cause
in figure 1.ii is interpreted as some irreducible obscure past event or state
whose existence just has to be acknowledged and whose link to B shall not
be interrupted, then how would it be possible to perform hypothetical test
interventions on this very node to virtually maximize the outcome? If reflect-
ing on this graph ultimately comes down to just observing the propagation
of values, then, one has to conclude, Spohn’s suggestion is constrained to
stay within evidential reasoning.

The concepts involved

As with all paradoxes, the concepts involved must be explicated as precisely
as possible to do away with any sources of confusion and to fix the premises
prior to the systematic treatment. In the Newcomb case causation, decision,
and prediction take center stage – a closer look at these concepts is in or-
der. Causal relations, taken to be directed in accordance with time, shall be
understood as encodable and storable in Bayes net causal models as devised
by Spirtes et al. (2000) or Pearl (2000). These models structure stable and
deterministic dependencies as perceived by the modeler or given in the data
(once observational noise is recognized as such). Pearl’s causal models
moreover compactly represent a set of counterfactual situations by allowing
for hypothetical local interventions on certain variables in the structure – as
structured bodies of knowledge they can be used for communicative purposes
and facilitate explanation, instruction, and prediction. The decision-maker
takes all available data into account, she has knowledge of all causally rele-
vant information, i. e., of the full model with all dependencies. Hypothetical
interventions on action variables in the model will yield predictions about
potential outcomes such that decision-making is finally guided by comput-
ing and optimizing outcome values (in a maximum utility approach). The
prediction (computation) of outcomes by the pondering agent is to be distin-
guished from the kind of prediction the daemon performs as a move within
the game situation. In accordance with intuition and our use of language,
the daemon’s miraculous faculty has to do with knowing or learning things
by seeing into the future. This concept of prediction seems bi-directional,
as the content of the prediction and the predicted event stand in close re-
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lation. Knowing one makes the other inferable.18 It is worth noting that
the accuracy (i. e., the degree of reliability) of the daemon’s prediction does
not decide between the evidential and the causal approach: CDT argues for
2-boxing on the basis of independence assumptions. And EDT will prefer
1-boxing over 2-boxing down to the low predictive accuracy of .5005 – close
to exchanging prediction for a coin toss. The paradox is much rather about
the principles that guide decision-making, the use of language, and our in-
tuitions about the concepts involved.19 Now, if we actually wanted to base
our strategy on causal knowledge, we arrive at the central question of this
paper: If it does neither seem right to say that the prediction causes the
predicted event, nor that the predicted event causes the prediction (through
some backward connection), how could the concept of prediction (as part of
the game situation) be suitably accommodated in a causal model to guide
decision-making?

Hybrid causal models

What is needed for the integration of a prediction link into standard causal
models is the introduction of a new type of edge – a non-directed, non-
causal but rather informational link, capable of propagating information
instantaneously, and moreover not to be deactivated by any means. This
link should work like synonyms, mathematical inter-definitions, or logical
relations (which certainly all belong to the pool of knowledge we use for
decision-making). In standard statistical modeling prediction event and pre-
dicted event would be collapsed into one single variable (node, respectively).
In philosophical context we would like to disambiguate conceptually, and in
the causal model the temporal distance between prediction and predicted
event should find its expression. Consequently, the final model ought to
contain two distinct nodes and mark these nodes as tightly functionally de-
pendent.

18In this characterization prediction works much like a quotation relation.
19Some people (even advocates of causal decision theory) argue that it makes a signif-

icant difference if the story is told in deterministic terms (with a fully reliable predictor)
or with indeterministically inaccurate predictions. Nozick (1969) comments critically:

[Do these people] really wish to argue that if [they know] the prediction
will be correct, [they] will take only the second, but that if [they know the
prediction] will be wrong once in every 20 billion cases, [they] will take what
is in both boxes? Could the difference between one in n, and none in n, for
arbitrarily large finite n, make this difference?
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When Judea Pearl writes about the principles of encoding causal relations
in formal models, he notes:20

The ability to represent functional dependencies would be a powerful ex-
tension from the point of view of the designer. These dependencies may
easily be represented by the introduction of deterministic nodes which
would correspond to the deterministic variables. Graphs which con-
tain deterministic nodes represent more information than d-separation
is able to extract; but a simple extension of d-separation, called D-
separation, is both sound and complete with respect to the input list
under both probabilistic inference and graphoid inference.

So, in addition to directed edges representing the components of causal mech-
anisms in the graph we straightforwardly introduce a type of non-directional,
informational link – which shall be called Epistemic Contour (EC) to un-
derline its intensional nature. For the purpose of this paper we shall restrict
ourselves to introducing a single EC, described by a 1-1 function, that will
be tested only by atomic interventions in the model. Integrating such an
epistemic contour in the causal model turns this into a model of hybrid
knowledge, i. e., a rich structure of directed and undirected relations, in
short: Causal Knowledge Pattern (CKP).21

Prediction is a matter of knowledge

What the backward link B → P in graph 1.ii can possible mean shall in the
following be made explicit within a very simple causal knowledge pattern,
thereby ideally revealing more about the nature of the paradox and hope-
fully illuminating some more features of how we reason with (non-)causal
knowledge. The CKP in figure 2 traces the story of Newcomb’s problem by
only referring to the events that actually are in the narration. The problem
is not treated by tweaking the story but by choosing a framework fit to ac-
commodate all relevant concepts.

20Cf. Verma and Pearl (1988), where d-separation is introduced as a means to discover
independencies in the graph.

21Since context always disambiguates whether ‘epistemic contour’ or ‘EC’ refers to the
functional description or its graphical representation, I will use the term for either. The
alert reader will have noticed that the introduction of an undirected EC in DAG models
will in general render those cyclic and non-Markovian. For the present case this does
not pose problems – inference from the CKP proposed below will be computationally
straightforward. To make CKPs in general useful for consistent computation, I elsewhere
lay out principles of design and inference for a CKP framework.
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Figure 2: Newcomb’s problem with the act of taking one or two boxes (B)
deterministically connected to the daemon’s reliable prediction (P1) by an
epistemic contour (c) in this causal knowledge pattern.

Our human-like agent deliberates about the situation he finds himself in and
decides what to do (D), namely if he takes one box or both boxes (B). The
daemon predicts what the agent will do (P1) and prepares the boxes accord-
ingly (P2). The monetary outcome (M) should finally reward the rational
agent. Time evolves from top to bottom in the diagram.22 The vertical posi-
tioning of P2 is inessential for the analysis of the situation (P2 could as well
come after B if the game is set up in a way that the agent only writes down
his choice on a sheet of paper secretly in step B). The daemon’s prediction
together with its reliability is interpreted in this causal knowledge pattern
as an undirected 1-1 relationship. Neither would we say that the agent’s
act genuinely causes the prediction of this very act, nor does it sound right
to say the prediction causes the predicted event.23 But there is more in the
pattern: B is not directly linked to the daemon’s preparation of the boxes P2

– this connection is mediated by the prediction P1, which has direct causal
influence on P2 in turn. This is quite in agreement with Spohn’s analysis
that the causal structure of the Newcomb problem should exhibit some node
previous to both players’ acts in the game that at the same time takes care
of the bidirectional transfer of belief. P1 and P2 are separated in the causal
knowledge pattern for this very reason. On the other side, D (the human-like
agent’s decision situation) and B (his concrete move in the game – either

22Note that this diagram graphically reverses Spohn’s rendition where time evolves
from bottom to top.

23Moreover, as is argued here, drawing on Reichenbach’s Common Cause Principle

for an explication of ‘prediction’ is precisely a source of counter-intuitive inference.
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taking one or both boxes) are separated, as well, to disentangle conceptu-
ally what it means for the agent to spontaneously and possibly unforeseenly
change his mind. This is a much-discussed issue in the literature and does
pose additional problems if the modeling allows for the agent changing his
mind and the daemon’s prediction referring to the ‘wrong’ decision. Not so
in the suggested causal knowledge pattern, which links the prediction P1 to
the agent’s final act B however often he may have made up or changed his
mind before actually taking only one or, after all, both boxes. In other words,
pondering courses of action must focus on B bearing the whole burden of
explanation in the process of finding the best strategy for the maximization
of the outcome. This is exactly as Nozick tells the story.

The modeling does not draw on the insertion of backward links that would
signify backward causal flow. Nevertheless, information is transferred back
in time along the epistemic contour c, thereby formally grasping the very
meaning of ‘prediction.’ c will not get cut off by any local surgery of the
graph. By suitably applying hypothetical test interventions the following
contents can be read off the causal knowledge pattern – quite in accordance
with intuition:

• The agent’s decision (D) causes his act (B) – in general: any causal
history of B naturally influences the agent’s act causally;

• the agent’s decision (D) is also interpreted as causing the daemon’s
peculiar prediction (P1) and thereby also as causing the daemon’s par-
ticular move in the game (P2);

• intuition also conforms with the claim that the agent’s taking one or
two boxes (B) causes his antagonist’s preparation of the boxes – the
predictor reacts to (B), after all;

• nevertheless, the agent’s act (B) does not cause its own peculiar pre-
diction (P1) but determines it uniquely and – looking at the pattern
from above – simultaneously though backwards through time.

Now, especially the last point reveals the core of the paradox and local-
izes the difficulties in reasoning about the causal relations involved. Any
attempt of solving the artificial plot of Newcomb’s problem hinges on the
question how to embed the concept of reliably predicting future events into
the formal analysis (if such an analysis is not denied in the first place exactly
because of the fictional character of the narration). The causal knowledge
pattern above presents the prediction as the very thing it is – an image
of the agent’s act. Backward links are excluded from this rendition while
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querying the pattern does yield indirect causal claims referring back across
time. This interpretation would of course not stand physically ontologically
based scrutiny, but it conforms with our concepts of prediction (of future
events) and reaction (to facts just learned of). How pieces of knowledge
are organized and beliefs propagated is shown in the causal knowledge pat-
tern devised here. Obviously, the “acts are exogenous” principle insisted
on by Judea Pearl is relativized in applying causal knowledge patterns to
problems of decision theory. The epistemic contour c is not deactivated by
intervening on B, while the one directed edge D → B is removed by the ex-
ternal action do(B = b) – quite in Pearl’s sense B and P1 become “jointly
exogenous”. To sort the terms involved here: The act B becomes exogenous
by virtue of the action do(B = b), which is itself external.24 If the prediction
of events is formalized within a model (a causal knowledge pattern, respec-
tively), foreseeing acts can be made explicit, while foreseeing actions cannot
be given graphical expression. Reflecting on the Newcomb situation and per-
forming hypothetical manipulations on the basis of integrating causal and
non-causal knowledge finally guides the agent (who is aware of the setting)
towards the correct decision. Resorting to reflexiveness is not necessary for
virtually maximizing the outcome. The conclusion must be one-boxing.

As a last remark in this part on causal decision theory, David Lewis

shall be mentioned here once more. He examines another paradoxical puzzle
of strategic thinking and finds in 1979 that the “Prisoners’ Dilemma Is a
Newcomb Problem”, too.25 The story in this particular dilemma shall be
outlined briefly. Two suspects are caught by the police, that do not have
sufficient evidence for conviction and therefore question the prisoners sepa-
rately and (also separately) promise immediate release if the prisoners betray
the respective other prisoner by confessing. However, if both confess, each
serves a sentence of three months – in case both remain silent, each serves
one month. Table 3 summarizes the situation compactly. If prisoner A ap-
plied the principle of dominance to his situation, he would of course confess,
thereby always being off better than if he remained silent. If both prisoners
think alike in this respect, however, they will be doomed to a sentence of
another three months in prison. This is what makes the situation a strate-
gic dilemma: Attributing the same (degree of) rationality to both prisoners
does not entail the best outcome. If they include in their deliberations the

24For clarification: exogenous remains a model-internal property of nodes (i. e., vari-
ables, respectively), whereas external marks transformations of causal structures.

25The quotation refers to the title of Lewis (1979).
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ascription of like-mindedness to their fellow inmate, both of them should
remain silent. If this ascription is reliable enough (or even deterministically
certain), e. g., because of some commitment to the same gang code, then
the prediction in Newcomb’s problem and this theoretical simulation (the
ascription) in the prisoners’ dilemma essentially amount to the same thing –
“[i]nessential trappings aside, Prisoners’ Dilemma is a version of Newcomb’s
Problem, quod erat demonstrandum.”26

B stays silent B confesses

A stays silent Each serves 1 m A serves 1 y, B goes free

A confesses A goes free, B serves 1 y Each serves 3 m

Table 3: Each of the prisoners could go free or serve a sentence of one month,
three months, or a year – depending on their strategic decisions.

A common causal knowledge pattern might be used to capture all (non-)
causal relations as in the above rendition of Newcomb’s problem – quite
naturally and without introducing further metaphysical assumptions about
possible background variables. In fact, tilting the time axis in figure 2 by
90 degrees (such that time evolves from left to right) yields the skeleton of
the prisoners’ plot (of course, D and P2 are particular ingredients of New-
comb’s problem and inessential for the current examination). c represents
the mutual ascription of like-mindedness of both prisoners, who must decide
to cooperate during their simultaneous (but separate) questioning to achieve
the joint best result. May the Newcomb case be some fictional construc-
tion, Lewis makes the case for analyzing the prediction of future events and
the ascription of like-mindedness to one’s antagonist in terms of the same
underlying pattern:

Some have fended off the lessons of Newcomb’s Problem by saying: “Let
us not have, or let us not rely on, any intuitions about what is ratio-
nal in goofball cases so unlike the decision problems of real life.” But
Prisoners’ Dilemmas are deplorably common in real life. They are the
most down-to-earth versions of Newcomb’s Problem now available.27

26Cf. (Lewis, 1979, p. 239).
27This final quotation borrows the concluding paragraph from (Lewis, 1979, p. 240).

I agree with Lewis on the point that situations of strategic deliberations of the kind
exemplified here are “the most down-to-earth versions of Newcomb’s Problem” – because
there is nothing more to know than already said – in contrast to cases of so-called medical

Newcomb problems where research might in most cases yield additional information and
knowledge about true common causes whose influence would indeed be rendered void by
free deliberation/active intervention.
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