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We present the Context Maintenance and Retrieval (CMR) model of memory search, a gener-
alized version of the temporal context model (TCM) of Howard and Kahana (2002a), which
proposes that memory search is driven by an internally maintained context representation com-
posed of stimulus-related and source-related features. In the CMR model, organizational ef-
fects (the tendency for related items to cluster during the recall sequence) arise as a conse-
quence of associations between active context elements and features of the studied material.
Semantic clustering is due to longstanding context-to-item associations, whereas temporal
clustering and source clustering are both due to associations formed during the study episode.
A behavioral investigation of the three forms of organization provides data to constrain the
CMR model, revealing interactions between the organizational factors. Finally, we discuss the
implications of CMR for our understanding of a broad class of episodic memory phenomena,
and suggest ways in which this theory may guide our exploration of the neural correlates of
memory search.
Keywords: context; organization theory; source; encoding task; computational model.

The free-recall paradigm has had an important role in the
development of theories of memory search, and research in
this domain has tended to follow two threads. The first deals
with organization; the free-recall paradigm reveals structure
and organization in memory through the ways items tend
to cluster in recall sequences (for a review see Puff, 1979).
When items are recalled successively, it indicates that they
are somehow related or structurally connected in the mem-
ory system. The second thread deals more directly with the
memorability or availability of individual items in memory,
often in terms of the sort of processing the item received.
In these studies theoretical attention focuses on whether par-
ticular items were recalled, and not on the order of those
recalls. These studies have dominated the recent literature,
and tend to employ a variant of the free-recall paradigm de-
signed to minimize organizational influences, through the
use of a single trial and randomly chosen items (Battig &
Bellezza, 1979). However, recent work has shown that even
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in the single-trial free-recall paradigm, one can see substan-
tial and reliable organizational influences, both in terms of
the temporal contiguity of successively recalled items (Ka-
hana, 1996) and in terms of the semantic relatedness of the
studied items (Howard & Kahana, 2002b).

Models of the free-recall paradigm have tended to ig-
nore order information as a simplifying assumption (Brown,
Neath, & Chater, 2007; Wixted & Rohrer, 1993). However,
a recent trend in the modeling literature has brought these
organizational principles to center stage. The temporal con-
text model (TCM) of Howard and Kahana (2002a) is a for-
mal computational model of the human memory system de-
signed to explain the phenomena of temporal organization.
By this model, a slowly changing internal context represen-
tation is associated with each of the studied items, and is
then used to guide memory search. TCM is a model of the
interactions between context and content, but it lacks the ma-
chinery to explain the important role of non-temporal factors
in memory retrieval, such as semantic and source informa-
tion (e.g., Howard & Kahana, 2002b; Hintzman, Block, &
Inskeep, 1972). We generalize TCM to model the seman-
tic similarity relations between words, as well as the influ-
ence of source context on the recall process. We refer to this
generalized model as the Context Maintenance and Retrieval
(CMR) model. According to the CMR model, the most obvi-
ous behavioral manifestation of organization is the clustering
of recalled items along a dimension of similarity. This simi-
larity may arise due to the longstanding associative relations
between studied items (giving rise to semantic organization),
or due to the similarity structure of an internal context repre-
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sentation that is associated with the studied items during the
learning episode (giving rise to episodic clustering). A fine-
grained analysis of clustering behavior reveals the structure
of the representations in the memory system, and provides
insights into the dynamics of memory search. Before de-
scribing the machinery of CMR, we first review a range of
organizational phenomena in the human memory literature.

Clustering and the organization of memory

Early studies of organization focused on clustering by the
semantic category of the words (Bousfield & Sedgewick,
1944; Bousfield, 1953; Cofer, Bruce, & Reicher, 1966).
While these early studies focused on the clustering of words
drawn from taxonomic categories, even the weaker associa-
tions between randomly chosen words influence the output
order of recalled items (Howard & Kahana, 2002b). These
studies characterize semantic clustering related to the long-
standing associations between words.

Kahana (1996), in reanalyzing a number of classic free-
recall studies, showed that temporal clustering seems to be a
ubiquitous property of the recall sequences (see also Kahana,
Howard, & Polyn, 2008). This form of episodic clustering is
perhaps best exemplified by the contiguity effect, the obser-
vation that items studied in neighboring list positions tend
to be reported successively during the recall period, regard-
less of their degree of semantic association (Kahana, 1996).
Kahana (1996) introduced a conditional response probabil-
ity analysis as a function of lag (or lag-CRP) to show that
the probability of successively recalling two items falls off
smoothly as the temporal distance (lag) between them in-
creases (see also Howard & Kahana, 1999; Ward, Wood-
ward, Stevens, & Stinson, 2003; Hulme, Stuart, Brown, &
Morin, 2003; Unsworth, in press; Lewandowsky, Brown, &
Thomas, submitted). Below, we will look closer at this phe-
nomenon including at a recently characterized tendency to
recall temporally distant items early in the recall sequence
(Farrell & Lewandowsky, in press).

Another form of episodic clustering is observed based
upon associations between the studied items and their source
characteristics. The earliest observations of source cluster-
ing arose from within-list manipulations of the modality of
the studied word (auditory or visual). Murdock and Walker
(1969) showed that along with the superior recall of the
auditory items, words associated with each modality clus-
tered together during the recall sequence (see also Hintzman
et al., 1972). Following the demonstration of organization
by modality, researchers found that a number of associated
source characteristics could induce clustering in the free-
recall paradigm. These include similarities in shape or ori-
entation of a picture of an item (Frost, 1971), the gender of
the presenter’s voice, the typeface of the word (Hintzman et
al., 1972; Nilsson, 1974), and the spatial location of a word
on a screen (Curiel & Radvansky, 1998).

Just as participants may organize material according to ex-
ternal source features, a similar kind of organization might
be expected based on similarity in internal representations
activated during processing (i.e., internal source features).

For example, Cohen, Dunbar, and McClelland (1990) pro-
posed that different processing tasks have distinct task repre-
sentations that guide the cognitive system to flexibly process
incoming stimuli in accordance with task demands. In the
Stroop task, a task representation for “color naming” would
allow one to name the color of ink a word was written in,
instead of reading the text of the word. The idea that task is
part of context in memory has been advanced by a number of
researchers to explain a diverse array of cognitive phenom-
ena (e.g., Kolers & Ostry, 1974; Kolers & Roediger, 1984;
Braver et al., 2001; Botvinick & Plaut, 2002). If internal task
representations are associated with the features of items that
are studied in their context, one would expect to observe clus-
tering by orienting task during memory search for the studied
items. Polyn (2005) reported direct evidence for organization
by internal source features in a continuous-distraction free-
recall paradigm (see also Polyn, Norman, & Kahana, Sub-
mitted), in which each studied item was encoded with one
of two orienting tasks (a size judgment and a pleasantness
judgment). In lists where half of the items were studied with
each task, task clustering was observed during recall.

Although these distinct forms of clustering have been
studied in separate experiments, it is easy to show that any
free-recall paradigm will give rise to multiple forms of clus-
tering. However, little is known about how different forms
of clustering interact during recall. The CMR model is de-
signed to explain simultaneous organization by multiple fac-
tors (semantic, temporal, and source), and suggests that two
principles can explain clustering behavior in the free-recall
paradigm: First, the principle of clustering by similarity
states that clustering along a dimension of similarity arises
when items are associated with similar contextual states, be-
cause the recall process is driven by the current state of the
context representation. Second, the principle of clustering
by isolation states that a sudden shift in context (caused by a
disruptive cognitive event) can isolate a set of items from the
items studied prior to the disruptive event. This causes the
isolated items to cluster together in the recall sequence (rel-
ative to a condition without such a disruptive event). Here,
we explore the possibility that such a disruptive context shift
can be triggered by the detection of a sufficiently novel repre-
sentation (e.g., a change in orienting task causing a new task
representation to become active).

The idea that novelty is treated specially by the system
has been used in a number of models of human memory. One
prominent example arises from the work of Donchin and col-
leagues (Karis, Fabiani, & Donchin, 1984; Donchin & Coles,
1988; Fabiani & Donchin, 1995), who proposed that a con-
text updating process is engaged whenever one encounters an
item that mismatches previous items on some salient dimen-
sion, and used this theory to explain distinctiveness effects
in free recall. Similar mechanisms have been proposed to
explain distinctiveness effects (as well as the primacy effect)
in serial recall (Lewandowsky & Farrell, in press; Farrell &
Lewandowsky, 2002; Brown, Preece, & Hulme, 2000). Re-
cently, Sahakyan and Kelley (2002) showed that if a period
of elaborative mental activity (e.g., imagine what you would
do if you were invisible) is inserted between two studied lists,
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one observes both a cost to memorability of the material stud-
ied prior to the elaborative activity as well as a benefit to the
memorability of material studied after the activity. It is quite
possible that performing this novel task disrupted temporal
context, making the items studied in the first list less acces-
sible, and also reducing the degree of interference between
these items and the items in the second list. This hypothesis
is quite consistent with their contention that the elaborative
activity causes a shift in inner mental context, and that a mis-
match between inner mental context during retrieval and in-
ner mental context during study reduces accessibility of the
studied material.1

The spotlights of memory

The CMR model proposes that the process of memory
search is driven by a set of internally maintained context rep-
resentations that are used to probe associative weights in or-
der to reactivate the features of studied items. Each main-
tained context representation plays the role of a spotlight,
sweeping across a stage on which a set of items have been
placed (Figure 1). For this example, imagine that some of
the items have been studied with source A, and others with
source B. The strength of the context representation deter-
mines the overall intensity of the spotlight, and the set of
associative links to the item features determines the inten-
sity with which it illuminates any one item. The intensity
with which each item is illuminated directly influences its
likelihood of being recalled in a competition where all of the
items compete in parallel to have their features reinstated in
the system. The specific item recalled brings with it retrieved
context which alters the context representation (shifting the
spotlights), and another recall competition ensues. In other
words, while the recall process is fundamentally parallel, the
full recall period comprises a series of these recall compe-
titions. Recall in the CMR model is perhaps best described
as an iterative parallel process, where the result of each recall
competition affects the course of the subsequent competition.

Figure 1 contains two spotlights, one for temporal con-
text (illuminating items studied nearby in time, and weak-
ening with temporal distance), and one for source context
(illuminating items studied with the same source). The set
of items illuminated by each spotlight depends on its current
state (i.e., the currently active context representation). If the
source context representation A is active, then items studied
with source A are illuminated. The state of the context repre-
sentation is determined in part by the context retrieved by the
most recently recalled item. If an item studied with source B
is recalled, then the source context spotlight will shift to illu-
minate source B items. Clustering occurs when a spotlight is
trained on a particular set of items for more than one recall
attempt. Recalled items trigger the retrieval of associated
temporal and source information, which keeps the spotlights
trained on items studied in a similar temporal context and
source context. This raises the likelihood that the next re-
called item will be from a nearby list position (giving rise to
temporal clustering) or from the same source (giving rise to
source clustering). As recall proceeds, context reinstatement

from retrieved items causes the spotlights to sweep over the
list, until time runs out or no more items can be retrieved.

The item information activated in temporal context con-
currently illuminates the semantic associates of the studied
items, due to the longstanding associations connecting the
context features to semantically related items (this aspect of
the spotlights is not graphically represented in Fig. 1, but
receives further attention below). The spotlight metaphor is
useful for gaining an intuition regarding the associative basis
of clustering in the CMR model. Below we discuss how a
second mechanism (novelty-related context disruption) may
produce clustering as well.

Precis

Memory search in free recall is best understood as a multi-
ply constrained process; the probability of recalling an item,
and the order with which items are recalled, are simultane-
ously influenced by semantic, temporal, and source informa-
tion. In the following sections, we present simulations of a
set of experiments using the immediate free-recall paradigm.
First, we examine the results of a new experiment in which
we manipulate the source context associated with studied
items within list (details of this paradigm are provided in Ap-
pendix A). Then we examine the results of two classic stud-
ies of free recall, reported by Murdock (1962) and Murdock
and Okada (1970). The model accounts for the benchmark
results described by these studies, regarding how the shape
of the serial position curve changes with list length, and the
exponential growth of inter-response times during recall. It
also provides a natural framework for understanding the mul-
tiple organizational influences giving rise to clustering during
memory search.
• We begin with a description of the components and pro-

cesses of the CMR model, detailing how semantic, temporal,
and source information simultaneously influence recall dy-
namics. This is followed by four Simulation analyses, which
examine the dynamics of the model across three free-recall
paradigms.
• Simulation analysis I examines the simultaneous orga-

nization of memory search along semantic, temporal, and
source dimensions, by examining clustering effects for each
of these three factors. Both the data and model demonstrated
reliable organizational effects by each of the three factors.
• Simulation analysis II examines the interaction between

temporal organization and source organization. The CMR
model captures the finding of source organization between
both nearby and remote list items, but with much stronger
source clustering for items studied in a nearby temporal con-
text. A comparison of different variants of the model sug-
gests that associations between source context and item fea-
tures are critical to explain source clustering between remote
items.

1 They further proposed that a similar mechanism underlies
the reduced accessibility of materials cued to be forgotten in
the directed-forgetting paradigm (Geiselman, Bjork, & Fishman,
1983).
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Figure 1. Context as the spotlight of memory. Here we envision context as a set of spotlights, each shining into memory. Each lamp
can illuminate a different subset of memories. The temporal lamp always illuminates a set of traces that were stored nearby in time (the
light becoming more diffuse for more distant items). The source lamp illuminates memories that were associated with similar source
characteristics. The context retrieved upon successful recall of an item may swing each lamp to illuminate a different set of items.

• Simulation analysis III examines memory performance
as a function of serial position in the studied list. The CMR
model is used to explain serial position effects across a list
length manipulation described by Murdock (1962). The
model also explains the serial position effects of a within-list
source context manipulation. The model suggests that a task-
shift related disruption of temporal context is important for
understanding the perturbations in the serial position curve
due to the within-list source context manipulation.
• Simulation analysis IV examines inter-response times

(IRTs) between successively recalled items. The CMR
model is used to explain IRT effects in a study described by
Murdock and Okada (1970). The model also explains the
effects of all three organizational factors (semantic, tempo-
ral, and source) on IRTs. The CMR model predicted that
participants should show an increased latency to make recall
transitions between items associated with different sources
(tasks, in this case), which was confirmed upon examination
of the empirical data.

The CMR network model of
human memory search

Context-based models of free recall

The notion of context considered here is inspired by the
stimulus sampling theory of Estes (1959) and Bower (1972),
as well as the temporal context model (TCM) of Howard and
Kahana (2002a). We conceive of context as a pattern of ac-
tivity in the cognitive system, separate from the pattern im-
mediately evoked by the perception of a studied item, that
changes over time and is associated with other coactive pat-
terns. Along with the theory of Howard and Kahana comes
the notion that the elements of context are activated by some
stimulus or event, tend to stay active past the time this stim-
ulus leaves the environment, and are associated with the fea-
tures of studied material. The consequences of this are ex-
plored below. While it is clear that static external (e.g., envi-
ronmental) features can also play the role of context (Smith,
1988; Bjork & Richardson-Klavehn, 1989; Murnane, Phelps,
& Malmberg, 1999), for the purposes of the present treat-
ment, we restrict our consideration to context as an internally
maintained stimulus.

The CMR model builds upon the TCM framework
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(Howard & Kahana, 2002a), which describes a mechanism
for representing temporal context, and the dynamics of how
this representation updates and is associated with the rep-
resentations of the studied items. Finally, it describes how,
given a particular context state, one can calculate the degree
of support for each of the items in a lexicon having been
in the most recent list. Howard and Kahana (2002a) used
the choice probability framework of Luce (1959) as a simple
decision mechanism. Recently, Sederberg, Howard, and Ka-
hana (2008) described a variant model, TCM-A, which pairs
TCM with a dynamical system capable of modeling a many-
dimensional choice problem (Usher & McClelland, 2001),
used to model the decision process leading to a recall. The
CMR model described below utilizes the decision rule of
TCM-A. While TCM-A provides an elegant explanation of
temporal clustering and the effects of distraction on memory
search, it does not predict the existence of semantic cluster-
ing or other forms of episodic clustering, nor does it address
the interactions between these factors.

As mentioned above, CMR is a generalized version of
TCM, designed to capture the broader set of organizational
effects observed in free recall. Semantic organization arises
because when an item is recalled, it retrieves an associated
temporal context representation. This retrieved representa-
tion contains a blend of all the temporal context representa-
tions this particular item has ever been associated with. Se-
mantic associates of a particular item have historically tended
to appear in similar contexts, so a recalled item’s retrieved
temporal context is associated with that item’s semantic asso-
ciates, and will tend to favor their subsequent retrieval. This
addition of semantic information to the model is consistent
with the principles of TCM, and allows the model to explain
a number of aspects of the behavioral data.

The true generalizing principle of the CMR model is that
the context-related mechanisms developed for temporal con-
text apply to any sort of context, such as the physical source
characteristics of an item, or the internal source context of
an item (e.g., task). Associations between the features of
studied items and this expanded set of context sub-regions
allows the model to explain the simultaneous organization of
studied material along multiple dimensions.

The structure and dynamics of the model

Representational structure.
In CMR any given environmental stimulus is composed

of some number of features, and the presence of that feature
in the environment corresponds to the activation of the cor-
responding element in the feature layer (Underwood, 1969;
Bower, 1967). Figure 2 depicts the basic structure of the
model. There are two representational sub-areas: the feature
layer F, and the context layer C. Studied items activate a
representation fi in F, where the subscript i indexes the list
position of the item. In other words, fi is a vector representa-
tion of the features of the studied item, which consists of both
item features and source features concatenated into a single
vector representation (f = fitem ⊕ f source). For simplicity, we
follow the tradition of TCM in treating the items as orthonor-

mal on F item (each item has a localist representation on F).
Similarly, different sources are orthonormal on F source. The
state of the context layer at a given list position is ci; the con-
text layer is subdivided into elements corresponding to tem-
poral context and source context (c = ctemp ⊕ csource). In the
TCM framework, temporal context was represented as a vec-
tor t, which corresponds to ctemp in the CMR framework. The
F layer and the C layer interact through two associative ma-
trices: MFC , which describes the strengths of the feature-to-
context associations; and MCF , which describes the strength
of the context-to-feature associations. A given element in an
associative matrix describes the connection strength between
a particular feature element, and a particular context element.

Whereas we only consider two classes of features in the
current investigation (item and source, where the source con-
sidered is related to the task performed during study), the
CMR framework can be easily extended to represent any as-
pect of a studied stimulus (simply by adding extra elements
corresponding to the features in question, e.g., acoustic or
orthographic properties of a word, or features of the local
environment).

Updating temporal and source context.
When a feature representation is activated in F (follow-

ing an item presentation during study, or the reactivation
of an item representation during recall), information about
the event is integrated into the context representation; the
inserted information weakens whatever information was al-
ready resident in context, such that the global state of the
context representation changes slowly over time. Prior to the
start of a trial, each context sub-region is initialized as a vec-
tor of unit length; this represents whatever information was
present in context prior to the list.

Whenever a representation is activated in F, the input to
C is determined as follows:

cIN = MFCfi. (1)

The vector cIN represents the net input to the context layer.
As with c, cIN consists of two sub-regions, corresponding
to temporal and source elements. Each of the two sub-
components of cIN are normalized to be of unit length prior
to updating context.

Given cIN, context integration proceeds as follows:

ci = ρici−1 + βcIN, (2)

where

ρi =

√
1 + β2[(ci−1 · cIN)2 − 1] − β(ci−1 · cIN). (3)

Here, β is a scaling parameter that determines how much
new information (cIN) is placed in context, and ρi weakens
the current state of context (ci−1) such that the overall level
of contextual activation remains constant (for details con-
cerning the form of this expression see Howard & Kahana,
2002a). The above updating process is applied separately to
Ctemp and C source. Each of these subdivisions of context has a
distinct drift rate parameter (βtemp and βsource), such that the
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Figure 2. The basic structure of the Context Maintenance and Retrieval (CMR) model. Item features can update the state of context via
an associative matrix MFC . The context representation itself has maintenance capabilities which allows context information to be integrated
over long temporal intervals. During recall, the state of context can bias the retrieval competition towards items associated with the active
context elements, through the associative matrix MCF . When a particular item is recalled, its features are reactivated; it can then update
context to bias further retrieval attempts.

two pools of units can update at different rates. The βtemp

parameter was allowed to vary between the study (βtemp
enc ) and

recall periods (βtemp
rec ), reflecting the hypothesis that the rate of

context integration may be different depending upon whether
a stimulus was externally presented or recalled. To simplify
matters, in the current simulations the βsource parameter was
fixed between study and recall.

The βtemp
enc and βtemp

rec parameters are important in deter-
mining the nature of temporal clustering: higher values for
these parameters (with other parameters held constant) will
increase the degree of temporal clustering in the model. The
βsource parameter is important in determining the degree of
source clustering; here, a large value will cause source con-
text to update quickly given a shift in task, increasing the
magnitude of the source clustering effect (Table 3).

Novelty-related context disruption.
In the introduction, we suggested that the sudden appear-

ance of a novel representation in one context sub-region
(such as a shift from one task to another) triggers a system-
wide event that causes other context representations to up-
date, by increasing the rate at which new information is in-
tegrated. This disrupts the accessibility of all items studied
prior to the novel event, since the temporal context associated
with all of those prior items has been pushed out in favor of
novel information.

The rate at which context integrates new information is
related to the overall novelty or salience of that information.
When the model experiences a large shift in source context,
as when the participant must switch from one task to another
during the study period, all context regions (here, temporal is
the only other region) increase their rate of integration, which
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disrupts or weakens the currently active context representa-
tion for the sake of new incoming information. One parame-
ter (d) controls the degree to which a shift in source context
disrupts the temporal context representation. This disruption
was simulated by presenting a new, orthogonal item in F, and
allowing this item to update context by Equation 2, where d
serves as the temporary value of β. This “disruption item” is
not learned by the network, and does not enter into the recall
competition. If d is 0, temporal context and source context
are independent; a task shift does not influence temporal con-
text.

It is important to note that disruptive is a relative term
here, referring to a small but detectable behavioral effect.
The types of context disruption that one experiences in ev-
eryday life are likely to be orders of magnitude more power-
ful (but much more difficult to manipulate experimentally).
Just as the reaction time for a simple judgement is disrupted
by a few hundred milliseconds (or sometimes much less) by a
shift in task (e.g., Allport, Styles, & Hsieh, 1994), so may we
observe small but reliable decrements in memorability and
increments in recall latencies given task shifts during a study
period. To anticipate the later results, we report significant
disruptions to both memorability and latency to recall stud-
ied material in a condition where participants shift between
two orienting tasks within a list.

In the current simulations we only investigate the effect of
a sudden change of source context on the state of temporal
context, however, it is reasonable to consider that whenever
any context sub-region experiences a large update other rep-
resentations are disrupted. Since all items are quite similar
(they are all visually presented words drawn from a set of
concrete nouns) there are never any similarly large shifts in
temporal context. It is possible that the first items presented
on each list trigger a novelty-related signal (for a similar idea
see Laming, 2006). This possibility receives further attention
below.

Associative connections: learning and semantic structure.
As described above, two associative matrices represent

the feature-to-context connections (MFC) and the context-to-
feature connections (MCF). Each of these matrices contains
a pre-experimental component (MFC

pre and MCF
pre), representing

the set of associative connections in memory prior to per-
forming the free-recall task, and an experimental component
(MFC

exp and MCF
exp), representing the set of associations learned

during the study period of the free-recall task.
MFC

pre represents the set of existing associations between
the item features and the context elements. This component
is initialized as an identity matrix (under the simplifying as-
sumption that any feature of an item has a corresponding el-
ement in context that it can activate). Since we use a localist
code for the items in the current simulations, this means that
the first time an item is encountered in the context of a given
experiment, it activates a single feature element, which acti-
vates a corresponding context element. Below we describe
how the pre and exp connections are weighted to create the
full matrix MFC .

MCF
pre represents the set of existing associations between

the context elements and the item features. On the assump-
tion that semantically related items have been associated with
one another’s temporal contexts, we have implemented se-
mantic associations in this matrix (Rao & Howard, 2008).
Each element in MCF

pre is determined by taking the cosΘ simi-
larity value between two items (with indices a and b) derived
using latent semantic analysis (LSA; Landauer & Dumais,
1997), scaling that value by a parameter s, and placing that
value in position (a,b) of MCF

pre. In this way, the semantic
memory of CMR simulates that of a participant whose se-
mantic memory is identical to LSA. This is clearly a drastic
simplification of the variability between the semantic memo-
ries of individual participants, and tends to inflate the degree
of semantic organization produced by the model, since the
same association values that are used to assess semantic or-
ganization are also used to create the semantic associations
in the CMR model. Thus, we were motivated to estimate
the degree to which an individual person’s semantic memory
might mismatch the LSA-derived values, to allow us to create
a correction factor to apply to the semantic clustering scores
produced by the model.

The correction factor was estimated with a simple simu-
lation of an independent data set: the University of South
Florida (USF) Free Association Norms (Nelson, McEvoy,
& Schreiber, 2004). We used the CMR model of semantic
memory (derived from the LSA database) to predict the dis-
tribution of responses produced by participants in the USF
study. To simulate variability between participants, we added
normally distributed random noise to each simulated partici-
pant’s semantic memory, and searched for the level of noise
(by manipulating the distribution’s variance) that would min-
imize the difference between the CMR model’s predictions
and the USF data. This procedure is described in more detail
in Appendix B.

This estimate of variance between individual participant’s
semantic memory structures was used to derive a corrected
semantic score for each variant of the CMR model, using
the following steps: The recall sequences produced by the
CMR model were analyzed to determine the degree of se-
mantic clustering produced by the model; this analysis uses
the LSA-derived association values as a normative matrix to
determine the degree of clustering. We added normally dis-
tributed random noise (with the variance estimated by our
simulation of the USF study, described in Appendix B) to
the normative LSA matrix, and calculated the degree of se-
mantic clustering. This is equivalent to adding noise to each
simulated participant, and simplifies the procedure greatly.
The addition of noise to the normative LSA matrix produces
a correction factor that reduces the degree of semantic clus-
tering produced by the model. The semantic clustering anal-
ysis, and the corrected results, are described below (Simula-
tion analysis I: Semantic clustering, and Tab. 2).

As mentioned above, the semantic connections are among
the pre-existing associations in the CMR model. The second
class of associations are episodic in nature, and are formed
as the experiment proceeds. The set of experimental asso-
ciations MFC

exp are initialized to zero, and are updated each
time an item is studied using a simple Hebbian outer-product
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learning rule:
∆MFC

exp = cif>i , (4)

where f>i is the transpose of fi. The relative strengths of
the pre-experimental and experimental associations are con-
trolled by a parameter γFC; as described by Howard and Ka-
hana (2002a), this parameter influences the magnitude of the
forward asymmetry (the tendency to make forward transi-
tions during recall):

MFC = (1 − γFC)MFC
pre + γFC∆MFC

exp (5)

The associative processes on MFC treat item and source
features equivalently. However, the return connections on
MCF allow temporal and source context to scale indepen-
dently to capture the different magnitudes of temporal and
source clustering. The set of experimental associations MCF

exp
are initialized to zero, and are also updated using the Hebbian
outer-product learning rule:

∆MCF
exp = φiLCFfic>i . (6)

Both φ (described below) and LCF scale the magnitude of
particular connections during learning. The matrix LCF al-
lows CMR to separately scale the magnitude of source asso-
ciations relative to temporal associations (as we will discuss
below, the CMR model estimates that associations between
source context and item features are about 13% as strong
as associations between temporal context and item features).
The matrix contains four sub-components:

LCF =

 LCF
tw LCF

ts

LCF
sw LCF

ss

 . (7)

Where the subscript t refers to temporal context, the subscript
s refers to source context if it comes first, and source features
if it comes second, and the subscript w refers to item features
(this was chosen instead of i, for “item”, to avoid confusion
with the i subscript indicating list position). For example, the
sub-matrix LCF

sw scales the associative connections between
source context and item features. The magnitude of LCF

sw
is a manipulable parameter of the model; LCF

ts and LCF
ss are

set to zero (since source features in F do not currently play
a role during the recall process), and LCF

tw is fixed at 1. In
summary, there are three types of organizational information
whose strength is varied on MCF : semantic information (built
into MCF

pre and scaled by s), temporal information (added into
MCF

exp as the list proceeds), and source information (added
into MCF

exp and scaled by LCF
sw ). Since the recall process is

competitive, only two of these strengths need to vary (source
and semantic) relative to a fixed amount of temporal infor-
mation.

The scalar φi factor is introduced to describe the recall
advantage for items in early serial positions (its value is de-
termined by two manipulable parameters of the model). This
factor starts at a value above 1, and as the list progresses it
decays to 1, at which point it has no effect on the dynamics
of the model:

φi = φse−φd(i−1) + 1. (8)

Here, φs is a scaling parameter controlling the magnitude
of the primacy effect, and φd is a decay parameter, which
controls the rate at which this advantage decays with serial
position (i). This primacy mechanism was added to CMR
to explain the behavioral dynamics associated with the pri-
macy effect. While the appearance of the first list item might
trigger a novelty-related context disruption similar to that
elicited by a change in source, we have opted to use this rel-
atively simple model of the primacy effect. A full treatment
of the primacy effect may require a more complete model of
encoding dynamics (see discussion).

The recall process.
The context updating and associative learning processes

determine the state of the context cue for each recall attempt,
which activates each of the item features to a different de-
gree. The degree of activation for a particular item feature
determines how well it fares in an ensuing competition, in
which all of the items on the most recently studied list com-
pete to be recalled. The recall period is modeled as a se-
ries of competitions, each of which takes a certain amount of
time and either produces a winning item which is recalled,
or the system runs out of time, and the next trial begins. The
competition is mediated by a set of accumulators using the
framework described by Usher and McClelland (2001) and
applied in the domain of free recall by TCM-A (Sederberg
et al., 2008). The use of this framework allows us to make
predictions regarding both the order in which the items will
be recalled, as well as the inter-response times.

The input to the accumulators is determined as follows:

fIN = MCFci, (9)

where fIN is then used to guide a leaky, competitive accumu-
lation process:

xs = (1 − τκ − τλN) xs−1 + τfIN + ε, (10)
xs → max(xs, 0).

This process runs until one of the accumulating elements
crosses a threshold (which is set at 1) or the recall period
is over. Each element of the vector xs (where s indexes the
number of steps in the accumulation process) corresponds
to an element in fIN (in other words, one accumulator for
each studied item). As in TCM-A, κ is a constant which de-
termines the rate at which the activation of a given element
decays, and λ is a constant which controls lateral inhibition,
by scaling the strength of an inhibitory matrix N which con-
nects each accumulator to all of the others (except itself). ε
is a noise vector drawn from a random normal distribution
with mean zero and standard deviation η, and τ is a time con-
stant determining the rate of the accumulation process. The
second line of Eq. 10 means that the accumulating elements
can not take on negative values. Items that have already been
recalled still take part in the competition, but the threshold
serves as an upper limit on their activity value, and they can
not be recalled again. When an item wins the recall com-
petition, its item features are reinstated in F. This allows
the system to revive the contextual state associated with the
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item, by allowing it to update context according to Eq. 2. The
input fIN is updated, and the competition begins again, with
xs initialized to 0.

The decision parameters are critical for obtaining a good
fit to the behavioral data, especially the recall latencies.
Increasing the value of κ (decay) increases the minimum
amount of contextual support an item must have to be able
to cross the recall threshold. Increasing the value of λ (lat-
eral inhibition) increases the degree to which the items with
the most contextual support inhibit those with less support,
enhancing organizational effects in the model. Increasing η
(noise) works against organization, by increasing the likeli-
hood that random items are recalled.

Simulation analyses of the CMR model

In the following sections we compare the behavior of the
CMR model to human behavior observed in three studies of
immediate free recall. The first study was designed and car-
ried out for the purposes of this report, and includes a within-
list manipulation of source context (we refer to this as the
source-manipulation experiment, described in Appendix A).
The second study is a subset of the conditions reported by
Murdock (1962), where list length was manipulated. The
third study was reported by Murdock and Okada (1970), and
includes a detailed analysis of the inter-response times (IRTs)
between successive recalls.

We separately fit the model to the behavioral data from
each experiment. For each experiment, a single parameter
set was found that simultaneously provided good fits to all
of the relevant behavioral measures. All model parameters
were fixed within-experiment, that is to say, for the exper-
iments that contained multiple conditions (Murdock, 1962
and the source-manipulation experiment) the same set of pa-
rameters was used to fit the results from all conditions. This
is a high bar for a model of recall; for example, Brown et
al. (2007) recently showed that the SIMPLE model fit the
data from Murdock (1962), but only if the parameters of the
model were allowed to vary for different conditions (Brown
et al., 2007).

For each experiment, a genetic algorithm was used to ex-
tensively search the parameter space of the model to find
the best-fit parameter set (see Appendix C). For the Mur-
dock (1962) and Murdock and Okada (1970) experiments,
this search was across 10 parameters. For the source-
manipulation experiment, three source-context relevant pa-
rameters were included, so the search was across 13 param-
eters.2 Table 1 presents the best-fit parameter set for each
experiment. Each parameter set was used to simulate a large
number of trials of the particular paradigm, and the resulting
recall sequences (and accompanying latencies, where appro-
priate), were analyzed to create behavioral measures anal-
ogous to those carried out on the original behavioral data.
Each experiment yielded a different number of behavioral
measures, which are detailed in Appendix C. For example,
the fitting procedure for the source-manipulation experiment
minimized the difference between the simulated data and be-
havioral data across 93 data-points (including serial position

curves, inter-response latencies, and clustering measures).
The goodness-of-fit for a particular simulated data set was
quantified using a χ2 statistic.

Best-fit parameters of the CMR model.
M62 MO70 Full P.A. P.D.

β
temp
enc 0.745 0.621 0.776 0.767 0.772
β

temp
rec 0.36 0.179 0.510 0.468 0.510
βsource – – 0.588 0.681 0.743
LCF

sw – – 0.129 0.171 0
d – – 0.767 0 0.880
γFC 0.581 0.559 0.898 0.799 0.889
s 1.80 3.06 2.78 2.71 2.80
κ 0.091 0.166 0.111 0.053 0.092
λ 0.375 0.284 0.338 0.272 0.349
η 0.182 0.072 0.159 0.126 0.183
τ 0.242 0.323 0.174 0.145 0.201
φs 5.39 6.0 1.07 0.881 1.83
φd 1.41 0.916 0.981 0.641 0.942
d.pts. 150 65 93 93 93

Table 1
These parameters were discovered using a genetic algorithm
fitting technique described in Appendix C. Codes for the dif-
ferent simulations are as follows: M62, Murdock (1962) data
set; MO70, Murdock and Okada (1970) data set; Full, Full
variant applied to the source-manipulation experiment; P.A.,
Pure association variant applied to the source-manipulation
experiment; P.D., Pure disruption variant applied to the
source-manipulation experiment. d.pts. corresponds to the
number of behavioral datapoints fit by each simulation.

Each of the best-fitting parameter sets reported in Table 1
yielded a χ2 value. The number of degrees of freedom for
each model was equal to the number of data points being fit
minus the number of model parameters. We first report the
fit to the classic studies of Murdock (1962) [10 parameters;
χ2(140) = 760.6], and Murdock and Okada (1970) [10 pa-
rameters; χ2(55) = 3046].

As mentioned above, we think two mechanisms are im-
portant to understand the behavioral effects of a source ma-
nipulation: associations between source context and item
features, and disruptions to temporal context due to task-
shifts. To assess the importance of these mechanisms, we
compared the ability of three CMR model variants to fit the
data from the source-manipulation experiment. These were
the full model [13 parameters; χ2(80) = 235.5], and two
nested variants of the full model, the Pure association model
[12 parameters, d was set at zero; χ2(81) = 327.6], and the
Pure disruption model [12 parameters, LCF

sw was set at zero;
χ2(81) = 290.8].

We carried out χ2 comparisons between the Full model
and each of the nested models (since one parameter was fixed
in each of the nested models, these tests were carried out

2 This number of parameters is comparable to other dynamical
models of free recall. For example, eSAM contains 11 parameters
(Sirotin, Kimball, & Kahana, 2005), and TCM-A contains 12 pa-
rameters (Sederberg et al., 2008).
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with one degree of freedom). This indicated that the Full
model gave the best fit to the data. Full versus Pure associa-
tion: χ2(1) = 92.0, p < 0.0001; Full versus Pure disruption:
χ2(1) = 55.3, p < 0.0001.

We also calculated the Bayesian Information Criterion
(BIC; Schwarz, 1978; Kahana, Zhou, Geller, & Sekuler,
2007), a quantity used to compare goodness-of-fit for models
with different numbers of parameters (lower values of BIC
indicate better fit, accounting for the number of parameters
of the model) using the following equation:

BIC = k ln(n) + n ln(
RS S

n
), (11)

where k is the number of model parameters, n is the number
of data points being simultaneously fit, and RSS is the resid-
ual sum of squares (for more details see Appendix C). This
calculation gave BIC values of -602, -574 and -595 for the
Full model, the Pure association model, and the Pure disrup-
tion model, respectively. These tests agree with the χ2 mea-
sure, indicating that the Full model provides a significantly
better fit than each of the nested variants.

The χ2 statistics reported above indicate significant devi-
ation between the model fit and the behavioral data. A com-
mon complaint about χ2-based analyses of model fit is that
given enough data, any model will be invalidated for failing
to fit the fine-grained nuances of the data. In the end, the
χ2 measure is more useful for allowing us to compare model
variants to one another (as described above). Regardless of
the statistical deviation of the best-fit models from the behav-
ioral data, the CMR model provides a good qualitative fit of
a diverse range of behavioral phenomena across a range of
experimental manipulations.

Some component of the deviation of the model predic-
tions from the behavioral data may arise because we force the
model to find a single parameter set that accounts for the data
across all participants. This may represent an impossible task
for the model, if subsets of participants are better represented
by models with distinct parameter settings. Fitting the model
separately to each participant’s data would give us further
insight into these issues but requires more behavioral data
per participant to obtain stable behavioral estimates. Cur-
rent work in our laboratories is focused on gathering much
more behavioral data per participant, making such an analy-
sis more feasible.

Each of the following four sections examines the recall
dynamics of the CMR model in a different way. The first sec-
tion focuses exclusively on the source-manipulation experi-
ment, examining the three basic forms of clustering (seman-
tic, temporal, and source) observed simultaneously therein.
The second section examines the interaction between tem-
poral and source clustering in the source-manipulation ex-
periment. The third section examines the classic serial po-
sition effects of immediate free recall reported by Murdock
(1962), as well as the perturbation of these effects by a
within-list manipulation of source context in the source-
manipulation experiment. The fourth section examines the
classic inter-response time effects reported by Murdock and
Okada (1970), and the perturbation of these effects by the

semantic, temporal, and source relations between the studied
items in the source-manipulation experiment.

Simulation analysis I: Basic clustering effects

The influence of each organizational factor (semantic,
temporal, and source) is demonstrated with a series of
clustering analyses on the recall sequences of the source-
manipulation experiment described in Appendix A. The ba-
sic form of the clustering analysis is similar for each of the
three factors. One can step through the set of recall se-
quences generated by each participant, and label each word
by its semantic identity, list position, and study task. This
information is used to calculate measures of semantic, tem-
poral, and source clustering, as described below.

Semantic clustering.
The degree of semantic association between two words is

represented by a single number, represented by the cosine
distance between the vector representations of those words
derived with latent semantic analysis (LSA; Landauer & Du-
mais, 1997). These semantic association values are used to
generate a semantic clustering score for each recall transi-
tion (representing how related the two successively recalled
words are relative to the other words the participant could
have recalled next), and the average of these scores across
participants provides us with a summary of the degree of se-
mantic clustering for the experiment. Specifically, for each
recall transition we calculate a distribution of semantic asso-
ciation values between the just-recalled word, and the set of
words that have not yet been recalled. A percentile score is
generated by comparing the association value corresponding
to the next item in the recall sequence to the rest of the distri-
bution. Thus, if the participant always chose (from the set of
remaining items) the strongest semantic associate, then this
semantic clustering measure would yield a value of 1, repre-
senting perfect semantic organization. Likewise, a value of
0 would indicate that the participant always chose the least
semantically related of the remaining items for their next re-
call. A value of 0.5 indicates no effect of semantic clustering.
As Table 2 shows, the observed value for the behavioral data
(0.545) is significantly greater than 0.5, indicating a reliable
effect of semantic clustering (t(44) = 104.2; p < 0.0001).

Table 2 also presents the estimates of semantic cluster-
ing produced by the CMR model, which exceed the behav-
ioral data by about 0.02. As described elsewhere (Associative
connections: learning and semantic structure and Appendix
B), a correction factor was applied to the model’s estimates
of semantic clustering to account for the fact that while the
LSA-derived semantic association values mismatch each hu-
man participant’s semantic memory, they are a perfect match
for the CMR model’s semantic memory, which inflates the
model’s estimate of the expected degree of semantic clus-
tering. The correction factor reduced the degree of seman-
tic clustering from 0.791 to 0.566 for the Full variant of the
model; from 0.792 to 0.569 for the Pure association variant;
and from 0.781 to 0.568 for the Pure disruption variant.

Temporal clustering.
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Clustering scores during recall.
Semantic Temporal

Behavioral Data 0.545 (0.005) 0.638 (0.011)
CMR: Full model 0.566 (0.001) 0.636 (0.001)
CMR: Pure association 0.569 (0.001) 0.630 (0.001)
CMR: Pure disruption 0.568 (0.001) 0.647 (0.001)

Table 2
Note. Clustering scores are followed by standard error of
subject means in parentheses. All results are significant at
the p < 0.001 level. See text for details of the statistical anal-
ysis. A correction factor has been applied to the semantic
clustering scores produced by the CMR model, as described
in the text (The structure and dynamics of the model. Asso-
ciative connections: learning and semantic structure).

A similar technique is used to quantify the magnitude of
the temporal clustering effect (Tab. 2). For each recall transi-
tion we created a distribution of temporal distances between
the just-recalled word and the set of words that have not
yet been recalled. These distances are simply the absolute
value of the difference between the serial position of the just-
recalled word and the set of not-yet-recalled words (here,
these can range between 1 and 23). A percentile score is
generated by comparing the temporal distance value corre-
sponding to the next item in the recall sequence to the rest
of the distribution. Specifically, we calculate the proportion
of the possible distances that the observed value is less than,
since strong temporal clustering will cause observed lags to
be smaller than average. As is often the case, when there is
a tie, we score this as the percentile falling halfway between
the two items. If the participant always chose the closest tem-
poral associate (which is only possible for pure serial recall
in the forward or backward direction), then the temporal clus-
tering measure would yield a value of 1 (as there would never
be an opportunity for a tie). A value of 0.5 indicates no effect
of temporal clustering. The observed value of the behavioral
data (0.638) is significantly greater than 0.5, indicating a reli-
able effect of temporal clustering (t(44) = 60.3; p < 0.0001).
It is worth noting that while we describe this as a measure
of temporal distance, this is not meant in the sense of “clock
time” as in recent models of temporal distinctiveness (e.g.,
Brown et al., 2007), but rather in the sense of positional lag
between items in the study list.

At the suggestion of a reviewer, we examined more
closely the pattern of temporal clustering for early and later
output positions, for both near and distant lags. Recently,
Farrell and Lewandowsky (in press) carried out a similar
analysis over a number of free recall data sets. They found a
marked tendency for participants to make transitions to dis-
tant serial positions early in recall. They suggested that these
nonmonotonicities in the probabilities of recall by lag chal-
lenge the generality of the contiguity effect, which, in a pure
form, suggests that probability of recall by lag should drop
smoothly as lag increases. Here, we first examine the behav-
ioral data, before turning to the simulated data generated by

the CMR model.
Figure 3 (A and C) shows the probability of making re-

calls of various temporal distances to the just-recalled item.
The analysis is presented separately for output positions 1–3
and for output positions 4 onward. We restricted our analysis
to mid-list output positions (serial positions 5–19), as recalls
from these positions allow us to separately examine the influ-
ence of the contiguity effect and the recency effect on recall
transitions. The analysis was carried out separately for each
originating serial position and participant, and then aggre-
gated across serial positions and participants, such that each
originating serial position is given equal weight in the anal-
ysis. Due to the relatively small number of transitions being
examined in certain cases (e.g., the more distant bins for out-
put positions 1–3), we aggregated our conditional probabil-
ities over multiple lags, such that the dot in a particular bin
represents the probability of transitioning to any lag in the
specified range.

The contiguity effect and forward asymmetry for early
output positions can be clearly seen in Figure 3A, bins -1 and
1. The nonmonotonicity can be seen as well, in bins 11.5 and
18.5. When recall transitions fall into this bin, it means that
the participant made an early recall of a mid-list item, fol-
lowed by a recall of an item from the end of the list. In other
words, the nonmonotonicity is due to the persistence of the
recency effect, even after a mid-list item is recalled. Figure
3C shows that later in the recall sequence, the influence of
the recency effect recedes, but the contiguity effect remains.

Figure 3B and D presents these same analyses, but on the
CMR Full model (the two variants show similar results). The
model captures the basic behavioral pattern whereby early
recall transitions show evidence of both a contiguity effect
and a recency effect (Fig. 3B). While the simulated recency
effect matches the behavioral data, the model underpredicts
the exact magnitude of the contiguity effect. The simulated
data match the behavioral data well for the later output po-
sitions (Fig. 3D), both in terms of the size of the contiguity
effect and the attenuation of the recency effect. We return to
this issue in the Discussion (“Relationship to other models of
free recall”).

Source clustering.
The degree of organization by source (in this case, encod-

ing task identity), was estimated by tallying the number of
recall transitions that were between items studied with the
same task, and dividing by the total number of recall transi-
tions, to give a proportion of same-source recall transitions
for each participant. This number was averaged across all
participants and is reported in Tab. 3. A relabeling technique,
in which each control list was randomly assigned the task or-
dering from one of the task-shift lists, was used to create a
baseline for the source clustering measure. By relabeling the
control list items with the same sequence of task alternations
used in the experimental lists (and aggregating over many
such assignments), we calculated the proportion of same-task
transitions one would expect to observe solely on the basis of
the temporal contiguity of items studied with the same task.3

3 A similar method was used by Nilsson (1974) to quantify the
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Figure 3. Conditional probability of recall transitions as a function of lag, for the behavioral data from the source-manipulation experiment.
Transitions originating from mid-list items (serial positions 5 through 19) are considered. Each dot represents the aggregate probability for
a set of lags, marked according to the mean lag of that bin; from left to right these are: -19 to -18, -17 to -6, -5 to -2, -1, 1, 2 to 5, 6 to 17, and
18 to 19. A) The behavioral data, probabilities for output positions 1 to 3. B) The CMR Full model, probabilities for output positions 1 to 3.
C) The behavioral data, probabilities for output positions 4 onward. D) The CMR Full model, probabilities for output positions 4 onward.

The overall source clustering effect was both numerically
large (a increase from 0.536 to 0.606 in within-task transi-
tions between the relabeled control and task-shift lists; see
Tab. 3, All transitions) and statistically reliable (paired sam-
ple t-test across participant means; t(44) = 6.83, p < 0.001).

Table 3 (All transitions column) also presents the source
clustering results for each of the three model variants. The

Full model and Pure association variants provide a very good
fit to the behavioral data, but the Pure disruption variant un-
derpredicts the degree of source clustering. This is because
the disruption mechanism simply weakens item-related con-
textual support every time there is a task shift, which serves

degree of clustering by modality.



CONTEXT MAINTENANCE AND RETRIEVAL 13

to isolate items in different trains from one another. Clus-
tering arises for same-train items because given the recall of
one item in a train, the retrieved context supports recall of
other items in that train, but not items in other trains.

Source clustering during recall.
Behavioral Data All transitions Remote transitions
Relabeled control 0.536 (0.009) 0.334 (0.011)
Shift 0.606 (0.008) 0.391 (0.012)
CMR: Full model
Relabeled control 0.528 (0.001) 0.336 (0.001)
Shift 0.611 (0.002) 0.410 (0.003)
CMR: Pure association
Relabeled control 0.523 (0.001) 0.336 (0.001)
Shift 0.604 (0.002) 0.413 (0.002)
CMR: Pure disruption
Relabeled control 0.530 (0.001) 0.333 (0.001)
Shift 0.578 (0.002) 0.368 (0.002)

Table 3
Note. Transition probabilities are followed by standard error
of subject means in parentheses.

Thus, the recall sequences exhibit an influence of (at least)
these three organizational factors: semantic, temporal, and
source. Characterizing the ways in which these factors inter-
act is not a trivial matter. As we shall elaborate, the factors
do not seem to combine in a linear manner. Rather, these
combined factors set in motion a nonlinear recall competition
that leads to the actual response. Clouding the picture further,
each recall updates the state of internal context, which alters
the course of all successive recalls. The highly interactive
and dynamic nature of the recall process makes the CMR
model a valuable tool for interpreting the rich behavioral in-
teractions between these organizational factors.

Simulation analysis II: An interaction between
source and temporal information

Source clustering is observed at all transition distances,
but the magnitude of source clustering is enhanced for items
studied nearby in time. Table 3 (Remote transitions) de-
scribes the proportion of recall transitions to same-task items,
conditional on the fact that this is a remote transition (outside
of the local train of same-task items). A significantly greater
proportion of these remote transitions are to same-task items
in the task-shift lists compared to the relabeled control lists
(0.391 and 0.334 respectively; paired-sample t-test on partic-
ipant means: t(44) = 5.11; p < 0.001). Thus, longer-range
transitions also exhibit clustering by task identity, although
the magnitude of the effect is diminished relative to nearby
transitions.

Table 3 (Remote transitions) also presents the remote
source clustering results for each of the three model variants.
The Full model and the Pure association variants provide a
reasonable fit to the data. However, the Pure disruption vari-
ant underpredicts the magnitude of the remote source clus-
tering.

The interaction of the source and temporal factors is ap-
parent in Figure 4A, which plots the results of a conditional
response probability analysis of the recall transitions. Here,
instead of grouping items by serial lag to the just-recalled
item, they are grouped by train position relative to the just-
recalled item (creating a train-lag CRP analysis). A train
lag of zero corresponds to the recall of an item from the
same train as the just-recalled item, whereas a train lag of
one corresponds to the recall of an item from the next train
in the study sequence. The source-clustering effect is re-
vealed most clearly in the difference plots (lower panels B,
D, F, and H) between the control and shift conditions. In the
difference plots, same-task (black squares) and between-task
(white squares) transitions are marked differently, revealing
that the tendency to cluster by task is a decaying function
of temporal distance from the just-recalled item. A strong
source clustering effect is exhibited by an increase in the
black squares above zero, and a decrease of the white squares
below zero, meaning that same-task items are more likely to
be clustered with one another than between-task items.

Inspection of the behavior of the Pure disruption and Pure
association model variants (Fig. 4E–H) suggests that two
factors play a large role in shaping the interaction between
temporal clustering and source clustering: the task-shift dis-
ruption mechanism and the nonlinear recall competition. The
disruption of temporal context given a shift in source con-
text (novelty-related disruption) causes items in the same
train to be tightly coupled to one another; when a particular
item is recalled, the reinstated temporal context representa-
tion overlaps well with same-train items but not with items
in neighboring trains. Since same-train items are also same-
task items, this mechanism inflates the degree of source clus-
tering for nearby items. This can be seen in the plot for the
Pure disruption model variant (Fig. 4E), which even without
associations between source context and item features shows
source clustering for nearby (same-train) items. The task-
shift disruption mechanism, in general, sharpens the train-
lag CRP plot for the task-shift condition relative to relabeled
control condition. This sharpening causes a decreased like-
lihood of transitions to neighboring trains (-1 and +1 train
lag) relative to the likelihood of making these transitions in
the control condition (where item context is not disrupted
between trains).

The associations between source context and item features
produce the source clustering observed in the Pure associ-
ation variant of the model. Here, source context provides
equivalent support to all items associated with a particular
task; however, there is still an interaction between the degree
of source clustering and the temporal proximity of the items
(the peak at train-lag 0 in the Pure association panel of Fig.
4H). This interaction arises as a consequence of the nonlinear
recall competition; since the items compete with one another
to cross the recall threshold, an increase in support can have
a supra-linear effect on the likelihood of an item winning the
competition. Even though task information provides equiv-
alent support to all same-task items, this task support com-
bines with the temporal support for nearby items to result in
increased source clustering for temporally proximal items.
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train lag from the just-recalled item. B) The difference in probabilities between the relabeled control and task-shift conditions. Black squares
correspond to transitions between items studied with the same task, and white squares to transitions between items studied with different
tasks. C and D) The same analysis of the simulated data from the CMR Full model. E and F) The same analysis of the simulated data from
the CMR Pure disruption model. G and H) The same analysis of the simulated data from the CMR Pure association model.
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Simulation analysis III: Serial position effects

The experimental study of the free-recall paradigm has
been long dominated by the analysis of probability of re-
call by serial position on the study list. Murdock (1962),
in a classic paper, described behavior in an immediate free
recall paradigm across several conditions, where both list
length and presentation rate were manipulated. The CMR
model has not yet been extended to deal with presentation
rate, so we focus here on the effect of changes in list length
on the probability of the recall of items by serial position
(with a one-second presentation rate). In his investigation,
Murdock (1962) described the effect of changing list length
on three features of the serial position curve. He showed that
increasing list length did not change the shape of the pri-
macy portion of the curve, though the overall probability of
recall for the primacy positions did drop with increases in list
length. He showed that increasing list length caused the mid-
list asymptote to drop. Finally, he showed that increasing list
length had no effect on the slope of the recency portion of the
curve.

The CMR model fits the effects of list length on the shape
of the serial position curve with a single set of parameters.
Figure 5A and B respectively present the original behavioral
data reported by Murdock (1962) and the simulated data
from the best-fit parameter set of the CMR model (M62 in
Tab. 1). This fit was arrived at using a parameter search that
minimized the difference between the simulated data and the
behavioral data for the three serial position curves as well
as the lag-CRP curves for the three conditions (for ±10 lag
positions; results not shown).

The major behavioral effect, in which the probability of
recall for early and mid-list items decreases as a function
of list length is observed for wide regions of the parameter
space of the model, and can be understood in terms of the
dynamics of the recall competition. The λ term in Equation
10 causes the support for any one item to decrease as the
number of items competing for recall increases. However,
the recent items are somewhat insulated from this lateral in-
hibition as they are strongly supported by the end-of-list con-
text cue. The nonlinear nature of the recall competition al-
lows these well-supported items to cross threshold quickly,
whereas items retrieved later in the recall sequence are rel-
atively less well-supported (owing to a βtemp

rec parameter that
is lower than βtemp

enc ), and feel the effects of competition more
sharply.

The lack of an effect of a manipulation of list length on
the slope of the recency effect has traditionally been taken
as evidence for a short-term buffer where any items whose
representations were active in the buffer were shielded from
proactive interference from the preceding items in the study
list. Recently, Sederberg et al. (2008) showed that TCM-A
could account for the insensitivity of the probability of recall
for recently studied items to the overall list length, although
they did not present a quantitative fit of the Murdock (1962)
data. TCM-A would likely provide as good a fit to the Mur-
dock (1962) data as the CMR model; however, TCM-A is un-
able to fit effects related to semantic and source organization.
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Figure 6. Recall probability by serial position for each of the first
three output positions. The simulation fits use the CMR Full model,
but all three variants show similar fits to the serial position curves
for the first three output positions.

We argue that while TCM-A provides a good model of tem-
poral organization, understanding the dynamics of free recall
requires consideration of the role of semantic and source in-
formation as well.

The CMR model provides a good fit to the probability of
recall by output position (Figure 6) as well as the basic serial
position curve (Figure 7) of the source-manipulation exper-
iment. Figure 6 depicts the probability of recalling an item
studied in a particular serial position, as a function of output
position. The temporal component is obvious in the recency
effect observed in the first output position; however, by the
third recalled item, all serial positions are nearly equiproba-
ble for recall.

Were temporal and source information the only two fac-
tors driving recall order, the CMR model would predict that
recall would generally proceed backwards from the end of
the list. While a strong source cue would produce some
temporal spread in the initial recall transitions, source con-
text provides equivalent support for all items associated with
a particular task; once source and temporal cues combine,
nearby same-task items are still more supported than remote
same-task items. The semantic associations (s) and the de-
cision noise (η) both have a stochastic effect on the recall
sequence. Both of these parameters contribute to the flatten-
ing of the serial position curve across the first three output
positions.

The CMR model also provides a good fit to the serial posi-
tion curve of the source-manipulation experiment (across all
output positions; Figure 7). The overall percentage of items
recalled is much higher than in the comparable list length
of the Murdock (1962) study. This is due to a number of
differences between the experiments, including an increased
presentation time in the current experiment (3 sec.) and the
use of an orienting task. The best fitting parameter set for
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Figure 5. The probability of recall by serial position, across list lengths (LL) of 20, 30, and 40 words. A) Behavioral data from a subset of
the conditions reported in Murdock, 1962. B) Simulated data from the best-fitting parameter set of the CMR model (parameter set M62 in
Table 1).

the CMR model is presented in Table 1; small adjustments
in a number of the model parameters allow the model to ex-
plain the differences in the serial position curves between the
experiments.

Figure 7 reveals that when participants are asked to shift
between encoding tasks within-list, they are less likely to
remember items from early and mid-list serial positions. It
also shows that the items in recent positions are just as well
recalled. In the task-shift condition, participants switch be-
tween variably lengthed trains of items associated with each
task. Each task-shift list contains 6 or 7 trains of items. By
examining probability of recall as a function of train position,
we gain some insight into the influence of source information
in this domain. Figure 8 presents the proportion of items re-
called from each train in the study list. In order to present the
6- and 7-train lists on the same plot, we divided the 6-train
lists into two parts (the first 3 and last 3 trains), and “end
justified” the last three trains to correspond to trains 5, 6, and
7 on the 7-train lists. Separate analysis of the 6- and 7-train
lists revealed similar results, providing justification for this
aggregation method.

A relabeling procedure was used on the data from the con-
trol condition to construct the Relabeled Control line in Fig-
ure 8, allowing us to more directly compare performance be-
tween the task-shift and control conditions. By this proce-
dure, each control list was assigned the task ordering from a
randomly selected task-shift list. This task ordering was used
to assign each serial position in the control list a train position
(numbering from 1–6 if the randomly selected task-shift trial
was a 6-train list, and 1–7 if it was a 7-train list). The recall
sequences from these relabeled control trials were analyzed

to count the proportion of items recalled from each relabeled
train, giving rise to the Relabeled control line in Figure 8.
Many random assignments of task-shift lists to control lists
were aggregated to create a stable baseline measure, against
which to observe the influence of source information on the
probability of recall of studied items.

Figure 8B presents the difference between these curves for
the relabeled control and task-shift conditions. Overall, par-
ticipants recalled a lower proportion of items in the task-shift
condition relative to the relabeled control condition (as mea-
sured with a paired-sample t-test; t(44) = −5.19; p < 0.001).
It may seem a bit counterintuitive that memory was worse for
lists with multiple retrieval cues (appealing to the generally
beneficial effect of encoding variability), however the litera-
ture is unclear on what one ought to expect in this situation.
For example, Tulving and Colotla (1970) found a decrease
in mean recall for lists that were composed of items drawn
from multiple languages, relative to unilingual lists (the par-
ticipants were trilingual), while Murdock and Walker (1969)
found a small increase in mean recall for mixed-modality
lists (auditory and verbal presentation) relative to lists that
were purely of one modality or the other. It is interesting to
note that one can observe significant organization by source
even when this source variation is harmful to overall recall of
the list; we suggest that this is because temporal information
is a powerful cue, and the disruption to temporal context due
to repeated task switches harms recall to a greater extent than
the variability in source helps recall.

Closer examination of recall by train position revealed that
while participants indeed have worse memory for items in
early and mid-list trains (t(44) = −5.83; p < 0.001), memory
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is actually improved for the final train of items in the task-
shift condition (t(44) = 2.30; p < 0.05). Figure 8C and D
show that the CMR model is able to capture these effects.
According to the model these two effects mostly arise be-
cause the act of switching tasks is disruptive to temporal con-
text. Thus, early and mid-list items are difficult to retrieve,
because temporal context has changed more over the course
of the task-shift list than over the control list. This same
mechanism explains the improved recall for the final set of
items. Since every train of items except the last one is less
well supported in the retrieval competition, these final items
benefit from the reduction in proactive interference and are
more likely to be recalled than the equivalent items in the
relabeled control lists. It is worth noting that this increase
in proportion recalled is obscured in the standard serial posi-
tion curve (Fig. 7), since the length of the final train varies
randomly between 2 and 6.

As mentioned above, the Full CMR model provides a sig-
nificantly better fit to the global pattern of behavioral data
than the two variants, but by examining the best-fit versions
of these variants (one without associations to source con-
text [Pure disruption] and one without a disruptive task shift
[Pure association]), we can gain insight into the roles of these
mechanisms on recall dynamics. Figure 9A shows that the
Pure disruption model variant easily fits the decreased mem-
orability of items in the task-shift condition (although it can
not account for the full pattern of source clustering). This
is due to the small disruption to temporal context that oc-
curs with each shift between tasks. However, the Pure as-
sociation model is unable to provide a good fit to the train
serial position curves (Figure 9). In particular, it has trou-
ble fitting the decreased memorability of items in the task-
shift condition. Specifically, Figure 9D shows that the model
can not fit the impaired recall of items from trains 5 and 6
in the task-shift condition. This is because source and tem-
poral context naturally work together in the model, as fol-
lows: Given the strong associations between source context
and item representations, the model often jumps back to the
fifth train (which was always studied with the same task as
the final train). Once the context associated with the fifth
train is reinstated, there is a strong bias to step forward to
the sixth train, due to both the general forward bias in recall
transitions, as well as the still lingering end-of-list context
present in the context representation. Thus, the Pure associa-
tion variant overpredicts the the percent recall for these later
trains. This is true not only of the best-fit parameter set, but
of all of the Pure association parameter sets that we inspected
that provided reasonable fits to the other aspects of the data.
Taken together, these simulations suggest that disruption of
organizational processes due to task switching is behind the
reduced memorability of items in the task-shift condition.

Both variants explain the increased memorability of the
final train in a similar way: The Pure disruption variant fits
this because the most recent task shift disrupts the tempo-
ral context associated with earlier items (leading to a reduc-
tion in proactive interference from earlier items during the
recall competition). The Pure association fits this because the
source representation associated with the final train of items

is still active, giving these items a boost in the recall com-
petition. Thus, the model reveals the influence of multiple
organizational factors on the memorability of studied mate-
rial. In the next section we examine how these organizational
factors affect the speed with which these items are retrieved.

Simulation analysis IV: Inter-response latencies

The ability of the CMR model to capture basic serial po-
sition effects places it alongside several models of the re-
call process, such as SAM, ACT-R, TCM-A, and SIMPLE
(Raaijmakers & Shiffrin, 1980; Anderson, Bothell, Lebiere,
& Matessa, 1998; Sederberg et al., 2008; Brown et al.,
2007). Many fewer models have been developed to account
for the fine-grained temporal dynamics of retrieval, includ-
ing both output order effects and the inter-response times be-
tween successive recalls. Raaijmakers and Shiffrin (1980)
applied SAM to the problem of serial position effects and
inter-response times, but not simultaneously, as the tempo-
ral dynamics of retrieval from short-term store had not been
worked out.

A classic study by Murdock and Okada (1970) examined
inter-response times between successive recalls in the free-
recall paradigm, and showed that they increase exponentially
with each response produced, and that the rate of decay of the
exponential curve varies as a function of the total number of
items recalled on the trial in question. The exponential char-
acter of the growth in inter-response times has been repli-
cated and extended in an elegant series of papers by Wixted
and colleagues (Wixted & Rohrer, 1993; Rohrer & Wixted,
1994; Wixted & Rohrer, 1994).

Figure 10A shows an analysis of the original Murdock
and Okada (1970) data, plotting inter-response times for tri-
als on which 4, 5, 6, and 7 total items were recalled. Fig-
ure 10B shows the same analysis on the best-fitting version
of the CMR model. The model was fit to the serial posi-
tion curve, lag-CRP curve (±10 lags), and the set of inter-
response curves presented in Fig. 10A. This pattern of inter-
response time increases seems to be a robust property of the
model, and was exhibited for a wide region of the parameter
space explored.

Two parameters are critical for observing this pattern in
the inter-response times. Perhaps the most important is the
lateral inhibition parameter in the recall competition (λ). In-
creasing λ increases the competitiveness of the recall com-
petition, such that well-supported items race past threshold
quickly, and items with less support take a much longer time
to reach threshold. Exploration of parameter space revealed
the importance of the semantic association parameter (s), for
the model to account for inter-response timing. A search of
parameter space with s fixed at zero (making the CMR model
nearly isomorphic with TCM-A) was unable to discover any
parameter sets that allowed the model to simultaneously fit
the pattern of inter-response times, serial position curve and
lag-CRP curve. This is because the semantic associations
play an important role in the recall dynamics in the CMR
model. Since the words are randomly selected from a large
word pool (and are randomly placed in the study list), some
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items tend to be well connected to one another, and oth-
ers tend to have fewer strong semantic associations with the
other list members. The well-connected items will tend to be
retrieved quickly and early in the recall sequence, and later
recalls will tend to be to less well supported items. Tem-
poral context, of course, also plays an important role here.
The end-of-list temporal context is a good cue for the recent
items, thus these items are recalled quickly and early in the
recall sequence. The model suggests that the temporal con-
text retrieved during the recall period (βtemp

rec ) is weaker than
that retrieved during the study period (βtemp

enc ), which means
that later recalls are not as well supported in the decision
competition.

The rise of IRTs with output position has been tradition-
ally explained as arising from a sampling-with-replacement
rule (Raaijmakers & Shiffrin, 1980; Wixted & Rohrer, 1994):
As recall progresses, more of the items sampled for recall are
ones that have already been recalled. Given that each sam-
pling attempt takes a fixed amount of time, the IRTs grow in a
roughly exponential manner. The CMR model suggests that
the increase in IRTs with output position is not due to ever-
increasing intrusions of already-recalled items, but rather due
to the relative lack of support for these later items in the
recall competition, paired with interference from the set of
already-recalled items. However, the CMR mechanism is
similar in spirit to the sampling-with-replacement rule, in
that at least one source of interference originates with the
already-recalled items.

The CMR model can account for the major source of vari-
ance in IRTs, the exponential rise with output position and
total number of recalled items. This allows us to examine the
model’s predictions regarding the influence of semantic, tem-
poral, and source information on IRTs. A number of groups
have reported decreased IRTs for items that are similar on
various dimensions. For example, a number of studies of re-
call of categorized stimuli observed decreased inter-response
times when the participant shifted to a new category (Pat-
terson, Meltzer, & Mandler, 1971; Pollio, Richards, & Lu-
cas, 1969; Wingfield, Lindfield, & Kahana, 1998). Similarly,
successively recalled items that are semantically similar have
smaller IRTs than items that are dissimilar (Howard & Ka-
hana, 2002b). Finally, items that were studied in a similar
temporal context (nearby list positions) have smaller IRTs
than items studied in distant temporal contexts (distant list
positions; Kahana, 1996). The CMR model suggests that
these effects arise due to the context reinstatement that oc-
curs as each item is recalled. Furthermore, the model pre-
dicts an effect of source context on IRTs, whereby items
associated with similar sources are recalled with a shorter
IRT than items associated with distinct sources. The source-
manipulation experiment was designed to allow us to simul-
taneously examine effects of semantic, temporal, and source
information on retrieval. While the effects of semantic and
temporal information on inter-response times has been doc-
umented (Howard & Kahana, 2002b; Kahana, 1996), we are
unaware of any report of a source-related IRT effect. As we
will detail below, all three effects were found in the behav-
ioral data.

For our three inter-response time analyses, we calculated
the mean inter-response time for each output position within
each participant, allowing us to remove these sources of vari-
ance from the inter-response time measure. For each orga-
nizational factor, we calculated a threshold to classify each
recall transition as being between similar or dissimilar items.
For the semantic factor, an LSA-derived similarity score of
0.2 was used as the threshold; items with a similarity greater
than or equal to 0.2 were classified as semantically similar,
and below 0.2, dissimilar. For the temporal factor, items with
a lag difference of 3 or less were temporally similar, greater
than 3, temporally dissimilar. For the source factor, items
studied with the same task were similar, and items studied
with distinct tasks were dissimilar.

The behavioral data from the control condition were ex-
amined for semantic and temporal effects. On average, the
IRT between semantically similar items was 1,771 msec
faster than between dissimilar items, an effect that was statis-
tically significant (S .E.M. = 443, t(44) = 4.04, p < 0.0001).
The Full CMR model showed a similar effect (Mean =
2387, S .E.M. = 88, t(539) = 26.96, p < 0.0001). The mean
inter-response time between temporally similar items was
700 msec faster than temporally distant items, which was
also significant (S .E.M. = 334, t(44) = 2.12, p = 0.02).
Again, the Full CMR model showed a similar effect (Mean =
367, S .E.M. = 102, t(539) = 3.60, p < 0.0001).

Source shift cost in recall latencies (output transitions 1–8).
Shift cost

Behavioral Data 1302 (276)
CMR: Full model 432 (82)
CMR: Pure association 217 (65)
CMR: Pure disruption 586 (84)

Table 4
Note. Inter-response times in milliseconds are followed by
standard error on subject means. Shift-cost is the difference
between the same-task and between-task transitions. See text
for details of the statistical analysis.

The behavioral data from the task-shift condition were
examined for the source effect. As reported in Table 4,
the inter-response time between same-task items was 1,302
msec faster than between-task items, which was significant
(t(44) = 4.78; p < 0.002). All three models variants showed
this effect: Full (t(539) = 5.26; p < 0.002), Pure asso-
ciation (t(539) = 3.37; p < 0.002), and Pure disruption
(t(539) = 6.97; p < 0.002). These results suggest that both
source-to-item associations and task-shift disruption are suf-
ficient to explain the source-related cost on inter-response
times. The association mechanism does this in a positive
way, causing same-task items to get a boost from the source
context reinstated by the just-recalled item. The disruption
mechanism does this in a negative way, decreasing support
for all list items in a different train than the just-recalled
item. This causes the same-train items (which by definition
are same-task) to be favored relative to the other items in the
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Mean reaction times for judgments during the study period
Task Control Shift, repeat Shift, new Switch cost
Size 1336 (33) 1405 (29) 1626 (33) 221a (18)
Animacy 1319 (34) 1414 (32) 1578 (35) 164a (18)
Combined 1328 (33) 1409 (30) 1601 (33) 192a (15)

Table 5
Note. These data are from the judgments in the behavioral
data from the source-manipulation experiment; the CMR
model did not simulate these judgments. Reaction times are
reported in milliseconds and are followed by standard error
of subject means. Shift, repeat refers to items in the task-
shift condition where the encoding task is the same as that
for the preceding item. Shift, new refers to items in the task-
shift condition where the encoding task is different from the
preceding item. a Significant at p < 0.0001 (t-test).

competition. While these model fits show some quantitative
deviations from the behavioral data, it is worth noting that
these measurements were not included in the fitting proce-
dure, so it is possible that the model could produce a better
fit to these data with some parameter adjustment.

The CMR model is a model of memory search; as such,
it has little to say about the processes driving performance
of the orienting task judgments. However, the CMR model
attempts to explain the role of task representations in mem-
ory, so it is worth documenting that in the behavioral data we
observe a shift cost in the reaction time to make the orienting
task judgments in the task-shift condition (Table 5), as has
been observed many times in the task performance literature
(e.g., Allport et al., 1994). We explore the connection be-
tween these two domains in the discussion.

General Discussion

The Context Maintenance and Retrieval (CMR) model
of memory search proposes that features of the study
episode activate an internally maintained context represen-
tation which is used to search through one’s recent memory.
The model is designed to explain three forms of organization:
semantic clustering, temporal clustering, and source cluster-
ing. We introduced the spotlights of memory analogy to de-
scribe the process by which the maintained context represen-
tation sweeps across the associative structures of the memory
system, searching for the representations of recently studied
items. Furthermore, we described two ways in which these
context representations can interact: First, by combining to
drive a non-linear recall competition they can have super-
additive effects on the likelihood of recalling particular items.
Second, a large influx of novel information to one context
representation can disrupt other context representations.

We examined three studies of free recall: a new ex-
periment where we manipulated source context within list
(the source-manipulation experiment), a classic study of se-
rial position effects (Murdock, 1962), and a classic study
of inter-response times (Murdock & Okada, 1970). The
source-manipulation experiment yielded reliable effects of

three forms of clustering: semantic (assessed using latent se-
mantic analysis), temporal (serial lag), and source (encod-
ing task). This observation of clustering by encoding task
is, to our knowledge, the first such observation reported in
the literature, suggesting that some representation related to
the operations carried out during study is associated to the
representation of the to-be-remembered item. This finding
allows us to add task features to the set of attributes that can
be used by the memory system to target particular memories
(Underwood, 1969). Furthermore, closer inspection of the
recall sequences revealed that, whereas task clustering was
observed for both nearby and remote transitions, the effect is
greatly enhanced for words studied nearby in time.

The CMR model shows the classic insensitivity of the re-
cency effect to the length of the studied list, while the over-
all proportion of recalled items drops as list length increases
(Murdock, 1962). When source context was varied within-
list, there was a decrease in memorability for all studied
items, except for the most recent, which showed enhanced
memorability. Exploration of variants of the model suggest
that a disruption of temporal context with each task shift was
necessary to explain this decreased memorability, but that all
variants of the model predicted the enhanced memorability
of the final items.

The CMR model shows the classic exponential rise in
inter-response times (IRTs) with output position, modulated
by the total number of items to be recalled on that trial (Mur-
dock & Okada, 1970). Finally, the model accounts for the
cost (to IRTs) for shifting between items that were dissimi-
lar on any of the three organizational dimensions (semantic
similarity, temporal distance, and task identity). The shift
cost on IRTs for between-task recall transitions is another
observation that we believe is novel in the literature.

Clustering: Association vs. disruption

The CMR model provides a framework in which to ex-
plore the mechanistic basis of recall clustering. A (perhaps)
counterintuitive finding of the current simulations was that
associations between context representations and item fea-
tures was not enough for the model to explain the full pat-
tern of data observed in the source-manipulation experiment.
We found that the addition of a mechanism whereby shifts in
source context (such as the one elicited by a task switch) dur-
ing the study period also disrupt temporal context was also
necessary to explain two facets of the behavioral data. First,
as detailed in an analysis of the interaction between temporal
and source information during recall (Simulation analysis II,
Fig. 3), the disruption mechanism allows the model to show
the behavioral pattern whereby source clustering is greater
for items studied nearby in time, and tapers offwith temporal
distance. Second, as detailed in an analysis of serial position
effects (Simulation analysis III, Fig. 7), the disruption mech-
anism allows the model to account for the decreased memo-
rability of early and mid-list items in the task-shift condition.
In effect, shifts in task context cause items studied nearby
in time to become more distant from one another, relative to
two items studied with the same task.
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We also observed that the model, without associations be-
tween source context and item features, showed some degree
of source clustering, albeit only for items studied nearby in
time. How can a purely disruptive mechanism support in-
creased clustering? Above (in Simulation analysis II), we
showed that since recall is a competitive process, the task-
shift disruptions to temporal context create isolated islands
of same-train items whose associations to items studied in
other trains has been weakened relative to a control condi-
tion. While the overall probability of recalling any one item
is lower, conditional on the recall of a particular item, the
likelihood of recalling another item from the same island is
enhanced.

An interesting question arises as to whether the disruption
of context due to exposure to novel information is specific
to shifts between tasks, or whether it is a general principle
of the memory system. A more definitive answer may await
further research; however, a number of findings in the litera-
ture provide converging evidence for such a hypothesis. The
study by Sahakyan and Kelley (2002), described in the intro-
duction, introduces a disruption to inner mental context per-
haps related to the context disruption due to task switching.
Parallel findings can also be observed with manipulations of
external context.

For example, Strand (1970) carried out a classic study
of environmental context change using a retroactive interfer-
ence paradigm (in which participants studied two lists in se-
quence and were then tested on their memory for the first).
Participants were run in one of three conditions: A neutral
condition, where participants studied both lists in the same
room; a context-change condition, where participants walked
to another room between lists; and a context-disruption con-
dition, where participants walked into the hall between lists
but returned to the same room. Interestingly, Strand found
that the context-change and the context-disruption conditions
elicited an equivalent degree of reduction of retroactive inter-
ference, suggesting that the primary factor at work was the
disruption due to traversing the halls, and not the removal of
the contextual associations of the surrounding environment.4
Here, the novel interpolated activity involves simply walking
into the hall; presumably this drives an updating of tempo-
ral context, which causes the two lists to be encoded more
distinctly in memory.

The CMR model provides a framework in which to exam-
ine the interactions between context disruption and context
associations. These two factors may be important in under-
standing a number of classic findings in the free-recall lit-
erature which explore the disruptive effects of interpolated
mental activity on the memorability of studied items. Of
particular relevance are a set of experiments that compared
performance in immediate free-recall (IFR), delayed free-
recall (DFR), and continual distraction free-recall (CDFR)
paradigms (Glanzer & Cunitz, 1966; Postman & Phillips,
1965; Bjork & Whitten, 1974). In these paradigms, the par-
ticipant engages in a short period of a distraction task (e.g.,
mental arithmetic) either just prior to beginning the recall
period (DFR), or before and after every item (CDFR).

Recently, Sederberg et al. (2008) showed that TCM-A can

account for a number of dissociations between IFR, DFR,
and CDFR, by assuming that performing the distraction task
disrupts the temporal context representation (using a similar
mechanism to our task-shift disruption). While this mech-
anism proved sufficient to explain performance across these
paradigms, the addition of a task context representation may
be required to explain performance in a set of paradigms that
manipulated the identity of the distraction task within-list.

Specifically, Koppenaal and Glanzer (1990) introduced a
variant of the CDFR paradigm in which participants perform
one distraction task in the intervals between each list item,
but a second task in the interval just prior to the start of the
recall period. This shift in distraction task just before recall
causes an attenuation of long-term recency usually observed
in a standard CDFR paradigm. The novelty-related disrup-
tion mechanism of CMR would be triggered by a shift in
distraction task, which would disrupt temporal context to a
greater extent than in the standard CDFR paradigm, where
distraction task is consistent throughout. Even without the
novelty-related disruption, the CMR model would predict
worse performance with a shift in distraction task: Since dis-
traction task identity is integrated into context and associated
with the studied items, shifting to another distraction task
just before recall removes a cue that could be used to support
those items in the recall competition.

Finally, Thapar and Greene (1993) demonstrated that
when one performs a different distraction task after each list
item (including between the study period and the recall pe-
riod), the recency effect reemerges (see also Neath, 1993).
The CMR model should handle this finding as well; since
there is an equivalent amount of disruption to task and tem-
poral context after every list item, the most recent list items
will again be favored relative to the more distant items. By
allowing task to be represented within source context, the
CMR theory provides a straightforward explanation of the
effect of the manipulation of distractor tasks on the memora-
bility of studied material. Furthermore, this approach allows
us to treat manipulations of encoding and distractor tasks in
a common framework, and predicts that the same organiza-
tional effects that were observed by manipulating encoding
task should also obtain with within-list manipulations of dis-
tractor task.

Task context and human memory

The role of the processing task on later memorability of
studied material has a long history in the literature. A major
thread, levels of processing, was concerned with the find-
ing that deeply processed items (i.e., where semantic fea-
tures were emphasized) are remembered better than items
receiving shallow processing (where phonological or ortho-
graphic features were emphasized; Craik & Lockhart, 1972;

4 Subsequent studies of environmental context change revealed
that with careful control of the amount of disruption each group of
participants received (e.g., by sending all groups to a waiting room
between lists), an effect of context change could also be observed
(Smith, Glenberg, & Bjork, 1978; Rutherford, 2000)
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Hyde & Jenkins, 1969; Postman & Adams, 1956). One reac-
tion to the levels of processing approach, transfer-appropriate
processing, pointed out that one performs best on a mem-
ory test when the processes engaged at study emphasize the
attributes of the studied material that are most relevant for
the upcoming memory test (Morris, Bransford, & Franks,
1977; Blaxton, 1989). This is also closely related to the con-
cept of encoding specificity (Tulving & Thompson, 1973),
which states that retrieval of a piece of information will be
facilitated if the retrieval cue used to recall that information
matches the specific attributes that were emphasized during
encoding. At a mechanistic level, the CMR model is con-
sistent with the principles of transfer-appropriate processing
and encoding specificity, in that one will be better able to re-
member a particular piece of information the more one’s con-
text representation (which is used as a retrieval cue) matches
the context representation that was present when that item
was originally studied. Thus, activating the source context
associated with a subset of the studied material makes that
material more accessible, relative to material studied in an-
other source context.

While we focused specifically on task context in this ar-
ticle, the CMR model was developed to account for ma-
nipulations to many varieties of source characteristics. As
such, some broad parallels might be seen between this ef-
fort, and the source monitoring framework of Johnson and
colleagues (Hashtroudi, Johnson, & Chrosniak, 1989; John-
son, Hashtroudi, & Lindsay, 1993). In the source monitor-
ing framework, source is meant to refer broadly to the set
of characteristics that specify the conditions under which a
given memory was acquired, much like the notion of context
being explored here. In other words, source in the source
monitoring framework actually subsumes all of what we re-
fer to as context here. Perhaps most directly related to this
endeavor is the work by Jacoby and colleagues character-
izing the role of source-constrained retrieval in recognition
memory paradigms (Jacoby, Shimizu, Daniels, & Rhodes,
2005). Below (“Future directions”), we explore the possibil-
ity of applying the CMR model fruitfully in this domain.

Another domain in which the notion of task context re-
ceives much attention is in the behavioral study of task per-
formance. Researchers have shown that there is a cost to per-
formance associated with switching from one task to another
task (e.g., Allport et al., 1994; Wylie & Allport, 2000). This
phenomenon most reliably exhibits itself as an increased la-
tency to respond to the stimulus following the switch, also
known as a switch cost. As presented in Table 5, a reliable
switch cost was observed in the latencies to make judgments
to post-switch items in the behavioral data from the current
paradigm (this decision process was not part of the CMR
model). The switch cost is taken as evidence that task rep-
resentations are being updated when one switches between
tasks. These task representations are thought to be a compo-
nent of an executive control system that guides processing of
incoming stimuli, in accordance with the particular demands
of a given task (Cohen et al., 1990).

Theories of task performance suggest that associative in-
terference arising from previously active task representations

is an important factor underlying reaction time shift costs
(Monsell, 2003). These interference effects are thought to
arise from rapidly formed associations between the features
of the stimuli and the task representation guiding the pro-
cessing of those stimuli. Thus, when a participant switches
to performing a new task, associations between the stim-
uli and the now-inappropriate other task representation slow
processing.

The CMR model predicts that two dependent measures
in the current experiment reflect the influence of task rep-
resentations: the task clustering effect (in particular the re-
mote task clustering effect) and the cost to IRTs after a task
shift. According to the CMR model, both of these behav-
ioral effects arise from a combination of context-association
and context-disruption mechanisms. The context-association
mechanism is similar to the above described associative in-
terference mechanism from the task switching literature, in
that it describes the process by which features of studied
items are associated with a concurrently active task repre-
sentation.

At first glance, these mechanisms seem quite different:
in the free-recall paradigm, the associations formed between
items and task context exhibit themselves minutes later dur-
ing the recall period, but in the task-switching paradigm,
these effects are observed only seconds later, and seem to
dissipate once a few stimuli have been judged with the new
task. However, some researchers have hypothesized that in
the task switching paradigm, these interfering associations
are still present, but control processes detect the conflict be-
tween the two competing tasks and support the current task,
allowing it to overcome any interference arising from the
now-inappropriate task. Thus, the associations between stim-
uli and tasks only exhibit themselves behaviorally in the first
trials following a shift, before control processes have had a
chance to activate (Botvinick, Cohen, & Carter, 2004). If
true, this predicts that the magnitude of a participant’s switch
cost will be positively correlated with the degree of task clus-
tering observed for that participant during a later recall pe-
riod (as well as that participant’s IRT shift cost). A future
study blending the techniques of task-switching paradigms
with free-recall paradigms will be able to test this prediction.

Developing the CMR model of encoding dynamics

In the present investigation, we have chosen to focus on
retrieval-period dynamics in order to simplify the model un-
der consideration. However, a number of researchers have
established the importance of study-period rehearsal dynam-
ics in understanding performance in the overt rehearsal free-
recall paradigm (Rundus & Atkinson, 1970; Rundus, 1971;
Brodie & Murdock, 1977; Tan & Ward, 2000; Laming,
2006). It is likely that covert rehearsal processes also play
a role in the immediate free recall paradigm.

Laming (in press) suggests that the mechanisms underly-
ing rehearsal are the same as those underlying recall. If so, it
would be a straightforward extension of the model to include
a short burst of retrieval in the interval between the presen-
tation of each studied item. Such an addition to the model
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would allow us to simulate the pattern of rehearsals dur-
ing free recall. The work of Murdock and Metcalfe (1978)
and Tan and Ward (2000) suggests that this might provide
a rehearsal-based explanation for the primacy effect, which
would allow us to remove the two model parameters con-
trolling the primacy gradient, although several parameters
would likely need to be added in order to characterize the
rehearsal process. While it is not clear whether this addition
would shed additional light on the dynamics of the organi-
zational processes under investigation here, the CMR model
predicts that these organizational factors (semantic, tempo-
ral, and source) will influence the order of rehearsals in the
overt-rehearsal free-recall paradigm. The influence of tem-
poral context during rehearsal is clear from a number of stud-
ies (Friendly, 1979; Ward et al., 2003; Bhatarah, Ward, &
Tan, 2006; Laming, in press), but the influence of semantic
and source information during rehearsal has not been char-
acterized.

One aspect of the model fits that could potentially be re-
lated to these covert rehearsal processes is the inability of the
CMR model to match the exact shape of the probability of
first recall (PFR) curve (the probability of recalling a particu-
lar serial position in the first output position) for the Murdock
(1962) dataset (depicted in Howard and Kahana (1999), Fig-
ure 1). The CMR model predicts that the participant is most
likely to start recall with the final item, and that the prob-
ability of earlier items initiating recall falls off rapidly and
monotonically (possibly with a small bump for the primacy
positions). However, in the Murdock (1962) study, partici-
pants more often began recall two or three positions from the
end of the list (producing a nonmonotonic, or “humped” PFR
curve).

The nonmonotonicity in the PFR curve has been taken as
support for the notion of a short-term buffer, where items
in the buffer are reported in the order in which they were
inserted into the buffer (in other words “oldest first”). This
has been cast as a challenge for context-based theories of
recency (Farrell, 2008). However, it is possible that if par-
ticipants covertly start to recall list items prior to the onset
of the recall start signal, the first “overt” recall could come
from a slightly earlier serial position (Brodie & Murdock,
1977; Rundus, 1971; Tan & Ward, 2000). Finally, many free-
recall studies do not exhibit this nonmonotonicity in the PFR
curve (producing instead a curve that peaks with the final
item; Howard & Kahana, 1999; Kahana, Howard, Zaromb,
& Wingfield, 2002; Howard, Youker, & Venkatadass, 2008;
as well as the present study). It is unclear which experimen-
tal variables are responsible for this nonmonotonicity. It is
important that we understand what causes this effect to come
and go before we modify the model to account for it.

Relationship to other models of free recall

Models of memory search have often emphasized that
memory search involves a strategic, systematic, and serial
inspection of a number of locations in the memory system
(James, 1890; Shiffrin, 1970; Kintsch, 1970; Raaijmakers
& Shiffrin, 1980; Burgess & Shallice, 1996). These models

often detail a process by which the memory system retrieves
as many items as possible with one set of cues before assem-
bling a new set of cues in an attempt to recall more items.
These models of strategic retrieval would presumably make
similar predictions to the CMR model regarding clustering
by similarity and increased IRTs with a shift in similarity
across any of the organizational dimensions. However, the
CMR model describes an automatic process that produces
these phenomena, obviating the need for an executive sys-
tem that determines the optimal state of the next set of cues.
While there is certainly room in the cognitive system for such
executive processes, it seems that for these data, the simpler
CMR model is sufficient.

The CMR model is part of a longstanding tradition of
context-based theories of human memory (McGeoch, 1942;
Bower, 1972; Murdock, 1997; Dennis & Humphreys, 2001;
Howard & Kahana, 2002a; Sederberg et al., 2008), whereby
an internal context representation is principally responsible
for the guidance of memory search. These context-based
models may be contrasted with dual store models of memory
search (Raaijmakers & Shiffrin, 1980; Gillund & Shiffrin,
1984; Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, &
Usher, 2005; Sirotin et al., 2005; Kimball, Smith, & Kahana,
2007), which posit that in addition to a context-guided search
of long-term memory, a major proportion of the behavioral
variance is explained by a short-term buffer that can concur-
rently maintain the representations of several recently studied
items.5

The modern debate between context-based and dual store
models of human memory centers on the notion of a short-
term store, which has been conceived as a buffer-like struc-
ture that can concurrently maintain a few item representa-
tions (e.g., Davelaar et al., 2005). When recall begins, the
items still active in the buffer are read out, and then a context-
based recall process is responsible for the rest of memory
search. There has been longstanding friction among re-
searchers regarding whether the short-term store is a neces-
sary component of the memory system, or whether the dy-
namics of recall can be explained by a system with a single
context-based search mechanism (as implemented, for exam-
ple, in TCM-A; Sederberg et al., 2008). Recently, Usher,
Davelaar, Haarmann, and Goshen-Gottstein (in press) argued
that TCM-A is itself a dual component model, the two com-
ponents being the context representation and the episodic as-
sociation matrix (referred to as MFC and MCF in both TCM-
A and CMR). Of course, by this scheme, the Davelaar et
al. (2005) model has three components, a context represen-
tation, an associative matrix, and a short-term store. This
contrast highlights what some may see as a shortcoming of
a context-based memory system: it has no explicit provi-
sion for a separate working memory component (Baddeley,
1986), thought to be critical for explaining, for example, the
ability of amnesic patients to recall several items in a free-

5 Mensink and Raaijmakers (1988) straddles these two traditions
in that it uses the dual store SAM framework but posits a critical
role for context in explaining interference effects in paired asso-
ciates learning.
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recall experiment, without the ability to remember, a moment
or so later, that they even participated in such an experiment
(Carlesimo, Marfia, Loasses, & Caltagirone, 1996). How-
ever, as Sederberg et al. (2008) showed, the context repre-
sentation can be used to momentarily keep a set of recently
presented items in an enhanced state of accessibility (using
the pre-experimental connections between item and context
representations), allowing the model to fit the performance
of amnesic patients. By this view, the amnesic syndrome is
best characterized by an inability to form new associations
between item features and context representations.

A second behavioral phenomenon raised as a critical
marker of the presence of a short-term store is the sigmoidal
shape of the serial position curve for the recency items often
seen in immediate free recall (e.g., Murdock, 1962; Fig. 5).
Usher et al. (in press) suggested that TCM (and by extension
TCM-A and CMR) could not account for this effect because
of the exponential decay of the elements comprising the con-
text representation. However, recall is a dynamic process in
these context-based models, and the probability of recall of
the studied items does not map linearly onto the activation of
a particular context unit at the time of recall initiation (owing
both to context reinstatement and the nonlinear recall compe-
tition). As can be seen in Fig. 5, the CMR model is able to fit
the sigmoidal shape of the serial position curve (for another
example see Kahana, Sederberg, & Howard, 2008).

While both the short-term store and the context represen-
tation are activation-based components, there are important
differences between them. The short-term store account sug-
gests that the first few recalls are items read out of the buffer,
whereas context-based accounts suggest that these items are
recalled because of their strong associations with the cur-
rent state of the context representation. A recent study by
Howard, Vankatadass, Norman, and Kahana (2007) throws
these two accounts into sharp contrast, by showing that when
participants first recall an item that was presented twice in the
list, the temporal neighbors of the original presentation of the
item show an enhanced probability of being recalled. This is
a natural consequence of a context-based model, where recall
of the repeated item will retrieve context related to both pre-
sentations. It is difficult to see how a short-term store would
account for this phenomenon.

A related issue was explored in the current manuscript,
in our analysis of the effect characterized by Farrell and
Lewandowsky (in press) (also explored thoroughly by
Howard, Sederberg, and Kahana (2008)). This issue is de-
scribed in Simulation analysis I: temporal clustering. In
brief, if one of the first items recalled comes from a mid-
list position, the next recall is sometimes another mid-list
item (giving rise to a contiguity effect), and is sometimes an
end-of-list item (giving rise to a recency effect). This finding
was presented as a challenge for context-based models, be-
cause a version of TCM was unable to fit the data (Farrell &
Lewandowsky, in press). As seen in Fig. 3, the CMR model
is able to fit the effect qualitatively, showing both a contiguity
effect and a recency effect for these first recalls from mid-list
positions. This is because, after the first recall of the mid-list
item, context is updated, creating a blend of mid-list context

and end-of-list context. However, the CMR model underpre-
dicts the magnitude of the contiguity effect in this situation,
and it is worth reviewing how this underprediction arises.

Exploration of the parameter space of the model suggests
that the CMR model’s underprediction of the magnitude of
the contiguity effect for early output positions is not some-
thing that can be simply remedied by adjusting the model
parameters. Raising the recall period context-retrieval pa-
rameter (βtemp

rec ) can bring the simulated results for the early
output positions (Fig. 3B) into line with the behavioral
data (Fig. 3A). Raising βtemp

rec causes the just-recalled item
to more strongly reinstate its associated temporal context,
which causes contiguous items to compete more effectively
against the end-of-list items in the decision competition.
However, this adjustment causes the model to overpredict the
magnitude of the contiguity effect for later output positions,
reducing the overall goodness-of-fit of the model.

Two parameters control the likelihood that an early recall
will come from a mid-list serial position: the semantic asso-
ciation parameter (s), and the noise parameter on the recall
competition (η). Increases in each of these parameters tend
to wrest recalls away from the end-of-list serial positions; s
because semantic associations cause transitions that are ran-
dom with respect to list structure, and η because all items
are supported by noise equivalently. However, while increas-
ing either of these parameters will increase the proportion of
mid-list recalls, they will not increase the contiguity effect
for those recalls. In fact, each will tend to work against the
contiguity effect by increasing the likelihood that the next
item recalled comes from a random serial position.

One mechanism that could both increase the likelihood of
mid-list recalls early in the recall sequence, and increase the
size of the contiguity effect for those recalls, would be the
addition of variability in encoding strength. If some items
are better encoded than others (by boosting the strength of
the associative connections between the feature representa-
tion and the context representation; LFC

tw and LCF
tw ), then these

items would tend to be recalled earlier in the recall sequence,
and once recalled, would more strongly reinstate context than
a less well encoded item, causing a boost in the contiguity ef-
fect. The remaining items would be less well encoded, lead-
ing to a gradual reduction in the magnitude of the contiguity
effect over the course of the recall period.

While the current version of CMR underpredicts the mag-
nitude of the recency effect in this situation, it is unclear how
a short-term store model would predict a contiguity effect at
all in this situation. Davelaar et al. (2005), in a discussion
of response latencies, suggest that when the first recall of
an item comes from an early or mid-list position, that recall
was likely because the item managed to remain in the buffer
throughout the list presentation (pg. 32). While it is clear
why one would see a recency effect in this situation (the mid-
list item shares the buffer with some of the final items from
the list), it is unclear why reading out a mid-list item from
the short-term store would then lead to recall of another mid-
list item from a neighboring position in the study sequence
(for a more thorough examination of this issue see Howard,
Sederberg, & Kahana, 2008).
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While the current study makes some points relevant to the
debate between dual store and context-based models, the fo-
cus of the work is on developing our understanding of the
nature of the context representation, a central component of
both classes of models. Specifically, we show how the mech-
anisms developed in recent work on the nature of tempo-
ral context can be generalized to a much broader range of
context-related phenomena, in particular, those correspond-
ing to the source characteristics of the studied items. The
CMR model describes the dynamics by which these source
representations influence memory search, as well as how
they interact with other components of the memory system.
The goal of this endeavor is to create the simplest possible
model that is consistent with the widest range of behaviors
exhibited by the human memory system, in the domain of
free recall. It is our hope that the CMR model will prove
useful in determining the role of context representations in
other related paradigms, beginning with the wide range of
free-recall variants that have arisen over the many decades of
research in this domain.

The control of memory search: Future directions

The best-fit version of the CMR model provides a set of
parameter values that characterize the operation of the hu-
man memory system in terms of several relatively simple
mechanisms (e.g., context updating, association formation,
and decision making). The critical next step in this endeavor
is to evaluate the utility of the model as an interpretive tool.
It is our hope that the model can be used to disentangle the
factors at work during memory search, both in the behavioral
and neural domains. Here, we outline some future work that
may benefit from the CMR model: First, a description of
how the model may extend our understanding of the memory
deficit observed in healthy aging (Hasher & Zacks, 1988; Ka-
hana & Wingfield, 2000; Naveh-Benjamin, 2000; Kahana et
al., 2002). Second, a description of how the model may shed
light on neural reinstatement effects during memory retrieval.

Howard, Kahana, and Wingfield (2006) showed that TCM
could be used to investigate the age-related associative im-
pairment by examining the temporal clustering behavior of
young and older participants in a free-recall task. They con-
cluded that the reduced temporal clustering observed in older
participants (paired with intact recall initiation) was consis-
tent with a variant of TCM in which older adults have an
impaired ability to retrieve the temporal context associated
with each studied item. The idea that the ability to retrieve
associations is impaired in older participants is consistent
with the finding of impaired performance in the associative
recognition paradigm (e.g., Naveh-Benjamin, 2000), and in
a number of source recognition paradigms (Johnson et al.,
1993; Chalfonte & Johnson, 1996; McIntyre & Craik, 1987;
Hashtroudi et al., 1989), in which one must retrieve associ-
ations between item and source information to respond cor-
rectly.

The generalization of TCM to create the CMR model pri-
marily involved the addition of machinery to handle source
information; this substantially broadens the class of mem-

ory phenomena that the model can be applied to. For ex-
ample, the CMR model could be used to investigate whether
older adults’ source association deficits extend into the do-
main of free recall, and whether these deficits are best ex-
plained as an inability to retrieve associations between item
features and source context, or an inability to inhibit the ac-
tivation of competing representations (such as a competing
source representation Hasher & Zacks, 1988). A study of
older adults in a continuous performance task suggests that
the memory deficit in older adults may be related to an inabil-
ity to properly maintain contextual representations (Braver
et al., 2001), which will cause older adults to be more sen-
sitive to context disruption than younger participants. The
source-manipulation paradigm of the current article is well
designed to assess this hypothesis: By examining the best-fit
parameters for a set of older adults, we can assess the level
of source association as well as the level of task-shift related
disruption. In line with the arguments presented above, we
expect that the best-fit model will show decreased associative
strength between source context and item features, as well
as increased task-shift related disruption of temporal con-
text, leading to decreased remote same-task clustering, but
increased local clustering (much like that shown by the Pure
disruption model variant in Fig. 4E). Furthermore, older par-
ticipants will likely show a larger decrement to memorability
of items due to task shifts (and a larger relative increase in
memorability of the final train), owing to the increase in the
disruption parameter. Obtaining these results would extend
our understanding of the age-related associative deficit, and
provide further evidence for the utility of CMR as a general
model of free recall.

A second future direction involves bridging relatively ab-
stract cognitive theories of memory with the burgeoning liter-
ature on the neural substrate of memory. Models of memory
search such as TCM and CMR provide a framework with
which to interpret the functional significance of patterns of
brain activity observed during free-recall performance. Re-
cent studies have begun to visualize the process of mem-
ory reinstatement, whereby the pattern of neural activity ob-
served when one studies a particular item is revived when
that item is later recalled (Wheeler, Petersen, & Buckner,
2000; Polyn, Natu, Cohen, & Norman, 2005; Prince, Dase-
laar, & Cabeza, 2005; Sederberg et al., 2007).

These studies raise the possibility that we can identify
the neural correlates of the item and context representations
characterized by the CMR model, and track the coming and
going of these representations over the course of memory
search. Polyn et al. (2005) took a step in this direction,
by having participants study items drawn from three dis-
tinct categories (celebrities, landmarks, and objects). Us-
ing machine-learning techniques (Norman, Polyn, Detre, &
Haxby, 2006), Polyn et al. (2005) characterized the pattern
of brain activity associated with each study category, on
a participant-by-participant basis. These machine-learning
techniques were then used to assess the relative strengths of
each category-specific pattern on a second-by-second basis
over the course of the recall period. They found that the
reinstatement of a particular category pattern predicted the
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upcoming recall of an item from that category. The CMR
model suggests that the patterns identified in the Polyn et al.
(2005) study were likely a blend of item and context infor-
mation. According to the model, when an item is recalled,
the system revives not only that item’s representation, but
also the pattern of context activity associated with that item.
This context pattern then shapes the course of the follow-
ing search, determining the probability of recalling any given
studied item.

The next frontier in understanding the neural basis of
memory search involves identifying the neural substrate of
context. The CMR model provides a precise specification
of the functional properties of the context representation: it
must reflect the features and statistical properties of studied
items, integrate information over long time-scales, and return
to a prior state, given the recall of an item (Polyn & Kahana,
2008). Using these specifications, researchers may be able
to identify candidate anatomical regions for the neural seat
of context in the human brain. An emerging view, summa-
rized by Polyn and Kahana (2008), is that prefrontal cortex
is centrally involved in contextual processing. Patterns of
activity in prefrontal cortex play a double role, both guid-
ing how item representations in more posterior brain regions
are processed (Miller & Cohen, 2001) and also serving to
contextualize these patterns through associations formed be-
tween the two sets of patterns by the hippocampal formation
(see also Norman, Detre, & Polyn, 2008). This hypothesis
is consistent with evidence drawn from neuroimaging stud-
ies of memory retrieval (Blumenfeld & Ranganath, 2007),
neuropsychological studies of patients with prefrontal dam-
age (Schacter, 1987), and computational models of the role
of prefrontal cortex in free recall (Becker & Lim, 2003). A
mechanistic specification of the role of prefrontal cortex in
memory search will prove quite valuable in integrating the
current framework with computational models of the me-
dial temporal memory system (McClelland, McNaughton, &
O’Reilly, 1995; Norman & O’Reilly, 2003).

The CMR model, coupled with a set of neural linking hy-
potheses, may serve as a valuable tool in interpreting the
neural patterns observed in prefrontal and other brain re-
gions during study as well as during the recall period. The
CMR model is a predictive framework; given a particular
set of studied items (which vary in semantic relatedness, list
position, and source characteristics) the model can provide
the most likely recall sequences. As the preceding analyses
show, these predicted recall sequences match the character-
istics of the observed sequences quite well. Patterns of neu-
ral activity observed during the study and recall periods, in
various brain regions, can be used to gain predictive power
regarding the order of recalls, allowing us to gain insight into
the functional contribution of these regions in the domain of
memory search.
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Appendix A
Experimental methods for the

source-manipulation experiment

45 participants (28 female) from the University of Penn-
sylvania community received payment in accordance with
the University’s IRB guidelines. Stimuli were presented with
a computer running PyEPL (Python Experiment Program-
ming Library: http://pyepl.sourceforge.net, Geller,
Schleifer, Sederberg, Jacobs, & Kahana, 2007). Verbal re-
sponses were recorded with a microphone and parsed with
the pyParse package.

On each trial, a list of 24 words was presented; each item
was concurrently presented with a task cue, indicating the
judgment that the participant should make for that word.
Each word was presented for 3 seconds. The two tasks were
a size judgment (“Will this item fit into a shoebox?”) and
an animacy judgment (“Does this word refer to something
living or not living?”). Immediately following the list, a row
of asterisks appeared, along with a beep, indicating the start
of the recall period. Participants were given 90 seconds to
recall as many words as they could remember from the most
recent list, in any order.

There were two conditions, control and task shift. On
control lists, every word was judged with the same encod-
ing task. On the task-shift lists, participants shifted back
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and forth between the two tasks, first judging a short train of
items from one task, and then switching to the other task for
another short train. Each train was constrained to be between
2 and 6 items long (inclusive), and the ordering of these trains
was randomized. We counterbalanced (across lists) the task
used to start the list and the number of trains in the list (6 or
7).

The words on a given list were chosen such that in to-
tal there would be a roughly equivalent number of items as-
sociated with each response (“big”, “small”, “living”, and
“nonliving”). Many words are ambiguous with regard to the
“correct” judgment (e.g., given the word “dog”, an image of
a chihuahua might elicit a “small” judgment, while an image
of a Great Dane might elicit a “big” judgment). We ran a
small norming study in which 12 participants judged each
of 1297 words using these tasks. This allowed us, in the
current experiment, to avoid words that were ambiguous; to
choose words that tended to be quickly judged; and to in-
clude roughly equal numbers of words associated with each
response. In general, the responses that participants made
in the free-recall experiment were highly correlated with the
responses of the participants in the norming study.

Appendix B
Details of the USF

free-association simulations

As described in Associative connections: learning and
semantic structure, the semantic clustering estimates of the
CMR model are inflated relative to the behavioral data. Here,
we describe a simulation study designed to estimate the de-
gree to which an average human participant’s semantic mem-
ory mismatches the LSA semantic association values, in or-
der to create a correction factor to apply to the semantic clus-
tering scores produced by the model.

In the USF free-association study, a large number of par-
ticipants were asked to respond to a given cue word with the
first word that came to mind. We randomly chose five words
from the USF database which were also words in the word
pool of our source-manipulation experiment (agent, bracelet,
elephant, glove, plane). Between these five cue words, 74
distinct target words were produced by the USF participants.
We obtained the LSA association values (as were used to cre-
ate the semantic memory for CMR) for each cue word to the
full set of 74 targets, excluding words not in the LSA corpus.
We then created a very simple choice model, using the LSA
association values (CMR’s semantic memory): Given a par-
ticular cue word, the model selects the target with the largest
LSA association value as its response. The model had one
parameter, the variance of randomly distributed noise that
was added to each LSA association value to simulate the vari-
ability between participants. We searched for the value of
this variance that minimized the difference (measured with
RMSD) between the responses produced by the CMR se-
mantic memory, and the USF behavioral data. If the variance
is too low, the model does not produce enough variability
in its responses to match the USF data. If the variance is
too high, the model may produce an entirely unrelated target

(e.g. “secret” given “elephant”). The technique produced a
smooth and stable curve with a minimum when the variance
of the noise distribution was set to 0.41. This variance esti-
mate was then used, as described in the main text, to correct
the estimates of semantic clustering produced by the CMR
model.

Appendix C
Details of the genetic algorithm

fitting technique

A genetic algorithm was used to find the parameter set for
each variant of the CMR model that allowed the model to
best fit the behavioral data. In order to determine the best-
fitting parameter set, we attempted to simultaneously min-
imize the deviation between the model predictions and the
behavioral data for a large number of behavioral measures.
The following aspects of the behavioral data were used to as-
sess the goodness of fit of a given parameter set of the model
(93 data points in total; each point contributed equally to the
overall χ2 goodness of fit):
• The overall probability of making a same-task transi-

tion, as well as the probability of making a remote same-task
transition, for both the task-shift and relabeled control con-
ditions [4 data points].
• The binned lag-CRP values for recall transitions origi-

nating from serial positions 5 through 19, both for early out-
put positions (1 to 3) and later output positions (4 onwards),
from the control condition (lag bins: -19 to -18, -17 to -6, -5
to -2, -1, 1, 2 to 5, 6 to 17, and 18 to 19) [16 data points].
• The final three serial positions of the probability of first,

second, and third recall curves from the control condition [9
data points].
• All points from the train serial position analysis for the

task-shift and relabeled control conditions, as well as the dif-
ferences between the conditions at each train position [21
data points].
• The points from -5 to +5 from the train-lag CRP analy-

sis for the task-shift and relabeled control conditions, as well
as the differences between the conditions at each train lag [33
data points].
• The mean IRT for the first 10 output positions from the

control condition [10 data points].
For each of the model variants, the following procedure

was used to find the best-fit parameter set: The first gener-
ation of the genetic algorithm consisted of eight thousand
points uniformly randomly selected from pre-determined
ranges along each of the parameters. Then the algorithm
was run for 15 generations, where each successive genera-
tion took the most fit 20% of the previous generation, and
used these “parent” parameter sets to form 1024 new param-
eter sets to simulate, by randomly repairing the parameters
and adding random “mutation” to all values (using a random
normal distribution with mean zero and standard deviation
0.1). Then another 10 generations were run, with the muta-
tion standard deviation dropped to 0.05, and 512 parameter
sets per generation. For these 10 generations each simulated
experiment generated 3 times as much data as the original
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experiment. Finally, the top 256 best-fitting parameter sets
were each re-run (generating 12 times as much data as the
original experiment) to find the final parameter set.

In calculating BIC goodness of fit scores reported in the
main text, we scaled down the contribution of the IRTs (by
dividing these observations by 105). This served to bring
the variability in IRTs into the same range as the perfor-
mance scores and conditional probabilities reported in the
other analyses, and was done in order to ensure that the IRTs
had a similar influence on the goodness of fit of the model as
the other behavioral measures. Such scaling was not neces-
sary for the χ2 goodness of fit, which is already normalized
by the standard error of the observations (causing the influ-
ence of the IRTs, which have large error terms, to be roughly
comparable with the other data points).


