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Abstract

Examples growing out of the Newcomb problem have convinced many people that decision theory should
proceed in terms of some kind of causal probability. I endorse this view and define and investigate a variety
of causal probability. My definition is related to Skyrms’ definition, but proceeds in terms of objective
probabilities rather than subjective probabilities and avoids taking causal dependence as a primitive concept.

1. Causal Decision Theory

Decision theory is a theory of rational choice. It is a theory of how, rationally, an agent

should go about deciding what actions to perform at any given time. The basic ideas of classical

decision theory can be stated simply. We assume that our task is to choose an action from a set A

of alternative actions. The actions are to be evaluated in terms of their outcomes. We assume that

the possible outcomes of performing these actions are partitioned into a set O of pairwise exclusive

and jointly exhaustive outcomes. We further assume that we know the probability PROB(O/A) of

each outcome conditional on the performance of each action. Finally, we assume a utility-measure

U(O) assigning a numerical utility value to each possible outcome. The expected-value of an action

is defined to be a weighted average of the values of the outcomes, discounting each by the

probability of that being true if the action is performed:

EV(A) = ΣO∈ OU(O)·PROB(O/A).

The crux of classical decision theory is that actions are to be compared in terms of their expected-

values, and rationality dictates choosing an action that is optimal, i.e., such that no alternative has
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a higher expected-value.



Nozick’s (1969) presentation of the Newcomb problem led to a general recognition that

classical decision theory is flawed, making incorrect prescriptions in some cases. The Newcomb

problem itself commands conflicting intuitions, but there are other examples that are clearer.

One of the more compelling examples is due to Stalnaker (1978). Suppose you are deciding

whether to smoke. Suppose you know that smoking is somewhat pleasurable, and harmless.

However, there is also a “smoking gene” present in many people, and that gene both (1) causes

them to desire to smoke and (2) predisposes them to get cancer (but not by smoking). Smoking is

evidence that one has the smoking gene, and so it raises the probability that one will get cancer.

Getting cancer more than outweighs the pleasure one will get from smoking, so classical decision

theory recommends against smoking. But this seems clearly wrong. Smoking does not cause

cancer. It is just evidence that one already has the smoking gene and hence may get cancer from

that. If you have the smoking gene, you will still have it even if you refrain from smoking, so the

latter will not prevent your getting cancer.

As a number of authors (Gibbard and Harper 1978; Sobel 1978; Skyrms 1980, 1982, 1984;

Lewis 1981) have observed, conditional probabilities can reflect either evidential connections or

causal connections. In this example, the connection between smoking and getting cancer is

merely evidential.  Smoking is evidence for cancer, but it does not cause it. In deciding whether

to perform an action, we consider the consequences of performing it. The consequences should

be its causal consequences, not its evidential consequences. This suggests that a correct formulation

of decision theory should replace the conditional probability PROB(O/A) by some kind of “causal

probability”. The resulting theories are called causal decision theories.

In formulating causal decision theory, the problem is to make sense of causal probability. It is

tempting to simply replace PROB(O/A) by PROB(A causes O/A). To the best of my knowledge, no

one has  seriously proposed this, probably because causation is deemed too philosophically

problematic to form the basis for an analysis. That is a sentiment that I share. It is also worth

noting that in a world like ours, presumed to be governed by stochastic quantum mechanical

processes, there may be no causes. Performing an action may “dispose” an outcome to occur by

raising its probability, but it does not literally “make it happen”.1 So let us turn to other ways of

making sense of causal probability.
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2. Subjective Probability

Most work on decision theory, causal or classical, begins with subjective probabilities, perhaps

because that is the standard approach in conventional economic theory. These are Bayesian

decision theories. There is no apparent reason why objective probabilities cannot be used instead,

and that will be the course urged below. But before pursuing that, let me indicate briefly why I

think subjective probability is a poor candidate for representing uncertainty in the rational

deliberations of a cognizer.

Subjective probabilities are relativized to cognitive agents, and have been defined in two

different ways.  Sometimes the subjective probability of a proposition P for a person S is defined

to be S’s “degree of belief” (sometimes “credence”) in P, where that is a technical notion defined

in terms of S’s being willing to accept bets with prescribed odds on the truth of P. The simplest

difficulty for this definition is that it is universally acknowledged that real people do not have

degrees of belief that conform to the probability calculus, and so degree of belief is not, in that

sense, a probability. A person’s degrees of belief are said to be coherent iff they conform to the

probability calculus, so the observation is that real people do not have coherent degrees of belief.

Subjectivists try to circumvent this by giving Dutch book arguments that purport to show that

although people’s degrees of belief do not conform to the probability calculus, they should, and a

cognizer is being irrational insofar as he has degrees of belief that do not conform to the probability

calculus.

On the strength of Dutch book arguments, subjectivists sometimes define the subjective

probability of P for S to be the degree of belief S ought to have in P, rather than the degree of

belief S actually has in P. The problem with this definition is that Dutch book arguments do not

even purport to show that there is a unique degree of belief a person ought to have in P. Dutch

book arguments purport only to establish a constraint on a rational person’s overall set of

degrees of belief — the degrees of belief in the set should jointly conform to the probability

calculus, i.e., they should be coherent. Given that actual people do not have coherent sets of

degrees of beliefs, the Dutch book argument tells us only that they should change their degrees

of belief so that they become coherent. However, there are infinitely many ways to do that. The

Dutch book argument gives us no guidance in how to change an incoherent set of beliefs into a

coherent set of beliefs, and accordingly it gives us no reason to think there is such a thing as “the

unique degree of belief a person S ought rationally to have in P”. I think it must be concluded

that subjective probability, defined as the degree of belief that a cognizer rationally ought to

have, is a nonsensical notion.
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how cognizers should use their actual degrees of beliefs in making decisions if they were rational.

Here it is assumed that Dutch book arguments establish that rational cognizers will have coherent

degrees of belief, and then the subsequent discussion is confined to how such cognizers can use

their actual degrees of belief decision-theoretically. This makes decision theory a theory about a

certain kind of ideal agent. That is not automatically objectionable, but it deserves to be emphasized

how far this removes decision theory from what I want to call “the theory of rationality”. I take

the theory of rationality to be a theory of how, rationally, an agent should go about deciding

what actions to perform at any given time. This is not a theory of real agents in the sense of

being a theory about what they actually do, but it is a theory about what real agents should do. If

it is impossible for any real agent to perform a particular computational task, then that cannot be

a requirement of rationality. It is not what real agents should do. Properly understood, “ought”

implies “can” just as much in the theory of rationality as in the theory of morality.

I take it that it is impossible (i.e., beyond the power of their limited cognitive resources) for

real agents to make their degrees of belief conform to the probability calculus.2 As such, a theory

that imposes that as a requirement of rationality must be wrong. Thus we cannot save subjective

probability by saying that it is only intended to make sense for rational cognizers, because

rational cognizers cannot be expected to have coherent degrees of belief either. It does seem

plausible to urge that rational cognizers will fix incoherences in their degrees of belief (i.e.,

betting behavior) when they discover them, so in this sense they may, over time, come to more

closely “approximate” agents with coherent degrees of belief, but to approximate coherent degrees

of belief is still not to have them, so it can never be reasonable to assume that a rational agent has

coherent degrees of belief. As such, I see no way to make sense of subjective probability in a

manner that makes it relevant to the rational decision making of actual cognizers.

None of this implies that one should not pursue the topic of how idealized agents should

make decisions. But if the idealization is so great as to make the conclusions irrelevant to how

actual agents should, rationally, make decisions, then the conclusions would seem to be of only

aesthetic interest. My interests are more concrete.  I want to know how the cognition of real

agents should proceed when they are cognizing rationally, and for that subjective probability

seems to be irrelevant. If rational cognizers must appeal to probabilities, the probabilities cannot

be subjective probabilities.  The only alternative is objective probabilities, so let us consider how

objective probabilities work and how they should be used in decision making. In particular, how
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can they be used to make sense of causal probability?



3. Nomic Probability

No doubt the strongest appeal of subjective probability has been that it seemed to provide a

way of making sense of probability in the face of the failure of objective theories of probability.

Traditionally, objective theories tried to define objective probability in terms of relative frequency

or limits of relative frequencies, but for familiar reasons such definitions failed.3 In the mid-twentieth

century, when this dialogue was at its height, it was generally supposed that the only way to

make sense of a philosophically problematic concept was by giving a definition of it in terms of

simpler concepts, and that seemed to require defining objective probability in terms of relative

frequency. However, by the end of the twentieth century it should be obvious to all that the

program of defining complex concepts in terms of simple concepts has been a resounding failure

throughout philosophy. We cannot define “red” in terms of “looks red”, we cannot define

mental concepts in terms of physical or behavioral concepts, we cannot define “physical object”

in terms of spatio-temporal continuity, etc. The idea that concepts have to have definitions is just

a bad theory of concepts. Instead, concepts can receive philosophical clarification by explaining

how they are used in cognition. Thus, for example, we can solve the traditional problem of

perception by describing the epistemic connection between “red” and “looks red”. Something’s

looking red to a person gives him a defeasible reason for thinking it is red.4 This does not derive

from any deeper fact about the concepts “red” and “looks red”. This relationship is a primitive

constituent of our rational architecture, and philosophical clarification of the concepts can go no

further than explaining how our rational architecture dictates we use the concepts in cognition.

The same lesson should be learned for probability. We are no more likely to be able to define

probability in terms of simpler concepts than we are to be able to define any other complex

concept in terms of simpler concepts. But perhaps we can explain objective probabilities by

giving an account of how to reason about them. My (1990) purports to do just that.5 I will give a

very brief summary of some aspects of that theory, and then show how it can be used to define a

kind of causal probability of use in causal decision theory.

There are two kinds of physical laws — statistical and nonstatistical.  Statistical laws are
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probabilistic.  I will call the kind of probability involved in statistical laws nomic probability.  The



best way to understand nomic probability is by looking first at non-statistical laws.  What

distinguishes such laws from material generalizations of the form “(∀ x)(Fx → Gx)” is that they

are not just about actual F’s.  They are about “all the F’s there could be”, that is, they are about

“physically possible F’s”.  I call non-statistical laws nomic generalizations.  Nomic generalizations

can be expressed in English using the locution “Any F would be a G”.  I will symbolize this

nomic generalization as “F ➡  G”. This can be roughly paraphrased as telling us that any physically

possible F would be G.

I propose that we think of nomic probabilities as analogous to nomic generalizations. Just as

“F ➡  G” tells us that any physically possible F would be G, we can think of the statistical law

“prob(G/F) = r” as telling us that the proportion of physically possible F’s that would be G’s is r.

For instance, pretend it is a law of nature that at any given time, there are exactly as many

electrons as protons.  Then in every physically possible world, the proportion of electrons-or-

protons that are electrons is 1/2. It is then reasonable to regard the probability of a particular

particle being an electron given that it is either an electron or a proton as 1/2.  Of course, in the

general case, the proportion of F’s that are G’s will vary from one possible world to another.

prob(G/F) then “averages” these proportions across all physically possible worlds.  The mathe-

matics of this averaging process is complex, but it is discussed in detail in my (1990).

Nomic probability is illustrated by any of a number of examples that are difficult for frequency

theories.  For instance, consider a physical description D of a coin, and suppose there is just one

coin of that description and it is never flipped.  On the basis of the description D together with

our knowledge of physics we might conclude that a coin of this description is a fair coin, and

hence the probability of a flip of a coin of description D landing heads is 1/2.  In saying this we

are not talking about relative frequencies — as there are no flips of coins of description D, the

relative frequency does not exist.  Or suppose instead that the single coin of description D is

flipped just once, landing heads, and then destroyed.  In that case the relative frequency is 1, but

we would still insist that the probability of a coin of that description landing heads is 1/2.  The

reason for the difference between the relative frequency and the probability is that the probability

statement is in some sense subjunctive or counterfactual.  It is not just about actual flips, but

about possible flips as well.  In saying that the probability is 1/2, we are saying that out of all

physically possible flips of coins of description D, 1/2 of them would land heads. To illustrate

nomic probability with a more realistic example, in physics we often want to talk about the

probability of some event in simplified circumstances that have never occurred.  For example,

the typical problem given students in a quantum mechanics class is of this character.  The

relative frequency does not exist, but the nomic probability does and that is what the students

are calculating.
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define “nomic probability” in terms of simpler concepts, because I doubt that can be done.

Probabilistic reasoning has three constituents.  First, there must be rules prescribing how to

ascertain the numerical values of nomic probabilities on the basis of observed relative frequencies.

Second, there must be “computational” principles that enable us to infer the values of some

nomic probabilities from others.  Finally, there must be principles enabling us to use nomic

probabilities to draw conclusions about other matters.

The first element of this account will consist largely of a theory of statistical induction. Here

it must be recognized that the connection between nomic probability and relative frequency is

epistemological rather than definitional. The second element will consist of a calculus of nomic

probabilities.  The final element will be an account of how assertoric (non-probabilistic) conclusions

can be inferred from premises about nomic probability.  It seems clear that under some circum-

stances, knowing that certain probabilities are high can justify one in holding related assertoric

beliefs.  For example, if I want to know today’s date, I normally read it off from my watch. My

resulting belief is assertoric. I believe that today’s date is August 14 — I do not just believe that it

is probable that today’s date is August 14. On the other hand, I do not believe that my watch is

always right — just that it is extremely probable that the date displayed is today’s date. So I draw

an assertoric conclusion from a probabilistic premise. The epistemic rules describing when high

probability can justify belief are called acceptance rules.  The acceptance rules endorsed by the

theory of nomic probability constitute the principal novelty of that theory.  The other primitive

assumptions about nomic probability are all of a computational nature.  They concern the logical

and mathematical structure of nomic probability, and amount to nothing more than an elaboration

of the standard probability calculus.  It is the acceptance rules that give the theory its unique

flavor and comprise the main epistemological machinery making it run. The main acceptance

rule employed in the theory is the following version of the statistical syllogism:

(SS) If F is projectible with respect to G then “prob(F/G) ≥ r” is a defeasible reason for the

conditional “Gc → Fc”, the strength of the reason depending upon the value of r.

This is supplemented by an account of defeaters for the defeasible inference described. With the

help of the computational principles comprised by the calculus of nomic probabilities, it is then

shown that other kinds of defeasible inferences, such as those involved in statistical and enumer-

ative induction, can be derived from these core defeasible inferences. In particular, the familiar

projectibility constraint in induction is derived from the projectibility constraint in (SS).

To summarize, the theory of nomic probability will consist of (1) a theory of statistical
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derived from others, and (3) an account of acceptance rules. My (1990) provides a detailed

account of all three aspects of our reasoning about nomic probabilities, and it is sketched more

simply in my (1992).

4. Mixed Physical/Epistemic Probability

There is an important distinction to be made between two kinds of probabilities. Some

probabilities attach to propositions. For example, subjective probabilities are probabilities of

particular propositions being true. If we can make sense of them, causal probabilities are also

about particular propositions. They tell us how likely it is that a certain possible consequence (a

proposition) will result from performing an action under the present circumstances. The probability

that a specific proposition is true is a definite probability (Pollock 1990). These are also called

“single case probabilities”, although that is not a very good term because the propositions in

question can be as general as we like.  For example, we can talk about the probability that all life

on earth will be destroyed if we detonate a cobalt bomb.

Nomic probabilities are not definite probabilities. Like relative frequencies, they relate classes

or properties. For example, we might imagine a law telling us that the probability of an elementary

particle being negatively charged is 1/2.  This is not about any particular elementary particle.  It

is about all physically possible elementary particles, or better, about the properties of being an

elementary particle and being negatively charged. Such probabilities are indefinite probabilities.

The logical form of an indefinite probability is akin to a relative frequency. It is conditional, and

we can write it with free variables. E.g., we can write the probability of a person with symptoms

S having pneumonia as prob(x has pneumonia/x is a person with symptoms S). Logically,

“prob” is a variable-binding operator, binding the variables (“x” in this case) in the expressions

in its scope. The standard probability calculus (based on the Kolmogoroff axioms) was constructed

with definite probabilities in mind. The calculus of indefinite probabilities stands to the calculus

of definite probabilities as the predicate calculus stands to the propositional calculus. It is arguable

that there are true principles in the calculus of indefinite probabilities that cannot be formulated

in the calculus of definite probabilities. An example proposed in my (1990) is

prob(Axy/Bxy & y = c) = prob(Axc/Bxc).

However, for most purposes we need only standard principles following from the Kolmogoroff

axioms.
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not to confuse indefinite probabilities with probability distributions over random variables. The

latter look superficially like indefinite probabilities, because they involve variables. However,

probability distributions over random variables are distributions of definite probabilities. Using

small caps to distinguish definite probabilities from indefinite probabilities, a distribution that

might be written as PROB(Ax/Bx) is an assignment of a value to the definite probability PROB(Ac/Bc)

for each choice of c in the domain of the variable. This value can be different from each choice of

c. By contrast, the indefinite probability prob(Ax/Bx) has a single value. It is worth noting that

even if the value of PROB(Ac/Bc) is the same for every choice of c, it may be different from the

value of prob(Ax/Bx). To illustrate, consider again prob(x lands heads/x is a toss of a coin of

description D). General physical considerations of symmetry, etc., might convince us that a coin

of this description is a fair coin, and so the indefinite probability is 0.5. However, we may also

know that there has only been one coin of description D in the entire history of the universe, and

there will never be another. Furthermore, we may know that it was tossed only once, and landed

heads on that occasion. Then it was melted down. Given that we know that the one toss landed

heads, the definite probability of its landing heads is 1.0. That toss is the only value for the

random variable x in the distribution PROB(Ax/Bx), so for every choice of value for that variable,

the definite probability is 1, but the indefinite probability remains 0.5. That is, the coin was a fair

coin, and the fact that it was tossed only once and landed heads is irrelevant to whether it was a

fair coin.

Understanding the relationship between definite and indefinite probabilities is of direct rele-

vance to decision theory. The probabilities an agent learns inductively are indefinite probabilities,

but the probabilities required for decision-theoretic reasoning are definite probabilities. For ex-

ample, I may learn inductively that during the summer monsoon season in Tucson, the probability

of late afternoon rain is 0.6. This is an indefinite probability. In deciding whether to carry an

umbrella when I walk to the store, what I must know is the probability that it will rain this

afternoon. That is a definite probability. If I have no other information, I may infer that the

definite probability is 0.6. But if I also notice that the weather is clear and sunny, without any

buildup of thunderheads, I may infer instead that the probability is much lower.

Our knowledge of definite probabilities is derived from our knowledge of indefinite

probabilities. The kind of inference involved is called direct inference. The nature of direct inference

is complicated by the fact that there is more than one kind of definite probability. This is

illustrated by the distinction between classical decision theory and causal decision theory. Classical

decision theory proceeds in terms of a “generic” definite probability PROB(O/A) that reflects

both evidential and causal connections. Causal decision theory proposes to replace the appeal to
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focuses on causal connections. Other kinds of definite probabilities include subjunctive probabilities

(e.g., the probability that if I were now on the moon (although I know I am not) I would be able

to jump twenty feet in the air) and objective chances (e.g., the probability that this uranium atom

will decay in the next ten minutes). I showed how to make sense of both of the latter kinds of

definite probability in my (1990).

My objective here is to make sense of causal probability, but it is convenient to begin by

looking at the kind of generic definite probability that is required for classical decision theory,

because this has been the focus of existing theories of direct inference. These are mixed phys-

ical/epistemic probabilities, because they take account both of physical laws in the form of nomic

probabilities and what the cognizer knows about the current situation. (As such, they are relativized

to cognizers, just as subjective probabilities were.) Several theories of direct inference have been

proposed in the literature on the foundations of probability theory.6 The details of direct inference

are not very well understood, although there is a consensus that the core inferences work in a

way first described by Hans Reichenbach (1949). The general idea is that if we want to know

PROB(Ac) — the definite probability of an object c having the property Ax — we identify it with

the indefinite probability prob(Ax/Bx) where Bx is the most specific property such that (1) we

know Bc to hold, and (2) we know the value of the indefinite probability. For example, in

deciding how likely it is to rain this afternoon, if I know that I am in Tucson during the summer

monsoon season and I know nothing else of relevance, I will identify the definite probability

with the indefinite probability that it will rain in the late afternoon in Tucson during the summer

monsoon season. But if I also know that the customary afternoon buildup of thunderheads is

absent, and I know that the indefinite probability of its raining under those circumstances is only

0.05, then I will take the latter to be the definite probability.

In my (1983) and (1990), I proposed that Reichenbach’s rules for direct inference can be

reconstructed as principles for reasoning defeasibly about definite probabilities. For this we need

the concept of a warranted proposition. A proposition is warranted for a cognizer just in case

further reasoning  from his current epistemic situation could put him in a position where he is

justified in believing the proposition and in which no additional reasoning would make him

unjustified. Let “Wϕ” abbreviate “It is warranted for S that ϕ”. Reichenbach’s rules can then be

reconstructed as follows:

(CDI) If A is projectible with respect to B then “W(P ↔  Ac) & WBc & prob(Ax/Bx) = r” is a

10

6 Kyburg (1974, 1983), Levi (1977, 1980, 1981), Pollock (1984, 1990).

defeasible reason for “PROB(P) = r”.



(CSD) If A is projectible with respect to C then “WCc & prob(Ax/Bx) ≠ prob(Ax/Bx & Cx)” is a

defeater for (CDI).

Principle CSD formulates subproperty defeat. It tells us that inferences from more specific

properties always take precedence. For example, to reconstruct the reasoning about the weather,

we note that we have two probabilities:

prob(it will rain in Tucson on afternoon x/x is during the summer monsoon season) = 0.6

prob(it will rain in Tucson on afternoon x/x is during the summer monsoon season and
there is no buildup of thunderheads) = 0.05.

On the basis of (CDI), we have defeasible reasons for inferences to the conflicting conclusions:

PROB(it will rain in Tucson this afternoon) = 0.6

PROB(it will rain in Tucson this afternoon) = 0.05.

However, the second indefinite probability provides the basis for a defeater for the direct inference

employing the first indefinite probability, and so we are left with the single undefeated conclusion

that PROB(it will rain this afternoon) = 0.05.

(CDI) and (CSD) can be generalized in the obvious way to provide classical direct inferences

to conditional probabilities:

(CDI*) If A is projectible with respect to both B and C then “W(P ↔  Ac) & W(Q ↔  Cc) & WBc &

prob(Ax/Bx & Cx) = r” is a defeasible reason for “PROB(P/Q) = r”.

(CSD*) If A is projectible with respect to D then “WDc & prob(Ax/Bx & Cx) ≠ prob(Ax/Bx & Cx

& Dx)” is a defeater for (CDI).

If we allow ourselves the full resources of first-order languages in formulating our probabilities,

numerous examples show that (CDI) and (CSD) are not sufficient for a complete theory of direct

inference.7 Specifically, further defeaters are required. It is not clear exactly how to formulate
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them, but for present purposes (CDI) and (CSD) will probably suffice for our decision-theoretic



reasoning.

5. Nonclassical Direct Inference

Direct inference from indefinite probabilities to definite probabilities is classical direct inference.

In my (1984) and (1990), I introduced nonclassical direct inference, which is a form of defeasible

inference from indefinite probabilities to indefinite probabilities. The basic principles of

nonclassical direct inference are parallel to those of classical direct inference. They are formulated

in terms of the concept of a subproperty. A property A is a subproperty of B (abbreviated “A !

B”) iff (∀ x)(Ax → Bx) is logically entailed by laws of nature. So, for example, the property of

being an electron is a subproperty of the property of being negatively charged. The limiting case

of the subproperty relation occurs when Ax logically entails Bx. The core principles of nonclassical

direct inference are then:

(DI) If A is projectible with respect to B then “prob(Ax/Bx) = r” is a defeasible reason for

“prob(Ax/Bx & Cx) = r”.

(SD) If A is projectible with respect to D then “D ! C & prob(Ax/Bx) ≠ prob(Ax/Bx & Dx)”

is a defeater for (DI).

Nonclassical direct inference amounts to a defeasible presumption that adding properties to the

condition of a probability leaves the probability unchanged. This is an assumption of statistical

independence.

Why should we think that (DI) is true? The simplest reason is that a slightly qualified version

of (DI) is entailed by (CDI). Suppose the agent knows that Bc and Cc. Then by (CDI) it can be

inferred defeasibly that PROB(Ac) = prob(Ax/Bx), and also that PROB(Ac) = prob(Ax/Bx & Cx).

From this it follows that prob(Ax/Bx) = prob(Ax/Bx & Cx). So we get (DI) in the special case in

which the agent knows that Bc and Cc. But surely that knowledge should not make any difference

to whether we can infer that prob(Ax/Bx) = prob(Ax/Bx & Cx).

Nonclassical direct inference has somewhat the same flavor as the Laplacian principle of

indifference. It amounts to the presumption that in computing probabilities, if we have no

reason to think that some factor makes a difference, it is reasonable to ignore it. This is descriptive

of the way we reason all the time. For example, suppose we know that quarters are “generically”
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particular quarter. It will have many properties not shared by all quarters. For example, it was

minted on a certain date. But if we have no reason to think that any of these properties make a

difference, we will not hesitate to conclude that the probability of a toss of this quarter landing

heads is also 0.5. In making this inference, we are applying nonclassical direct inference. We

infer defeasibly that prob(Hx/Txy & Qy) = prob(Hx/Txy & Qy & y = q).

The preceding paragraphs provide an intuitive defense of nonclassical direct inference, but

we need not rest content with that. It is proven in my (1990) that the principles (DI) and (SD) can

be derived from the acceptance rule (SS) together with the computational principles comprised

by the calculus of nomic probabilities. So we need not make any special assumptions in order to

get the theory of nonclassical direct inference. The proof is also sketched in my (1992).

We now have two kinds of direct inference — classical and non-classical.  Direct inference

has traditionally been identified with classical direct inference, but I believe that it is most

fundamentally non-classical direct inference.  The details of classical direct inference are all

reflected in non-classical direct inference.  If we could identify definite probabilities with certain

indefinite probabilities, we could derive the theory of classical direct inference from the theory

of non-classical direct inference.  This can be done by defining a variety of definite probability as

a kind of degenerate indefinite probability:

prob(P/Q) = r iff for some n, there are n-place properties R and S and objects a1,...,an

such that ™(Q ↔ Sa1...an) and ™[Q → (P ↔  Ra1...an)] and

prob(Rx1...xn / Sx1...xn & x1 = a1 & ... & xn = an) = r.

prob(P/Q) is an objective definite probability.  It reflects the state of the world, not the state of

our knowledge. This is not the same thing as mixed physical/epistemic probability, because the

latter also takes account of the cognizer’s epistemic state. However, if we let W be the conjunction

of all warranted propositions, we can define a mixed physical/epistemic probability as follows:

PROB(P) = prob(P/W)

PROB(P/Q) = prob(P/Q&W).

Given this reduction of mixed physical/epistemic probabilities to nomic probabilities, it becomes

possible to derive principles (CDI) and (CSD) of classical direct inference from our principles of

nonclassical direct inference, and hence indirectly from (SS) and the calculus of nomic probabilities.
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The upshot of all this is that the theory of direct inference, both classical and nonclassical,



consists of a sequence of theorems in the theory of nomic probability.  We require no new

assumptions in order to get direct inference.  At the same time, we have made clear sense of

mixed physical/epistemic probabilities.

6. Causal Decision Theory Again — Skyrms and Lewis

Most of the work on causal decision theory has been carried out within the framework of

subjective probability. However, the basic ideas are largely independent of that, and can be

reformulated in terms of objective probabilities. In this connection, let us consider Brian Skyrms’

(1980, 1982, 1984) proposal. Skyrms suggests distinguishing between the background of an action

(my terminology) and the consequences of an action. The background consists of states of the

world that are causally independent of the performance of the action, i.e., the action does not

cause or causally dispose them to occur or not occur. Let us call these K-backgrounds. The conse-

quences of an action can then be evaluated against a background K by considering the probability

PROB(O/A&K). In computing the expected-value of an action, some parts of the background will

consist of things we know to be true, but other parts of the background may be unknown to us,

having only probabilities associated with them. Skyrms’ suggestion is that if there is a finite set

K of backgrounds that we consider possible, then in computing the expected-value we consider

the probability of an outcome relative to each possible background, and weight it by the probability

of that background being true. In other words, we can define causal probability as follows:

K-PROBA(O) = ΣK∈ K PROB(K)·PROB(O/A&K).

This makes causal probability the mathematical expectation of the probability of the outcome on

the different possible backgrounds. It is easily verified that K-PROBA is a probability, i.e., it

satisfies the probability calculus. Then the proposal is to define expected-value in terms of

K-PROBA(O) instead of PROB(O/A):

EV(A) = ΣO∈ OU(O)·K-PROBA(O).

The K-backgrounds constitute a partition.  That is, they are mutually exclusive and their disjunction

is a necessary truth. Skyrms describes the K-backgrounds as maximally specific specifications of
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factors outside the agent’s influence (at the time of the decision) which are causally relevant to



the outcome of the agent’s action.

Let us see how this proposal is supposed to handle the smoking gene example. Whether the

person has the gene or not (G or ~G) is outside his influence. If he has it, he already has it when

he makes his decision whether to smoke, so that decision cannot causally influence his having or

not having the gene. If G and ~G are the only elements of the background causally relevant to

his getting cancer, and nothing unknown to him is relevant to his getting pleasure from smoking,

then the expected-value of smoking (S) can be computed as follows:

EV(S) = U(pleasure of smoking)·K-PROBS(pleasure of smoking) + U(cancer)·K-PROBS(cancer)

= U(pleasure of smoking)·PROB(pleasure of smoking/S)
+ U(cancer)·[PROB(G)·PROB(cancer/S&G) + PROB(~G)·PROB(cancer/S&~G)].

We have made the assumption that PROB(cancer/S&G) = PROB(cancer/G) and PROB(cancer/S&~G)

= PROB(cancer/~G):

EV(S) = U(pleasure of smoking)·PROB(pleasure of smoking/S)

   + U(cancer)·[PROB(G)·PROB(cancer/G) + PROB(~G)·PROB(cancer/~G)].

Similarly, the expected-value of not smoking (S) is:

EV(S) = U(cancer)·[PROB(G)·PROB(cancer/G) + PROB(~G)·PROB(cancer/~G)].

Thus if U(pleasure of smoking) > 0 and PROB(pleasure of smoking/S) > 0, it follows that EV(S) >

EV(S). So causal decision theory recommends smoking, which is the right choice. It handles the

other counterexamples to classical decision theory analogously.

David Lewis (1981) endorses a causal decision theory with the same form as Skyrms’, and

represents that general form as the fundamental idea behind all causal decision theories. The

difference between his theory and Skyrms’ is that he takes the K’s to be what he calls dependency

hypotheses — maximally specific propositions about how things the agent cares about do and do

not depend causally on his present actions. Lewis proposes a narrow and a broad reading of

Skyrms. On the narrow reading, the background K consists of propositions describing singular

states of affairs in the world. On the broad reading, backgrounds are the same as Lewis’s

dependency hypotheses. Lewis observes that on the broad reading, his theory is the same as

Skyrms.  He goes on the argue that what he regards as the other major causal decision theories

(Gibbard and Harper 1978, Sobel 1978) are also equivalent to the Skyrms/Lewis theory on at
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least some interpretation.



I have some difficulty understanding just what Lewis’ dependency hypotheses are supposed

to be. Are they supposed to be entirely relational, describing how different possible states of the

world might be causally related to one another, or are they supposed to include a specification of

singular states of affairs causally independent of the action? If we interpret them purely relationally,

there is no apparent way to justify the calculation that is supposed to solve the smoking gene

problem. This is because G and ~G would not be contained in dependency hypotheses. I presume

then that dependency hypotheses must include a specification of what singular states of affairs

causally independent of the action are true.

A close reading of Skyrms suggests that he did not intend Lewis’ broad reading of his theory.

On the contrary, K-backgrounds were supposed to consist of singular states of affairs. Lewis

raises two objections to Skyrms’ theory on this narrow reading. The first is that the probability of

getting outcome O by performing action A depends not just on singular states of affairs, but also

on laws of nature. Thus these must be included in the background. This is indeed a problem for

the subjectivist (i.e., the official) version of Skyrms’ theory and might reasonably be taken to

motivate an expansion of the K-backgrounds to make them look more like Lewis’ dependency

hypothesis. However, this is not a problem when the theory is formulated in terms of objective

probabilities. It is a theorem of the calculus of nomic probabilities that causal laws have probability

1. Thus there is no need for an objective causal decision theory to include them in the background.

Conditionalizing on something with probability 1 cannot change the probability.

At this point the subjectivist is bound to object, “But we may be uncertain whether something

is a law, so we have to attach probabilities to that and factor them into the computation of the

causal probability.” However, epistemic uncertainty is only represented probabilistically if you

are a subjectivist. Numerous arguments throughout the epistemological literature demonstrate

that epistemic degrees of justification do not conform to the probability calculus.8 For instance,

necessary truths automatically have probability 1, but it does not follow that everyone is auto-

matically justified in believing every necessary truth.  That would make mathematics trivial.

Uncertainty about the relevant laws and nomic probabilities will make one uncertain about

the computation of expected-values. If we are sufficiently uncertain, e.g., we cannot even locate

the relevant nomic probabilities within useful intervals, then we will not be able to draw justified

conclusions about the expected-values of our actions, and so there will be no reasonable way to

make a nonrandom choice between the alternatives available to us. But that seems clearly right.

If I do not know enough to be able to even estimate the expected-values, then there is no way to
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8  See Pollock and Cruz (1999), 106-109, for a summary of these objections.

choose. For instance, suppose I show you a button, and tell you that if you push it good things



might happen, but also bad things might happen, and I have no idea what the probability of

either is. Can you make a rational choice between pushing or not pushing the button?  Surely

not. Indecision is the only possible rational attitude in this case.  On the other hand, rational

indecision is impossible for subjectivists (except when expected-values are tied), because for

subjectivists the relevant probabilities always have to exist.

This illustrates an important difference between Bayesian decision theory and objective decision

theory. In objective decision theory the expected-value of an action (relative to a person and his

epistemic state) is an objective matter of fact, and decisions are made on the basis of beliefs about

that objective matter of fact. It is entirely possible for the agent to be ignorant of such facts. On a

subjective theory, on the other hand, the computation of expected-values is simply a matter of

working out the consequences of the agent’s beliefs. At least if the agent can know his own

beliefs, ignorance of expected-values is impossible.

Lewis raises another objection to the narrow construal that is more telling. He observes that

the K’s are characterized in terms of causal dependence, but cognizers may be uncertain about

causal dependence and may only attach probabilities to hypotheses about causal dependence.

He suggests that these probabilities should somehow enter into the computation of causal proba-

bility. Lewis maintains that his theory is not subject to this difficulty, because dependency

hypotheses could not be causally dependent on the agent’s actions.  Skyrms (1980) takes this

objection seriously, and suggests a modification of his theory that is intended to accommodate it.

However, I think that this objection is indicative of a more serious objection that is telling against

all current versions of causal decision theory, including Lewis’s. It was observed earlier that no

one has suggested defining causal probability in the most obvious way, as PROB(A causes O/A),

presumably because no one feels sufficiently comfortable with the concept of causation to take it

as a primitive building block for causal decision theory. However, all existing causal decision

theories are formulated in terms of causal dependence or some similar notion, and it is hard to

see how that is any clearer than “causes”. In my estimation, no theory that takes causal dependence

as primitive can throw adequate light on rational choice. Thus I turn in the next section to an

alternative analysis of causal probability that is not subject to this objection.

7. Defining Causal Probability

My objective is to find a way of defining causal probability that does not appeal to concepts

like causation or causal dependence. The basic idea behind my proposal is simple — causal
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probability propogates forward in time, never backward. My suggestion is that in computing the



possible effects of an action, we think of the world as evolving causally over time, interject the

action into the world at the appropriate point, and then propogate changes forward in time as

the world continues to evolve. This way of conceptualizing the world as evolving in temporal

order is precisely the same idea that underlies most current solutions to the frame problem in AI

(see Shoham (1986,1987), Hanks and McDermott (1986,1987), Lifschitz (1987), Gelfond and Lifschitz

(1993), Shanahan (1990,1995,1996,1997), Pollock (1998)). Those solutions are based upon the idea

that given a set of deterministic causal laws, to compute the result of a sequence of actions we

imagine them occurring in temporal order and propogate the changes through the world in that

order. As I will define it, causal probability does the same thing probabilistically.

To make this precise, let us begin with the simplifying assumption that actions occur instanta-

neously. They have dates that are single instants of time. These are point-dated actions. I will

relax this assumption later. Singular states of affairs also have dates, but I will allow them to be

either time intervals or time instants (degenerate intervals). I also assume that we can assign

dates to logical combinations built out of conjunctions, disjunctions, and negations of singular

states of affairs. The date of a negation is the date of what it negates, the date of a conjunction is

the union of the dates of the conjuncts, and the date of a disjunction is the union of the dates of

the disjuncts. The date of such a combination can be a time interval with gaps. I will refer to

these logical combinations of singular states of affairs as states of affairs (dropping “singular”).

Let us say that Q postdates P iff every time in the date (an interval) of P is < every time in the date

of Q. Let us say that P predates Q iff every time in the date (an interval) of P is ≤ every time in the

date of Q. So if a state predates a point-dated action, the end-point of its date may be the same as

the date of the action. But if it postdates the action, it occurs wholly after the date of the action.

Now suppose the world is deterministic. This means that each complete state of the world

determines each subsequent state. The determination is by physical laws. Each state nomically

implies subsequent states. In asking whether a possible outcome would result from a particular

world state in which an action is performed, we are asking whether the outcome will be present

in subsequent states. In a deterministic world, O will result just in case the actual state of the

world up to and including the time A is performed includes a set B of singular states of affairs

such that A&B nomically implies O. I will call B a background state for O relative to A.

If we are uncertain about the precise state of the world, then we may be uncertain about

whether O will result. The probability that O will result should be identified with the probability

that the state of the world at the time A is performed contains a background state for O relative

to A. If B is the only background state for O relative to A, then the probability of O given A

should be identified with PROB(B). If instead there are a finite number of background states
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B1,...,Bn, then the probability of O given A should be identified with PROB(B1∨ ...∨ Bn). Let us write



this probability as C-PROBA(O).

C-PROBA(O) need not be the same as PROB(O/A). The latter would be PROB(B1∨ ...∨ Bn/A). A

cannot cause changes to the background state, but it can be evidence regarding whether a back-

ground state is actual. This is precisely what happens in the smoking gene example. If we

suppose that the gene causes cancer deterministically, then G is the sole background state and

PROB(G/A) ≠ PROB(G). The probability C-PROBA(O) is then equal to PROB(G) rather than PROB(G/A).

This is a causal probability that results from propogating the effects of actions forward in time but

not backward in time. We hold the background state fixed, assigning to background states

whatever probabilities they have prior to the action’s being performed.

If we turn to nondeterministic worlds, the background states may no longer nomically imply

the outcomes. They may only confer probabilities on the outcomes. If there were a single back-

ground B such that the only way O can only result from A by having B true, we could define

C-PROBA(O) = PROB(B)·PROB(O/A&B).

More generally, if we could confine our attention to a finite set B of (pairwise logically disjoint)

backgrounds, we could define:

C-PROBA(O) = ΣB∈ B PROB(B)·PROB(O/A&B).

That is, the causal probability is the mathematical expectation of the probability of the outcome

on the different possible backgrounds.

To define C-PROBA(O) generally (when O postdates A and A is a point-dated action), let C be

the set of all singular states of affairs and negations of singular states of affairs predating A.

Define an A-world-state to be a maximal subset of C nomically consistent with A. I will not

usually distinguish between an A-world-state and the conjunction of its members. Let W be the

set of all A-world-states. Then we can define C-PROBA(O) to be the mathematical expectation of

the probability of the outcome on the different possible A-world-states. If W is finite, our definition

becomes:

C-PROBA(O) = ΣW∈ W  PROB(W)·PROB(O/A&W).

Realistically, W will be infinite, in which case C-PROBA(O) must be defined using the integral
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definition of expected-value:



⌠ 1 d
C-PROBA(O) = r ·   PROB(PROB(O/A&W) ≤ r) dr⌡0 dr

where W is a random variable ranging over members of W . However, to keep the mathematics

simple, I will pretend that W is finite and use the summation version of the definition. This will

make no difference to the results. Because the set W is chosen independently of O, it is trivial to

verify that C-PROBA is a probability, i.e., that it satisfies the probability calculus.
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Figure 1. Scenarios evolving with the passage of time

The fundamental idea behind this definition of causal probability is that in computing how

likely an outcome is to result from an action, we want to propogate changes forward in time

rather than backward. A useful way of conceptualizing this is to think of the world as described

by different scenarios, each consisting of some A-world-state being true, followed by the action,

followed by an outcome. The scenarios can be diagrammed in the form of a tree, as in figure 1.

C-PROBA(O) should then be of the probability of the disjunction of the scenarios terminating with
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O. If there were just one such scenario, the probability associated with it would be



PROB(S)·PROB(O/A&W), and that would be the value of C-PROBA(O). The probability associated

with the scenario results from propogating the probabilities of changes forward in time. We can

identify PROB(W)·PROB(O/A&W) with C-PROBA(O&W) if we reason (1) that C-PROBA(O&W) =

C-PROBA(W)·C-PROBA(O/W), (2) that C-PROBA(W) = PROB(W) because W predates A and so cannot

be affected by it, and (3) that C-PROBA(O/W) = PROB(O/A&W) because W includes everything

that is relevant to whether O will result from performing A.

Suppose there are n  possible scenarios, associated with the A-world-states W1,...,Wn. Then the

disjunction of the scenarios is (W1&A&O) ∨...∨  (Wn&A&O), which is equivalent to (W1 ∨ ...∨

Wn)&A&O. We can think of this as a single scenario with a disjunctive background state and

identify C-PROBA(O) with the probability of this scenario. The different Wi’s are logically disjoint,

so the probability associated with this scenario can be computed as follows:

C-PROBA(O) = C-PROBA((W1 ∨ ...∨  Wn)&A&O)

= C-PROBA(W1 ∨ ...∨  Wn)·C-PROBA(O/W1 ∨ ...∨  Wn)

= C-PROBA(W1 ∨ ...∨  Wn)

   ·[C-PROBA(O/W1)·C-PROBA(W1/W1 ∨ ...∨  Wn)

+ ... + C-PROBA(O/Wn)·C-PROBA(Wn/W1 ∨ ...∨  Wn)]

= C-PROBA(O/W1)·C-PROBA(W1) + ... + C-PROBA(O/Wn)·C-PROBA(Wn)

= PROB(W1)·C-PROBA(O/W1) + ... + PROB(Wn)·C-PROBA(O/Wn)

= PROB(W1)·PROB(O/A&W1) + ... + PROB(Wn)·PROB(O/A&Wn).

In other words, C-PROBA(O) is the probability associated with the disjunctive scenario, and that

in turn is the sum of the probabilities associated with the individual scenarios.

If causal probability is to be useful, there must be efficient ways of computing it. If we had to

compute C-PROBA(O) by actually performing the summation (or integration) involved in the

definition, the task would be formidable. Fortunately, this computation can be simplified

considerably. Recall that C is the set of “constituents” of A-world-states. Let us say that a subset

S of C shadows A with respect to O iff (1) S is nomically consistent with A, (2) for every W∈ W and
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any S**, if S ⊆  S** ⊆  W then PROB(O/A&S**) = PROB(O/A&S), and (3) there is no proper subset S*



of S such that for every W∈ W and any S**, if S* ⊆  S** ⊆  W then PROB(O/A&S**) = PROB(O/A&S).

The shadows are minimal descriptions of all aspects of the A-world-state relevant to the evaluation

of the probability of O. Let S be the set of all shadows. Shadows can be constructed by starting

from members of W and then removing elements that do not affect the probability of O. It

follows that every A-world-state W contains a shadow S such that PROB(O/A&W) = PROB(O/A&S).

Let C* be the set of all members of C occurring in one or more of the shadows. Define a

background to be a maximal subset of C* nomically consistent with A. Let B be the set of all

backgrounds. The backgrounds form a partition. That is, they are pairwise logically disjoint and

the disjunction of all of them is a (nomically) necessary truth. Now suppose B∈ B is a background

and W∈ W and B ⊆  W. W contains a shadow S such that PROB(O/A&W) = PROB(O/A&S), and the

shadow consists of members of C*, so S ⊆  B, and hence by the definition of “shadow”, PROB(O/A&B)

= PROB(O/A&S). Thus PROB(O/A&W) = PROB(O/A&B). Now we can prove a central theorem in

the theory of causal probability:

Theorem 1: C-PROBA(O) = ΣB∈ B PROB(B)·PROB(O/A&B).

Proof: For B∈ B, let W(B) = {W|W∈ W & B ⊆  W}. B is equivalent to the disjunction of the members

of W(B). Then

C-PROBA(O) = ΣW∈ W  PROB(W)·PROB(O/A&W)

= ΣB∈ B ΣW∈ W(B) PROB(W)·PROB(O/A&W)

= ΣB∈ B ΣW∈ W(B) PROB(W)·PROB(O/A&B)

= ΣB∈ B PROB(O/A&B)·ΣW∈ W(B) PROB(W)

= ΣB∈ B PROB(O/A&B)·PROB(B).  ■
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W is immense (in fact, infinite), but B may be very small. In the smoking gene example, if we



suppose that the only part of an S-world-state that makes any difference to the probability of

getting cancer is G or ~G, it follows that S = {{G},{~G}}, and so B = {{G},{~G}}, and hence

C-PROBS(cancer) = PROB(G)·PROB(cancer/S&G) + PROB(~G)·PROB(cancer/S&~G).

Of course, realistically, other elements of S-world-states will also be statistically relevant, e.g.,

whether one’s parents had the smoking gene. However, the effect of one’s parents having the

smoking gene is “screened off” by knowing whether one has the gene oneself, i.e., if you know

whether you have the smoking gene, the additional knowledge of whether your parents had it

does not effect the probability of getting cancer. So the set of shadows, and hence the set of

backgrounds, remains unchanged.

Normally, shadows will be more numerous than in the smoking gene example. However, the

shadows may not all be relevant. The need for causal probabilities only arises when the action is

statistically relevant to some of the backgrounds. If the backgrounds are all statistically independent

of the action, then the causal probability is the same as the mixed physical/epistemic probability:

Theorem 2: If for each B∈ B, PROB(B/A) = PROB(B), then C-PROBA(O) = PROB(O/A).

More generally, the action may be statistically relevant to just a few constituents of the backgrounds.

Then we can often make use of the following theorem:

Theorem 3: If C0 ⊆  C*, let B0 be the set of all maximal subsets of C0 nomically consistent with A,

and let B* be the set of all maximal subsets of C* – C0 nomically consistent with A. If for every

B0∈ B0 and B*∈ B*, PROB(B*/B0&A) = PROB(B*/B0), then

C-PROBA(O) = ΣB∈ B0 
PROB(B0)·PROB(O/A&B0).

Proof: The backgrounds B are just the conjunctions (unions) of a B0∈ B0  and a B*∈ B*, and the

disjunction of the members of B* is necessary, so

C-PROBA(O) = ΣB∈ B PROB(B)·PROB(O/A&B)

23

= ΣB0∈ B0 ΣB*∈ B* PROB(B0&B*)·PROB(O/A&B0&B*)



= ΣB0∈ B0 ΣB*∈ B* PROB(B0)·PROB(B*/B0)·PROB(O/A&B0&B*)

= ΣB0∈ B0 PROB(B0)·ΣB*∈ B* PROB(B*/B0)·PROB(O/A&B0&B*)

= ΣB0∈ B0 PROB(B0)·ΣB*∈ B* PROB(B*/B0&A)·PROB(O/A&B0&B*)

= ΣB∈ B0 
PROB(B0)·PROB(O/A&B0).  ■

So if there is a subset C0 of constituents of backgrounds relative to which all other combinations

of constituents are statistically independent of A, then we can compute causal probabilities by

making reference only to backgrounds built out of the members of C0. For example, suppose

there are two constituents of backgrounds that are statistically relevant to getting cancer —

having the smoking gene, and having been raised on a nuclear waste dump (N). Then B =

{{G,N},{G,~N},{~N,G},{~N,~G}}. However, S is not statistically relevant to whether one was raised

on a nuclear waste dump, even given that one does or does not have the smoking gene:

PROB(N/S&G) = PROB(N/G)

PROB(N/S&~G) = PROB(N/~G)

PROB(~N/S&G) = PROB(~N/G)

PROB(~N/S&~G) = PROB(~N/~G)

So we can let C0 = {{G},{~G}}, and once more compute C-PROBS(cancer) by reference to the small

set of backgrounds B0 = {{G},{~G}}.

The upshot of these results is that causal probabilities will usually be computable by performing

manageably small sums. In cases in which actions are statistically relevant to their backgrounds,

C-PROB’s may be significantly easier to compute than PROB’s. C-PROB’s can be computed recursively

by propogating probabilities forwards through scenarios. But if a later state can affect the PROB

of an earlier state, then PROB’s cannot similarly be computed recursively. For practical purposes,

C-PROB’s are simpler than PROB’s. This suggests that instead of expressing theorem 2 by saying

that causal probabilities usually behave classically, it might be better to say that classical
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probabilities usually behave causally.



Thus far, C-PROBA(O) has been defined for all states of affairs postdating A. It will be convenient

to define C-PROBA(O) for a broader class of states of affairs, including states of affairs that do not

postdate A. If O predates A we can stipulate:

C-PROBA(O) = PROB(O).

If O1 postdates A and O2 predates A, then we will further stipulate that

C-PROBA(O1 & O2) = PROB(O1)·C-PROBA(O2/O1).

(However, conditional causal probability will not be defined until section nine.) We are making

the simplifying assumption that actions occur instantaneously, and so their dates are time points

rather than intervals. If a state of affairs neither predates A nor postdates A then its date must be

an interval (possibly with gaps) with the date of A lying within the interval. I assume that such a

state of affairs can be split into a “first part” predating A and a “second part” postdating A, and

then the state of affairs can be represented as the conjunction of these two parts. This has the

consequence that C-PROBA(O) is defined for all states of affairs O.

We can construct a version of causal decision theory by defining expected-values in terms of

C-PROB:

EV(A) = ΣO∈ OU(O)·C-PROBA(O).

I will call this T-causal decision theory because of its reliance on temporal ordering rather than

causal dependence.

8. C-PROBA and K-PROBA

T-causal decision theory handles the counterexamples to classical decision theory in essentially

the same way other causal decision theories do, but it defines causal probability without appeal

to causation or causal dependence. It seems to me that the appeal to the evolution of scenarios in

temporal order is a more obvious diagnosis of the counterexamples than is the appeal to causal

dependence. It resolves the counterexamples in an intuitively congenial way, without appealing
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to anything more problematic than temporal ordering and the fact that causation propogates



forwards in time.

 Without an analysis, the concept of causal dependence is sufficiently unclear that the behavior

of a concept of causal probability defined in terms of it is not clear either. However, if we confine

our attention to point-dated actions and singular states of affairs postdating A and make two

plausible assumptions about causal dependence, it follows that T-causal decision theory is

equivalent to Skyrms’ theory (on the narrow construal). First, we need to assume that if P

predates A, then P is causally independent of A.  I take it that this is obvious and uncontroversial.

It has the consequence that the elements of a background W in W are causally independent of A.

Because K is a complete specification of causally independent states of affairs, it follows that if

K∈ K then there is a background W(K) in W such that W(K) ⊆  K. K will also contain many states

of affairs postdating A. Most of them will be statistically independent of A in the sense that, if K0

is the set of them, then PROB(K0/A&(K–K0)) = PROB(K0/(K–K0)). It then follows as in theorem 3

that omitting them from K will not affect the calculation of K-PROBA(O). For the remaining

elements of K that postdate A, A is statistically relevant to them but they are causally independent

of A. My second assumption is that this is only possible if the elements of K and A have a

common cause. To be causally relevant to A, that common cause must lie in the part of K that

predates A, i.e., W(K). So the precise assumption I will make is that PROB(O/A&K) =

PROB(O/A&W(K)). It is to be emphasized that this is a considerable precization of a rather vague

assumption about causal relevance. Let K* = {K – W(K)| K∈ K}. For any W∈ W , W is equivalent to

the disjunction of all W&K* for K*∈ K*. So

ΣK*∈ K* PROB(W&K*) = PROB(W).

Then we can compute:

K-PROBA(O) = ΣK∈ K PROB(O/A&K)·PROB(K)

= ΣK∈ K PROB(O/A&W(K))·PROB(K)

= ΣW∈ W ΣK*∈ K* PROB(O/A&W(K*&W))·PROB(K*&W)

= ΣW∈ W ΣK*∈ K* PROB(O/A&W)·PROB(K*&W)

= ΣW∈ W PROB(O/A&W)·ΣK*∈ K* PROB(K*&W)
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= ΣW∈ W PROB(O/A&W)·PROB(W)

= C-PROBA(O).

Thus if we make these two assumptions about causal dependence, C-PROBA(O) = K-PROBA(O),

and hence T-causal decision theory is equivalent to Skyrms’ theory.  However, T-causal decision

theory has the advantage that causal probability is defined without reference to causation or

causal dependence. Should the second assumption be false, then I suggest that C-PROBA is the

more obvious choice for causal probability and handles the counterexamples to classical decision

theory more tidily than do other causal decision theories.

9. Conditional Policies and
Conditional Causal Probability

Decision theory has usually focussed on choosing between alternative actions available to us

here and now. A generalization of this problem is important in some contexts. We sometimes

make conditional decisions about what to do if some condition P turns out to be true. For instance,

I might deliberate about what route to take to my destination if I encounter road construction on

my normal route. Where P predates A, doing A if P is a conditional policy. Conditional decisions

are choices between conditional policies. We can regard noncausal decision theory as telling us

to make such conditional decisions on the basis of the expected-values of the conditional policies.

The simplest way to handle the conditional policy in noncausal decision theory is to take it to be

equivalent to the disjunction (~P ∨  P&A). Then if expected-values are computed classically, it

follows that the expected-value of the conditional policy A if P is just the expected-value of A

discounted by the probability of P plus the expected-value of doing nothing discounted by the

probability of ~P:

EV(A if P) 

= ΣO∈ O U(O)·PROB(O/~P ∨  P&A).

It is a theorem of the probability calculus that

PROB(O/~P ∨  P&A) = PROB(P/~P∨ A)·PROB(O/A&P) + PROB(~P/~P∨ A)·PROB(O/~P).
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Thus

EV(A if P) 

= ΣO∈ O U(O)·[PROB(P/~P∨ A)·PROB(O/A&P) + PROB(~P/~P∨ A)·PROB(O/~P)]

= PROB(P/~P∨ A)·ΣO∈ OU(O)·PROB(O/A&P)

   +  PROB(~P/~P∨ A)·ΣO∈ OU(O)·PROB(O/~P).

In causal decision we would similarly like to be able to define

EV(A if P) = ΣO∈ OU(O)·C-PROBA if P(O).

EV(A if P / Q) = ΣO∈ OU(O)·C-PROBA if P(O/Q).

For this we must define the causal probability of O conditional on execution of the conditional

policy. We might propose:

C-PROBA if P(O) = C-PROBA if P(P)·C-PROBA(O/P) + C-PROBA if P(~P)·C-PROBnil(O/~P).

But this does not constitute a definition, because C-PROBA if P occurs on the right side of the

equation. However, P predates A, so we should have C-PROBA if P(P) = PROB(P) and C-PROBA if

P(~P) = PROB(~P). This allows us to turn the preceding principle into a definition:

C-PROBA if P(O) = PROB(P)·C-PROBA(O/P) + PROB(~P)·C-PROBnil(O/~P).

C-PROBA if P(O/Q) = PROB(P/Q)·C-PROBA(O/P&Q) + PROB(~P/Q)·C-PROBnil(O/~P&Q).

This definition proceeds in terms of conditional probabilities, and we have yet to define those.

The standard definition would be:

C-PROBA(O/P) = C-PROBA(O&P)/C-PROBA(P).
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Unfortunately, when P predates A, we defined C-PROBA(O&P) in terms of C-PROBA(O/P), so we



must find an independent definition for the latter. Two possibilities may occur to us regarding

how to do that:

(1) C-PROBA(O/P) = ΣW∈ W PROB(W)·PROB(O/A&W&P).

(2) C-PROBA(O/P) = ΣW∈ W PROB(W /P)·PROB(O/A&W&P).

The issue is whether we should conditionalize the probability of the backgrounds on P. We can

answer this by modifying the smoking gene example. To keep the mathematics simple, suppose

that smoking is neither pleasurable nor unpleasant. From that perspective there is no reason to

prefer either smoking or not smoking to the other alternative. As before, suppose the smoking

gene is rare, but wanting to smoke makes it more probable that one has the smoking gene.

However, the significance of the smoking gene is different than it was before. For normal people

(those lacking the smoking gene), smoking tends (weakly) to cause lung cancer, however the

smoking gene protects people from that. Then if you know you have the smoking gene and you

desire to smoke, you might as well do it. Both classical decision theory and causal decision

theory agree on this prescription. And if you know that you lack the smoking gene, then both

classical decision theory and causal decision theory agree that you should not smoke.

Now let us add a twist to the example. Suppose that for most people, the smell of tobacco

smoke is an acquired taste. When they first smell tobacco smoke, it repels them. However, for

some people, when they first smell tobacco smoke they experience an almost overpowering urge

to smoke. The latter trait is quite rare, but it is an infallible indicator of the presence of the

smoking gene. Suppose you have never smelled tobacco smoke. You are now deliberating on

whether to smoke if, when you first smell tobacco smoke, you experience this overpowering

urge to smoke. That indicates that you have the smoking gene, in which case smoking will not

hurt you. So you might as well smoke. Classical decision theory yields the right prescription.

What about causal decision theory? We have

EV(smoke if have-urge)

= U(lung cancer)·C-PROBsmoke if have-urge(lung cancer)

= U(lung cancer)·[PROB(have-urge)·C-PROBsmoke(lung cancer/have-urge)
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 + PROB(~have-urge)·C-PROBnil(lung cancer/~have-urge)].



Similarly

EV(not-smoke if have-urge)

= U(lung cancer)·[PROB(have-urge)·C-PROBnot-smoke(lung cancer/have-urge)

 + PROB(~have-urge)·C-PROBnil(lung cancer/~have-urge)].

Smoking is permissible iff

EV(smoke if have-urge) ≥ EV(not-smoke if have-urge).

As U(lung cancer) < 0, this holds iff

C-PROBsmoke(lung cancer/have-urge) ≤ C-PROBnot-smoke(lung cancer/have-urge).

Smoking is permissible if we define conditional causal probabilities as in (2). But if we define

them as in (1), causal decision theory will proscribe smoking, because at this point, when you do

not yet know whether you will have the overpowering urge to smoke, it is very improbable that

you have the smoking gene and hence somewhat probable that smoking will cause lung cancer.

Thus conditional decisions require conditional causal probability to be defined as in (2). We can

conceptualize this in terms of scenarios by replacing “start state” by P in figure 1.

When P predates A, our official definition is:

C-PROBA(O/P) = ΣW∈ W PROB(W /P)·PROB(O/A&W&P).

This has the consequence that P functions informationally while A functions causally. That is, P

can have backward ramifications, influencing the probability of backgrounds, but A can only

influence the probabilities of future events. This definition can be recast in terms of backgrounds,

just as in theorem 1:

Theorem 4: If P predates A then where B is the set of backgrounds for O relative to A that are

consistent with P:
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 C-PROBA(O/P) = ΣB∈ B PROB(B /P)·PROB(O/A&B&P).

The proof is analogous to that of theorem 1. For any P predating A, let W(P) be the set of all W in

W consistent with P. Note that P is equivalent to the disjunction of members of W(P), and if

W∉ W(P) then PROB(W /P) = 0. Thus

C-PROBA(O/P)

= ΣW∈ W PROB(W /P)·PROB(O/A&W&P)

= ΣW∈ W(P) PROB(W /P)·PROB(O/A&W&P)

= ΣW∈ W(P) PROB(W )·PROB(O/A&W&P)/PROB(P)

= ΣB∈ B ΣW∈ W(B&P) PROB(W)·PROB(O/A&W&P)/PROB(P)

= ΣB∈ B ΣW∈ W(B&P) PROB(W)·PROB(O/A&B)/PROB(P)

= ΣB∈ B (PROB(O/A&B)/PROB(P))·ΣW∈ W(B&P) PROB(W)

= ΣB∈ B (PROB(O/A&B)/PROB(P))·PROB(B&P)

= ΣB∈ B PROB(B /P)·PROB(O/A&B&P).  ■

From this we get a simple theorem that will be repeatedly useful:
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Theorem 5: If B is a background for A relative to O and P predates A then C-PROBA(O/B&P) =



PROB(O/A&B&P).

Proof: PROB(B /B&P) = 1, and for any other background B*, PROB(B* /B&P) = 0.  ■

We also get theorems analogous to theorems 2 and 3:

Theorem 6: If P predates A and for every background B for A relative to O that is consistent with

P, PROB(B/A&P) = PROB(B/P), then C-PROBA(O/P) = PROB(O/A&P).

Theorem 7: If C0 ⊆  C*, let B0 be the set of all maximal subsets of C0 nomically consistent with

A&P, and let B* be the set of all maximal subsets of C* – C0 nomically consistent with A&P. If

for every B0∈ B0 and B*∈ B*, PROB(B*/B0&A&P) = PROB(B*/B0&P), then

C-PROBA(O/P) = ΣB∈ B0 
PROB(B0/P)·PROB(O/A&B0&P).

By virtue of these theorems, in computing conditional causal probabilities we can usually restrict

our attention to very small backgrounds.

Once conditional probabilities are defined as above for the case in which P predates A,

non-conditional causal probabilities are defined in general (for point-dated actions), and so for

all other cases we can stipulate conventionally that:

C-PROBA(O/P) = C-PROBA(O&P)/C-PROBA(P).

Just as for nonconditional probabilities, the conditional causal probabilities of states predating A

behave classically:

Theorem 8: If P and Q predate A, C-PROBA(Q/P) = PROB(Q/P).

Proof:  C-PROBA(Q/P) = C-PROBA(Q&P)/C-PROBA(P) = PROB(Q&P)/PROB(P) = PROB(Q/P).  ■

It follows from theorem 8 that conditional policies are probabilitistically irrelevant to states

predating the action (as was presupposed by our definition of C-PROBA if P):
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Theorem 9: If Q predates A, C-PROBA if P(Q) = PROB(Q).



Proof: C-PROBA if P(Q) = PROB(P)·C-PROBA(Q/P) + PROB(~P)·PROB(Q/~P) = PROB(P)·PROB(Q/P) +

PROB(~P)·PROB(Q/~P) = PROB(Q).  ■

We say that a case is classical iff for every background B for A relative to O, PROB(B/A&P) =

PROB(B/P). By theorems 2 and 6, in classical cases C-PROBA(O) = PROB(O/A) and C-PROBA(O/P) =

PROB(O/A&P). However, despite the fact that the definition of C-PROBA if P(O) was motivated by

the classical calculation of PROB(O/~P∨ A), even in classical cases it will not usually be true that

C-PROBA if P(O) = PROB(O/~P∨ A). The classical theorem tells us that

PROB(O/~P∨ A) = PROB(P/~P∨ A)·PROB(O/A&P) + PROB(~P/~P∨ A)·PROB(O/~P).

If we define:

PROBA if P(O) = PROB(P)·PROB(O/A&P) + PROB(~P)·PROB(O/~P)

then it is easily proven that in classical cases, C-PROBA if P(O) = PROBA if P(O). However, there is

no guarantee that PROBA if P(O) = PROB(O/~P∨ A) in classical cases. This is because PROB(P/~P∨ A)

will normally be different from PROB(P). We can compute:

PROB(P/~P∨ A) = PROB(P/A)·PROB(A/~P∨ A) + PROB(P/~P&~A)·PROB(~A/~P∨ A)

= PROB(P/A)·PROB(A/~P∨ A).

P predates A, so we would normally expect that PROB(P/A) = PROB(P). However, we would also

normally expect that PROB(A/~P∨ A) < 1, in which case it follows that PROB(P/~P∨ A) < PROB(P).

What this actually shows is that even in classical cases it is not reasonable to identify the

conditional policy A if P with the disjunction (~P∨ A). P is serving as a trigger for A, and so what

should be relevant is PROB(P) rather than PROB(P/~P∨ A). In other words, classically, the expected-

value of the conditional policy should be defined in terms of PROBA if P(O) rather than

PROB(O/~P∨ A).

It is important to distinguish between the expected-value of a conditional policy and a

conditional expected-value. The latter can be defined as follows:
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EV(A/P) = ΣO∈ OU(O)·C-PROBA(O/P).

This is the expected-value of the action given the assumption that P is true. Expected-value(A if

P), on the other hand, is the expected-value of doing A if P and doing nothing otherwise. The

expected-value of a conditional policy is related to conditional expected-values as follows:

Theorem 10: EV(A if P) = PROB(P)·EV(A/P) + PROB(~P)·EV(nil/~P).

Proof:

EV(A if P)

= ΣO∈ OU(O)·[PROB(P)·C-PROBtry-A(O/A) + PROB(~P)·C-PROBnil(O/~P)]

= PROB(P)·ΣO∈ OU(O)·C-PROBtry-A(O/A) + PROB(~P)·ΣO∈ OU(O)·C-PROBnil(O/~P)

= PROB(P)·EV(A/P) + PROB(~P)·EV(nil/~P).  ■

The following theorem will be useful later:

Theorem 11: EV(nil if P) = EV(nil)

Proof:

EV(nil if P)

= PROB(P)·EV(nil/P) + PROB(~P)·EV(nil/~P)

= ΣO∈ OU(O)·[PROB(P)·C-PROBnil(O/P) + PROB(~P)·C-PROBnil(O/~P)]
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= ΣO∈ OU(O)·ΣB∈ B [PROB(P)·PROB(B/P)·PROB(O/nil&B&P)



+ PROB(~P)·PROB(B/~P)·PROB(O/nil&B&~P)]

= ΣO∈ OU(O)·ΣB∈ B [PROB(P)·PROB(B/P)·PROB(O/B&P)

+ PROB(~P)·PROB(B/~P)·PROB(O/B&~P)]

= ΣO∈ OU(O)·ΣB∈ B [PROB(O&B&P) + PROB(O&B&~P)]

= ΣO∈ OU(O)·ΣB∈ B PROB(O&B)

= ΣO∈ OU(O)·ΣB∈ BPROB(B)·PROB(O/nil&B)

= ΣO∈ OU(O)·C-PROBnil(O)

= EV(nil).  ■

Decision theory normally concerns itself with expected-values. However, the expected-value

of an action is defined to be the expected-value of “the world” when the action is performed.

This includes values that would have been achieved with or without the action. For some

purposes it is more useful to talk about the marginal expected-value, which is the difference

between the expected-value of the action and the expected-value of doing nothing. The marginal

expected-value of an action measures how much value the action can be expected to add to the

world:

MEV(A) = EV(A) – EV(nil).

We can define conditional marginal expected-values and the marginal expected-values of condi-

tional policies analogously:

MEV(A/P) = EV(A/P) – EV(nil/P).
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MEV(A if P) = EV(A if P) – EV(nil if P).



Note that by theorem 11 we could just as well have defined:

MEV(A if P) = EV(A if P) – EV(nil).

There is a simple relationship between the marginal expected-value of a conditional policy and

the conditional marginal expected-value:

Theorem 12: MEV(A if P) = PROB(P)·MEV(A/P)

Proof:

MEV(A if P)

= EV(A if P) – EV(nil if P)

= PROB(P)·EV(A/P) + PROB(~P)·EV(nil/~P)

   – PROB(P)·EV(nil/P) – PROB(~P)·EV(nil/~P)

= PROB(P)·EV(A/P) – PROB(P)·EV(nil/P)

= PROB(P)·[EV(A/P) – EV(nil/P)]

= PROB(P)·MEV(A/P).  ■

10. Linear Policies

Thus far we have considered how to define the causal probability of an outcome given a

single action. In decision-theoretic contexts we will often want to consider what is apt to happen

if we perform several actions sequentially.  Furthermore, when we relax the assumption that

actions occur instantaneously, we will find that it is often desirable to decompose a single action

into temporal parts and treat it as a sequence of actions. Let linear policies be sequences of (for

now, point-dated) actions in which each action postdates its predecessor. First consider a linear
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policy consisting of two actions A1,A2. Computing the causal probability of an outcome is compli-



cated by the fact that some constituents of the background of the second action may postdate the

first action, and the first action can affect the probabilities of those constituents. So let B be the

set of backgrounds for A1 conjoined with those parts of the backgrounds of A2 that predate A1,

and let B* consist of the remainders of the backgrounds for A2. The members of B* postdate A1.

If we conceptualize the world as evolving in temporal order as in figure 2 and assume that O

postdates A2, the probability associated with a scenario should be

PROB(Bi)·PROB(B*j /A1&Bi)·PROB(O/A1&A2&Bi&B*j).

Then we can define:

C-PROBA1,A2
(O) = ΣB∈ B PROB(B) · ΣB*∈ B* PROB(B* /A1&B)·PROB(O/A1&A2&B&B*)

= ΣB∈ B PROB(B)·C-PROBA2
(O/A1&B).

This definition can be generalized recursively to arbitrary sequences (for k > 1) of point-dated

actions postdated by O:

C-PROBA1,...,Ak
(O) = ΣB∈ B PROB(B)·C-PROBA2,...,Ak

(O/A1&B).

C-PROBA1,...,Ak
(O/Q) = ΣB∈ B PROB(B/Q)·C-PROBA2,...,Ak

(O/A1&B&Q).

Again, this calculation is what we get from propogating probabilities through scenarios in temporal

order.

Recalling that if O predates A2 then C-PROBA2
(O/A1&B) = PROB(O/A1&B), it follows that

C-PROBA1,A2
(O) = C-PROBA1

(O). More generally:

Theorem 13: If O postdates Ai and O predates Ai+1 then

C-PROBA1,...,Ak
(O/Q) = C-PROBA1,...,Ai

(O/Q).
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Figure 2. Scenarios with two actions

Two other useful theorems are analogous to theorem 5:

Theorem 14: If B is a background for O given A1 then C-PROBA1,A2
(O/B) = C-PROBA2

(O/A1&B).
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Theorem 15: If B is a background for B* given A1 and B&B* is a background for O given A2 then



C-PROBA1,A2
(O/B&B*) = PROB(O/A1&A2&B&B*).

Given the policy A1,A2, consider the scenario B → A1 → B* → A2. Let us assume that O

postdates A2. Then by theorems 14 and 15 we can compute:

C-PROBA1,A2
(B&B*&O) = PROB(B)·C-PROBA1,A2

(B*&O/B)

= PROB(B)·C-PROBA1
(B*/B)·C-PROBA1,A2

(O/B&B*)

= PROB(B)·PROB(B*/A1&B)·PROB(O/A1&A2&B&B*)

Thus

C-PROBA1,A2
(O) = ΣB∈ B ΣB*∈ B* C-PROBA1,A2

(B&B*&O)

= ΣB∈ B ΣB*∈ B* C-PROBA1,A2
(B&B*)·C-PROBA1,A2

(O/B&B*)

= ΣB∈ B ΣB*∈ B* C-PROBA1,A2
(B&B*)·PROB(O/A1&A2&B&B*).

C-PROBA1,A2
(B&B*) is the probability of the scenario given the policy. Let us identify the

scenario with the conjunction (B&B*). Then where SC is the set of scenarios, this can be expressed

equivalently as:

C-PROBA1,A2
(O) = ΣS∈ SC C-PROBA1,A2

(S)·C-PROBA1,A2
(O/S).

Similar reasoning establishes this in general:

Theorem 16: If O postdates Ak and SC is the set of scenarios for the linear policy A1,...,Ak relative

to O then
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C-PROBA1,...,Ak
(O/Q) = ΣS∈ SC C-PROBA1,...,Ak

(S/Q)·C-PROBA1,...,Ak
(O/S&Q).

More generally,

Theorem 17: If O postdates Ai and O predates Ai+1 and SC is the set of scenarios for the linear

policy A1,...,Ai relative to O then

C-PROBA1,...,Ak
(O/Q) = ΣS∈ SC C-PROBA1,...,Ai

(S/Q)·C-PROBA1,...,Ai
(O/S&Q).

11. Conditional Linear Policies

As thus-far construed, linear policies are simple sequences of actions. In decision-theoretic

planning, the plans have a more complex structure. They can be viewed as conditional linear

policies, which are sequences of conditional policies rather than sequences of actions. Let A1 if

C1,...,Ak if Ck be the policy do A1 if C1, then do A2 if C2, then ... . As for simple conditional policies,

the probabilities of the Bi’s and the probabilities of the outcomes must be made conditional on

the Ci’s. If Ci is false, the rest of the policy will still be executed. So on analogy to simple

conditional policies, for k > 1 the causal probability can be defined recursively as:

C-PROBA1 if C1,...,Ak if Ck
(O)

= PROB(C1)·ΣB∈ B PROB(B/C1)·C-PROBA2 if C2,...,Ak if Ck
(O/A1&B&C1)

   + PROB(~C1)·C-PROBA2 if C2,...,Ak if Ck
(O/~C1).

C-PROBA1 if C1,...,Ak if Ck
(O/Q)

 = PROB(C1/Q)·ΣB∈ B PROB(B/C1&Q)·C-PROBA2 if C2,...,Ak if Ck
(O/A1&B&C1&Q)

    + PROB(~C1/Q)·C-PROBA2 if C2,...,Ak if Ck
(O/~C1&Q).

We can then define the expected-value of a conditional linear policy in terms of these causal

probabilities:
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EV(A1 if C1,...,Ak if Ck) = ΣO∈ OU(O)·C-PROBA1 if C1,...,Ak if Ck
(O).



A scenario for a conditional linear policy looks like this:

(~)C1 → B1 → (A1) → (~)C2 → B2 → (A2) → ... → (~)Ck → Bk → (Ak)

where each tilde can be present or absent, and if it is absent on Ci then Ai is included in the

scenario.  Otherwise Ai is are not included. So a scenario is characterized by the set of unnegated

Ci’s. For example, the following is a scenario:

C1 → B1 → A1 → ~C2 → B2 → C3 → B3 → A3

Given a scenario S, let CS be the conjunction of the Ci’s, ~Ci’s, and Bi’s in the scenario, and let AS

be the conjunction of the actions in the scenario. Defining the probability of a scenario as C-PROBA1

if C1,...,Ak if Ck
(CS), we again get:

Theorem 18: If O postdates Ak and SC is the set of scenarios for the policy A1 if C1,...,Ak if Ck

relative to O then

C-PROBA1 if C1,...,Ak if Ck
(O/Q)

= ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S/Q)·PROB(O/CS&AS&Q).

More generally:

Theorem 19: If O postdates Ai and O predates Ai+1 and SC is the set of scenarios for the policy A1

if C1,...,Ai if Ci relative to O then:

C-PROBA1 if C1,...,Ak if Ck
(O/Q)

= ΣS∈ SC C-PROBA1 if C1,...,Ai if Ci
(S/Q)·PROB(O/CS&AS&Q).

We can define the expected-value of a scenario in the obvious way:

EV(S) = ΣO∈ OU(O)·C-PROBA1 if C1,...,Ak if Ck
(O/CS).
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It then follows that:

Theorem 20: If SC is the set of scenarios for the policy A1 if C1,...,Ak if Ck then:

EV(A
1
 if C

1
,...,Ak if Ck) = ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck

(S)·EV(S).

We get an analogous theorem about marginal expected-values:

Theorem 21: If SC is the set of scenarios for the policy A1 if C1,...,Ak if Ck then:

MEV(A1 if C1,...,Ak if Ck) = ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S)·MEV(S).

Proof: The disjunction of the scenarios is equivalent to the policy, so

ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S) = 1.

Then we can compute:

MEV(A1 if C1,...,Ak if Ck) = EV(A1 if C1,...,Ak if Ck) – EV(nil)

= ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S)·EV(S)

   – EV(nil)·ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S)

= ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S)·[EV(S) – EV(nil)]

= ΣS∈ SC C-PROBA1 if C1,...,Ak if Ck
(S)·MEV(S).  ■

Thus the marginal expected-value of a conditional linear policy is a weighted average of the
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marginal expected-values of its scenarios.



The next theorem tells us that the marginal expected-value of a scenario is the sum of the

marginal expected-values of its actions in the context of the scenario:

Theorem 22: If S is a scenario and A1,...,An are the actions it prescribes listed in temporal order

then:

MEV(S) = Σ1≤ i ≤ nMEV(Ai/A1 &...& Ai–1 & CS).

Proof:

Where S is a scenario, let A1,...,An be the actions it prescribes, listed in temporal order. Then

by theorem 5, EV(S) = EV(A1,...,An/CS). Note that

MEV(Ai/A1 &...& Ai–1 & CS)

= EV(Ai/A1 &...& Ai–1 & CS) – EV(nil/A1 &...& Ai–1 & CS)

= EV(A1 &...& Ai /CS) – EV(A1 &...& Ai–1 /CS).

It follows that

Σ1≤ i ≤ k MEV(Ai/A1 &...& Ai–1 & CS)

= EV(A1&...& Ck & CS) – EV(A1&...& Ck–1 & CS)

+ EV(A1 &...& Ck–1 & CS) – EV(A1&...& Ck–2 & CS)

+ ... + EV(A1 & CS) – EV( CS)

= EV(A1&...& Ck & CS) – EV(CS)

= MEV(S).  ■
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Theorems 19 and 20 together tell us how to compute the marginal expected-value of a linear



policy (and hence a decision-theoretic plan) in terms of the marginal expected-values of its

actions in the possible scenarios of the policy. Unfortunately, the computation this prescribes

will often be very difficult. The problem is that it requires us to compute marginal expected-values

for every scenario separately, and compute the marginal expected-value of the policy or plan as

a weighted average of the marginal expected-values of the scenarios. There can be a very large

number of scenarios.

Sometimes it will be possible to ignore the individual scenarios and compute marginal expected-

values more directly. For this purpose, let us define a different kind of conditional marginal

expected-value:

MEV(Ai if Ci//A1 if C1,...,Ai–1 if Ci–1) = EV(A1 if C1,...,Ai if Ci) – EV(A1 if C1,...,Ai–1 if Ci–1).

Then the following theorem tells us that we can compute MEV(A1 if C1,...,Ak if Ck) by summing

these conditional marginal expected-values:

Theorem 23:  MEV(A1 if C1,...,Ak if Ck) = Σ1≤ i ≤ k MEV(Ai if Ci//A1 if C1,...,Ai–1 if Ci–1).

The proof is analogous to that of theorem 22. If we can compute the conditional marginal

expected-values MEV(Ai if Ci//A1 if C1,...,Ai–1 if Ci–1), this theorem makes it easy to compute the

marginal expected-value of the policy. Unfortunately, the conditional marginal expected-values

are generally hard to compute without appealing to scenarios (in which case, nothing is saved).

12. Actions with Temporal Duration

Now let us relax the assumption that actions occur instantaneously. I will allow the date of

an action to be an interval, possibly with gaps. If the backgrounds predate the action and the

outcome postdates it, I presume that C-PROBA(O) can be defined just as for point-dated actions.

The definitions for linear policies need not be changed either as long as the elements of the

backgrounds either predate the actions or fall between them. However, if there is temporal

overlap between the action and the backgrounds or outcome, matters become much more com-

plicated. Let us begin by supposing the backgrounds predate the action but the date of the action

overlaps the date of the outcome. We can distinguish two cases.The first occurs when O has a

date [t0,t3] and A has a date [t1,t2], where t0 < t1 < t2 < t3. We can divide O into three parts, one
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predaing A, one with the same date as A, and one postdating A. We can write these as O[t0,t1],



O(t1,t2], and O(t2,t3]. O is equivalent to the conjunction of these three states of affairs, so we ought

to have:

C-PROBA(O) = C-PROBA(O[t0,t1])·C-PROBA(O(t1,t2]/O[t0,t1])·C-PROBA(O(t2,t3]/O[t0,t2]).

Because O[t0,t1] predates A, C-PROBA(O[t0,t1]) = PROB(O[t0,t1]). As O(t2,t3] postdates A, we can

compute C-PROBA(O(t2,t3]/O[t0,t2]) as before. But as yet we have no definition of

C-PROBA(O(t1,t2]/O[t0,t1]). The second problem is essentially the converse. We can have a state of

affairs O with date [t1,t2] and an action A with date [t0,t3], where t0 < t1 < t2 < t3. In this case we can

divide the action into three parts A[t0,t1), A[t1,t2], and A(t2,t3] where O posdates the first part and

predates the third part, but O has the same date as the middle part. The action can then be

treated as a linear policy consisting of three separate actions. Then we know how to compute

C-PROBA(O) if we can compute C-PROBA[t1,t2]
(O). The remaining problem is how to define C-

PROBA(O) when O and A have the same date. I do not have a complete solution to this problem,

but I do have some ideas that may eventually point in the direction of a solution.

time
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Figure 3. Velocity vs. time
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Figure 4. Probability envelope



What makes this problem hard is that the relatinship between A and O can reflect continuous

causal processes. For example, suppose A[t0,t] consists of applying a constant force to a particle

initially at rest and O[t0,t] describes the velocity of the particle at the different times throughout

the interval. If no other forces act on the particle, and the world is Newtonian, then the velocities

are described by the graph in figure 3. However, in the real world we never know precisely

what other forces are acting on a particle. Suppose that for any time between t0,t1 we know with

some prescribed probability that the acceleration on the particle is α ± ε. Then there is an

envelope of velocities within which the actual velocity can be expected to fall with that probability.

This is diagrammed in figure 4. If the force was applied at discrete instants followed by discrete

changes in the velocity, we could compute the causal probabilities as before. But in reality the

changes are continuous. This suggests, however, that we might be able to characterize the

continuous case as the limit to which the discrete cases go as the intervals between the changes

go to zero. This might lead to a characterization of the derivative of the probability, and then the

probability could be computed by integrating the derivative over the interval [t0,t1]:

t1⌠
 d

C-PROBA[t0,t1]
(O[t0,t1]) =   C-PROBA[t0,t](O[t0,t]) dt

 dt
⌡

t0

and figuring out a way of computing the derivative. To compute the derivative, note that where

∆ is some small number, we can compute:

C-PROBA(O[t0,t+∆])

= C-PROBA(O[t0,t])·C-PROBA(O(t,t+∆]/O[t0,t])

= C-PROBA[t0,t],A(t,t+∆](O[t0,t])·C-PROBA[t0,t],A(t,t+∆](O(t,t+∆]/O[t0,t]).

O[t0,t] predates A(t,t+∆], so

C-PROBA[t0,t],A(t,t+∆](O[t0,t]) = C-PROBA[t0,t]
(O[t0,t]).

Thus
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C-PROBA[t0,t+∆](O[t0,t+∆]) – C-PROBA[t0,t]
(O[t0,t])

= C-PROBA[t0,t](O[t0,t])·[C-PROBA[t0,t],A(t,t+∆](O(t,t+∆]/O[t0,t]) – 1].

= – C-PROBA[t0,t](O[t0,t])·C-PROBA[t0,t],A(t,t+∆](~O(t,t+∆]/O[t0,t]).

Hence

d  C-PROBA[t0,t]
(O[t0,t])dt

C-PROBA[t0,t],A(t,t+∆](~O(t,t+∆]/O[t0,t])
= – C-PROBA[t0,t](O[t0,t])·lim∆→0   

∆
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Figure 5. Broadening the envelope

In evaluating a probability of the form C-PROBA[t0,t],A(t,t+∆](O(t,t+∆]/O[t0,t]), it usually seems

reasonable to conclude that the contribution of A(t,t+∆] becomes vanishingly small as ∆ goes to

zero. In the example of the accelerating particle, if we remove the assumption that the force acts

continuously on the particle between t–∆ and t, that has the effect of broadening that part of the

envelope, as in figure 5. As ∆ goes to zero, the difference between the two envelopes becomes

vanishingly small. In other words,

lim∆→0  C-PROBA[t0,t],A(t,t+∆](O(t,t+∆]/O[t0,t])

= lim∆→0  C-PROBA[t0,t](O(t,t+∆]/O[t0,t]).
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So we can conclude:

d  C-PROBA[t0,t]
(O[t0,t])dt

C-PROBA[t0,t]
(~O(t,t+∆]/O[t0,t])

= – C-PROBA[t0,t](O[t0,t])·lim∆→0  
∆

In the probability C-PROBA[t0,t](O(t,t+∆]/O[t0,t])], the action predates the outcome and so is well-

defined.

Unfortunately, “C-PROBA[t0,t](O[t0,t])” occurs in the expression of the derivative, so what this

gives us is a differential equation rather than a simple derivative. Sometimes it will have a

desirable solution. For example, suppose the envelope is constructed in such a way that we can

conclude that for some constant β,

C-PROBA[t0,t]
(~O(t,t+∆]/O[t0,t]) = β·∆.

Then the differential equation we get is

d  C-PROBA[t0,t]
(O[t0,t]) = –β·C-PROBA[t0,t]

(O[t0,t]).dt

This equation can be solved to yield:

C-PROBA[t0,t]
(O[t0,t]) = e

–β(t – t0).

This gives us a nice expression of the probability. However, it is also possible for the differential

equation we get to have multiple solutions. For instance, if we are able to conclude instead that

     β
C-PROBA[t0,t]

(~O(t,t+∆]/O[t0,t]) =  ε(t–t0)

then our differential equation becomes

d     β  C-PROBA[t0,t]
(O[t0,t]) = –   C-PROBA[t0,t](O[t0,t]).dt ε(t–t0)

This equation has multiple solutions of the form

       β
C-PROBA[t0,t]

(O[t0,t]) = –  (t–t0)
n

.      nε
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This yields quite different probabilities for different choices of n. Thus in this case this approach



is not sufficient to uniquely determine a value for C-PROBA(O).

In those cases in which the preceding approach generates a differential equation with a

unique solution, we can take it as defining C-PROBA(O) when A and O have the same interval

date. But as we have seen, this will not always generate a definition. In those cases, it is unclear

how to proceed. This is a matter for future research.

If we relax the assumption that the backgrounds do not temporally overlap the actions,

things get even more complicated, but the general ideas remain the same. I will not pursue the

details.

13. Computing Causal Probability

Decision theory is a theory about how cognizers should, rationally, direct their activities.

Causal decision theory tells them to use causal probabilities in their deliberations, and to do that

they must have beliefs about causal probabilities. How can such probabilities be computed?

Causal probabilities are defined in terms of mixed physical/epistemic probabilities, which

are in turn inferred by direct inference from nomic probabilities. To apply the definitions directly

a cognizer would have to know all the relevant nomic probabilities and compute all the relevant

physical/epistemic probabilities. Real cognizers will fall far short of this ideal. They have limited

knowledge of nomic probabilities, and correspondingly limited access to the values of phys-

ical/epistemic probabilities and causal probabilities. However, what makes these three kinds of

probabilities useful is that when cognizers lack direct knowledge of them, they can still estimate

them defeasibly using classical and nonclassical direct inference. These apply directly to

physical/epistemic probabilities and nomic probabilities, but as I will show they also support

defeasible inferences regarding causal probabilities.

It is useful to remember that the principles of classical and nonclassical direct inference are

theorems of the theory of nomic probability — not primitive assumptions. They follow from the

principle (SS) of the statistical syllogism and the calculus of nomic probabilities. Classical direct

inference tells us how to infer the values of mixed physical/epistemic probabilities from the

values of associated nomic probabilities. The core principle for computing the value of a conditional

mixed physical/epistemic probability is:

(CDI*) If A is projectible with respect to B and C then “W(P ↔  Ac) & W(Q ↔ Cc) & WBc &

prob(Ax/Bx & Cx) = r” is a defeasible reason for “PROB(P/Q) = r”.
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In effect, this principle tells us that if (P ↔ Ac) and (Q ↔  Cc) are warranted, then we can identify



PROB(P/Q) with PROB(Ac/Cc), and if Bc is warranted we can defeasibly expect PROB(Ac/Cc) to be

the same as prob(Ax/Bx & Cx). A consequence of this is that it is defeasibly reasonable to expect

any further information we might acquire about c to be irrelevant to the value of PROB(Ac/Cc).

Nonclassical direct inference has a similar flavor, telling us that it is defeasibly reasonable to

expect further projectible properties C to be statistically irrelevant to the nomic probability

prob(Ax/Bx):

(DI) If A is projectible with respect to B then “prob(Ax/Bx) = r” is a defeasible reason for

“prob(Ax/Bx & Cx) = r”.

From these two principles, we can derive a defeasible presumption of statistical irrelevance for

mixed physical/epistemic probabilities:

(IR) For any P,Q,R, it is defeasibly reasonable to expect that PROB(P/Q&R) = PROB(P/Q).

This conclusion is forthcoming from the preceding principles of classical and non-classical direct

inference. Given “W(P ↔  Ac) & W(Q ↔ Cc) & W(R ↔  Dc) & WBc” it is defeasibly reasonable to

conclude that PROB(P/Q) = prob(Ax/Bx & Cx) and to conclude that PROB(P/Q&R) = prob(Ax/Bx

& Cx & Dx). But by non-classical direct inference, it is also defeasibly reasonable to expect that

prob(Ax/Bx & Cx & Dx) = prob(Ax/Bx & Cx), so it is defeasibly reasonable to expect that

PROB(P/Q) = PROB(P/Q&R). Note that this immediately implies an analogous principle of

irrelevance for causal probability:

(CIR) For any P,Q,R, it is defeasibly reasonable to expect that C-PROBA(P/Q&R) = C-PROBA(P/Q).

Now let us apply these observations to the computation of causal probabilities. (IR) gives us

a defeasible presumption that actions are not statistically relevant to their backgrounds, and by

theorem 2 it follows that C-PROBA(O) = PROB(O/A). In other words, it is defeasibly reasonable to

expect classical decision theory to yield the correct prescriptions. Causal decision theory only

yields different prescriptions in the unusual case in which actions are statistically relevant to

their backgrounds. These seem to be cases in which the action and the possible outcome have

common causal ancestors. As has been noted repeatedly in the literature, these cases are unusual.

In a case in which an action is known to be statistically relevant to some elements of its

backgrounds, it follows from (IR) that it is defeasibly reasonable to expect that all other elements
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of its backgrounds are statistically independent of the action in the strong sense required by



theorem 2. Then it follows by theorem 2 that we can confine our attention to just those elements

of the backgrounds that the action is known to be statistically relevant to, and hence deal with

very small backgrounds. If more statistical relevance is found later, then the computation must

be revised, but it is always defeasibly reasonable to expect that such a recomputation will not be

necessary.

For some purposes, the preceding remarks put the cart before the horse. They suggest that

C-PROBA(O) will be computed by first computing PROB(O/A). In fact, I think the converse is likely

to be true. The characterization of C-PROBA(O) in terms of scenarios provides what is in effect a

recursive characterization, enabling us to compute causal probabilities by propogating them

through time. If the case is classical, this is simultaneously a computation of PROB(O/A). But if

the case is not classical, i.e., actions affect the probabilities of events occuring earlier than themselves,

that does not make the causal probabilities harder to compute, but it makes PROB(O/A) much

harder to compute.

14. Conclusions

Decision theory is an attempt to articulate principles governing the rational deliberations of

cognizers faced with uncertainty. Most work in decision theory has been Bayesian, employing

subjective probabilities. For the reasons given above, I regard subjective probability as a philos-

opher’s fiction, inapplicable to the deliberations of real cognizers about what, rationally, they

ought to do. However, decision theory can be reformulated using objective probabilities in place

of subjective probabilities.  Specifically, uncertainty can be represented using mixed physi-

cal/epistemic probabilities. Objective decision theory has a somewhat different flavor from Baye-

sian decision theory. In Bayesian decision theory the expected-values of actions directly dictate

what the agent should do, but in objective decision theory it is beliefs about the expected-values

that determine what the agent should do. This difference is not so marked when we move to

causal decision theory, because theories like Skyrms’ are formulated in terms of the objective

concept of causal dependence. To make use of that, the agent must have beliefs about it. However,

as Lewis observed, Skyrms’ theory does not entirely accommodate this observation.

Some form of causal decision theory is required to handle the counterexamples to classical

decision theory growing out of the Newcomb problem. As Lewis observes, the different causal

decision theories that have been proposed are closely related to one another. In particular, they

define causal probability by reference to concepts like causal dependence. Causal dependence is
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a philosophically problematic concept.  I do not doubt that it makes sense, but its analysis is



extremely controversial, as are its logical properties.  Accordingly, it seems undesirable to use it

as a primitive constituent of an analysis of causal probability.

This paper has proposed that within the context of objective causal decision theory we can

replace the appeal to causal dependence by appeal to temporal relations and statistical relevance

between mixed physical/epistemic probabilities. The basic idea is simply that causes propogate

through the world in temporal order. The resulting analysis handles the known counterexamples

to classical decision theory in essentially the same way Skyrms’ theory does, but without appealing

to vaguely understood concepts like causal dependence.
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