University of

"1l Kent Academic Repository

Poll, Erik and Thompson, Simon (2000) Integrating Computer Algebra and
Reasoning through the Type System of Aldor. In: Kirchner, Héléne and
Ringeissen, Christophe, eds. Frontiers of Combining Systems Third International
Workshop. Lecture Notes in Computer Science, 1794 . Springer, Berlin,
Germany, pp. 136-150. ISBN 978-3-540-67281-4.

Downloaded from
https://kar.kent.ac.uk/22041/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/10720084 10

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/22041/
https://doi.org/10.1007/10720084_10
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Integrating Computer Algebra and Reasoning
through the Type System of Aldor

Erik Poll' and Simon Thompson?

! Computing Science Department
University of Nijmegen, The Netherlands
erikpoll@cs.kun.nl
2 Computing Laboratory,
University of Kent at Canterbury, UK
S.J.Thompson@ukc.ac.uk

Abstract. A number of combinations of reasoning and computer al-
gebra systems have been proposed; in this paper we describe another,
namely a way to incorporate a logic in the computer algebra system Ax-
iom. We examine the type system of Aldor the Axiom Library Compiler
— and show that with some modifications we can use the dependent types
of the system to model a logic, under the Curry-Howard isomorphism.
We give a number of example applications of the logic we construct and
explain a prototype implementation of a modified type-checking system
written in Haskell.

1 Introduction

Symbolic mathematical or computer algebra systems, such as Axiom [13],
Maple and Mathematica, are in everyday use by scientists, engineers and indeed
mathematicians, because they provide a user with techniques of, say, integra-
tion which far exceed those of the person themselves, and make routine many
calculations which would have been impossible some years ago. These systems
are, moreover, taught as standard tools within many university undergraduate
programmes and are used in support of both academic and commercial research.

There are, however, drawbacks to the widespread use of automated sup-
port of complex mathematical tasks, which has been widely noted: Fateman
[10] gives the graphic example of systems which will assume that a # 0 on the
basis that @ = 0 has not been established. This can have potentially disastrous
consequences for the naive user of the system or indeed, if it occurs within a
sufficiently complicated context, any user.

Symbolic mathematics systems are also limited by their reliance on algebraic
techniques. As Martin [14] remarks, in performing operations of analysis it might
be a precondition that a function be continuous; such a property cannot be
guaranteed by a computer algebra system alone.

All this makes the combination of computer algebra with theorem proving a
topic of considerable interest. Reasoning capabilities can allow a user to track as-
sumptions, and thus to ensure that symbolic computations are sound, in contrast
to the current situation in many CA systems.

Reasoning can also extend the capability of a CA system. A scenario might
involve working with a particular monoid: if during the course of computation
it can be shown, for instance, that the monoid is commutative then it is pos-
sible to use different, more efficient, simplification algorithms for expressions.
The addition of reasoning here has made computation more efficient; in other
situations - such as Martin’s analysis example mentioned earlier reasoning can
allow computations to proceed where in general this would not be possible.

The literature contains a number of different strategies proposed for com-
bining computer algebra and theorem proving; see, for instance, [4,6,3]. This
paper describes another approach: we use the type system of the Axiom com-
puter algebra system [13] to represent a logic, and thus to use the constructions
of Axiom to handle the logic and represent proofs and propositions, in the same
way as is done in theorem provers based on type theory such as Nuprl [7] or Coq
8]

This paper particularly explores the recent Axiom Library Compiler, Aldor
[30], which is unusual among computer algebra systems in being strongly typed,
and moreover in having a very powerful type system, including dependent types
which are central to our work.

The implementation of dependent types in Aldor is somewhat nonstandard:
there is no evaluation within type expressions, so that, for example, ‘vectors of
length 2+3’ are distinct from ‘vectors of length 5’; we show how this limits the
expressivity of the dependent types. We describe a modification of the Aldor
system which allow the types to represent the propositions of a constructive
logic, under the Curry-Howard correspondence. We argue that this integrates
a logic into the Aldor system, and thus permits a variety of logical extensions
to Aldor, including adding pre- and post-conditions to function specifications,
axiomatisations to categories of mathematical objects as well as the ability to
reason about the objects in Aldor.

The structure of the paper is as follows. Section 2 introduces Aldor and in
particular examines its system of types. In Section 3 we examine the issue of
type equality in Aldor since it is central to our approach to embedding a logic in
Aldor. The section also contains a number of strategies for modifying the Aldor
compiler. We show how a logic can be defined in a modified variant of the Aldor
system in Section 4 and Section 5 gives some example applications. We conclude
with a discussion of related and future work.

2 An Introduction to Aldor

The Axiom Library Compiler, Aldor [30] (known in the past as AXIOM-XL and
A¥), provides the user with a powerful, general-purpose programming language
in which to model the structures of mathematics. Aldor is compiled, in contrast
to most computer algebra languages, and so it can provide much more efficient
implementations of algorithms than interpreted languages.

The core of Aldor is a functional programming language which provides
higher-order functions, generators (which bear a strong relationship to list com-

prehensions) and other features of modern functional languages like Standard
ML [17] and Haskell [21]. It is also strongly typed, in common with these lan-
guages and indeed the majority of modern programming languages. Under this
type discipline any type error —such as adding a character to a boolean operator —
can be caught at compile time rather than at run time. This has two consequent
advantages. First, a whole class of programming errors can be detected prior
to program execution, thus increasing the dependability of the compiled code.
Secondly, it means that it is possible to produce more efficient compiled code
since no run-time type tags on program data need to be maintained to support
type checking at run-time.

Since Aldor is designed with mathematics in mind, its type system is more
complex than those of most programming languages. Mathematicians take a
flexible approach to terminology, with the consequence that often the meaning
of a symbol or phrase is only determined by its context. This requires of a
programming language that symbols can be overloaded, and that sometimes
values need to be coerced from one type to another: from the integers to floating-
point numbers, for example.

More importantly this flexibility necessitates an entity like the collection of
integers to be seen in various different ways, depending on the context. In the
case of the integers this might be a set of values, a group, an integral domain,
a subset of the real numbers and so forth. To do this, the language allows types
and functions to be collected into domains, and the type of a domain, which is
described by a signature, is called a category.

Categories can be built on top of other categories, giving a version of inherit-
ance between domains. Categories can also be parametrised by values including
domains; rather than implement a theory of parametric categories, Aldor takes
types to be values just like more traditional values like 23 and the Boolean value
‘false’. This has far-reaching consequences for the language.

Current descriptions of Aldor, [30,29], give informal definitions of the type
system. We have given a formal description of the essence of the Aldor type
system in [22]. In the remainder of this section we summarise our approach in
that paper and the conclusions that are drawn there.

2.1 An Overview of the Type System of Aldor

Unusually among languages for computer algebra, but in keeping with the func-
tional school, Aldor is strongly typed. Each declaration of a binding can be
accompanied by a declaration of the type of the value bound, as in the definition

a : Integer == 23;

The type of an expression can be declared explicitly to resolve any uses of over-
loaded identifiers. This cannot simply be done by the typing rules, since arbitrary
overloading is allowed, so that, for instance, a single identifier fun may be over-
loaded to have types Int -> Int, Int -> Bool and Bool -> Int so that neither
the type of the argument nor the type of result expected can disambiguate an
application of fun.

Some ‘courtesy’ coercions are provided by the system automatically: these
convert between multiple values (d la LISP), cross products and tuples. It is also
possible to make explicit conversions by means of the coerce function from
integers to floating point numbers and so forth.

As mentioned earlier, Aldor treats types as values. In particular, a type such
as Integer has itself a type. The type of types is called Type. Having this type
of all types means that the system supports functions over types, such as the
identity function over (the type of) types:

idType (ty : Type) : Type == ty;

and explicit polymorphism, as in the polymorphic identity function which takes
two arguments. The first is a type ty and the second is a value of that type
which is returned as the result.

id (ty : Type, x : ty) : ty == x; (id)

Aldor permits functions to have dependent types, in which the type of a func-
tion result depends upon the value of a parameter. An example is the function
which sums the values of vectors of integers. This has the type

vectorSum : (n:Integer) -> Vector(n) -> Integer
in which the result of a function application, say
vectorSum(34)

has the type Vector(34) -> Integer because its argument has the value 34.
In a similar way, when the id function of definition (id) is applied, its result
type is determined by the type which is passed as its first argument. We discuss
this aspect of the language in more detail in Section 2.3.

The system is not fully functional, containing as it does variables which
denote storage locations. The presence of updatable variables inside expressions
can cause side-effects which make the elucidation of types considerably more
difficult. There is a separate question about the role of ‘mathematical’ variables
in equations and the like, and the role that they play in the type system of Aldor.

Categories and domains provide a form of data abstraction and are addressed
in more detail in Section 2.5.

The Aldor type system can thus be seen to be highly complex and we shall
indeed see that other features such as macros (see Section 2.5) complicate the
picture further.

2.2 Formalising the Type System of Aldor

This section outlines the approach we have taken in formalising the type system
of Aldor. Our work is described in full in [22]; for reasons of space we can only
give a summary here.

The typing relation is formally described by typing judgements of the form

I'+t:T

which is read ‘t has the type T in the context I"’. A context here consists of a
list of variable declarations, type definitions and so on. Contexts represent the
collection of bindings which are in scope at a point in a program text. Note that
t might have more than one type in a given context because of overloading of
identifiers in Aldor, and so it would be perfectly legitimate for a well-formed
context I' to imply that ¢ : T and ¢ : 7' where T' and T" are different types.

Complex typing judgements are derived using deduction rules that codify
conditions for a typing judgement to hold. For example,

Ir-f:8>T TI'ts:S
'k f(s): T

(function elim)

describes the type-correct application of a function. This deductive approach
is standard; we have adapted it to handle particular features of Aldor such as
overloading, first-class types and categories.

Our discussion in [22] examines the essential features of the full type system of
Aldor; in this paper we concentrate on those aspects of the language relevant to
our project. These are dependent function and product types; equality between
types; and categories and domains, and we look at these in turn now.

2.3 Dependent Types

As we have already seen with the examples of id and vectorSum, the Aldor
language contains dependent types. To recap, the function vectorSum defines a
sum function for vectors of arbitrary length and has the type

vectorSum : (n:Integer) -> Vector(n) -> Integer
Similarly one can define a function append to join two vectors together
append : (n:Integer,m:Integer,Vector(n),Vector(m)) -> Vector(n+m)

The typing rule for dependent function elimination modifies the rule (function
elim) so that the values of the arguments are substituted in the result type, thus

'tf:(z:8)->T TIts:S

(dependent function elim)
't f(s): Tz :=s]

Given vectors of length two and three, vec2 and vec3, we can join them thus
append(2,3,vec2,vec3) : Vector(2+3)

where 2 and 3 have been substituted for n and m respectively.
We would expect to be able to find the sum of this vector by applying
vectorSum 5, thus

(vectorSum 5) append(2,3,vec2,vec3)

but this will fail to type check, since the argument is of type Vector (2+3),
which is not equal to the expected type, namely Vector (5). This is because no
evaluation takes place in type expressions in Aldor (nor indeed in the earlier
version of Axiom). We examine this question in the next section, and in Section
3 we discuss how the Aldor type mechanism can be modified to accommodate a
more liberal evaluation strategy within the type checker. Similar remarks apply
to dependent product types in which the type of a field can depend on the value
of another field.

2.4 Equality of Types in Aldor

When are two types in Aldor equal? The definition of type equality in any
programming language is non-trivial, but in the presence of dependent types
and types as values it becomes a subtle matter.

Type equality is fundamental to type checking, as can be seen in the rule
(function elim): the effect of the rule in a type-checker is to say that the applic-
ation f(s) is only legitimate if f has type S->T, s has type S', and the types S
and S’ are equal. Non-identical type expressions can denote identical types for
a number of reasons.

— A name can be given to a type, as in
myInt : Type == Int;

and in many situations myInt and Int will be treated as identical types.
[This is often called d-equality.]

— The bound variables in a type should be irrelevant and Aldor treats them
as so. This means that the types

vectorSum : (n:Integer) -> Vector(m) -> Integer
vectorSum : (int:Integer) -> Vector(int) -> Integer

should be seen as identical. [a-equality]

— Types are values like any other in Aldor, and so can be evaluated. In par-
ticular a function over types like idType will be used in expressions such as
idType Int. It would be expected that this would evaluate to Int and thus
be seen as equivalent. [$-equality]

— In the presence of dependent types, expressions of any type whatsoever can
be subexpressions of type expressions, as in Vector (2+3). Equality between
these subexpressions can be lifted to types, making Vector (2+3) equal to
Vector (5). [Value-equality]

Our report on the type system examines the practice of equality in the Aldor
system and shows it to be complex. The Aldor system implements a-equality in
nearly all situations, but d-equality is not implemented in a uniform way. Over
types neither S-equality nor value-equality is implemented, so that type equality
in Aldor is a strong relation, in that it imposes finer distinctions than notions
like - or value-equality.

A rationale for the current definition in Aldor is that it is a simple notion of
type equality which is strong enough to implement a weak form of type depend-
ency in which arguments to types are themselves (literal) types which are not
used in a computational way. This form of dependency is useful in the module
system of Aldor where it can be used to formulate mathematical notions like
‘the ring of polynomials in one variable over a field F’ where the field F' is a
parameter of the type.

Our approach to integrating reasoning into Aldor requires a weaker notion
of type equality, which we explore in Section 3.

2.5 Categories and Domains

Aldor is designed to be a system in which to represent and manipulate math-
ematical objects of various kinds, and support for this is given by the Aldor
type system. One can specify what it is to be a monoid, say, by defining the
Category! called Monoid, thus

Monoid : Category == BasicType with { (Mon)
x 0 Ch,%) —> ks
1: % }

This states that for a structure over a type ‘%’ to be a monoid it has to supply
two bindings; in other words a Category describes a signature. The first name
in the signature is ‘*’ and is a binary operation over the type ‘%’; the second is
an element of ‘%’.

In fact we have stated slightly more than this, as Monoid extends the category
BasicType which requires that the underlying type carries an equality operation.

BasicType : Category == with {
= : (%,%) -> Boolean; }

We should observe that this Monoid category does not impose any constraints

on bindings to ‘*” and ‘1’: we shall revisit this example in Section 5.2 below.
Implementations of a category are abstract data types which are known in

Aldor as domains, and are defined as was the value a at the start of Section 2.1,

e.g.

IntegerAdditiveMonoid : Monoid == add {
Rep == Integer;
(x:%) * (y:%) : % == per((rep x) + (rep y));
1% == per 0; }

The category of the object being defined — Monoid — is the type of the domain
which we are defining, IntegerAdditiveMonoid. The definition identifies a rep-
resentation type, Rep, and also uses the conversion functions rep and per which
have the types

! There is little relation between Aldor’s notion of category and the notion from cat-
egory theory!

rep : % —-> Rep per : Rep -> ¥

The constructs Rep, rep and per are implemented using the macro mechanism
of Aldor, and so are eliminated before type checking. In our report [22] we show
how definitions of domains can be type checked without macro expansion, which
allows, for instance, more accurate error diagnosis.

Categories can also be parametric, and depend upon value or type paramet-
ers; an example is the ring of polynomials over a given field mentioned earlier.

2.6 Conclusion

This section has given a brief overview of Aldor and its type system. It has shown
that the notion of type equality in Aldor is a strong one, which makes distinctions
between types which could naturally be considered equivalent. This is especially
relevant when looking at the effect of type equality on the system of dependent
types. In the sections to come we show how a logic can be incorporated into
Aldor by modifying the notion of type equality in Aldor.

3 Modifying Type Equality in Aldor

Section 2.4 describes type equality in Aldor and argues that it is a strong notion
which distinguishes between type terms which can naturally be identified. In this
section we examine various ways of modifying type equality including the way
we have chosen to do this in our prototype implementation.

3.1 Using the Existing System

It is possible to use the existing Aldor system to mimic a different weaker
type equality by explicitly casting values to new types, using the pretend
function of Aldor.? This effectively sidesteps the type checker by asserting the
type of an expression which is accepted by the type checker without verification.
For instance, the vector example of Section 2.3 can be made to type check in
Aldor by annotating it thus

(vectorSum 5) (append(2,3,vec2,vec3) pretend Vector(5))
or thus
((vectorSum 5) pretend (Vector(2+3) -> Integer)) append(2,3,vec2,vec3)

This achieves a result, but at some cost. Wherever we expect to need some
degree of evaluation, that has to be shadowed by a type cast; these casts are also
potentially completely unsafe.

2 The pretend function is used in the definition of rep and per in the current version
of Aldor; a more secure mechanism would be preferable.

3.2 Coercion Functions

Another possibility is to suggest that the current mechanism for coercions in
Aldor is modified to include coercion functions which would provide conversion
between type pairs such as Vector (2+3) and Vector (5), extending the coercion
mechanism already present in Aldor. This suggestion could be implemented but
we envisage two difficulties with it.

— In all but the simplest of situations we will need to supply uniformly-defined
families of coercions rather than single coercions. This will substantially
complicate an already complex mechanism.

— Coercions are currently not applied transitively: the effect of this is to allow
us to model single steps of evaluation but not to take their transitive closure.

Putting these two facts together force us to conclude that effectively mimicking
the evaluation process as coercions is not a reasonable solution to the problem
of modifying type checking.

3.3 Adding Full Evaluation

To deal with the problem of unevaluated subexpressions in types, we have imple-
mented a prototype version of Aldor using Haskell [23]. In this implementation
all type expressions are fully evaluated to their normal form as a part of the
process of type checking. To give an example, the rule (function elim) will be
interpreted thus:

f(s) is well-formed if and only if f has type S->T', s has type S’, and
the normal forms of S and S’ are equal modulo a-equality.

The effect of this modification is to force the type checker to perform evaluation
of expressions at compile time. Clearly this can cause the type checker to diverge
in general, since in, for instance, an application of the form vectorSum(e) an
arbitrary expression e:Nat will have to be evaluated.

More details of the prototype implementation of Aldor in Haskell are given
in the technical report [23].

3.4 Controlling Full Evaluation

A number of existing type systems, Haskell among them, have undecidable type
systems [12] which can diverge at compile time. In practice this is not usually a
problem as the pathologies lie outside the ‘useful’ part of the type system. This
may well be the case with Aldor also, but it is also possible to design a subset
of the language, Aldor--, whose type system is better behaved.

There is considerable current interest in defining terminating systems of re-
cursion [27,16]. A system like this is sufficient to guarantee the termination of
expressions chosen for evaluation as part of the type checking process. The main
effect of the restricted system is to force recursion to be structural (in a general
sense); in practice this is acceptable, particularly in the subset of the language
used within type expressions.

4 Logic within Aldor

In this section we discuss the Curry-Howard isomorphism between propositions
and types, and show that it allows us to embed a logic within the Aldor type
system, if dependent types are implemented to allow evaluation within type
contexts.

4.1 The Curry-Howard Correspondence

Under the Curry-Howard correspondence, logical propositions can be seen as
types, and proofs can be seen as members of these types. Accounts of construct-
ive type theories can be found in notes by Martin-Lof [15] amongst others [19,
26]. Central to this correspondence are dependent types, which allow the repres-
entation of predicates and quantification.

Central to the correspondence is the idea that a constructive proof of a
proposition gives enough evidence to witness the fact that the proposition stands.

— A proof of a conjunction A A B has to prove each half of the proposition,
so has to provide witnessing information for each conjunct; this corresponds
precisely to a product type, in Aldor notation written as (A4, B), members
of which consist of pairs of elements, one from each of the constituent types.

— A proof of an implication A = B is a proof transformer: it transforms proofs
of A into proofs of B; in other words it is a function from type A to type B,
i.e. a function of type A->B.

— In a similar way a proof of a universal statement (Vz : A)B(z) is a function
taking an element a of A into a proof of B(a); in other words it is an element
of the dependent function type (x:4) -> B.

— Similar interpretations can be given to the other propositional operators and
the existential quantifier.

We can summarise the correspondence in a table

Programming Logic
Type Formula
Program Proof
Product/record type Covvyed) Conjunction
Sum /union type \/ Disjunction
Function type -> Implication

Dependent function type (x:4A) -> B(x) Universal quantifier
Dependent product type (x:A,B(x)) Existential quantifier
Empty type Exit Contradictory proposition
One element type Triv True proposition

Predicates (that is dependent types) can be constructed using the constructs
of a programming language. A direct approach is to give an explicit (primitive
recursive) definition of the type, which in Aldor might take the form

lessThan(n:Nat,m:Nat) : Type == (lessThan)
if m=0 then Exit
else (if n=0 then Triv
else lessThan(n-1,m-1));

The equality predicate can be implemented by means of a primitive operation
which compares the normal forms of the two expressions in question.

4.2 A Logic within Aldor

We need to examine whether the outline given in Section 4.1 amounts to a
proper embedding of a logic within Aldor. We shall see that it places certain
requirements on the definition and the system.

Most, importantly, for a definition of the form (lessThan) to work properly
as a definition of a predicate we need an application like lessThan(9,3) to be
reduced to Exit, hence we need to have evaluation of type expressions. This is a
modification of Aldor which we are currently investigating, as outlined in Section
2.3. In the case of (lessThan) the evaluation can be limited, since the scheme
used is recognisable as terminating by, for instance, the algorithm of [16].

The restriction to terminating (well-founded) recursions is also necessary for
consistency of the logic. For the logic to be consistent, we need to require that
not all types are inhabited, which is clearly related to the power of the recur-
sion schemes allowed in Aldor. One approach is to expect users to check this for
themselves: this has a long history, beginning with Hoare’s axiomatisation of the
function in Pascal, but we would expect this to be supported with some auto-
mated checking of termination, which ensures that partially or totally undefined
proofs are not permitted.

Consistency also depends on the strength of the type system itself; a suffi-
ciently powerful type system will be inconsistent as shown by Girard’s paradox
[11].

5 Applications of an Integrated Logic

Having identified a logic within Aldor, how can it be used? There are various
applications possible; we outline some here and for others one can refer to the
number of implementations of type theories which already exist, including Nuprl
[7] and Coq [8].

5.1 Pre- and Post-Conditions

A more expressive type system allows programmers to give more accurate types
to common functions, such as the function which indexes the elements of a list.

index : (l:List(t)) (n:Nat)((n < length 1) -> t)

An application of index has three arguments: a list 1 and a natural number n
as for the usual index function and a third argument of type (n < length
1), that is a proof that n is a legitimate index for the list in question. This
extra argument becomes a proof obligation which must be discharged when the
function is applied to elements 1 and n.
In a similar vein, it is possible to incorporate post-conditions into types, so
that a sorting algorithm over lists might have the type

sort : ((1l:List(t)) (List(t),Sorted(1))

and so return a sorted list together with a proof that the list is Sorted.

5.2 Adding Axioms to the Categories of Aldor

In definition (Mon), Section 2.5, we gave the category of monoids, Monoid, which
introduces two operation symbols, * and 1. A monoid consists not only of two
operations, but of operations with properties. We can ensure these properties
hold by extending the definition of the category to include three extra compon-
ents which are proofs that 1 is a left and right unit for * and that * is associative,

where we assume that ‘=’ is the equality predicate:
Monoid : Category == BasicType with { (MonL)
0 (%, h) > hs
1 %;
leftUnit : (g:%) -> (lxg = g);
rightUnit : (g:%) -> (g*1 = g);
assoc 2 (grh,h:hh, %) => (gx(hxj) = (g*xh)*j);

}

For example, the declaration of leftUnit has the logical interpretation that
leftUnit is a proof of the statement ‘for all g in the monoid (%), 1*g is equal
to g’.

The equality predicate is implemented as follows: the type a = b contains
a value if and only if a and b have the same normal form. The extension oper-
ation (i.e. the with in the definition above) over categories will lift to become
operations of extension over the extended ‘logical’ categories such as (MonL).

5.3 Commutative Monoids

In the current library for Axiom it is not possible to distinguish between general
monoids and commutative monoids: both have the same signature. With logical
properties it is possible to distinguish the two:

CommutativeMonoid : Category == Monoid with {
comm : (g:%,h:%) -> (g*h = hx*xg);

}

To be a member of this category, a domain needs to supply an extra piece of
evidence, namely that the multiplication is commutative; with this evidence the
structure can be treated in a different way than if it were only known to be a
monoid. This process of discovery of properties of an mathematical structure
corresponds exactly to a mathematician’s experience. Initially a structure might
be seen as a general monoid, and only after considerable work is it shown to be
commutative; this proof gives entry to the new domain, and thus allows it to be
handled using new approaches and algorithms.

5.4 Different Degrees of Rigour

One can interpret, the obligations given in Sections 5.1 and 5.2 with differing de-
grees of rigour. Using the pretend function we can conjure up proofs of the logical
requirements of (MonL); even in this case they appear as important documenta-
tion of requirements, and they are related to the lightweight formal methods of
[9].

Alternatively we can build fully-fledged proofs as in the numerous implement-
ations of constructive type theories mentioned above, or we can indeed adopt an
intermediate position of proving properties seen as ‘crucial’ while asserting the
validity of others.

6 Conclusion

We have described a new way to combine or rather, to integrate computer
algebra and theorem proving. Our approach is similar to [3] and [4] in that
theorem proving capabilities are incorporated in a computer algebra system.
(In the classification of possible combinations of computer algebra and theorem
proving of [6], all these are instance of the ”subpackage” approach.) But the way
in which we do this is completely different: we exploit the expressiveness of the
type system of Aldor, using the Curry-Howard isomorphism that also provides
the basis of theorem provers based on type theory such as Nuprl [7] or Coq [8].
This provides a logic as part of the computer algebra system. Also, having the
same basis as existing theorem provers such as the ones mentioned above makes
it easier to interface with them.

So far we have worked on a formal description of the core of the Aldor
type system [22], and on a pilot implementation of a typechecker for Aldor
which does evaluation in types which can be used as a logic [23]. This pilot
forms the model for modifications to the Aldor system itself, as well as giving
a mechanism for interfacing Aldor with other systems like the theorem prover
Coq, complementary to recent work on formalising the Aldor system within Coq
[1]. The logic is being used in a mathematical case study of symbolic asymptotics

[25].

It is interesting to see a convergence of interests in type systems from a
number of points of view, namely

— computer algebra,
— type theory and theorem provers based on type theory,
— functional programming.

For instance, there seem to be many similarities between structuring mechan-
isms used in these different fields: [5] argues for functors in the sense of the
programming language ML as the right tool for structuring mathematical theor-
ies in Mathematica, and [24] notes similarities between the type system of Aldor,
existential types [18], and Haskell classes [28]. More closely related to our ap-
proach here, it is interesting to note that constructive type theorists have added
inductive types [20], giving their systems a more functional flavour, while func-
tional programmers are showing an interest in dependent types [2] and languages
without non-termination [27]. We see our work as part of that convergence,
bringing type-theoretic ideas together with computer algebra systems, and thus
providing a bridge between symbolic mathematics and theorem proving.

Acknowledgements We are grateful to Stephen Watt of the University of
Western Ontario and to Ursula Martin and her research group at the University
of St Andrews for feedback on these ideas. We would also like to thank NAG
for granting us access to the Aldor compiler, and in particular to Mike Dewar
for his help in facilitating this. We are indebted to Dominique Duval who first
introduced us to the type system of Aldor, and to EPSRC for supporting her
visit to UKC under the MathFIT programme. Finally we are grateful to Therese
Hardin of LIP6, Paris, for her comments on this work.

References

1. Guillaume Alexandre. De ALDOR ¢ Zermelo. PhD thesis, Université Paris VI,
1998.

2. Lennart Augustsson. Cayenne — a language with dependent types. ACM Press,
1998.

3. Andrej Bauer, Edmund Clarke, and Xudong Zhao. Analytica - an experiment in
combining theorem proving and symbolic computation. In AISMC-3, volume 1138
of LNCS. Springer, 1996.

4. Bruno Buchberger. Symbolic Computation: Computer Algebra and Logic. In F.
Baader and K.U. Schulz, editors, Frontiers of Combining Systems. Kluwer, 1996.

5. Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin, Elena Tomuta,
and Daniela Vasaru. A survey of the Theorema project. In Proceedings of ISSAC’97
(International Symposium on Symbolic and Algebraic Computation), pages 384—
391. ACM, 1997.

6. Jaques Calmet and Karsten Homann. Classification of communication and cooper-
ation mechanisms for logical and symbolic computation systems. In FroCos’96.
Kluwer, 1996.

7. Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-
velopment System. Prentice-Hall Inc., 1986.

8. C. Cornes et al. The Coq proof assistant reference manual, version 5.10. Rapport
technique RT-0177, INRIA, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Martin Dunstan and Tom Kelsey. Lightweight Formal Methods for Computer
Algebra Systems. ISSAC’98, 1998.

Richard Fateman. Why computer algebra systems can’t solve simple equations.
ACM SIGSAM Bulletin, 30, 1996.

Jean-Yves Girard. Intérpretation fonctionelle et élimination des coupures dans
Parithmétique d’ordre supérieure. These d’Etat, Université Paris VII, 1972.

Fritz Henglein. Type Inference with Polymorphic Recursion. ACM Transactions
on Programming Languages and Systems, 15, 1993.

Richard D. Jenks and Robert S. Sutor. Aziom: The Scientific Computation System.
Springer, 1992.

Ursula Martin. Computers, reasoning and mathematical practice. In Helmut
Schwichtenberg, editor, Computational Logic, Marktoberdorf 1997 Springer, 1998.
Per Martin-Lof. Intuitionistic Type Theory. Bibliopolis, Naples, 1984. Based on a
set of notes taken by Giovanni Sambin of a series of lectures given in Padova, June
1980.

D. McAllester and K. Arkondas. Walther recursion. In M.A. Robbie and J.K.
Slaney, editors, CADE 13. Springer, 1996.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
MIT Press, 1990.

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type.
ACM Trans. on Prog. Lang. and Syst., 10(3):470-502, 1988.

Bengt Nordstrom, Kent Petersson, and Jan M. Smith. Programming in Martin-
Léf’s Type Theory — An Introduction. Oxford University Press, 1990.

Christine Paulin-Mohring. Inductive definitions in the system Coq. In TLCA,
volume 664 of LNCS. Springer, 1993.

John Peterson and Kevin Hammond, editors. Report on the Programming Lan-
guage Haskell, Version 1.4. htttp://wuw.haskell.org/report/, 1997.

Erik Poll and Simon Thompson. The Type System of Aldor. Technical Report
11-99, Computing Laboratory, University of Kent at Canterbury, 1999.

Chris Ryder and Simon Thompson. Aldor meets Haskell. Technical Report 15-99,
Computing Laboratory, University of Kent at Canterbury, 1999.

Philip S. Santas. A type system for computer algebra. Journal of Symbolic Com-
putation, 19, 1995.

J.R. Shackell. Symbolic asymptotics and the calculation of limits. Journal of
Analysis, 3:189-204, 1995. Volume commemorating Maurice Blambert.

Simon Thompson. Type Theory and Functional Programming. Addison Wesley,
1991.

David Turner. Elementary strong functional programming. In Pieter Hartel and
Rinus Plasmeijer, editors, Functional programming languages in education (FPLE),
LNCS 1022. Springer-Verlag, Heidelberg, 1995.

Philip Wadler and Stephen Blott. Making ad hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM Symposium on Principles of Programming Languages.
ACM Press, 1989.

Stephen M. Watt et al. A First Report on the A# Compiler. In ISSAC 94. ACM
Press, 1994.

Stephen M. Watt et al. AXIOM: Library Compiler User Guide. NAG Ltd., 1995.

