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Integrating Computer Algebra and Reasoningthrough the Type System of AldorErik Poll1 and Simon Thompson21 Computing S
ien
e DepartmentUniversity of Nijmegen, The Netherlandserikpoll�
s.kun.nl2 Computing Laboratory,University of Kent at Canterbury, UKS.J.Thompson�uk
.a
.ukAbstra
t. A number of 
ombinations of reasoning and 
omputer al-gebra systems have been proposed; in this paper we des
ribe another,namely a way to in
orporate a logi
 in the 
omputer algebra system Ax-iom. We examine the type system of Aldor { the Axiom Library Compiler{ and show that with some modi�
ations we 
an use the dependent typesof the system to model a logi
, under the Curry-Howard isomorphism.We give a number of example appli
ations of the logi
 we 
onstru
t andexplain a prototype implementation of a modi�ed type-
he
king systemwritten in Haskell.1 Introdu
tionSymboli
 mathemati
al { or 
omputer algebra { systems, su
h as Axiom [13℄,Maple and Mathemati
a, are in everyday use by s
ientists, engineers and indeedmathemati
ians, be
ause they provide a user with te
hniques of, say, integra-tion whi
h far ex
eed those of the person themselves, and make routine many
al
ulations whi
h would have been impossible some years ago. These systemsare, moreover, taught as standard tools within many university undergraduateprogrammes and are used in support of both a
ademi
 and 
ommer
ial resear
h.There are, however, drawba
ks to the widespread use of automated sup-port of 
omplex mathemati
al tasks, whi
h has been widely noted: Fateman[10℄ gives the graphi
 example of systems whi
h will assume that a 6= 0 on thebasis that a = 0 has not been established. This 
an have potentially disastrous
onsequen
es for the naive user of the system or indeed, if it o

urs within asuÆ
iently 
ompli
ated 
ontext, any user.Symboli
 mathemati
s systems are also limited by their relian
e on algebrai
te
hniques. As Martin [14℄ remarks, in performing operations of analysis it mightbe a pre
ondition that a fun
tion be 
ontinuous; su
h a property 
annot beguaranteed by a 
omputer algebra system alone.All this makes the 
ombination of 
omputer algebra with theorem proving atopi
 of 
onsiderable interest. Reasoning 
apabilities 
an allow a user to tra
k as-sumptions, and thus to ensure that symboli
 
omputations are sound, in 
ontrastto the 
urrent situation in many CA systems.



Reasoning 
an also extend the 
apability of a CA system. A s
enario mightinvolve working with a parti
ular monoid: if during the 
ourse of 
omputationit 
an be shown, for instan
e, that the monoid is 
ommutative then it is pos-sible to use di�erent, more eÆ
ient, simpli�
ation algorithms for expressions.The addition of reasoning here has made 
omputation more eÆ
ient; in othersituations - su
h as Martin's analysis example mentioned earlier { reasoning 
anallow 
omputations to pro
eed where in general this would not be possible.The literature 
ontains a number of di�erent strategies proposed for 
om-bining 
omputer algebra and theorem proving; see, for instan
e, [4, 6, 3℄. Thispaper des
ribes another approa
h: we use the type system of the Axiom 
om-puter algebra system [13℄ to represent a logi
, and thus to use the 
onstru
tionsof Axiom to handle the logi
 and represent proofs and propositions, in the sameway as is done in theorem provers based on type theory su
h as Nuprl [7℄ or Coq[8℄. This paper parti
ularly explores the re
ent Axiom Library Compiler, Aldor[30℄, whi
h is unusual among 
omputer algebra systems in being strongly typed,and moreover in having a very powerful type system, in
luding dependent typeswhi
h are 
entral to our work.The implementation of dependent types in Aldor is somewhat nonstandard:there is no evaluation within type expressions, so that, for example, `ve
tors oflength 2+3' are distin
t from `ve
tors of length 5'; we show how this limits theexpressivity of the dependent types. We des
ribe a modi�
ation of the Aldorsystem whi
h allow the types to represent the propositions of a 
onstru
tivelogi
, under the Curry-Howard 
orresponden
e. We argue that this integratesa logi
 into the Aldor system, and thus permits a variety of logi
al extensionsto Aldor, in
luding adding pre- and post-
onditions to fun
tion spe
i�
ations,axiomatisations to 
ategories of mathemati
al obje
ts as well as the ability toreason about the obje
ts in Aldor.The stru
ture of the paper is as follows. Se
tion 2 introdu
es Aldor and inparti
ular examines its system of types. In Se
tion 3 we examine the issue oftype equality in Aldor sin
e it is 
entral to our approa
h to embedding a logi
 inAldor. The se
tion also 
ontains a number of strategies for modifying the Aldor
ompiler. We show how a logi
 
an be de�ned in a modi�ed variant of the Aldorsystem in Se
tion 4 and Se
tion 5 gives some example appli
ations. We 
on
ludewith a dis
ussion of related and future work.2 An Introdu
tion to AldorThe Axiom Library Compiler, Aldor [30℄ (known in the past as AXIOM-XL andA℄), provides the user with a powerful, general-purpose programming languagein whi
h to model the stru
tures of mathemati
s. Aldor is 
ompiled, in 
ontrastto most 
omputer algebra languages, and so it 
an provide mu
h more eÆ
ientimplementations of algorithms than interpreted languages.The 
ore of Aldor is a fun
tional programming language whi
h provideshigher-order fun
tions, generators (whi
h bear a strong relationship to list 
om-



prehensions) and other features of modern fun
tional languages like StandardML [17℄ and Haskell [21℄. It is also strongly typed, in 
ommon with these lan-guages and indeed the majority of modern programming languages. Under thistype dis
ipline any type error { su
h as adding a 
hara
ter to a boolean operator {
an be 
aught at 
ompile time rather than at run time. This has two 
onsequentadvantages. First, a whole 
lass of programming errors 
an be dete
ted priorto program exe
ution, thus in
reasing the dependability of the 
ompiled 
ode.Se
ondly, it means that it is possible to produ
e more eÆ
ient 
ompiled 
odesin
e no run-time type tags on program data need to be maintained to supporttype 
he
king at run-time.Sin
e Aldor is designed with mathemati
s in mind, its type system is more
omplex than those of most programming languages. Mathemati
ians take a
exible approa
h to terminology, with the 
onsequen
e that often the meaningof a symbol or phrase is only determined by its 
ontext. This requires of aprogramming language that symbols 
an be overloaded, and that sometimesvalues need to be 
oer
ed from one type to another: from the integers to 
oating-point numbers, for example.More importantly this 
exibility ne
essitates an entity like the 
olle
tion ofintegers to be seen in various di�erent ways, depending on the 
ontext. In the
ase of the integers this might be a set of values, a group, an integral domain,a subset of the real numbers and so forth. To do this, the language allows typesand fun
tions to be 
olle
ted into domains, and the type of a domain, whi
h isdes
ribed by a signature, is 
alled a 
ategory.Categories 
an be built on top of other 
ategories, giving a version of inherit-an
e between domains. Categories 
an also be parametrised by values in
ludingdomains; rather than implement a theory of parametri
 
ategories, Aldor takestypes to be values just like more traditional values like 23 and the Boolean value`false'. This has far-rea
hing 
onsequen
es for the language.Current des
riptions of Aldor, [30, 29℄, give informal de�nitions of the typesystem. We have given a formal des
ription of the essen
e of the Aldor typesystem in [22℄. In the remainder of this se
tion we summarise our approa
h inthat paper and the 
on
lusions that are drawn there.2.1 An Overview of the Type System of AldorUnusually among languages for 
omputer algebra, but in keeping with the fun
-tional s
hool, Aldor is strongly typed. Ea
h de
laration of a binding 
an bea

ompanied by a de
laration of the type of the value bound, as in the de�nitiona : Integer == 23;The type of an expression 
an be de
lared expli
itly to resolve any uses of over-loaded identi�ers. This 
annot simply be done by the typing rules, sin
e arbitraryoverloading is allowed, so that, for instan
e, a single identi�er fun may be over-loaded to have types Int -> Int, Int -> Bool and Bool -> Int so that neitherthe type of the argument nor the type of result expe
ted 
an disambiguate anappli
ation of fun.



Some `
ourtesy' 
oer
ions are provided by the system automati
ally: these
onvert between multiple values (�a la LISP), 
ross produ
ts and tuples. It is alsopossible to make expli
it 
onversions { by means of the 
oer
e fun
tion { fromintegers to 
oating point numbers and so forth.As mentioned earlier, Aldor treats types as values. In parti
ular, a type su
has Integer has itself a type. The type of types is 
alled Type. Having this typeof all types means that the system supports fun
tions over types, su
h as theidentity fun
tion over (the type of) types:idType (ty : Type) : Type == ty;and expli
it polymorphism, as in the polymorphi
 identity fun
tion whi
h takestwo arguments. The �rst is a type ty and the se
ond is a value of that typewhi
h is returned as the result.id (ty : Type, x : ty) : ty == x; (id)Aldor permits fun
tions to have dependent types, in whi
h the type of a fun
-tion result depends upon the value of a parameter. An example is the fun
tionwhi
h sums the values of ve
tors of integers. This has the typeve
torSum : (n:Integer) -> Ve
tor(n) -> Integerin whi
h the result of a fun
tion appli
ation, sayve
torSum(34)has the type Ve
tor(34) -> Integer be
ause its argument has the value 34.In a similar way, when the id fun
tion of de�nition (id) is applied, its resulttype is determined by the type whi
h is passed as its �rst argument. We dis
ussthis aspe
t of the language in more detail in Se
tion 2.3.The system is not fully fun
tional, 
ontaining as it does variables whi
hdenote storage lo
ations. The presen
e of updatable variables inside expressions
an 
ause side-e�e
ts whi
h make the elu
idation of types 
onsiderably morediÆ
ult. There is a separate question about the role of `mathemati
al' variablesin equations and the like, and the role that they play in the type system of Aldor.Categories and domains provide a form of data abstra
tion and are addressedin more detail in Se
tion 2.5.The Aldor type system 
an thus be seen to be highly 
omplex and we shallindeed see that other features su
h as ma
ros (see Se
tion 2.5) 
ompli
ate thepi
ture further.2.2 Formalising the Type System of AldorThis se
tion outlines the approa
h we have taken in formalising the type systemof Aldor. Our work is des
ribed in full in [22℄; for reasons of spa
e we 
an onlygive a summary here.The typing relation is formally des
ribed by typing judgements of the form� ` t : T



whi
h is read `t has the type T in the 
ontext � '. A 
ontext here 
onsists of alist of variable de
larations, type de�nitions and so on. Contexts represent the
olle
tion of bindings whi
h are in s
ope at a point in a program text. Note thatt might have more than one type in a given 
ontext be
ause of overloading ofidenti�ers in Aldor, and so it would be perfe
tly legitimate for a well-formed
ontext � to imply that t : T and t : T 0 where T and T 0 are di�erent types.Complex typing judgements are derived using dedu
tion rules that 
odify
onditions for a typing judgement to hold. For example,� ` f : S->T � ` s : S (fun
tion elim)� ` f(s) : Tdes
ribes the type-
orre
t appli
ation of a fun
tion. This dedu
tive approa
his standard; we have adapted it to handle parti
ular features of Aldor su
h asoverloading, �rst-
lass types and 
ategories.Our dis
ussion in [22℄ examines the essential features of the full type system ofAldor; in this paper we 
on
entrate on those aspe
ts of the language relevant toour proje
t. These are dependent fun
tion and produ
t types; equality betweentypes; and 
ategories and domains, and we look at these in turn now.2.3 Dependent TypesAs we have already seen with the examples of id and ve
torSum, the Aldorlanguage 
ontains dependent types. To re
ap, the fun
tion ve
torSum de�nes asum fun
tion for ve
tors of arbitrary length and has the typeve
torSum : (n:Integer) -> Ve
tor(n) -> IntegerSimilarly one 
an de�ne a fun
tion append to join two ve
tors togetherappend : (n:Integer,m:Integer,Ve
tor(n),Ve
tor(m)) -> Ve
tor(n+m)The typing rule for dependent fun
tion elimination modi�es the rule (fun
tionelim) so that the values of the arguments are substituted in the result type, thus� ` f : (x : S)->T � ` s : S (dependent fun
tion elim)� ` f(s) : T [x := s℄Given ve
tors of length two and three, ve
2 and ve
3, we 
an join them thusappend(2,3,ve
2,ve
3) : Ve
tor(2+3)where 2 and 3 have been substituted for n and m respe
tively.We would expe
t to be able to �nd the sum of this ve
tor by applyingve
torSum 5, thus(ve
torSum 5) append(2,3,ve
2,ve
3)



but this will fail to type 
he
k, sin
e the argument is of type Ve
tor(2+3),whi
h is not equal to the expe
ted type, namely Ve
tor(5). This is be
ause noevaluation takes pla
e in type expressions in Aldor (nor indeed in the earlierversion of Axiom). We examine this question in the next se
tion, and in Se
tion3 we dis
uss how the Aldor type me
hanism 
an be modi�ed to a

ommodate amore liberal evaluation strategy within the type 
he
ker. Similar remarks applyto dependent produ
t types in whi
h the type of a �eld 
an depend on the valueof another �eld.2.4 Equality of Types in AldorWhen are two types in Aldor equal? The de�nition of type equality in anyprogramming language is non-trivial, but in the presen
e of dependent typesand types as values it be
omes a subtle matter.Type equality is fundamental to type 
he
king, as 
an be seen in the rule(fun
tion elim): the e�e
t of the rule in a type-
he
ker is to say that the appli
-ation f(s) is only legitimate if f has type S->T , s has type S0, and the types Sand S0 are equal. Non-identi
al type expressions 
an denote identi
al types fora number of reasons.{ A name 
an be given to a type, as inmyInt : Type == Int;and in many situations myInt and Int will be treated as identi
al types.[This is often 
alled Æ-equality.℄{ The bound variables in a type should be irrelevant and Aldor treats themas so. This means that the typesve
torSum : (n:Integer) -> Ve
tor(n) -> Integerve
torSum : (int:Integer) -> Ve
tor(int) -> Integershould be seen as identi
al. [�-equality℄{ Types are values like any other in Aldor, and so 
an be evaluated. In par-ti
ular a fun
tion over types like idType will be used in expressions su
h asidType Int. It would be expe
ted that this would evaluate to Int and thusbe seen as equivalent. [�-equality℄{ In the presen
e of dependent types, expressions of any type whatsoever 
anbe subexpressions of type expressions, as in Ve
tor(2+3). Equality betweenthese subexpressions 
an be lifted to types, making Ve
tor(2+3) equal toVe
tor(5). [Value-equality℄Our report on the type system examines the pra
ti
e of equality in the Aldorsystem and shows it to be 
omplex. The Aldor system implements �-equality innearly all situations, but Æ-equality is not implemented in a uniform way. Overtypes neither �-equality nor value-equality is implemented, so that type equalityin Aldor is a strong relation, in that it imposes �ner distin
tions than notionslike �- or value-equality.



A rationale for the 
urrent de�nition in Aldor is that it is a simple notion oftype equality whi
h is strong enough to implement a weak form of type depend-en
y in whi
h arguments to types are themselves (literal) types whi
h are notused in a 
omputational way. This form of dependen
y is useful in the modulesystem of Aldor where it 
an be used to formulate mathemati
al notions like`the ring of polynomials in one variable over a �eld F ' where the �eld F is aparameter of the type.Our approa
h to integrating reasoning into Aldor requires a weaker notionof type equality, whi
h we explore in Se
tion 3.2.5 Categories and DomainsAldor is designed to be a system in whi
h to represent and manipulate math-emati
al obje
ts of various kinds, and support for this is given by the Aldortype system. One 
an spe
ify what it is to be a monoid, say, by de�ning theCategory1 
alled Monoid, thusMonoid : Category == Basi
Type with f (Mon)* : (%,%) -> %;1 : %; gThis states that for a stru
ture over a type `%' to be a monoid it has to supplytwo bindings; in other words a Category des
ribes a signature. The �rst namein the signature is `*' and is a binary operation over the type `%'; the se
ond isan element of `%'.In fa
t we have stated slightly more than this, as Monoid extends the 
ategoryBasi
Typewhi
h requires that the underlying type 
arries an equality operation.Basi
Type : Category == with f= : (%,%) -> Boolean; gWe should observe that this Monoid 
ategory does not impose any 
onstraintson bindings to `*' and `1': we shall revisit this example in Se
tion 5.2 below.Implementations of a 
ategory are abstra
t data types whi
h are known inAldor as domains, and are de�ned as was the value a at the start of Se
tion 2.1,e.g.IntegerAdditiveMonoid : Monoid == add fRep == Integer;(x:%) * (y:%) : % == per((rep x) + (rep y));1 : % == per 0; gThe 
ategory of the obje
t being de�ned { Monoid { is the type of the domainwhi
h we are de�ning, IntegerAdditiveMonoid. The de�nition identi�es a rep-resentation type, Rep, and also uses the 
onversion fun
tions rep and per whi
hhave the types1 There is little relation between Aldor's notion of 
ategory and the notion from 
at-egory theory!



rep : % -> Rep per : Rep -> %The 
onstru
ts Rep, rep and per are implemented using the ma
ro me
hanismof Aldor, and so are eliminated before type 
he
king. In our report [22℄ we showhow de�nitions of domains 
an be type 
he
ked without ma
ro expansion, whi
hallows, for instan
e, more a

urate error diagnosis.Categories 
an also be parametri
, and depend upon value or type paramet-ers; an example is the ring of polynomials over a given �eld mentioned earlier.2.6 Con
lusionThis se
tion has given a brief overview of Aldor and its type system. It has shownthat the notion of type equality in Aldor is a strong one, whi
h makes distin
tionsbetween types whi
h 
ould naturally be 
onsidered equivalent. This is espe
iallyrelevant when looking at the e�e
t of type equality on the system of dependenttypes. In the se
tions to 
ome we show how a logi
 
an be in
orporated intoAldor by modifying the notion of type equality in Aldor.3 Modifying Type Equality in AldorSe
tion 2.4 des
ribes type equality in Aldor and argues that it is a strong notionwhi
h distinguishes between type terms whi
h 
an naturally be identi�ed. In thisse
tion we examine various ways of modifying type equality in
luding the waywe have 
hosen to do this in our prototype implementation.3.1 Using the Existing SystemIt is possible to use the existing Aldor system to mimi
 a di�erent { weaker{ type equality by expli
itly 
asting values to new types, using the pretendfun
tion of Aldor.2 This e�e
tively sidesteps the type 
he
ker by asserting thetype of an expression whi
h is a

epted by the type 
he
ker without veri�
ation.For instan
e, the ve
tor example of Se
tion 2.3 
an be made to type 
he
k inAldor by annotating it thus(ve
torSum 5) (append(2,3,ve
2,ve
3) pretend Ve
tor(5))or thus((ve
torSum 5) pretend (Ve
tor(2+3) -> Integer)) append(2,3,ve
2,ve
3)This a
hieves a result, but at some 
ost. Wherever we expe
t to need somedegree of evaluation, that has to be shadowed by a type 
ast; these 
asts are alsopotentially 
ompletely unsafe.2 The pretend fun
tion is used in the de�nition of rep and per in the 
urrent versionof Aldor; a more se
ure me
hanism would be preferable.



3.2 Coer
ion Fun
tionsAnother possibility is to suggest that the 
urrent me
hanism for 
oer
ions inAldor is modi�ed to in
lude 
oer
ion fun
tions whi
h would provide 
onversionbetween type pairs su
h as Ve
tor(2+3) and Ve
tor(5), extending the 
oer
ionme
hanism already present in Aldor. This suggestion 
ould be implemented butwe envisage two diÆ
ulties with it.{ In all but the simplest of situations we will need to supply uniformly-de�nedfamilies of 
oer
ions rather than single 
oer
ions. This will substantially
ompli
ate an already 
omplex me
hanism.{ Coer
ions are 
urrently not applied transitively: the e�e
t of this is to allowus to model single steps of evaluation but not to take their transitive 
losure.Putting these two fa
ts together for
e us to 
on
lude that e�e
tively mimi
kingthe evaluation pro
ess as 
oer
ions is not a reasonable solution to the problemof modifying type 
he
king.3.3 Adding Full EvaluationTo deal with the problem of unevaluated subexpressions in types, we have imple-mented a prototype version of Aldor using Haskell [23℄. In this implementationall type expressions are fully evaluated to their normal form as a part of thepro
ess of type 
he
king. To give an example, the rule (fun
tion elim) will beinterpreted thus:f(s) is well-formed if and only if f has type S->T , s has type S0, andthe normal forms of S and S0 are equal modulo �-equality.The e�e
t of this modi�
ation is to for
e the type 
he
ker to perform evaluationof expressions at 
ompile time. Clearly this 
an 
ause the type 
he
ker to divergein general, sin
e in, for instan
e, an appli
ation of the form ve
torSum(e) anarbitrary expression e:Nat will have to be evaluated.More details of the prototype implementation of Aldor in Haskell are givenin the te
hni
al report [23℄.3.4 Controlling Full EvaluationA number of existing type systems, Haskell among them, have unde
idable typesystems [12℄ whi
h 
an diverge at 
ompile time. In pra
ti
e this is not usually aproblem as the pathologies lie outside the `useful' part of the type system. Thismay well be the 
ase with Aldor also, but it is also possible to design a subsetof the language, Aldor--, whose type system is better behaved.There is 
onsiderable 
urrent interest in de�ning terminating systems of re-
ursion [27, 16℄. A system like this is suÆ
ient to guarantee the termination ofexpressions 
hosen for evaluation as part of the type 
he
king pro
ess. The maine�e
t of the restri
ted system is to for
e re
ursion to be stru
tural (in a generalsense); in pra
ti
e this is a

eptable, parti
ularly in the subset of the languageused within type expressions.



4 Logi
 within AldorIn this se
tion we dis
uss the Curry-Howard isomorphism between propositionsand types, and show that it allows us to embed a logi
 within the Aldor typesystem, if dependent types are implemented to allow evaluation within type
ontexts.4.1 The Curry-Howard Corresponden
eUnder the Curry-Howard 
orresponden
e, logi
al propositions 
an be seen astypes, and proofs 
an be seen as members of these types. A

ounts of 
onstru
t-ive type theories 
an be found in notes by Martin-L�of [15℄ amongst others [19,26℄. Central to this 
orresponden
e are dependent types, whi
h allow the repres-entation of predi
ates and quanti�
ation.Central to the 
orresponden
e is the idea that a 
onstru
tive proof of aproposition gives enough eviden
e to witness the fa
t that the proposition stands.{ A proof of a 
onjun
tion A ^ B has to prove ea
h half of the proposition,so has to provide witnessing information for ea
h 
onjun
t; this 
orrespondspre
isely to a produ
t type, in Aldor notation written as (A;B), membersof whi
h 
onsist of pairs of elements, one from ea
h of the 
onstituent types.{ A proof of an impli
ation A) B is a proof transformer: it transforms proofsof A into proofs of B; in other words it is a fun
tion from type A to type B,i.e. a fun
tion of type A->B.{ In a similar way a proof of a universal statement (8x : A)B(x) is a fun
tiontaking an element a of A into a proof of B(a); in other words it is an elementof the dependent fun
tion type (x:A) -> B.{ Similar interpretations 
an be given to the other propositional operators andthe existential quanti�er.We 
an summarise the 
orresponden
e in a tableProgramming Logi
Type FormulaProgram ProofProdu
t/re
ord type (...,...) Conjun
tionSum/union type \/ Disjun
tionFun
tion type -> Impli
ationDependent fun
tion type (x:A) -> B(x) Universal quanti�erDependent produ
t type (x:A,B(x)) Existential quanti�erEmpty type Exit Contradi
tory propositionOne element type Triv True proposition. . . . . .Predi
ates (that is dependent types) 
an be 
onstru
ted using the 
onstru
tsof a programming language. A dire
t approa
h is to give an expli
it (primitivere
ursive) de�nition of the type, whi
h in Aldor might take the form



lessThan(n:Nat,m:Nat) : Type == (lessThan)if m=0 then Exitelse (if n=0 then Trivelse lessThan(n-1,m-1));The equality predi
ate 
an be implemented by means of a primitive operationwhi
h 
ompares the normal forms of the two expressions in question.4.2 A Logi
 within AldorWe need to examine whether the outline given in Se
tion 4.1 amounts to aproper embedding of a logi
 within Aldor. We shall see that it pla
es 
ertainrequirements on the de�nition and the system.Most importantly, for a de�nition of the form (lessThan) to work properlyas a de�nition of a predi
ate we need an appli
ation like lessThan(9,3) to beredu
ed to Exit, hen
e we need to have evaluation of type expressions. This is amodi�
ation of Aldor whi
h we are 
urrently investigating, as outlined in Se
tion2.3. In the 
ase of (lessThan) the evaluation 
an be limited, sin
e the s
hemeused is re
ognisable as terminating by, for instan
e, the algorithm of [16℄.The restri
tion to terminating (well-founded) re
ursions is also ne
essary for
onsisten
y of the logi
. For the logi
 to be 
onsistent, we need to require thatnot all types are inhabited, whi
h is 
learly related to the power of the re
ur-sion s
hemes allowed in Aldor. One approa
h is to expe
t users to 
he
k this forthemselves: this has a long history, beginning with Hoare's axiomatisation of thefun
tion in Pas
al, but we would expe
t this to be supported with some auto-mated 
he
king of termination, whi
h ensures that partially or totally unde�nedproofs are not permitted.Consisten
y also depends on the strength of the type system itself; a suÆ-
iently powerful type system will be in
onsistent as shown by Girard's paradox[11℄.5 Appli
ations of an Integrated Logi
Having identi�ed a logi
 within Aldor, how 
an it be used? There are variousappli
ations possible; we outline some here and for others one 
an refer to thenumber of implementations of type theories whi
h already exist, in
luding Nuprl[7℄ and Coq [8℄.5.1 Pre- and Post-ConditionsA more expressive type system allows programmers to give more a

urate typesto 
ommon fun
tions, su
h as the fun
tion whi
h indexes the elements of a list.index : (l:List(t))(n:Nat)((n < length l) -> t)



An appli
ation of index has three arguments: a list l and a natural number n{ as for the usual index fun
tion { and a third argument of type (n < lengthl), that is a proof that n is a legitimate index for the list in question. Thisextra argument be
omes a proof obligation whi
h must be dis
harged when thefun
tion is applied to elements l and n.In a similar vein, it is possible to in
orporate post-
onditions into types, sothat a sorting algorithm over lists might have the typesort : ((l:List(t))(List(t),Sorted(l))and so return a sorted list together with a proof that the list is Sorted.5.2 Adding Axioms to the Categories of AldorIn de�nition (Mon), Se
tion 2.5, we gave the 
ategory of monoids, Monoid, whi
hintrodu
es two operation symbols, * and 1. A monoid 
onsists not only of twooperations, but of operations with properties. We 
an ensure these propertieshold by extending the de�nition of the 
ategory to in
lude three extra 
ompon-ents whi
h are proofs that 1 is a left and right unit for * and that * is asso
iative,where we assume that `�' is the equality predi
ate:Monoid : Category == Basi
Type with f (MonL)* : (%,%) -> %;1 : %;leftUnit : (g:%) -> (1*g � g);rightUnit : (g:%) -> (g*l � g);asso
 : (g:%,h:%,j:%) -> ( g*(h*j) � (g*h)*j );gFor example, the de
laration of leftUnit has the logi
al interpretation thatleftUnit is a proof of the statement `for all g in the monoid (%), 1*g is equalto g'.The equality predi
ate is implemented as follows: the type a � b 
ontainsa value if and only if a and b have the same normal form. The extension oper-ation (i.e. the with in the de�nition above) over 
ategories will lift to be
omeoperations of extension over the extended `logi
al' 
ategories su
h as (MonL).5.3 Commutative MonoidsIn the 
urrent library for Axiom it is not possible to distinguish between generalmonoids and 
ommutative monoids: both have the same signature. With logi
alproperties it is possible to distinguish the two:CommutativeMonoid : Category == Monoid with f
omm : (g:%,h:%) -> ( g*h � h*g );g



To be a member of this 
ategory, a domain needs to supply an extra pie
e ofeviden
e, namely that the multipli
ation is 
ommutative; with this eviden
e thestru
ture 
an be treated in a di�erent way than if it were only known to be amonoid. This pro
ess of dis
overy of properties of an mathemati
al stru
ture
orresponds exa
tly to a mathemati
ian's experien
e. Initially a stru
ture mightbe seen as a general monoid, and only after 
onsiderable work is it shown to be
ommutative; this proof gives entry to the new domain, and thus allows it to behandled using new approa
hes and algorithms.5.4 Di�erent Degrees of RigourOne 
an interpret the obligations given in Se
tions 5.1 and 5.2 with di�ering de-grees of rigour. Using the pretend fun
tion we 
an 
onjure up proofs of the logi
alrequirements of (MonL); even in this 
ase they appear as important do
umenta-tion of requirements, and they are related to the lightweight formal methods of[9℄. Alternatively we 
an build fully-
edged proofs as in the numerous implement-ations of 
onstru
tive type theories mentioned above, or we 
an indeed adopt anintermediate position of proving properties seen as `
ru
ial' while asserting thevalidity of others.6 Con
lusionWe have des
ribed a new way to 
ombine { or rather, to integrate { 
omputeralgebra and theorem proving. Our approa
h is similar to [3℄ and [4℄ in thattheorem proving 
apabilities are in
orporated in a 
omputer algebra system.(In the 
lassi�
ation of possible 
ombinations of 
omputer algebra and theoremproving of [6℄, all these are instan
e of the "subpa
kage" approa
h.) But the wayin whi
h we do this is 
ompletely di�erent: we exploit the expressiveness of thetype system of Aldor, using the Curry-Howard isomorphism that also providesthe basis of theorem provers based on type theory su
h as Nuprl [7℄ or Coq [8℄.This provides a logi
 as part of the 
omputer algebra system. Also, having thesame basis as existing theorem provers su
h as the ones mentioned above makesit easier to interfa
e with them.So far we have worked on a formal des
ription of the 
ore of the Aldortype system [22℄, and on a pilot implementation of a type
he
ker for Aldorwhi
h does evaluation in types whi
h 
an be used as a logi
 [23℄. This pilotforms the model for modi�
ations to the Aldor system itself, as well as givinga me
hanism for interfa
ing Aldor with other systems like the theorem proverCoq, 
omplementary to re
ent work on formalising the Aldor system within Coq[1℄. The logi
 is being used in a mathemati
al 
ase study of symboli
 asymptoti
s[25℄.It is interesting to see a 
onvergen
e of interests in type systems from anumber of points of view, namely



{ 
omputer algebra,{ type theory and theorem provers based on type theory,{ fun
tional programming.For instan
e, there seem to be many similarities between stru
turing me
han-isms used in these di�erent �elds: [5℄ argues for fun
tors in the sense of theprogramming language ML as the right tool for stru
turing mathemati
al theor-ies in Mathemati
a, and [24℄ notes similarities between the type system of Aldor,existential types [18℄, and Haskell 
lasses [28℄. More 
losely related to our ap-proa
h here, it is interesting to note that 
onstru
tive type theorists have addedindu
tive types [20℄, giving their systems a more fun
tional 
avour, while fun
-tional programmers are showing an interest in dependent types [2℄ and languageswithout non-termination [27℄. We see our work as part of that 
onvergen
e,bringing type-theoreti
 ideas together with 
omputer algebra systems, and thusproviding a bridge between symboli
 mathemati
s and theorem proving.A
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