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Derivation of the relativistic
momentum and relativistic
equation of motion from
Newton’s second law and
Minkowskian space-time

geometry
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Starting from the classical Newton’s second law which, ac-
cording to our assumption, is valid in any instantaneous
inertial rest frame of body that moves in Minkowskian
space-time we get the relativistic equation of motion ~F =
d~p/dt, where ~p is the relativistic momentum. The rel-
ativistic momentum is then derived without referring to
any additional assumptions concerning elastic collisions of
bodies. Lorentz-invariance of the relativistic law is proved
without tensor formalism. Some new method of force
transformation is also presented.
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Introduction

Only two assumptions: Newton’s law and Minkowskian space-
time geometry suffice, according to our method, to derive the
relativistic momentum and equation of motion (with its invari-
ance). We believe that the presented in this paper deductive
approach to relativistic dynamics has some advantages over the
standard one based on additionally introduced ad hoc postu-
lates. It may be interesting for physicists aiming to understand
the logical foundations of the form of the relativistic equation of
motion and its direct connection with the space-time geometry
and the definition of force (Newton’s law).

The main purpose of this work is to reveal a possibility of
deriving the relativistic momentum and the relativistic law of
motion purely by means of considering the dynamics of an ac-
celerating body. Assuming that the classical Newton’s second
law ~FR = md~u/dτ is valid in any instantaneous inertial rest
frame R of moving body we get for a stationary system of coor-
dinates S the relativistic equation ~F = d~p/dt, with the relativis-
tic momentum ~p = m~v/(1− v2/c2)1/2. Also the general relation

between the force ~FR and the force ~F in the frame S is derived.
Finally, a new approach to the transformation of force between
two arbitrary frames is presented. The only relativistic assump-
tion we need is that the space-time geometry is Minkowskian,
so that the Lorentz transformation of coordinates is applied in
our reasoning.

There are several advantages of the method presented in this
paper. The first is logical one: we do not need to introduce any
unnecessary postulates that are used in the standard approaches.
The traditional way [1,2] to derive the relativistic momentum re-
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quires the assumption that the relativistic momentum is a quan-
tity conserved in elastic collisions independently of the inertial
reference frame in which it is measured. This is quite non-trivial
extra assumption which in fact should be verified by appropriate
experiments.

What is more, if the relativistic momentum is introduced
in the traditional way, a second separate postulate is needed to
establish how a force influences the change of relativistic momen-
tum. The proposed form of the relativistic equation of motion
is ~F = d~p/dt because it fulfils two important requirements: a)
it reproduces the Newtonian dynamics at the limit of small ve-
locities, b) this law is Lorentz-covariant for the electrodynamic
Lorentz force. But it is merely a postulate to undergo further
experimental investigation. It is evident that the requirement
a) may be satisfied by many other equations of motion that
at the classical limit reduce to Newton’s second law. In turn,
the requirement b) refers solely to one kind of forces, i.e. the
electromagnetic ones. Instead of introducing an unfounded as-
sumption we propose a more deductive method to arrive at the
relativistic equation of motion. Starting from the well-known
and experimentally confirmed Newton’s law we show that for
any kind of force the space-time geometry enforces a moving
body to undergo just the relativistic law.

Furthermore, our attitude is quite general. We do not have to
consider any sophisticated and uncommon thought-experiments
(i.e. specially arranged collisions with very small deflection of
particles). Let us note also that, as far as we know, in all cases
the relativistic momentum is derived, authors examine only a
collision of two identical bodies. The generality of conclusions
obtained in such a way cannot be satisfactory.
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Moreover, according to our approach invariance of the rel-
ativistic equation of motion for any kind of accelerating force
appears to be obvious and indispensable and no tensor formal-
ism is necessary to prove it. Let us notice also that invariance
of the relativistic law of motion is shown in literature only for
the electromagnetic forces.

Derivation of the relativistic momentum and equa-
tion of motion

Consider an accelerating body moving along a completely
arbitrary trajectory. Let in an instantaneous inertial rest frame
R of the body (i.e. momentarily co-moving with the body) a

force ~FR causes within a time interval dτ a change of its velocity
d~u. The force ~FR is a function depending on some features of
the force-source and is determined by a force law established in
the rest frame R.

Let from the point of view of a stationary inertial frame
S the body possesses a velocity ~v. Due to the action of force
the velocity ~v changes in the frame S in the direction parallel
and perpendicular to ~v according to the following equations,
respectively [3]:

(dv)‖ =
(du)‖ + v

1 + ~v · d~u/c2
− v ' (du)‖(1− v2/c2), (1)

(d~v)⊥ =
(d~u)⊥

√
1− v2/c2

1 + ~v · d~u/c2
' (d~u)⊥

√
1− v2/c2. (2)

Because in the instantaneous rest frame R the velocity of
body ~u is zero, the relativistic equation of motion in the frame
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R has the form of the classical Newton’s law:

~FR = md~u/dτ (3)

Remembering that dτ = (1− v2/c2)1/2dt and using Eqs (1) and
(2) we can rewrite this equation of motion valid in the rest frame
R separately for the direction parallel and perpendicular to the
velocity ~v:

(FR)‖ = m
(du)‖
dτ

=
m

(1− v2/c2)3/2

(dv)‖
dt

, (4)

(~FR)⊥ = m
(d~u)⊥

dτ
=

m

1− v2/c2

(d~v)⊥
dt

. (5)

Because (dv)‖ ≡ dv, the equation (4) is formally identical to:

(~FR)‖ =
d

dt

(
mv√

1− v2/c2

)
~n =

dp

dt
~n, (6)

where p is the value of the relativistic momentum of the body
in the frame S. We have introduced a vector ~n = ~v/v to have
this equation explicitly in vector notation.

In turn, Eq. (5) can be written as:

(~FR)⊥ =
p√

1− v2/c2

d~n

dt
(7)

because:

d~n

dt
=

(
v
d~v

dt
− dv

dt
~v

)
1

v2
=

(
v
(d~v)⊥

dt
+ v

(d~v)‖
dt

− dv

dt
~v

)
1

v2

=

[
v
(d~v)⊥

dt
+

(
v
dv

dt
− dv

dt
v

)
~n

]
1

v2
=

1

v

(d~v)⊥
dt

. (8)
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Note that d~n/dt is perpendicular to ~n, as expected.
Collecting the results (6) and (7) one can write them in the

concise form:

~FR ≡ (~FR)‖ + (~FR)⊥ =
dp

dt
~n + γp

d~n

dt
, (9)

where γ = 1/(1− v2/c2)1/2.
If we introduce a vector of relativistic momentum:

~p = p~n =
m~v√

1− v2/c2
, (10)

which the time derivative can be written as:

d~p

dt
=

d(p~n)

dt
=

dp

dt
~n + p

d~n

dt
≡

(
d~p

dt

)

‖
+

(
d~p

dt

)

⊥
, (11)

the result (9) of the action of the force ~FR may be expressed as:

~FR =

(
d~p

dt

)

‖
+ γ

(
d~p

dt

)

⊥
. (12)

The last equation may be rewritten in the commonly used in the
standard relativity form of the relativistic equation of motion:

~F =
d~p

dt
, (13)

where ~F is called the force in the frame S and is defined as
follows:

~F ≡
(

(~FR)‖,
(~FR)⊥

γ

)
. (14)
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Eq. (14) is the correct (known from the standard approaches)

relation between the force ~FR in the rest frame R and the force
~F measured in the system of reference S.

In this way we have arrived at the desired relativistic equa-
tion of motion (13). Our method shows that if one considers an
accelerating body moving in Minkowskian space-time geometry,
the form of the equation of motion indispensably must be given
by Eq. (13). Moreover, the relativistic momentum defined in
Eq. (10) appears to be an inherent compound of this equation.

Since the frame S is chosen completely arbitrarily, it straight-
forwardly follows also that the relativistic equation of motion
(13) is the same for any frame of reference. Its form remains
invariant for any inertial system of coordinates. However, in
each frame the force is different and depends on the velocity ~v
the body has just in this frame. Eq. (14) shows that not only
the value of ~v is important. The direction of ~v determines the
decomposition of force ~FR on the directions parallel and per-
pendicular to ~v by means of which the force ~F in the frame S is
defined.

A new method of force transformation

Eq. (14) offers us transformation of force ~FR from the in-
stantaneous rest frame co-moving with a body to some inertial
reference frame S. From the practical point of view it is advan-
tageous to express the force ~F registered by an observer in the
frame S by a force ~F ′ from some other ”stationary” system of
reference S ′. The reason is that it is troublesome to establish
force ~FR in the rest frame of moving body. Furthermore, some
fundamental formulae describing forces are determined in such
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a system of coordinates, say S ′, in which the source of force
is at rest. The example is Coulomb’s law for the electrostatic
interactions that describes the influence of a source-charge being
at rest on other (possibly moving) charges.

To cope with this task we may use Eq. (14) two times:
once for a system S ′ and again for the system S. Important
is that in the both cases Eq. (14) contains the same force ~FR

established in the rest frame R. Let in a system of coordinates
S ′ an accelerated body has a velocity ~w and the force in this
frame is a function ~F ′. According to our reasoning presented in
the previous section the equation of motion in the frame S ′ is:

~F ′ =
d~p ′

dt′
(15)

with ~p ′ = m~w/(1 − w2/c2)1/2; and using Eq. (14) the force
~FR registered in the rest frame of accelerated body is given by
equality:

~FR =
(
( ~F ′)‖~w

, γw( ~F ′)⊥~w

)
, (16)

Note that the direction parallel and perpendicular are estab-
lished with respect to the direction of vector ~w.

Now, in some other system of coordinates S the same body
possesses a velocity ~v. Eq. (13) is valid and the force measured

in this frame is ~F . To express ~F by means of ~F ′ again we refer
to Eq. (14). Let us rewrite Eq. (14) specifying explicitly that
the respective directions are related to the velocity ~v:

~F =

(
(~FR)‖~v ,

(~FR)⊥~v

γv

)
, (17)
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On the basis of Eq. (16) ~FR it is a function of ~F ′. Thus Eq. (17)
together with Eq. (16) represents the desired (implicit) relation

between forces ~F and ~F ′.
Concluding, the procedure of finding the general relation be-

tween forces in different laboratory frames relies on the geometri-
cal projections of the force ~F ′ on the directions of the respective
velocities. However, although Eqs. (16) and (17) look very sim-
ple, using them in particular cases requires some caution and
practice.

Example

To show how the described procedure of transformation of
force gives an explicit equation joining ~F and ~F ′ let us consider
simple but instructive example. It may be used to show that
magnetic field can be derived straightforwardly solely from the
Coulomb law. We do not need to introduce neither the elec-
tric field transformation nor the relativistic effect of contraction
leading to the change of density of charge. The presence of
magnetic field is shown to be caused simply by movement of a
charged point particle. Additionally, this example teaches about
the Thomas rotation which must be kept in mind while the forces
are transformed.

Let a charge Q (source of force) be at rest in the frame S ′.
Some other body having a charge q moves in S ′ directly away in
the direction of the y′-axis with a velocity w (see Fig. 1).

The force ~F ′ acting on the charge q has a nonzero component
only along the velocity w, that is:

~F ′ = (0, F ′, 0) (18)
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Figure 1: Situation from the point of view of the frame S ′.

where F ′ = kqQ/y′2.
Let the axes of the rest frame R be oriented along the re-

spective axes of the system S ′. Certainly, also in R the force has
only the component along the velocity w. From Eq. (16) we get

the force ~FR in the rest frame of moving body:

~FR = (0, F ′, 0). (19)

From the point of view of some other system S the frame
S ′ moves along the x-axis parallel to the x′-axis with a velocity
V . The charge q has then a velocity ~v with respect to the frame
S. According to Eq. (17) to get the force ~F we have to project

the force ~FR on the directions parallel and perpendicular to ~v.
We emphasize that this operation must be made in the frame
R, so that we need to know the coordinates of the velocity ~v as
measured in this system of reference. First then from the well
known general equations joining velocities in different systems
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we can find the velocity −~v of the frame S as registered in R.
Since the relative velocity of frame S ′ with respect to the frame
R is −w and the frame S has in the system S ′ the velocity −V
perpendicular to −v, we have [3]:

(−v)‖w
= −w, (−v)⊥w

= −V/γw (20)

The relative velocity ~v the system R possesses with respect to
the system S has then in the system R the components:

~v =

(
V

γw

, w, 0

)

R

. (21)

Figure 2: Vector of the relative velocity ~v between the frames R
and S as seen in the system R.

From Fig. 2 and with help of Eq. (21) we see that:

(FR)‖v = FR cos φR = FR
w

v
, (22)
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(FR)⊥v = FR sin φR = FR
V

vγw

. (23)

Now, from Eqs (22) and (23) and according to Eq. (17) the

respective components of the force ~F measured in S parallel and
perpendicular to ~v are:

F‖v = FR
w

v
, (24)

F⊥v = FR
V

vγwγv

. (25)

More convenient is to have this force written by means of com-
ponents along the axes of the system S. First then we have to
find the respective components of the velocity ~v in the frame S.
Because S ′ moves with respect to S with the velocity V and the
velocity of body w measured in S ′ is perpendicular to V , the
velocity in the frame S is [3]:

vx ≡ v‖V
= V, vy ≡ v⊥V

= w/γV (26)

or

~v =

(
V,

w

γV

, 0

)

S

. (27)

Note that the same relative velocity ~v has different components
in the frames R and S (compare to Eq. (21)). This effect is
called the Thomas rotation [4, 5] and it means that the systems
R and S appear to be rotated one with respect to the other (see
Fig. 3).

According to Fig. 3, Eqs (24), (25) and (26) we have:

Fx = F‖v cos φ− F⊥v sin φ =
FRwV

v2

(
1− 1

γvγwγV

)
. (28)
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Figure 3: Vector ~v and the respective components of the force
~F in the frame S.

From Eq. (26) we get:

v2 = V 2 +
w2

γ2
V

(29)

One can then obtain after simple algebra that:

γv = γwγV (30)

and also from the definition of γ we have:

v2

c2
=

γ2
v − 1

γ2
v

(31)

Inserting Eqs (30) and (31) into Eq. (28) and remembering that
FR = F ′ we get:

Fx = F ′wV

c2
(32)
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Similarly in an analogous way one can obtain that:

Fy =
F ′

γV

(33)

Because y′ = y, we have F ′ = kQq/y2. In this way the force ~F
may be expressed solely by variables used in S:

~F =

(
kQq

y2

γV vyV

c2
,
kQq

γV y2
, 0

)
, (34)

where we have used the relation (26) and substituted w = γV vy.
The result (34) is surprising. While in the frame S ′ the force

has only one component along the y′-axis (Eq. (18)), in the
system S (having its axes pointed in the same direction as the
axes of the frame S ′) there appears additionally a component
along the x-axis. We recognize it as the magnetic part of the
Lorentz force:

Fx = qBvy, (35)

where the factor B stands here for:

B = kQV γV /y2c2. (36)

It is the correct formulae for the magnetic induction satisfy-
ing the relativistically invariant Maxwell equations. For a small
velocity V (i.e. with γV ≈ 1) it becomes the Biot-Savart expres-
sion on the magnetic induction produced in the frame S at the
location of the charge q by the moving with velocity V charge
Q.

In turn, the y-component of the force ~F given by Eq. (34) has
a form Fy = qEy, where Ey = kQq/γV y2 represents the electric
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field in the frame S. Note that it is properly transformed field
E ′

y = kQq/y′2 from the frame S ′ to the frame S, i.e. Ey =
E ′

y/γV . Finally then, if we ascribe a vector character to the field
B and assume it is a vector pointing along the z-axis of the
frame S, Eq. (34) may be rewritten as:

~F = q ~E + q~v × ~B, (37)

which shows that Coulomb’s force ~F ′ after the Lorentz transfor-
mation has in the frame S the form of the Lorentz force. This
result is completely in accordance with the outcomes obtained
by other authors by means of different general methods [6-8].
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