Skip to main content
Log in

Mathematical determinacy and the transferability of aboutness

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “aboutness” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be any prime.” In this context, I will be using the term ‘p’ to reason about the primes. Although ‘p’ helps me secure the aboutness of my discourse, it may seem wrong to say that ‘p’ refers to anything. Be that as it may, this paper explores what mathematical discourse would be like if mathematicians were able to borrow freely from one another not just the reference of terms that clearly refer, but, more generally, the sort of aboutness present in a line of reasoning leading up to a universal generalization. The paper also gives reasons for believing that aboutness of this sort really is freely transferable. A key implication will be that the concept “set of natural numbers” suffers from no mathematically significant indeterminacy that can be coherently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black M. (1971). The elusiveness of sets. Review of Metaphysics 24:614–636

    Google Scholar 

  • Boolos G. (1984). To be is to be a value of a variable (or to be some values of some variables). Journal of Philosophy 81:430–449

    Article  Google Scholar 

  • Boolos G. (1985). Nominalist platonism. Philosophical Review 94:327–344

    Article  Google Scholar 

  • Boolos G. (1989). Iteration again. Philosophical Topics 17:5–21

    Google Scholar 

  • Burgess J.P. (2004). E Pluribus Unum: Plural logic and set theory. Philosophia Mathematica 12(3):193–221

    Google Scholar 

  • Cartwright H.M. (1993). On plural reference and elementary set theory. Synthese 96:201–254

    Article  Google Scholar 

  • Cohen P.J. (1971). Comments on the foundations of set theory. In: Scott D.S. (eds) Axiomatic set theory. American Mathematical Society, Providence, R.I., pp. 9–15

    Google Scholar 

  • Davenport H. (1983). The higher arithmetic. Dover Publications, New York

    Google Scholar 

  • Feferman S. (1999). Does mathematics need new axioms?. American Mathematical Monthly 106:99–111

    Article  Google Scholar 

  • Feferman S. (2000). Why the programs for new axioms need to be questioned. Bulletin of Symbolic Logic 6:401–413

    Article  Google Scholar 

  • Field H. (2001). Truth and the absence of fact. Clarendon Press, Oxford

    Google Scholar 

  • Giaquinto M. (1983). Hilbert’s philosophy of mathematics. British Journal for the Philosophy of Science 34:119–132

    Article  Google Scholar 

  • Halbach V., Horsten L. (2005). Computational structuralism. Philosophia Mathematica 13(3):174–186

    Article  Google Scholar 

  • Hauser K. (2002). Is Cantor’s continuum problem inherently vague?. Philosophia Mathematica 10(3):257–285

    Google Scholar 

  • Hazen A.P. (1993). Against pluralism. Australasian Journal of Philosophy 71:132–144

    Article  Google Scholar 

  • Hellman G. (1994). Real analysis without classes. Philosophia Mathematica 2(3):228–250

    Article  Google Scholar 

  • Hellman G. (1996). Structuralism without structures. Philosophia Mathematica 4(3):100–123

    Google Scholar 

  • Hellman G. (2003). Does category theory provide a framework for mathematical structuralism?. Philosophia Mathematica 11(3):129–157

    Google Scholar 

  • Jané I. (2005). Higher-order logic reconsidered. In: Shapiro S. (eds) The Oxford handbook of philosophy of mathematics and logic. Oxford University Press, New York, pp. 781–810

    Chapter  Google Scholar 

  • Kreisel G. (1969). Two notes on the foundations of set-theory. Dialectica 23:93–114

    Article  Google Scholar 

  • Kreisel G. (1971). Observations on popular discussions of foundations. In: Scott D.S. (eds) Axiomatic set theory. American Mathematical Society, Providence, R.I., pp. 189–198

    Google Scholar 

  • Lavine S. (1994). Understanding the infinite. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Lewis D. (1991). Parts of classes. Basil Blackwell, Oxford

    Google Scholar 

  • Lewis D. (1993) Mathematics is megethology. Philosophia Mathematica 1(3):3–23

    Article  Google Scholar 

  • Linnebo O. (2003). Plural quantification exposed. Noûs 37:71–92

    Google Scholar 

  • Martin D.A. (2001). Multiple universes of sets and indeterminate truth values. Topoi 20:5–16

    Article  Google Scholar 

  • McGee V. (1997). How we learn mathematical language. Philosophical Review 106:35–68

    Article  Google Scholar 

  • McGee V. (2001). Truth by default. Philosophia Mathematica 9(3):5–20

    Google Scholar 

  • Parsons C. (1990). The uniqueness of the natural numbers. Iyyun 39:13–44

    Google Scholar 

  • Parsons, C. (2001). Communication and the uniqueness of the natural numbers. In Proceedings of the First Seminar in the Philosophy of Mathematics in Iran. Shahid Beheshti University, Tehran

  • Pollard S. (1986). Plural quantification and the iterative concept of set. Philosophy Research Archives 11:579–587

    Google Scholar 

  • Pollard S. (1988a). Plural quantification and the axiom of choice. Philosophical Studies 54:393–397

    Article  Google Scholar 

  • Pollard S. (1988b). More axioms for the set-theoretic hierarchy. Logique et Analyse 31:85–88

    Google Scholar 

  • Pollard S. (1990). Philosophical introduction to set theory. University of Notre Dame Press, Notre Dame, London

    Google Scholar 

  • Pollard S. (1992). Choice again. Philosophical Studies 66:285–296

    Article  Google Scholar 

  • Pollard S. (1996). Sets, wholes, and limited pluralities. Philosophia Mathematica 4(3):42–58

    Google Scholar 

  • Pollard S. (1997). Who needs mereology?. Philosophia Mathematica 5(3):65–70

    Google Scholar 

  • Resnik M.D. (1988). Second-order logic still wild. Journal of Philosophy 85:75–87

    Article  Google Scholar 

  • Robinson A. (1965). Formalism 64. In: Bar-Hillel Y. (eds) Logic, methodology and philosophy of science. North-Holland, Amsterdam, pp. 228–246

    Google Scholar 

  • Shapiro S. (1991). Foundations without foundationalism. Clarendon Press, Oxford

    Google Scholar 

  • Simons P. (1982). Numbers and manifolds and plural reference and set theory. In: Smith B. (eds) Parts and moments: Studies in logic and formal ontology. Philosophia Verlag, Munich, pp. 160–260

    Google Scholar 

  • Stenius E. (1974). Sets. Synthese 27:161–188

    Article  Google Scholar 

  • Uzquiano G. (2003). Plural quantification and classes. Philosophia Mathematica 11(3):67–81

    Google Scholar 

  • Weston T. (1976). Kreisel, the continuum hypothesis and second order set theory. Journal of Philosophical Logic 5:281–298

    Article  Google Scholar 

  • Woodin, W. H. (2001). The continuum hypothesis. Notices of the American Mathematical Society 48, 567–576 & 681–690.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Pollard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, S. Mathematical determinacy and the transferability of aboutness. Synthese 159, 83–98 (2007). https://doi.org/10.1007/s11229-006-9069-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9069-1

Keywords

Navigation