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Abstract 
 

In concrete applications of probability, statistical investigation gives us knowledge of some 
probabilities, but we generally want to know many others that are not directly revealed by 
our data. For instance, we may know prob(P/Q) (the probability of P given Q) and 
prob(P/R), but what we really want is prob(P/Q&R), and we may not have the data 
required to assess that directly. The probability calculus is of no help here. Given prob(P/Q) 
and prob(P/R), it is consistent with the probability calculus for prob(P/Q&R) to have any 
value between 0 and 1. Is there any way to make a reasonable estimate of the value of 
prob(P/Q&R)? 
 A related problem occurs when probability practitioners adopt undefended assumptions 
of statistical independence simply on the basis of not seeing any connection between two 
propositions. This is common practice, but its justification has eluded probability theorists, 
and researchers are typically apologetic about making such assumptions. Is there any way to 
defend the practice? 
 This paper shows that on a certain conception of probability — nomic probability — 
there are principles of “probable probabilities” that license inferences of the above sort. 
These are principles telling us that although certain inferences from probabilities to 
probabilities are not deductively valid, nevertheless the second-order probability of their 
yielding correct results is 1. This makes it defeasibly reasonable to make the inferences. Thus 
I argue that it is defeasibly reasonable to assume statistical independence when we have no 
information to the contrary. And I show that there is a function Y(r,s,a) such that if 
prob(P/Q) = r, prob(P/R) = s, and prob(P/U) = a (where U is our background knowledge) 
then it is defeasibly reasonable to expect that prob(P/Q&R) = Y(r,s,a). Numerous other 
defeasible inferences are licensed by similar principles of probable probabilities. This has the 
potential to greatly enhance the usefulness of probabilities in practical application. 

1. The Problem of Sparse Probability Knowledge 
 

 The use of probabilities is ubiquitous in philosophy, science, engineering, artificial intelligence, 
economics, and many other disciplines. It is generally supposed that the logical and mathematical 
structure of probabilities is well understood, and completely characterized by the probability 
calculus. The probability calculus is typically identified with some form of Kolmogoroff’s axioms, 
often supplemented with an axiom of countable additivity. Mathematical probability theory is a 
mature subdiscipline of mathematics based upon these axioms, and forms the mathematical basis 
for most applications of probabilities in the sciences. 
 There is, however, a problem with the supposition that this is all there is to the logical and 
mathematical structure of probabilities. The uninitiated often suppose that if we know a few basic 
probabilities, we can compute the values of many others just by applying the probability calculus. 
Thus it might be supposed that familiar sorts of statistical inference provide us with our basic 
knowledge of probabilities, and then appeal to the probability calculus enables us to compute other 
previously unknown probabilities. The picture is of a kind of foundations theory of the 
epistemology of probability, with the probability calculus providing the inference engine that 
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enables us to get beyond whatever probabilities are discovered by direct statistical investigation. 
 Regrettably, this simple image of the epistemology of probability cannot be correct. The 
difficulty is that the probability calculus is not nearly so powerful as the uninitiated suppose. If we 
know the probabilities of some basic propositions P, Q, R, S, … , it is rare that we will be able to 
compute, just by appeal to the probability calculus, a unique value for the probability of some 
logical compound like ((P & Q) ∨ (R & S)). To illustrate, suppose we know that PROB(P) = .7 and 
PROB(Q) = .6. What can we conclude about PROB(P & Q)? All the probability calculus enables us to 
infer is that .3 ≤ PROB(P & Q) ≤ .6. That does not tell us much. Similarly, all we can conclude about 
PROB(P ∨ Q) is that .7 ≤ PROB(P ∨ Q) ≤ 1.0. In general, the probability calculus imposes constraints on 
the probabilities of logical compounds, but it falls far short of enabling us to compute unique 
values. 
 Unless we come to a problem already knowing a great deal about the relevant probabilities, the 
probability calculus will not enable us to compute the values of unknown probabilities that 
subsequently become of interest to us. Suppose a problem is described by logical compounds of a 
set of simple propositions P1,…,Pn. Then to be able to compute the probabilities of all logical 
compounds of these simple propositions, what we must generally know is the probabilities of 
every conjunction of the form PROB((~)P1&…&(~)Pn). The tildes enclosed in parentheses can be 
either present or absent. These n-fold conjunctions are called Boolean conjunctions, and jointly they 
constitute a “partition”. Given fewer than all but one of them, the only constraint the probability 
calculus imposes on the probabilities of the remaining Boolean conjunctions is that the sum of all of 
them must be 1. Together, the probabilities of all the Boolean conjunctions determine a complete 
“probability distribution” — an assignment of unique probabilities to every logical compound of 
the simple propositions. 
 In theoretical accounts of the use of probabilities in any discipline, it is generally assumed that 
we come to a problem equipped with a complete probability distribution. However, in real life this 
assumption is totally unrealistic. In general, given n simple propositions, there will be 2n logically 
independent probabilities of Boolean conjunctions. As Gilbert Harman (1986) observed years ago, 
for a rather small number of simple propositions, there is a completely intractable number of 
logically independent probabilities. For example, given just 300 simple propositions, a grossly 
inadequate number for describing many real-life problems, there will be 2300 logically independent 
probabilities of Boolean conjunctions. 2300 is approximately equal to 1090. To illustrate what an 
immense number this is, recent estimates of the number of elementary particles in the universe put 
it at 1080 – 1085. Thus to know the probabilities of all the Boolean conjunctions, we would have to 
know 5 – 10 orders of magnitude more logically independent probabilities than the number of 
elementary particles in the universe. 
 Lest one think this is an unrealistic problem, consider a simple example. Pollock (2006) describes 
a challenge problem for AI planners. This problem generalizes Kushmerick, Hanks and Weld’s 
(1995) “slippery gripper” problem. We are presented with a table on which there are 300 numbered 
blocks, and a panel of correspondingly numbered buttons. Pushing a button activates a robot arm 
which attempts to pick up the corresponding block and remove it from the table. We get 100 
dollars for each block that is removed. Pushing a button costs two dollars. The hitch is that half of 
the blocks are greasy. If a block is not greasy, pushing the button will result in its being removed 
from the table with probability 1.0, but if it is greasy the probability is only 0.01. We are given 
exactly 300 opportunities to either push a button or do nothing. Between button pushes, we are 
given the opportunity to look at the table, which costs one dollar. Looking will reveal what blocks 
are still on the table, but will not reveal directly whether a block is greasy. What should we do? 
Humans find this problem terribly easy. An informal survey reveals that most people quickly 
produce the optimal plan: push each button once, and don’t bother to look at the table. But when 
Pollock (2006) surveyed existing AI planners, most could not even encode this problem, much less 
solve it. The difficulty is that there are too many logically independent probabilities. For every 
subset K of the 300 blocks, let pK,i be the probability that, when K is the set of blocks on the table, 
block i is still on the table after the button corresponding to block i is pushed. There are 2300 choices 
of K, so there are more than 2300 probabilities pK,i such that i∈K. Furthermore, none of them can be 
derived from any of the others. Thus they must each be encoded separately in describing a complete 
probability distribution for the problem. It seems to be impossible for a real cognitive agent to 
encode such a probability distribution. 
 Although we humans cannot encode a complete probability distribution for the preceding 
problem, we can deal with problems like the slippery blocks problem. How do we do that? It is, 
apparently, computationally impossible for the the requisite probabilities to be stored in us from 
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the start, so they must be produced one at a time as we need them. If they are produced as we need 
them, there must be some kind of inference mechanism that has the credentials to produce 
rationally acceptable estimates. We have seen that, unless we begin with more information than it is 
computationally possible for us to store, we cannot derive the new probability estimates from 
previously accepted probabilities by way of the probability calculus. So there must be some other 
rational inference procedures that enable us to generate new probability estimates that do not 
follow logically, via the probability calculus, from prior probability estimates. What might these 
rational inference procedures be? 
 I will call this the problem of sparse probability knowledge. It is computationally impossible for us to 
store explicit knowledge of a complete probability distribution. At any given time, our knowledge 
of probabilities is worse than just incomplete. The set of probabilities we know is many orders of 
magnitude smaller than the set of all true probabilities. How then can we be as successful as we are 
in applying probability to real-world problems? 
 It is noteworthy that in applying probabilities to concrete problems, probability practitioners 
commonly adopt undefended assumptions of statistical independence. The probabilities PROB(P) 
and PROB(Q) are statistically independent iff PROB(P&Q) = PROB(P)⋅PROB(Q). An equivalent definition is 
that PROB(P/Q) = PROB(P). In the practical use of probabilities it is almost universally assumed, often 
apologetically, that probabilities are independent unless we have some reason for thinking 
otherwise. In most real-world applications of probabilities, if we did not make such assumptions 
about independence we would not be able to compute any of the complex probabilities that interest 
us. Imagine a case in which we know that the probability is .3 of a Xian (a fictional Chinese car) 
having a defective door lock if it has power door locks and was manufactured in a certain plant, 
whereas the probability of its having a defective door lock otherwise is only .01. We also know that 
the probability of a Xian being manufactured in that plant is .33, and the probability of a Xian 
having power door locks is .85. If we know nothing else of relevance, we will normally assume that 
whether the car has power door locks is statistically independent of whether it was manufactured in 
that plant, and so compute 
 
 prob(power-locks & plant) = .33 ×.85 = .28. 
 
Then we can compute the general probability of a Xian having defective door locks: 
 
 prob(defect) = prob(defect/power-locks & plant)⋅prob(power-locks & plant) 
      + prob(defect/~(power-locks & plant))⋅(1–prob(power-locks & plant)) 
      = .3 ×.28 + .01×(1–.28) = .09. 
 
We could not perform this, or similar computations, without the assumption of independence. 
 The independence assumption is a defeasible assumption, because obviously we can discover 
that conditions we thought were independent are unexpectedly correlated. The probability calculus 
can give us only necessary truths about probabilities, so the justification of such a defeasible 
assumption must have some other source. 
 If we have a problem in which we can assume that most propositions are statistically 
independent of one another, there are compact techniques for storing complete probability 
distributions using what are called “Bayesian nets” (Pearl 1988). The use of Bayesian nets allow us to 
explicitly store just that subset of probabilities that cannot be derived from each other by assuming 
statistical independence, and provides an efficient inference mechanism for recovering derivable 
probabilities from them. However, this is not the entire solution to the problem of sparse 
probability knowledge, because in the slippery blocks problem, none of the probabilities pK,i can be 
derived from others, so they would all have to be encoded separately in a Bayesian net, and that 
would make the Bayesian net impossibly large. 
 I will argue that a defeasible assumption of statistical independence is just the tip of the iceberg. 
There are multitudes of defeasible inferences that we can make about probabilities, and a very rich 
mathematical theory grounding them. It is these defeasible inferences that enable us to make 
practical use of probabilities without being able to deduce everything we need via the probability 
calculus. I will argue that, on a certain conception of probability, there are mathematically derivable 
second-order probabilities to the effect that various inferences about first-order probabilities, 
although not deductively valid, will nonetheless produce correct conclusions with probability 1, and 
this makes it reasonable to accept these inferences defeasibly. The second-order principles are 
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principles of probable probabilities. 

2. Two Kinds of Probability 
 No doubt the currently most popular theory of the foundations of probability is the subjectivist 
theory due originally to Ramsey and Savage, and developed at length by many more recent 
scholars. However, my solution to the problem of sparse probability knowledge requires that we 
start with objective probabilities. Historically, there have been two general approaches to 
probability theory. What I will call generic probabilities2 are general probabilities, relating properties 
or relations. The generic probability of an A being a B is not about any particular A, but rather 
about the property of being an A. In this respect, its logical form is the same as that of relative 
frequencies. I write generic probabilities using lower case “prob” and free variables: prob(Bx/Ax). 
For example, we can talk about the probability of an adult male of Slavic descent being lactose 
intolerant. This is not about any particular person — it expresses a relationship between the 
property of being an adult male of Slavic descent and the property of being lactose intolerant. Most 
forms of statistical inference or statistical induction are most naturally viewed as giving us 
information about generic probabilities. On the other hand, for many purposes we are more 
interested in propositions that are about particular persons, or more generally, about specific 
matters of fact. For example, in deciding how to treat Herman, an adult male of Slavic descent, his 
doctor may want to know the probability that Herman is lactose intolerant. This illustrates the need 
for a kind of probability that attaches to propositions rather than relating properties and relations. 
These are sometimes called “single case probabilities”, although that terminology is not very good 
because such probabilities can attach to propositions of any logical form. For example, we can ask 
how probable it is that there are no human beings over the age of 130. In the past, I called these 
“definite probabilities”, but now I will refer to them as singular probabilities. 
 The distinction between singular and generic probabilities is commonly overlooked by 
contemporary probability theorists, perhaps because of the popularity of subjective probability 
(which has no way to make sense of generic probabilities). But most objective approaches to 
probability tie probabilities to relative frequencies in some essential way, and the resulting 
probabilities have the same logical form as the relative frequencies. That is, they are generic 
probabilities. The simplest theories identify generic probabilities with relative frequencies (Russell 
1948; Braithwaite 1953; Kyburg 1961, 1974; Sklar 1970, 1973).3 The simplest objection to such “finite 
frequency theories” is that we often make probability judgments that diverge from relative 
frequencies. For example, we can talk about a coin being fair (and so the generic probability of a flip 
landing heads is 0.5) even when it is flipped only once and then destroyed (in which case the 
relative frequency is either 1 or 0). For understanding such generic probabilities, we need a notion 
of probability that talks about possible instances of properties as well as actual instances. Theories of 
this sort are sometimes called “hypothetical frequency theories”. C. S. Peirce was perhaps the first 
to make a suggestion of this sort. Similarly, the statistician R. A. Fisher, regarded by many as “the 
father of modern statistics”, identified probabilities with ratios in a “hypothetical infinite population, 
of which the actual data is regarded as constituting a random sample” (1922, p. 311). Karl Popper 
(1956, 1957, and 1959) endorsed a theory along these lines and called the resulting probabilities 
propensities. Henry Kyburg (1974a) was the first to construct a precise version of this theory 
(although he did not endorse the theory), and it is to him that we owe the name “hypothetical 
frequency theories”. Kyburg (1974a) also insisted that von Mises should also be considered a 
hypothetical frequentist. There are obvious difficulties for spelling out the details of a hypothetical 
frequency theory. More recent attempts to formulate precise versions of what might be regarded 
as hypothetical frequency theories are van Fraassen (1981), Bacchus (1990), Halpern (1990), Pollock 
(1990), Bacchus et al (1996). I will take my jumping-off point to be the theory of Pollock (1990), 
which I will sketch briefly in section three. 
 After brief thought, most philosophers find the distinction between singular and generic 
probabilities intuitively clear. However, this is a distinction that sometimes puzzles probability 
theorists many of whom have been raised on an exclusive diet of singular probabilities. They are 
sometimes tempted to confuse generic probabilities with probability distributions over random 
                                                
2 In the past, I followed Jackson and Pargetter 1973 in calling these “indefinite probabilities”, but I never liked that 
terminology.  
3 William Kneale (1949) traces the frequency theory to R. L. Ellis, writing in the 1840’s, and John Venn (1888) and C. S. 
Peirce in the 1880’s and 1890’s. 
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variables. Although historically most theories of objective probability were theories of generic 
probability, mathematical probability theory tends to focus exclusively on singular probabilities. 
When mathematicians talk about variables in connection with probability, they usually mean 
“random variables”, which are not variables at all but functions assigning values to the different 
members of a population. Generic probabilities have single numbers as their values. Probability 
distributions over random variables are just what their name implies — distributions of singular 
probabilities rather than single numbers. 
 It has always been acknowledged that for practical decision-making we need singular 
probabilities rather than generic probabilities. For example, in deciding whether to trust the door 
locks on my Xian, I want to know the probability of its having defective locks, not the probability 
of Xians in general having defective locks. So theories that take generic probabilities as basic need a 
way of deriving singular probabilities from them. Theories of how to do this are theories of direct 
inference. Theories of objective generic probability propose that statistical inference gives us 
knowledge of generic probabilities, and then direct inference gives us knowledge of singular 
probabilities. Reichenbach (1949) pioneered the theory of direct inference. The basic idea is that if 
we want to know the singular probability PROB(Fa), we look for the narrowest reference class (or 
reference property) G such that we know the generic probability prob(Fx/Gx) and we know Ga, 
and then we identify PROB(Fa) with prob(Fx/Gx). For example, actuarial reasoning aimed at setting 
insurance rates proceeds in roughly this fashion. Kyburg (1974) was the first to attempt to provide 
firm logical foundations for direct inference. Pollock (1990) took that as its starting point and 
constructed a modified theory with a more epistemological orientation. The present paper builds 
upon some of the basic ideas of the latter. 
 The appeal to generic probabilities and direct inference has seemed promising for avoiding the 
computational difficulties attendant on the need for a complete probability distribution. Instead of 
assuming that we come to a problem with an antecedently given complete probability distribution, 
one can assume more realistically that we come to the problem with some limited knowledge of 
generic probabilities and then infer singular probabilities from the latter as we need them. For 
example, I had no difficulty giving a description of the probabilities involved in the slippery blocks 
problem, but I did that by giving an informal description of the generic probabilities rather than the 
singular probabilities. We described it by reporting that the generic probability prob(Gx/Bx) of a 
block being greasy is .5, and the generic probability prob(~Tx(s+1)/Txs & Pxs & Gx) of a block 
being successfully removed from the table at step s if it is greasy is .01, but prob(~Tx(s+1)/Txs & 
Pxs & ~Gx) = 1.0. We implicitly assumed that prob(~Tx(s+1)/~Txs) = 1. These probabilities 
completely describe the problem. For solving the decision-theoretic planning problem, we need 
singular probabilities rather than generic probabilities, but one might hope that these can be 
recovered by direct inference from this small set of generic probabilities as they are needed. 
 Unfortunately, I do not think that this hope will be realized. The appeal to generic probabilities 
and direct inference helps a bit with the problem of sparse probability knowledge, but it falls short 
of constituting a complete solution. The difficulty is that the problem recurs at the level of generic 
probabilities. Direct statistical investigation will apprise us of the values of some generic 
probabilities, and then others can be derived by appeal to the probability calculus. But just as for 
singular probabilities, the probability calculus is a weak crutch. We will rarely be able to derive 
more than rather broad constraints on unknown probabilities. A simple illustration of this difficulty 
arises when we know that prob(Ax/Bx) = r and prob(Ax/Cx) = s, where r ≠ s, and we know both 
that Ba and Ca. What should we conclude about the value of PROB(Aa)? Direct inference gives us 
defeasible reasons for drawing the conflicting conclusions that PROB(Aa) = r and PROB(Aa) = s, and 
standard theories of direct inference give us no way to resolve the conflict, so they end up telling us 
that there is no conclusion we can justifiably draw about the value of PROB(Aa). Is this reasonable? 
Suppose we have two unrelated diagnostic tests for some rare disease, and Bernard tests positive 
on both tests. Intuitively, it seems this should make it more probable that Bernard has the disease 
than if we only have the results of one of the tests. This suggests that, given the values of 
prob(Ax/Bx) and prob(Ax/Cx), there ought to be something useful we can say about the value of 
prob(Ax/Bx&Cx), and then we can apply direct inference to the latter to compute the singular 
probability that Bernard has the disease. Existing theories give us no way to do this, and the 
probability calculus imposes no constraint at all on the value of prob(Ax/Bx&Cx). 
 I believe that standard theories of direct inference are much too weak to solve the problem of 
sparse probability knowledge. What I will argue in this paper is that new mathematical results, 
coupled with ideas from the theory of nomic probability introduced in Pollock (1990), provide the 
justification for a wide range of new principles supporting defeasible inferences about the 
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expectable values of unknown probabilities. These principles include familiar-looking principles of 
direct inference, but they include many new principles as well. For example, among them is a 
principle enabling us to defeasibly estimate the probability of Bernard having the disease when he 
tests positive on both tests. I believe that this broad collection of new defeasible inference schemes 
provides the solution to the problem of sparse probability knowledge and explains how 
probabilities can be truly useful even when we are massively ignorant about most of them. 

3. Nomic Probability 
 Pollock (1990) developed a possible worlds semantics for objective generic probabilities,4 and I 
will take that as my starting point for the present theory of probable probabilities. The proposal 
was that we can identify the nomic probability prob(Fx/Gx) with the proportion of physically 
possible G’s that are F’s. A physically possible G is defined to be an ordered pair 〈w,x〉 such that w is a 
physically possible world (one compatible with all of the physical laws) and x has the property G at 
w. Let us define the subproperty relation as follows: 

 F 7 G iff it is physically necessary (follows from true physical laws) that (∀x)(Fx → Gx). 

 F | G iff it is physically necessary (follows from true physical laws) that (∀x)(Fx ↔ Gx). 

We can think of the subproperty relation as a kind of nomic entailment relation (holding between 
properties rather than propositions). More generally, F and G can have any number of free 
variables (not necessarily the same number), in which case F 7 G iff the universal closure of (F → 
G) is physically necessary. 
 Given a suitable proportion function ρ, we could stipulate that, where F and G are the sets of 
physically possible F’s and G’s respectively: 

  probx(Fx/Gx) = ρ(F,G).5 

However, it is unlikely that we can pick out the right proportion function without appealing to 
prob itself, so the postulate is simply that there is some proportion function related to prob as 
above. This is merely taken to tell us something about the formal properties of prob. Rather than 
axiomatizing prob directly, it turns out to be more convenient to adopt axioms for the proportion 
function. Proportion functions are a generalization of measure functions, studied in mathematics in 
measure theory. Pollock (1990) showed that, given the assumptions adopted there, ρ and prob are 
interdefinable, so the same empirical considerations that enable us to evaluate prob inductively also 
determine ρ. 
 Note that probx is a variable-binding operator, binding the variable x. When there is no danger 
of confusion, I will omit the subscript “x”, but sometimes we will want to quantify into probability 
contexts, in which case it will be important to distinguish between the variables bound by “prob” 
and those that are left free. To simplify expressions, I will often omit the variables, writing 
“prob(F/G)” for “prob(Fx/Gx)” when no confusion will result. 
 It is often convenient to write proportions in the same logical form as probabilities, so where ϕ 
and θ  are open formulas with free variable x, let !x (" /#) = !({x |" &#},{x |#}) . Note that !x  is a 
variable-binding operator, binding the variable x. Again, when there is no danger of confusion, I 
will typically omit the subscript “x”. 
 I will make three classes of assumptions about the proportion function. Let #X be the cardinality 
of a set X. If Y is finite, I assume: 
 

  
  
!(X,Y) =

#X "Y

#Y
. 

 

                                                
4 Somewhat similar semantics were proposed by Halpern (1990) and Bacchus et al (1996). 
5  Probabilities relating n-place relations are treated similarly. I will generally just write the one-variable versions of 
various principles, but they generalize to n-variable versions in the obvious way. 
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However, for present purposes the proportion function is most useful in talking about proportions 
among infinite sets. The sets F and G will invariably be infinite, if for no other reason than that 
there are infinitely many physically possible worlds in which there are F’s and G’s.  
 My second set of assumptions is that the standard axioms for conditional probabilities hold for 
proportions. These axioms automatically hold for relative frequencies among finite sets, so the 
assumption is just that they also hold for proportions among infinite sets. 
 That further assumptions are needed derives from the fact that the standard probability calculus 
is a calculus of singular probabilities rather than generic probabilities. A calculus of generic 
probabilities is related to the calculus of singular probabilities in a manner roughly analogous to the 
relationship between the predicate calculus and the propositional calculus. Thus we get some 
principles pertaining specifically to relations that hold for generic probabilities but cannot even be 
formulated in the standard probability calculus. For instance, Pollock (1990) endorsed the following 
two principles: 

Individuals: 
 prob(Fxy/Gxy & y = a) = prob(Fxa/Gxa)  

PPROB: 
 prob(Fx/Gx & prob(Fx/Gx) = r) = r. 

I will not assume either of these principles in this paper, but I mention them just to illustrate that 
there are reasonable-seeming principles governing generic probabilities that are not even well 
formed in the standard probability calculus. 
 What I do need in the present paper is three assumptions about proportions that go beyond 
merely imposing the standard axioms for the probability calculus. The three assumptions I will 
make are: 

Finite Set Principle: 
 For any set B, N > 0, and open formula Φ, 
 !

X
"(X)!/!X # B!&!# X = N( ) =    

   
  
!

x1 ,...,x
N

"({x1 ,...,x
N

})!/!x1 ,...,x
N

 are pairwise distinct!&!x1 ,...,x
N
#B( ) . 

Projection Principle: 
 If 0 ≤ p,q ≤ 1 and (∀y)(Gy → ρx(Fx/ Rxy)∈[p,q]), then ρx,y(Fx/ Rxy & Gy)∈[p,q].6 

Crossproduct Principle: 
 If C and D are nonempty, ! A " B,C " D( ) = !(A,C) # !(B,D).  

Note that these three principles are all theorems of elementary set theory when the sets in question 
are finite. For instance, to illustrate the finite case of the projection principle, let F be “x is an even 
non-negative integer”, let Rxy be “x and y are non-negative integers and x ≤ y”, and let Gy be 
“y∈{5,6,7}. Then ρx(Fx/Rx5) = ρx(Fx/Rx7) = ½ and ρx(Fx/Rx5) = 4/7. Thus (∀y)(Gy → ρx(Fx/ 
Rxy)∈[4/7,1/2]). And ρx,y(Fx/ Rxy & Gy) = 11/21∈[4/7,1/2].  
 The crossproduct principle holds for finite sets because #(A×B) = (#A)⋅(#B), and hence 

 

! A " B,C " D( ) =
#((A " B)# (C " D))

#(C " D)
=
#((A#C) " (B# D))

#(C " D)

=
#(A#C) $ #(B# D)

#C $ #D
=
#(A#C)

#C
$
#(B# D)

#D
= !(A,C) $ !(B,D).

 

My assumption is simply that ρ continues to have these algebraic properties even when applied to 
infinite sets. I take it that this is a fairly conservative set of assumptions. 
 I often hear the objection that in affirming the Crossproduct Principle, I must be making a 

                                                
6 Note that this is a different (and more conservative) principle than the one called “Projection” in Pollock (1990). 
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hidden assumption of statistical independence. However, that is to confuse proportions with 
probabilities. The Crossproduct Principle is about proportions — not probabilities. For finite sets, 
proportions are computed by simply counting members and computing ratios of cardinalities. It 
makes no sense to talk about statistical independence in this context. For infinite sets we cannot just 
count members any more, but the algebra is the same. It is because the algebra of proportions is 
simpler than the algebra of probabilities that it is useful to axiomatize nomic probabilities indirectly 
by adopting axioms for proportions. 
 The preceding amounts to a “realistic possible worlds semantics” for nomic probability. A 
realistic possible world semantics takes possible worlds, objects in possible world, properties, 
relations, and propositions as basic. There are many different approaches to how these concepts are 
to be understood, but for the most part it makes no different to the present paper what approach is 
taken. All that my mathematics requires is that propositions, properties, and relations are closed 
under various operations that everyone grants them to be closed under. As long as the proportion 
function satisfies my postulates, the mathematical results follow. 
 To be contrasted with realistic possible world semantics are model theoretic semantics (e.g., 
Halpern 1990, Bacchus et al 1996). A model-theoretic approach constructs set-theoretic models and 
interprets formal languages in terms of them. It it mathematically precise, but it is only as good as 
the model theory. You can construct model theories that validate almost anything. If your objective 
is to use model theory to illuminate pre-analytic concepts, it is important to justify the model 
theory. Model theoretic approaches to modalities rely upon formal analogues to possible worlds, 
but it has become apparent that the formal analogues are not precise. The simplest analogue 
generates Carnap’s modal logic, which no one thinks is right. To get even S5 one must make 
basically ad hoc moves regarding the accessibility relation. This is a topic I discussed at great length 
in my (1984a). What I argued was that to get the model theory right, you have to start with a 
realistic possible worlds semantics and justify it. The appeal to model theory cannot replace the 
appeal to a realistic possible world semantics. 

 Pollock (1990) derived the entire epistemological theory of nomic probability from a single 
epistemological principle coupled with a mathematical theory that amounts to a calculus of nomic 
probabilities. The single epistemological principle that underlies probabilistic reasoning is the 
statistical syllogism, which can be formulated as follows:  

Statistical Syllogism: 

If F is projectible with respect to G and r > 0.5, then  !Gc & prob(F/G) ≥ r !  is a defeasible 
reason for  !Fc ! , the strength of the reason being a monotonic increasing function of r. 

 I take it that the statistical syllogism is a very intuitive principle, and it is clear that we employ it 
constantly in our everyday reasoning. For example, suppose you read in the newspaper that 
George Bush is visiting Guatemala, and you believe what you read. What justifies your belief? No 
one believes that everything printed in the newspaper is true. What you believe is that certain kinds 
of reports published in certain kinds of newspapers tend to be true, and this report is of that kind. It 
is the statistical syllogism that justifies your belief. 
 The projectibility constraint in the statistical syllogism is the familiar projectibility constraint on 
inductive reasoning, first noted by Goodman (1955). One might wonder what it is doing in the 
statistical syllogism. But it was argued in (Pollock 1990), on the strength of what were taken to be 
intuitively compelling examples, that the statistical syllogism must be so constrained. Furthermore, 
it was shown that without a projectibility constraint, the statistical syllogism is self-defeating, 
because for any intuitively correct application of the statistical syllogism it is possible to construct a 
conflicting (but unintuitive) application to a contrary conclusion. This is the same problem that 
Goodman first noted in connection with induction. Pollock (1990) then went on to argue that the 
projectibility constraint on induction derives from that on the statistical syllogism. 
 The projectibility constraint is important, but also problematic because no one has a good 
analysis of it. I will not discuss it further here. I will just assume, without argument, that the second-
order probabilities employed below in the theory of probable probabilities satisfy the projectibility 
constraint, and hence can be used in the statistical syllogism. 
 The statistical syllogism is a defeasible inference scheme, so it is subject to defeat. I believe that 
the only primitive (underived) principle of defeat required for the statistical syllogism is that of 
subproperty defeat: 
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Subproperty Defeat for the Statistical Syllogism: 
If H is projectible with respect to G, then  !Hc & prob(F/G&H) < prob(F/G) !  is an undercutting 
defeater for the inference by the statistical syllogism from  !Gc & prob(F/G) ≥ r !  to  !Fc ! .7 

In other words, information about c that lowers the probability of its being F constitutes a defeater. 
Note that if prob(Fx/G&H) is high, one may still be able to make a weaker inference to the 
conclusion that Fc, but from the distinct premise  !Gc & prob(F/G& H) = s ! . 
 Pollock (1990) argued that we need additional defeaters for the statistical syllogism besides 
subproperty defeaters, formulated several candidates for such defeaters. But one of the conclusions 
of the research described in this paper is that the additional defeaters can all be viewed as derived 
defeaters, with subproperty defeaters being the only primitive defeaters for the statistical 
syllogism. 

4. Indifference 
 Principles of probable probabilities are derived from combinatorial theorems about proportions 
in finite sets. I will begin with a very simple principle that is in fact not very useful, but will serve as 
a template for the discussion of more useful principles. 
 Suppose we have a set of 10,000,000 objects. I announce that I am going to select a subset, and 
ask you how many members it will have. Most people will protest that there is no way to answer 
this question. It could have any number of members from 0 to 10,000,000. However, if you answer, 
“Approximately 5,000,000,” you will almost certainly be right. This is because, although there are 
subsets of all sizes from 0 to 10,000,000, there are many more subsets whose sizes are 
approximately 5,000,000 than there are of any other size. In fact, 99% of the subsets have 
cardinalities differing from 5,000,000 by less than .08%. If we let “ x!!

"
!y ” mean “the difference 

between x and y is less than or equal to δ”, the general theorem is: 

Finite Indifference Principle:  

 For every ε,δ > 0 there is an N such that if U is finite and #U > N then 
  

  
!

X
!(X,U)!"

#
!0.5!/!X $U( ) % 1&'.  

In other words, the proportion of subsets of U which are such that ρ(X,U) is approximately equal to 
.5, to any given degree of approximation, goes to 1 as the size of U goes to infinity. To see why this 

is true, suppose #U = n. If r ≤ n, the number of r-membered subsets of U is 
  
C(n,r) =

n!

r !(n ! r)!
. It is 

illuminating to plot C(n,r) for variable r and various fixed values of n.8 See figure 1. This illustrates 

that the sizes of subsets of U will cluster around 
  

n

2
, and they cluster more tightly as n increases. 

This is precisely what the Indifference Principle tells us. 

 

                                                
7 There are two kinds of defeaters. Rebutting defeaters attack the conclusion of an inference, and undercutting defeaters 
attack the inference itself without attacking the conclusion. Here I assume some form of the OSCAR theory of defeasible 
reasoning (Pollock 1995). For a sketch of that theory see Pollock (2006a). 
8 Note that throughout this paper I employ the definition of n! in terms of the Euler gamma function. Specifically, n! = 

  
t

n
e
!t

dt
0

"

# . This has the result that n! is defined for any positive real number n, not just for integers, but for the integers 

the definition agrees with the ordinary recursive definition. This makes the mathematics more convenient. 
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Figure 1. C(n,r) for n = 100, n = 1000, and n = 10000. 

 The reason the Indifference Principle holds is that C(n,r) becomes “needle-like” in the limit. As 
we proceed, I will state a number of similar combinatorial theorems, and in each case they have 
similar intuitive explanations. The cardinalities of relevant sets are products of terms of the form 
C(n,r), and their distribution becomes needle-like in the limit. In this paper, I will omit the proofs of 
theorems. They will be presented elsewhere in detail, and can be found on my website in a much 
longer version of this paper (http://oscarhome.soc-sci.arizona.edu/ftp/PAPERS/Probable-
Probabilities-long.pdf 

 The finite indifference principle is a mathematical theorem about finite sets. It tells us that for 
fixed ε,δ > 0, there is an N such that if U is finite but contains at least N members, then the 
proportion of subsets X of a set U which are such that 

  
!(X,U)!"

#
!0.5  is greater than 1–ε. This 

suggests that the proportion is also is greater than 1–ε when U is infinite. But if the proportion is is 
greater than 1–ε for every ε > 0, it follows that the proportion is 1. In other words: 

 If U is infinite then for every δ > 0, 
  
!

X
!(X,U)!"

#
!0.5!/!X $ U( ) = 1.  

Given the rather simple assumptions I made about ρ in section three, we can derive this infinitary 
principle from the finite principle. First, we can use familiar looking mathematics to prove: 

Law of Large Numbers for Proportions: 

 If B is infinite and ρ(A/B) = p then for every ε,δ > 0, there is an N such that 

 
  
!X !(A/X) !"

#
p!/!X $ B!&!X!is!finite!&!#X % N( ) % 1 & ' . 

Note that unlike Laws of Large Numbers for probabilities, the Law of Large Numbers for 
Proportions does not require an assumption of statistical independence. This is because it is derived 
from the crossproduct principle, and as remarked in section three, no such assumption is required 
(or even intelligible) for the crossproduct principle. 
 Given the law of large numbers, the finite indifference principle can be shown to entail: 

Infinitary Indifference Principle:  

 If U is infinite then for every δ > 0, 
  
!

X
!(X,U)!"

#
!0.5!/!X $ U( ) = 1.  

 Nomic probabilities are proportions among physically possible objects. For any property F that 
is not extraordinarily contrived, the set F of physically possible F’s will be infinite.9 Thus the 

                                                
9 The following principles apply only to properties for which there are infinitely many physically possible instances, but 
I will not explicitly include the qualification “non-contrived” in the principles.  
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infinitary indifference principle for proportions implies an analogous principle for nomic 
probabilities: 

Probabilistic Indifference Principle:  

 For any property G and for every δ > 0,  

  
   
prob

X
prob(X/G)!!

"
!0.5!/!X!7!G( ) = 1. 10 

 Next note that we can apply the statistical syllogism to the probability formulated in the 
probabilistic indifference principle. For every δ > 0, this gives us a defeasible reason for expecting 
that if F 7 G, then 

  
prob(F /G)!!

"
!0.5 , and these conclusions jointly entail that prob(F/G) = 0.5. For 

any property F, (F&G) 7 G, and prob(F/G) = prob(F&G/G). Thus we are led to a defeasible 
inference scheme: 

Indifference Principle:  
 For any properties F and G, it is defeasibly reasonable to assume that prob(F/G) = 0.5. 

 The indifference principle is my first example of a principle of probable probabilities. We have a 
quadruple of principles that go together: (1) the finite indifference principle, which is a theorem of 
combinatorial mathematics; (2) the infinitary indifference principle, which follows from the finite 
principle given the law of large numbers for proportions; (3) the probabilistic indifference principle, 
which is a theorem derived from (2); and (4) the Indifference Principle, which is a principle of 
defeasible reasoning that follows from (3) with the help of the statistical syllogism. All of the 
principles of probable probabilities that I will discuss have analogous quadruples of principles 
associated with them. Rather than tediously listing all four principles in each case, I will encapsulate 
the four principles in the simple form: 

Expectable Indifference Principle:  
 For any properties F and G, the expectable value of prob(F/G) = 0.5. 

So in talking about expectable values, I am talking about this entire quadruple of principles. 
 I have chosen the indifference principle as my first example of a principle of probable 
probabilities because the argument for it is simple and easy to follow. However, as I indicated at the 
start, this principle is only occasionally useful. If we were choosing the properties F in some random 
way, it would be reasonable to expect that prob(F/G) = 0.5. However, pairs of properties F and G 
which are such that prob(F/G) = 0.5 are not very useful to us from a cognitive perspective, because 
knowing that something is a G then carries no information about whether it is an F. As a result, we 
usually only enquire about the value of prob(F/G) when we have reason to believe there is a 
connection between F and G such that prob(F/G) ≠ 0.5. Hence in actual practice, application of the 
indifference principle to cases that really interest us will almost invariably be defeated. This does not 
mean, however, that the indifference principle is never useful. For instance, if I give Jones the 
opportunity to pick either of two essentially identical balls, in the absence of information to the 
contrary it seems reasonable to take the probability of either choice to be .5. This can be justified as 
an application of either the indifference principle or the generalized indifference principle. 
 That applications of the indifference principle are often defeated illustrates an important point 
about nomic probability and principles of probable probabilities. The fact that a nomic probability is 
1 does not mean that there are no counter-instances. In fact, there may be infinitely many counter-
instances. Consider the probability of a real number being irrational. Plausibly, this probability is 1, 
because the cardinality of the set of irrationals is infinitely greater than the cardinality of the set of 
rationals. But there are still infinitely many rationals. The set of rationals is infinite, but it has 
                                                
10 If we could assume countable additivity for nomic probability, the Indifference Principle would imply that 

   
prob

X
prob(X,G)!=!0.5!/!X!7!G( ) = 1.  Countable additivity is generally assumed in mathematical probability theory, 

but most of the important writers in the foundations of probability theory, including de Finetti (1974), Reichenbach 
(1949), Jeffrey (1983), Skyrms (1980), Savage (1954), and Kyburg (1974), have either questioned it or rejected it outright. 
Pollock (2006) gives what I consider to be a compelling counter-example to countable additivity. So I will have to 
remain content with the more complex formulation of the Indifference Principle. 
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measure 0 relative to the set of real numbers. 
 A second point is that in classical probability theory (which is about singular probabilities), 
conditional probabilities are defined as ratios of unconditional probabilities: 

  PROB(P/Q) = 
  

PROB(P & Q)

PROB(Q)
. 

However, for generic probabilities, there are no unconditional probabilities, so conditional 
probabilities must be taken as primitive. These are sometimes called “Popper functions”. The first 
people to investigate them were Karl Popper (1938, 1959) and the mathematician Alfred Renyi 
(1955). If conditional probabilities are defined as above, PROB(P/Q) is undefined when PROB(Q) = 0. 
However, for nomic probabilities, prob(F/G&H) can be perfectly well-defined even when 
prob(G/H) = 0. One consequence of this is that, unlike in the standard probability calculus, if 
prob(F/G) = 1, it does not follow that prob(F/G&H) = 1. Specifically, this can fail when prob(H/G) = 
0. Thus, for example, 

  prob(2x is irrational/x is a real number) = 1 

but 

  prob(2x is irrational/x is a real number & x is rational) = 0. 

In the course of developing the theory of probable probabilities, we will find numerous examples 
of this phenomenon, and they will generate defeaters for the defeasible inferences licensed by our 
principles of probable probabilities. 

5. Independence 
 Now let us turn to a truly useful principle of probable probabilities. It was remarked above that 
probability practitioners commonly assume statistical independence when they have no reason to 
think otherwise, and so compute that prob(A&B/C) = prob(A/C)⋅prob(B/C). In other words, they 
assume that A and B are statistically independent relative to C. This assumption is ubiquitous in almost 
every application of probability to real-world problems. However, the justification for such an 
assumption has heretofore eluded probability theorists, and when they make such assumptions 
they tend to do so apologetically. We are now in a position to provide a justification for a general 
assumption of statistical independence. 
 Although it is harder to prove than the finite indifference principle, the following combinatorial 
principle holds in general: 

Finite Independence Principle:  

For 0 ≤ r,s ≤ 1 and for every ε,δ > 0 there is an N such that if U is finite and #U > N, then 

 
  
!

X ,Y ,Z !(X "Y ,Z)!#
$
!r % s!/!X,Y ,Z & U &!!(X,Z) = r &!!(Y ,Z) = s( ) ' 1 ( ).  

In other words, for a large finite set U, subsets X,Y and Z of U tend to be such that ρ(X∩Y,Z) is 
approximately equal to ρ(X,Z)⋅ρ(Y,Z), and for any fixed degree of approximation, the proportion of 
subsets of U satisfying this approximation goes to 1 as the size of U goes to infinity. 
 Given the law of large numbers for proportions, the finite independence principle entails: 

Infinitary Independence Principle:  

For 0 ≤ ,r,s ≤ 1, if U is infinite then for every δ > 0: 

  
!

X ,Y ,Z !(X "Y ,Z)!#
$
!r % s!/!X,Y ,Z & U &!!(X,Z) = r &!!(Y ,Z) = s( ) = 1.  

As before, this entails: 
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Probabilistic Independence Principle:  

For 0 ≤ r,s ≤ 1 and for any property U, for every δ > 0: 

 
   
prob

X ,Y ,Z prob(X & Y /Z)!!
"
!r # s!/!X,Y ,Z!7!U &!prob(X/Z) = r &!prob(Y /Z) = s( ) = 1.  

Again, applying the statistical syllogism to the second-order probability in the probabilistic 
independence principle, we get: 

Principle of Statistical Independence: 

£prob(A/C) = r & prob(B/C) = s· is a defeasible reason for £prob(A&B/C) = r⋅s·. 

Again, we can encapsulate these four principles in a single principle of expectable values: 

Principle of Expectable Statistical Independence: 

If prob(A/C) = r and prob(B/C) = s, the expectable value of prob(A&B/C) = r⋅s. 

So a provable combinatorial principle regarding finite sets ultimately makes it reasonable to expect, 
in the absence of contrary information, that properties will be statistically independent of one 
another. This is the reason why, when we see no connection between properties that would force 
them to be statistically dependent, we can reasonably expect them to be statistically independent. 
 The assumption of statistical independence sometimes fails. Clearly, this can happen when there 
are causal connections between properties. But it can also happen for purely logical reasons. For 
example, if A = B, A and B cannot be independent unless r = 1. More general defeaters for the 
principle of statistical independence will emerge below. 

6. The Probable Probabilities Theorem 
 Principles like that of Statistical Independence are supported by a general combinatorial 
theorem, which underlies the entire theory of probable probabilities. Given a list of variables 
X1,…,Xn ranging over subsets of a set U, Boolean compounds of these sets are compounds formed 
by union, intersection, and set-complement. So, for example (X∪Y)–Z is a Boolean compound of X, 
Y, and Z. Linear constraints on the Boolean compounds either state the values of certain 
proportions, e.g., stipulating that ρ(X,Y) = r, or they relate proportions using linear equations. For 
example, if we know that X = Y∪Z, that generates the linear constraint 

 ρ(X,U) = ρ(Y,U) + ρ(Z,U) – ρ(X∩Z,U). 

Our general theorem is: 

Probable Proportions Theorem:  
Let U,X1,…,Xn be a set of variables ranging over sets, and consider a finite set LC of linear 
constraints on proportions between Boolean compounds  of those variables. If LC is consistent 
with the probability calculus, then for any pair of Boolean compounds P,Q of U,X1,…,Xn there is 
a real number r between 0 and 1 such that for  every ε,δ > 0, there is an N such that if U is finite 
and #U > N, then 

 
  
!

X1 ,...,Xn
!(P,Q) !"

#
r !/!LC!&!X

1
,...,X

n
$ U( ) % 1 & ' . 

This is the theorem that underlies all of the principles developed in this paper. Given the law of 
large numbers for proportions, we can prove: 
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Limit Principle for Proportions:  
Consider a finite set LC of linear constraints on proportions between Boolean compounds of a 
list of variables U,X1,…,Xn. For any real number r between 0 and 1, if for every ε,δ > 0, if there is 
an N such that for any finite set U such that #U > N, 

 
  
!X1 ,...,Xn

!(P,Q) !"
#

r !/!LC!&!X
1
,...,X

n
$ U( ) % 1 & ' , 

 then for any infinite set U, for every δ  > 0: 

  
  
!

X1 ,...,Xn
!(P,Q) !"

#
r !/!LC!&!X

1
,...,X

n
$ U( ) = 1 . 

 Given the limit principle for proportions, the Probable Proportions Theorem entails: 

Probable Probabilities Theorem:  
Let U,X1,…,Xn be a set of variables ranging over properties and relations, and consider a finite 
set LC of linear constraints on probabilities between truth-functional compounds of those 
variables. If LC is consistent with the probability calculus, then for any pair of truth-functional 
compounds P,Q of U,X1,…,Xn there is a real number r between 0 and 1 such that for every δ > 0, 

 
   
prob

X1 ,...,Xn
prob(P/Q) !!

"
!r !/!LC!&!X1 ,...,X

n
7!U( ) = 1 . 

In other words, given the constraints LC, the expectable value of prob(P/Q) = r. 

This establishes the existence of expectable values for probabilities under very general 
circumstances. The theorem can probably be generalized further, e.g., to linear inequalities, or even 
to nonlinear constraints, but this is what I have established so far. 
 The Probable Probabilities Theorem tells us that there are expectable values. It turns out that 
there is a general strategy for finding and proving theorems describing these expectable values, 
and I have written a computer program (in Common LISP) that will often do this automatically, 
both finding the theorems and producing human readable proofs. It can be downloaded from 
http://oscarhome.soc-sci.arizona.edu/ftp/OSCAR-web-page/CODE/Code for probable 
probabilities.zip. 
 I will go on to illustrate these general results with several interesting theorems about probable 
probabilities. 

7. Nonclassical Direct Inference 
 Pollock (1984) noted (a restricted form of) the following limit principle: 

Finite Principle of Agreement:  

For 0 ≤ a,b,c,r ≤ 1 and for every ε,δ > 0, there is an N such that if U is finite and #U > N, then: 

  
  

!
X ,Y

!(X,Y " Z)!#
$
!r!/!X,Y ,Z % U & !(X,Y) = r

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!&!!(X,U) = a & !(Y ,U) = b & !(Z,U) = c

&

'
(

)

*
+ , 1 - ..  

In the theory of nomic probability (Pollock 1984,1990), this used this to ground a theory of direct 
inference. We can now improve upon that theory. As above, the Finite Principle of Agreement 
yields a principle of expectable values: 

Nonclassical Direct Inference: 
If prob(A/B) = r, the expectable value of prob(A/B&C) = r. 

This is a kind of “principle of insufficient reason”. It tells us that if we have no reason for thinking 
otherwise, we should expect that strengthening the reference property in a nomic probability 
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leaves the value of the probability unchanged. This is called “nonclassical direct inference” because, 
although it only licenses inferences from generic probabilities to other generic probabilities, it turns 
out to have strong formal similarities to classical direct inference (which licenses inferences from 
generic probabilities to singular probabilities), and as we will see in section seven, principles of 
classical direct inference can be derived from it. 
 It is important to realize that the principle of agreement, and the corresponding principle of 
nonclassical direct inference, are equivalent (with one slight qualification) to the probabilistic 
product principle and the defeasible principle of statistical independence. This turns upon the 
following simple theorem of the probability calculus: 

Independence and Agreement Theorem: 
 If prob(C/B) > 0 then prob(A/B&C) = prob(A/B) iff A and C are independent relative to B. 

As a result, anyone who shares the commonly held intuition that we should be able to assume 
statistical independence in the absence of information to the contrary is also committed to 
endorsing nonclassical direct inference. This is important, because I have found that many people 
do have the former intuition but balk at the latter. 
 There is a variant of the principle of agreement that is equivalent to the first version but often 
more useful: 

Finite Principle of Agreement II:  

For 0 ≤ r ≤ 1 and for every ε,δ > 0, there is an N such that if U is finite and #U > N, then: 

  
  
!

X ,Y !(X,Z)!"
#
!r!/!X,Y $ U & Z $ Y & !(X,Y) = r( ) % 1 & '.  

This yields an equivalent variant of the principle of nonclassical direct inference: 

Nonclassical Direct Inference II: 
If C 7 B and prob(A/B) = r, the expectable value of prob(A/C) = r. 

 The principle of nonclassical direct inference supports many defeasible inferences that seem 
intuitively reasonable but are not licensed by the probability calculus. For example, suppose we 
know that the probability of a twenty year old male driver in Maryland having an auto accident 
over the course of a year is .07. If we add that his girlfriend’s name is “Martha”, we do not expect 
this to alter the probability. There is no way to justify this assumption within a traditional 
probability framework, but it is justified by nonclassical direct inference. 
 Nonclassical direct inference is a principle of defeasible inference, so it is subject to defeat. The 
simplest and most important kind of defeater is a subproperty defeater. Suppose C 7 D 7 B and we 
know that prob(A/B) = r, but prob(A/D) = s, where s ≠ r. This gives us defeasible reasons for 
drawing two incompatible conclusions, viz., that prob(A/C) = r and prob(A/D) = s. The principle of 
subproperty defeat tells us that because D 7 B, the latter inference takes precedence and defeats the 
inference to the conclusion that prob(A/C) = r: 

Subproperty Defeat for Nonclassical Direct Inference: 
£C 7 D 7 B and prob(A/D) = s ≠ r· is an undercutting defeater for the inference by 
nonclassical direct inference from £C 7 B and prob(A/B) = r· to £prob(A/C) = r·. 

We obtain this defeater by noting that the principle of nonclassical direct inference is licensed by an 
application of the statistical syllogism to the probability 

(1)
   
prob

A,B,C prob(A/C)!!!
"

r!/!A,B,C!7!U !and!C!7!B!and!prob(A/B) = r( ) = 1.  

We can easily establish the following principle, which appeals to a more comprehensive set of 
assumptions: 
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(2) 
   

prob
A,B,C

prob(A/C)!!!
"

s!/!A,B,C,D!7!U !and!C!7!D!and!D!7!B!and

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!prob(A/B) = r !and!prob(A/D) = s

#

$
%

&

'
( = 1.  

If r ≠ s then (2) entails: 

(3) 
   

prob
A,B,C

prob(A/C)!!!
"

r!/!A,B,C,D!7!U !and!C!7!D!and!D!7!B!and

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!prob(A/B) = r !and!prob(A/D) = s

#

$
%

&

'
( = 0.  

The reference property in (3) is more specific than that in (1), so (3) gives us a subproperty defeater 
for the application of the statistical syllogism to (1). 
 A simpler way of putting all of this is that corresponding to (2) we have the following principle 
of expectable values: 

Subproperty Defeat for Nonclassical Direct Inference: 
If C 7 D 7 B, prob(A/D) = s, prob(A/B) = r, prob(A/U) = a, prob(B/U) = b, prob(C/U) = c, 
prob(D/U) = d, then the expectable value of prob(A/C) = s (rather than r). 

 
As above, principles of expectable values that appeal to more information take precedence over 
(i.e., defeat the inferences from) principles that appeal to a subset of that information. 
 Because the principles of nonclassical direct inference and statistical independence are equivalent, 
subproperty defeaters for nonclassical direct inference generate analogous defeaters for the 
principle of statistical independence: 

Subproperty Defeat for Statistical Independence: 
£(B&C) 7 D 7 C and prob(A/D) = p ≠ r· is an undercutting defeater for the inference by the 
principle of statistical independence from £prob(A/C) = r & prob(B/C) = s· to £prob(A&B/C) = 

r⋅s·. 

This is because prob(A&B/C) = r⋅s only if prob(A/B&C) = prob(A/C), and this defeater makes it 
unreasonable to believe the former. 

8. Classical Direct Inference 
 Direct inference is normally understood as being a form of inference from generic probabilities 
to singular probabilities rather than from generic probabilities to other generic probabilities. 
However, I showed in my (1990) that these inferences are derivable from nonclassical direct 
inference if we identify singular probabilities with a special class of generic probabilities. The 
present treatment is a generalization of that given in my (1984 and 1990).11 Let K  be the conjunction 
of all the propositions the agent knows to be true, and let K  be the set of all physically possible 
worlds at which K  is true (“K-worlds”). I propose that we define the singular probability PROB(P) to 
be the proportion of K-worlds at which P is true. Where P is the set of all P-worlds:  

  PROB(P) = ρ(P,K). 

More generally, where Q is the set of all Q-worlds, we can define: 

  PROB(P/Q) = ρ(P, Q ∩ K). 

Formally, this is analogous to Carnap’s (1950,1952) logical probability, with the important 
difference that Carnap took ρ to be logically specified, whereas I take the identity of ρ to be a 
                                                
11 Bacchus (1990) gave a somewhat similar account of direct inference, drawing on my 1983 and 1984. 
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contingent fact. ρ is determined by the values of contingently true nomic probabilities, and their 
values are discovered by various kinds of statistical induction. 
 It turns out that singular probabilities, so defined, can be identified with a special class of nomic 
probabilities: 

Representation Theorem for Singular Probabilities: 

(1) PROB(Fa) = prob(Fx/x = a & K); 

(2) If it is physically necessary that [K  → (Q ↔ Sa1…an)] and that [(Q&K) → (P ↔ Ra1…an)], and 
Q is consistent with K , then PROB(P/Q) = prob(Rx1…xn/Sx1…xn & x1 = a1 & … & xn = an & K). 

(3) PROB(P) = prob(P & x=x/x = x & K). 

PROB(P) is a kind of “mixed physical/epistemic probability”, because it combines background 
knowledge in the form of K  with generic probabilities.12 
 The probability prob(Fx/x = a & K) is a peculiar–looking nomic probability. It is an generic 
probability, because “x” is a free variable, but the probability is only about one object. As such it 
cannot be evaluated by statistical induction or other familiar forms of statistical reasoning. 
However, it can be evaluated using nonclassical direct inference. If K  entails Ga, nonclassical direct 
inference gives us a defeasible reason for expecting that PROB(Fa) = prob(Fx/x = a & K) = 
prob(Fx/Gx). This is a familiar form of “classical” direct inference — that is, direct inference from 
nomic probabilities to singular probabilities. More generally, we can derive: 

Classical Direct Inference: 
£Sa1…an is known and prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· is a defeasible reason for 
£PROB(Ra1…an / Ta1…an) = r·. 

Similarly, we get subproperty defeaters: 

Subproperty Defeat for Classical Direct Inference: 
£V 7 S, Va1…an is known, and prob(Rx1…xn/ Vx1…xn & Tx1…xn) ≠ r· is an undercutting 
defeater for the inference by classical direct inference from £Sa1…an is known and 
prob(Rx1…xn/ Sx1…xn & Tx1…xn) = r· to £PROB(Ra1…an / Ta1…an) = r·. 

 Because singular probabilities are generic probabilities in disguise, we can also use nonclassical 
direct inference to infer singular probabilities from singular probabilities. Thus £PROB(P/Q) = r· 
gives us a defeasible reason for expecting that PROB(P/Q&R) = r. We can employ principles of 
statistical independence similarly. For example, £PROB(P/R) = r & PROB(Q/R) = s· gives us a 
defeasible reason for expecting that PROB(P&Q/R) = r⋅s. 

9. Computational Inheritance 
 Suppose we have two seemingly unrelated diagnostic tests for a disease, and Bernard tests 
positive on both tests. We know that the probability of his having the disease if he tests positive on 
the first test is .8, and the probability if he tests positive on the second test is .75. But what should 
we conclude about the probability of his having the disease if he tests positive on both tests? The 
probability calculus gives us no guidance here. Nor does direct inference. Direct inference gives us 
one reason for thinking the probability of Bernard having the disease is .8, and it gives us a 
different reason for drawing the conflicting conclusion that the probability is .75. It gives us no way 
to combine the information. Intuitively, it seems that the probability of his having the disease 
should be higher if he tests positive on both tests. But how can we justify this? 
 This is a general problem for theories of direct inference. When we have some conjunction  !G1 

                                                
12 See chapter six of my (2006) for further discussion of these mixed physical/epistemic probabilities. 
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&…& Gn !  of properties and we want to know the value of prob(F/G1 &…& Gn), if we know that 
prob(F/G1) = r and we don’t know anything else of relevance, we can infer defeasibly that prob(F/G1 
&…& Gn) = r. Similarly, if we know that an object a has the properties G1,…,Gn and we know that 
prob(F/G1) = r and we don’t know anything else of relevance, we can infer defeasibly that PROB(Fa) = r. 
The difficulty is that we usually know more. We typically know the value of prob(F/Gi) for some i 
≠ 1. If prob(F/Gi) = s ≠ r, we have defeasible reasons for both  !prob(F/G1 &…&Gn) = r !  and 
 !prob(F/G1 &…&Gn) = s ! , and also for both  !PROB(Fa) = r !  and  !PROB(Fa) = s ! . As these 
conclusions are incompatible they all undergo collective defeat. Thus the standard theory of direct 
inference leaves us without a conclusion to draw. The upshot is that the earlier suggestion that 
direct inference can solve the computational problem of dealing with singular probabilities without 
having to have a complete probability distribution was premature. Direct inference will rarely give 
us the probabilities we need.  
 Knowledge of generic probabilities would be vastly more useful in real application if there were 
a function Y(r,s) such that, in a case like the above, when prob(F/G) = r and prob(F/H) = s, we could 
defeasibly expect that prob(F/G&H) = Y(r,s), and hence (by nonclassical direct inference) that 
PROB(Fa) = Y(r,s). I call this computational inheritance, because it computes a new value for PROB(Fa) 
from previously known generic probabilities. Direct inference, by contrast, is a kind of 
“noncomputational inheritance”. It is direct in that PROB(Fa) simply inherits a value from a known 
generic probability. I call the function used in computational inheritance “the Y-function” because 
its behavior would be as diagrammed in figure 2. 
 

prob(F/G) = r      prob(F/H) = s 
 
 
 
 
 
 

prob(F/G&H) = Y(r,s) 
 
 

Figure 2. The Y-function 

 It has generally been assumed that there is no such function as the Y-function (Reichenbach 
1949). Certainly, there is no function Y(r,s) such that we can conclude deductively that if prob(F/G) = 
r and prob(F/H) = s then prob(F/G&H) = Y(r,s). For any r and s that are neither 0 nor 1, 
prob(F/G&H) can take any value between 0 and 1. However, that is equally true for nonclassical 
direct inference. That is, if prob(F/G) = r we cannot conclude deductively that prob(F/G&H) = r. 
Nevertheless, that will tend to be the case, and we can defeasibly expect it to be the case. Might 
something similar be true of the Y-function? That is, could there be a function Y(r,s) such that we 
can defeasibly expect prob(F/G&H) to be Y(r,s)? It follows from the Probable Probabilities 
Theorem that the answer is “Yes”. It is more useful to begin by looking at a three-place function 
rather than a two-place function. Let us define:  

 Y(r,s:a) = rs(1! a)

a(1! r ! s) + rs
 

I use the non-standard notation “Y(r,s:a)” rather than “Y(r,s,a)” because the first two variables will 
turn out to work differently than the last variable. 
 Let us define: 

 
B and C are Y-independent for A relative to U iff A,B,C 7 U and 
 (a) prob(C/ B & A) = prob(C/A) 
and 
 (b) prob(C/B & ~A) = prob(C/U & ~A). 
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The key theorem underlying computational inheritance is the following theorem of the probability 
calculus: 

Y-Theorem:  
Let r = prob(A/B), s = prob(A/C), and a = prob(A/U). If B and C are Y-independent for A 
relative to U then prob(A/B&C) = Y(r,s:a). 

In light of the Y-theorem, we can think of Y-independence as formulating an independence 
condition for C and D which says that they make independent contributions to A — contributions 
that “add” in accordance with the Y-function, rather than “undermining” each other. 
 By virtue of the principle of statistical independence, we have a defeasible reason for expecting 
that the independence conditions (a) and (b) hold. Thus the Y-theorem supports the following 
principle of defeasible reasoning:  

Computational Inheritance: 
£B,C 7 U & prob(A/B) = r & prob(A/C) = s & prob(A/U) = a· is a defeasible reason for 
£prob(A/B & C) = Y(r,s:a)·. 

 It should be noted that we can prove analogues of Computational Inheritance for finite sets, 
infinite sets, and probabilities, in essentially the same way we prove the Y-theorem. This yields the 
following principle of expectable values: 

Y-Principle:  
If B,C 7 U, prob(A/B) = r, prob(A/C) = s, and prob(A/U) = a, then the expectable value of 
prob(A/B & C) = Y(r,s:a). 

In the corresponding quadruple of principles, the Finite Y-Principle can be proven directly, or 
derived from the Finite Principle of Agreement. Similarly, the Y-Principle is derivable from the 
Principle of Agreement. Then the Y-Principle for Probabilities is derivable from either the Y-
Principle or from the Principle of Agreement for Probabilities. 
 To get a better feel for what the principle of computational inheritance tells us, it is useful to 
examine plots of the Y-function. Figure 3 illustrates that Y(r,s:.5) is symmetric around the right-
leaning diagonal. 

 
 

Figure 3. Y(z,x:.5), holding z constant 
(for several choices of z as indicated in the key). 

Varying a has the effect of warping the Y-function up or down relative to the right-leaning 
diagonal. This is illustrated in figure 4 for several choices of a.  
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Figure 4. Y(z,x:a) holding z constant (for several 
choices of z), for a = .7, a = .3, a = .1, and a = .01. 

 The Y-function has a number of important properties.13 In particular, it is important that the Y-
function is commutative and associative in the first two variables: 

Theorem 1: Y(r,s:a) = Y(s,r:a). 

Theorem 2: Y(r,Y(s,t:a):a) = Y(Y(r,s:a),t:a). 

 Theorems 1 and 2 are very important for the use of the Y-function in computing probabilities. 
Suppose we know that prob(A/B) = .6, prob(A/C) = .7, and prob(A/D) = .75, where B,C,D 7 U and 
prob(A/U) = .3. In light of theorems 1 and 2 we can combine the first three probabilities in any 
order and infer defeasibly that prob(A/B&C&D) = Y(.6,Y(.7,.75:.3):.3) = Y(Y(.6,.7:.3),.75:.3) = .98. 
This makes it convenient to extend the Y-function recursively so that it can be applied to an 
arbitrary number of arguments (greater than or equal to 3): 

                                                
13 It turns out that the Y-function has been studied for its desirable mathematical properties in the theory of 
associative compensatory aggregation operators in fuzzy logic (Dombi 1982; Klement, Mesiar, and Pap 1996; Fodor, 
Yager, and Rybalov 1997). Y(r,s:a) is the function Dλ(r,s) for λ = 

  

1 ! a

a

 (Klement, Mesiar, and Pap 1996). The Y-

theorem may provide further justif ication for its use in that connection. 
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 If n ≥ 3, Y(r1,…,rn:a) = Y(r1,Y(r2,…,rn:a) :a). 

Then we can then strengthen the Y-Principle as follows:  

Generalized Y-Principle: 
If B1,…,Bn 7 U, prob(A/B1) = r1,…, prob(A/Bn) = rn, and prob(A/U) = a, the expectable value of 
prob(A/ B1 &…& Bn & C) = Y(r1,…,rn:a). 

 If we know that prob(A/B) = r and prob(A/C) = s, we can also use nonclassical direct inference 
to infer defeasibly that prob(A/B&C) = r. If s ≠ a, Y(r,s:a) ≠ r, so this conflicts with the conclusion 
that prob(A/B&C) = Y(r,s:a). However, as above, the inference described by the Y-principle is 
based upon a probability with a more inclusive reference property than that underlying 
Nonclassical Direct Inference (that is, it takes account of more information), so it takes precedence 
and yields an undercutting defeater for Nonclassical Direct Inference: 

Computational Defeat for Nonclassical Direct Inference: 
£A,B,C 7 U and prob(A/C) ≠ prob(A/U)· is an undercutting defeater for the inference from 
£prob(A/B) = r· to £prob(A/B&C) = r· by Nonclassical Direct Inference. 

It follows that follows that we have defeater for the principle of statistical independence: 

Computational Defeat for Statistical Independence: 
£A,B,C 7 U and prob(A/B) ≠ prob(A/U)· is an undercutting defeater for the inference from 

£prob(A/B) = r & prob(A/C) = s· to £prob(A&B/C) = r⋅s· by Statistical Independence. 

 The phenomenon of Computational Inheritance makes knowledge of generic probabilities 
useful in ways it was never previously useful. It tells us how to combine different probabilities that 
would lead to conflicting direct inferences and still arrive at a univocal value. Consider Bernard 
again, who has symptoms suggesting a particular disease, and tests positive on two independent 
tests for the disease. Suppose the probability of a person with those symptoms having the disease is 
.6. Suppose the probability of such a person having the disease is they test positive on the first test 
is .7, and the probability of their having the disease if they test positive on the second test is .75. 
What is the probability of their having the disease if they test positive on both tests? We can infer 
defeasibly that it is Y(.7,.75:.6) = .875. We can then apply classical direct inference to conclude that 
the probability of Bernard’s having the disease is .875. This is a result that we could not have gotten 
from the probability calculus alone. Similar reasoning will have significant practical applications, for 
example in engineering where we have multiple imperfect sensors sensing some phenomenon and 
we want to arrive at a joint probability regarding the phenomenon that combines the information 
from all the sensors. 
 Again, because singular probabilities are generic probabilities in disguise, we can apply 
computational inheritance to them as well and infer defeasibly that if PROB(P) = a, PROB(P/Q) = r, and 
PROB(P/R) = s then PROB(P/Q&R) = Y(r,s:a). 

10. Inverse Probabilities and the Statistical Syllogism 
 All of the principles of probable probabilities that have been discussed so far are related to 
defeasible assumptions of statistical independence. As we have seen, Nonclassical Direct Inference is 
equivalent to a defeasible assumption of statistical independence, and Computational Inheritance 
follows from a defeasible assumption of Y-independence. This might suggest that all principles of 
probable probabilities derive ultimately from various defeasible independence assumptions. 
However, this section turns to a set of principles that do not appear to be related to statistical 
independence in any way. 
 Where A,B 7 U, suppose we know the value of prob(A/B). If we know the base rates prob(A/U) 
and prob(B/U), the probability calculus enables us to compute the value of the inverse probability 
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prob(~B/~A&U): 

Theorem 3: If A,B 7 U then 

  prob(~B/~A&U) = 
  

1 ! prob(A/U) ! prob(B/U) + prob(A/B) "prob(B/U)

1 ! prob(A/U)
. 

However, if we do not know the base rates then the probability calculus imposes no constraints on 
the value of the inverse probability. It can nevertheless be shown that there are expectable values 
for it, and generally, if prob(A/B) is high, so is prob(~B/~A&U). 

Inverse Probabilities I: 
If A,B 7 U and we know that prob(A/B) = r, but we do not know the base rates prob(A/U) 
and prob(B/U), the following values are expectable: 

  prob(B/U) = 
  

.5

r
r (1 ! r)1! r

+ .5
; 

  prob(A/U) = 
  
.5 !

.25 ! .5r

r
r (1 ! r)1! r

+ .5
; 

  prob(~A/~B&U) = .5; 

  prob(~B/~A&U) = 
  

r
r

(1 ! r)r
+ r

r
. 

These values are plotted in figure 5. Note that when prob(A/B) > prob(A/U), we can expect 
prob(~B/~A&U) to be almost as great as prob(A/B). 

 
 

Figure 5. Expectable values of prob(~B/~A&U), prob(A/U), 
and prob(B/U), as a function of prob(A/B), 

when the base rates are unknown. 

 Sometimes we know one of the base rates but not both: 
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Inverse Probabilities II: 
If A,B 7 U and we know that prob(A/B) = r prob(B/U) = b, but we do not know the base rate 
prob(A/U) , the following values are expectable: 

  prob(A/U) = .5(1 – (1 – 2r)b); 

  prob(~A/~B&U) = 
  

.5 + b(.5 ! r)

1 + b(1 ! r)
; 

  prob(~B/~A&U)) = 
  

1 ! b

1 + b(1 ! 2r)
. 

 

 Figure 6 plots the expectable values of prob(~B/~A&U) (when they are greater than .5) as a 
function of prob(A/B), for fixed values of prob(B/U). The diagonal dashed line indicates the value 
of prob(A/B), for comparison. The upshot is that for low values of prob(B/U), prob(~B/~A&U) can 
be expected to be higher than prob(A/B), and for all values of prob(B/U), prob(~B/~A&U) will be 

fairly high if prob(A/B) is high. Furthermore, prob(~B/~A&U) > .5 iff prob(B/U) < 
  

1

3 ! 2r
. 

 
 

Figure 6. Expectable values of prob(~B/~A&U) as a 
function of prob(A/B), when prob(A/U) is 
unknown, for fixed values of prob(B/U). 

 

 The most complex case occurs when we do know the base-rate prob(A/U) but we do not know 
the base-rate prob(B/U): 

Inverse Probabilities III: 
If A,B 7 U and we know that prob(A/B) = r and prob(A/U) = a, but we do not know the base 
rate prob(B/U), then: 
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(a) where b is the expectable value of prob(B/U), 
  

r ! b
a " r ! b

#
$%

&
'(

r

! (1 " r)b

1 " a " (1 " r)b

#
$%

&
'(

1"r

= 1 ; 

(b) the expectable value of prob(~B/~A&U) = 
  

1 !
1 ! r

1 ! a
b . 

The equation characterizing the expectable value of prob(B/U) does not have a closed-form 
solution. However, for specific values of a and r, the solutions are easily computed using hill-
climbing algorithms. The results are contained in figure 7. When prob(A/B) = prob(A/U), the 
expected value for prob(~B/~A) is .5, and when prob(A/B) > prob(A/U), prob(~B/~A&U) > .5. If 
prob(A/U) < .5, the expected value of prob(~B/~A&U) is greater than prob(A/B).  

 
 

 
 

Figure 7. Expectable values of prob(~B/~A&U) as a 
function of prob(A/B), when prob(B/U) is 
unknown, for fixed values of prob(A/U). 

 

 The upshot is that even when we lack knowledge of the base rates, there is an expectable value 
for the inverse probability prob(~B/~A&U), and that expectable value tends to be high when 
prob(A/B) is high. 

11. Meeting Some Objections 
 I have argued that mathematical results, coupled with the statistical syllogism, justify defeasible 
inferences about the values of unknown probabilities. Various worries arise regarding this 
conclusion. A few people are worried about any defeasible (non-deductive) inference, but I 
presume that the last 50 years of epistemology has made it amply clear that, in the real world, 
cognitive agents cannot confine themselves to conclusions drawn deductively from their evidence. 
We employ multitudes of defeasible inference schemes in our everyday reasoning, and the 
statistical syllogism is one of them. 
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 Granted that we have to reason defeasibly, we can still ask what justifies any particular 
defeasible inference scheme. At least in the case of the statistical syllogism, the answer seems clear. 
If prob(A/B) is high, then if we reason defeasibly from things being B to their being A, we will 
generally get it right. That is the most we can require of a defeasible inference scheme. We cannot 
require that the inference scheme will always lead to true conclusions, because then it would not be 
defeasible. People sometimes protest at this point that they are not interested in the general case. 
They are concerned with some inference they are only going to make once. They want to know 
why they should reason this way in the single case. But all cases are single cases. If you reason in 
this way in single cases, you will tend to get them right. It does not seem that you can ask for any 
firmer guarantee than that. You cannot avoid defeasible reasoning. 
 But we can have a further worry. For any defeasible inference scheme, we know that there will 
be at possible cases in which it gets things wrong. For each principle of probable probabilities, the 
possible exceptions constitute a set of measure 0, but it is still an infinite set. The cases that actually 
interest us tend to be highly structured, and perhaps they also constitute a set of measure 0. How 
do we know that the latter set is not contained in the former? Again, there can be no logical 
guarantee that this is not the case. However, the generic probability of an arbitrary set of cases 
falling in the set of possible exceptions is 0. So without further specification of the structure of the 
cases that interest us, the probability of the set of those cases all falling in the set of exceptions is 0. 
Where defeasible reasoning is concerned, we cannot ask for a better guarantee than that. 
 We should resist the temptation to think of the set of possible exceptions as an amorphous 
unstructured set about which we cannot reason using principles of probable probabilities. The 
exceptions are exceptions to a single defeasible inference scheme. Many of the cases in which a 
particular inference fails will be cases in which there is a general defeater leading us to expect it to 
fail and leading us to make a different inference in its place. For example, knowing that prob(A/B) = 
r gives us a defeasible reason to expect that prob(A/B&C) = r. But if we also know that prob(A/C) = 
s and prob(A/U) = a, the original inference is defeated and we should expect instead that 
prob(A/B&C) = Y(r,s|a). So this is one of the cases in which an inference by nonclassical direct 
inference fails, but it is a defeasibly expectable case. 
 There will also be cases that are not defeasibly expectable. This follows from the simple fact that 
there are primitive nomic probabilities representing statistical laws of nature. These laws are novel, 
and cannot be predicted defeasibly by appealing to other nomic probabilities. Suppose prob(A/B) = 
r, but £prob(A/B&C) = s· is a primitive law. The latter is an exception to nonclassical direct 
inference. Furthermore, we can expect that strengthening the reference property further will result 
in nomic probabilities like £prob(A/B&C&D) = s·, and these will also be cases in which the 
nonclassical direct inference from £prob(A/B) = r· fails. But, unlike the primitive law, the latter is a 
defeasibly expectable failure arising from subproperty defeat. So most of the cases in which a 
particular defeasible inference appealing to principles of probable probabilities fails will be cases in 
which the failure is defeasibly predictable by appealing to other principles of probable probabilities. 
This is an observation about how much structure the set of exceptions (of measure 0) must have. 
The set of exceptions is a set of exceptions just to a single rule, not to all principles of probable 
probabilities. The Probable Probabilities Theorem implies that even within the set of exceptions to a 
particular defeasible inference scheme, most inferences that take account of the primitive nomic 
probabilities will get things right, with probability 1. 

12. Conclusions 
 The problem of sparse probability knowledge results from the fact that in the real world we lack 
direct knowledge of most probabilities. If probabilities are to be useful, we must have ways of 
making defeasible estimates of their values even when those values are not computable from 
known probabilities using the probability calculus. Within the theory of nomic probability, limit 
theorems from combinatorial mathematics provide the necessary bridge for these inferences. It 
turns out that in very general circumstances, there will be expectable values for otherwise 
unknown probabilities. These are described by principles telling us that although certain inferences 
from probabilities to probabilities are not deductively valid, nevertheless the second-order 
probability of their yielding correct results is 1. This makes it defeasibly reasonable to make the 
inferences. 
 I illustrated this by looking at indifference, statistical independence, classical and nonclassical 
direct inference, computational inheritance, and inverse probabilities. But these are just illustrations. 
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There are a huge number of useful principles of probable probabilities, some of which I have 
investigated, but most waiting to be discovered. I proved the first such principles laboriously by 
hand. It took me six months to find and prove the principle of computational inheritance. But it 
turns out that there is a uniform way of finding and proving these principles. I have written a 
computer program (in Common LISP) that analyzes the results of linear constraints and determines 
what the expectable values of the probabilities are. If desired, it will produce a human-readable 
proof. This makes it easy to find and investigate new principles. 
 This profusion of principles of probable probability is reminiscent of Carnap’s logical 
probabilities (Carnap 1950, 1952; Hintikka 1966; Bacchus et al 1996). Historical theories of objective 
probability required probabilities to be assessed by empirical methods, and because of the 
weakness of the probability calculus, they tended to leave us in a badly impoverished epistemic 
state regarding probabilities. Carnap tried to define a kind of probability for which the values of 
probabilities were determined by logic alone, thus vitiating the need for empirical investigation. 
However, finding the right probability measure to employ in a theory of logical probabilities 
proved to be an insurmountable problem. 
 Nomic probability and the theory of probable probabilities lies between these two extremes. 
This theory still makes the values of probabilities contingent rather than logically necessary, but it 
makes our limited empirical investigations much more fruitful by giving them the power to license 
defeasible, non-deductive, inferences to a wide range of further probabilities that we have not 
investigated empirically. Furthermore, unlike logical probability, these defeasible inferences do not 
depend upon ad hoc postulates. Instead, they derive directly from provable theorems of 
combinatorial mathematics. So even when we do not have sufficient empirical information to 
deductively determine the value of a probability, purely mathematical facts may be sufficient to 
make it reasonable, given what empirical information we do have, to expect the unknown 
probabilities to have specific and computable values. Where this differs from logical probability is 
(1) that the empirical values are an essential ingredient in the computation, and (2) that the 
inferences to these values are defeasible rather than deductive. 
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