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Abstract

When judging the similarity of two stimuli, people’s ratings often differ depending on the

order in which the comparison is presented (A vs. B or B vs. A). Such directional asymmetries

have typically been demonstrated using complex concepts that have a large number of

semantic features and a standard explanation is that different sets of features are emphasized

depending on the direction of the comparison. In this study, we show that directional asym-

metries in the similarity of simple perceptual stimuli can be predictably manipulated merely

by presenting each member of a pair with different frequency. Participants rated the similarity

of color patches before and after performing an irrelevant training task in which a subset of

colors was presented ten times more frequently than others. The similarity ratings after

training were significantly more asymmetric than the ratings before training. We discuss

the implications of these findings for models of similarity judgment and propose a computa-

tionally explicit explanation based on asymmetries in representational stability. q 2002 Else-

vier Science B.V. All rights reserved.
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1. Introduction

Similarity plays a central role in a variety of cognitive processes. For example,

object recognition is often assumed to require judging the similarity of a perceptual

representation with representations in memory (Biederman, 1987; Ullman, 1989).

Many theories of categorization are based on a similar judgment involving semantic,

rather than perceptual, similarity (Hintzman, 1986; Medin & Schaffer, 1978; Smith,

1995). Even among higher cognitive processes like analogy, similarity plays a

central role (Gentner, 1983; Gentner & Markman, 1997; Ross, 1989; Ross &

Kilbane, 1997). The question of how people judge similarity is clearly of critical

importance in cognitive psychology.

Early models of similarity judgment assumed that similarity could be conceptua-

lized as a metric distance between concepts: similar concepts are nearby in semantic

space, while dissimilar concepts are far apart. A straightforward version of such a

geometric model would predict that similarity judgments would satisfy metric

axioms such as symmetry (i.e. Simða; bÞ ¼ Simðb; aÞ for all a and b). Tversky

(1977) demonstrated, however, that people’s similarity judgments can differ

depending on the direction of the comparison. For example, many people judge

North Korea to be more similar to Red China than Red China to North Korea.

One common account of such directional asymmetries assumes that the surround-

ing context exerts a top-down influence on which features are emphasized, and that

the emphasized features differ depending on the direction of the comparison

(Glucksberg & Keysar, 1990; Medin, Goldstone, & Gentner, 1993; Ortony, 1979;

Ortony, Vondruska, Foss, & Jones, 1985). Accordingly, most of the empirical work

demonstrating similarity asymmetries has used complex, cognitive concepts (e.g.

countries, famous people, animals) that have a large number of semantic features.

On the other hand, Rosch (1975) suggested that similarity asymmetries could arise

from a more fundamental bottom-up asymmetry in the representations themselves.

The idea is that some representations are more prototypical than others, independent

of context, and that they serve as cognitive reference points, that is, as representa-

tions that other stimuli are seen “in relation to”. Rosch hypothesized that non-

prototypical stimuli would be more easily assimilated to (and therefore judged

more similar to) prototypical reference stimuli than vice versa, and that similarity

judgments would therefore exhibit predictable directional asymmetries (see

Tversky, 1977, for a variant of this hypothesis based on salience). According to

this view, similarity asymmetries could arise even with simple perceptual stimuli

that do not have a large number of associated semantic features.

There are a few experiments that suggest that similarity asymmetries can indeed

arise with simple perceptual stimuli. Tversky (1977) found evidence of directional

asymmetries when participants rated the similarity of geometrical forms that varied in

their goodness of form (e.g. how symmetric they were) or that varied in their complex-

ity. Similarly, Rosch (1975) found directional asymmetries using straight lines that

varied in orientation and color patches that varied in hue. In these studies, participants

rated the salient/prototypical stimuli (symmetric forms, complex forms, vertical/hori-

zontal lines, focal colors) to be less similar to non-prototypical stimuli than vice versa.
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One interpretation of such effects is that they reflect an asymmetry in the repre-

sentations themselves. An alternative interpretation is that even similarity asymme-

tries involving simple perceptual stimuli reflect a contextual effect on the weighting of

different features. The idea is that perceptual stimuli might have a number of semantic

associations that differ between prototypical and non-prototypical stimuli. For exam-

ple, focal red might be associated with anger, with stop signs, and with fire whereas

other shades of red might have a different set of associations (or none at all). If so, and

if people do emphasize the features of one stimulus over another depending on the

direction of the comparison (Medin et al., 1993), then one might naturally expect to

observe similarity asymmetries even with simple perceptual stimuli. One appealing

aspect of this interpretation is its parsimony; it accounts for similarity asymmetries

involving both perceptual and semantic stimuli in terms of a single mechanism.

On the other hand, the Rosch (1975) hypothesis that there are asymmetries in the

prototypicality of representations themselves fits very naturally with work in neural

computation that has been developed independently. Neural representations are

typically assumed to correspond to a distributed pattern of activity across a network

of interconnected neurons. Furthermore, communication in such networks is not

unidirectional; rather such networks are recurrent. It is well known that in recurrent

networks, unlike in simpler feed-forward networks, some distributed patterns of

activation are more stable than others (they have lower energy states; Hopfield,

1982, 1984). One natural computational instantiation of the Rosch (1975) notion

of prototypicality (or the Tversky (1977) notion of salience) is that more prototy-

pical/salient stimuli correspond to more stable distributed representations.

Furthermore, the Rosch (1975) hypothesis that non-prototypical stimuli are more

easily assimilated to prototypical stimuli than vice versa maps very naturally onto the

dynamics of recurrent networks. When new input is presented to a recurrent network,

the activation does not immediately assume a new, fixed pattern, but evolves over

time until it settles into a final stable pattern (a so-called attractor pattern). Further-

more, the amount of time it takes the network to settle depends on how similar the

initial and final activation patterns are as well as on their relative stability or strength.

If two patterns are identical then no changes need to be made and the settling time (and

switch cost) is zero. Conversely, if the two patterns are quite dissimilar, then it is

harder for the network to switch between them. In keeping with the Rosch (1975)

assumption that it is easier to assimilate a non-prototypical stimulus to a prototypical

stimulus than vice versa, it is also easier to switch from a less stable (higher energy)

activation pattern to a more stable (lower energy) activation pattern than vice versa.

In short, Rosch’s hypothesis regarding directional asymmetries in similarity ratings

can be naturally instantiated in a recurrent network in which more prototypical stimuli

are represented using more stable distributed patterns and in which the difficulty of

assimilating one stimulus to another is modeled in terms of settling time. We imple-

mented these ideas in a simple simulation to confirm their feasibility (see Appendix A

for details). We repeatedly presented a recurrent network with five activation patterns

and used a correlation-based Hebbian learning rule to modify the connection

strengths. To simulate differences in prototypicality, we presented some of the

patterns more frequently than others, which led the network to develop more stable
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representations for those patterns. The model therefore explicitly predicts that proto-

types are not fixed but can change, which seems to differ from the Rosch (1975) idea of

cognitive reference points and may be more consistent with the Tversky (1977) notion

of salience. (Nosofsky (1988) demonstrated that frequent presentation of color

patches does indeed increase their rated typicality.) Finally, we simulated similarity

judgments by measuring the number of processing cycles the network required to

switch from an initial activation pattern to another target pattern. As expected, the

simulation produced asymmetric similarity judgments: it required fewer processing

cycles to switch from a less stable pattern to a more stable pattern than vice versa.

This computational investigation suggested a way to test whether similarity asym-

metries can arise from representational asymmetries, independent of context effects

on feature weighting. As previously discussed, similarity asymmetries involving

perceptual stimuli could still reflect directional effects on feature weightings,

because perceptual stimuli may have different semantic associations. We therefore

tested whether similarity asymmetries could be influenced by manipulating the

prototypicality/salience of perceptual stimuli, without changing the stimuli them-

selves. If similarity asymmetries are influenced by changes in salience and/or proto-

typicality when the comparisons themselves are identical (same stimuli, same

direction/context), it would suggest that asymmetries in the prototypicality of the

representations themselves can play a role, independent of context.

Based on our simulations, we hypothesized that presenting some stimuli more

frequently than others would influence similarity asymmetries, even if the compar-

isons themselves were identical.1 We asked participants to rate the similarity of

color patches that differed in hue (pre-test). We then manipulated the frequency

of exposure to different hues while participants performed an irrelevant training task

(training). Finally, we again collected similarity ratings on the same hues (post-test).

We predicted that after training, participants would rate the infrequent hues to be

more similar to the frequent hues than vice versa.

2. Methods

2.1. Participants

Forty-five University of Michigan undergraduates from the Introductory Psychol-

ogy Subject Pool participated.
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2.2. Materials and stimuli

Color patches were generated using Adobe Photoshop 5.0. We constructed five

shades of blue (labeled Blue1, Blue2, …, Blue5) and five shades of green (Green1,

…, Green5) by varying Photoshop RGB values (Table 1). The experiment was

conducted on Apple G3 Power Macintosh computers with 17-inch monitors,

1024 £ 768 screen resolution, color depth millions. Participants were seated about

24 inches from the monitor.

2.3. Procedure

The experiment consisted of four parts: a pre-test, a training phase, a post-test, and

a post-experiment questionnaire. During the pre-test, participants rated the similarity

of pairs of color patches on a scale from 0 to 9 (0 ¼ highly dissimilar, 9 ¼ highly

similar). These pairs were presented in a text question to emphasize the direction of

the comparison: “How similar is (color patch 1) to (color patch 2)?” The text was

presented in 48 point Chicago font. Each color patch was 140 £ 140 pixels. The

sentence was centered both horizontally and vertically. The text “Blue1” or

“Green1” (depending on the color) appeared under the first color patch and

“Blue2” or “Green2” appeared under the second in 32 point Chicago font. The

sentence and color patches remained on screen until a response was made. After

each response, the screen was cleared and the next comparison appeared after 500

ms. Comparisons were always between different hues of the same color. Each pair of

hues was presented four times, twice in each direction, for a total of 160 trials. Trials

were randomized except that the same hue was not presented in consecutive trials.

During the training phase, two squares of different sizes but exactly the same hue

were presented, and participants judged which was larger (color was irrelevant).

Participants were instructed to press ‘1’ on the number keypad if the left square was

larger and ‘2’ if the right square was larger. Four different sizes were used:

125 £ 125, 131 £ 131, 138 £ 138, and 144 £ 144 pixels. All four sizes appeared
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Table 1

Photoshop RGB values for the ten color patches in the experiment

Hue Photoshop RGB values

Red Green Blue

Blue1 0 170 255

Blue2 0 122 255

Blue3 0 0 255

Blue4 79 36 255

Blue5 106 36 255

Green1 147 189 34

Green2 99 189 34

Green3 0 189 65

Green4 0 189 100

Green5 0 189 129



with equal probability. The left square appeared at 30% of the screen width, the right

square at 70%, and both were centered vertically.

Two of the blue hues and two of the green hues were presented 110 times each

while the other hues were only presented 11 times each (a 10:1 frequency ratio). Half

of the participants (the 4–5 group, selected at random) were presented with Blue4,

Blue5, Green4, and Green5 frequently and the other hues infrequently. The other

participants (the 1–2 group) were presented with Blue1, Blue2, Green1, and Green2

frequently and the other hues infrequently.2

The post-test was identical to the pre-test in all respects. In a post-experiment

questionnaire, participants were asked to describe any strategies they had adopted, to

indicate whether they had tried to remember previous responses in arriving at

ratings, to indicate if they had any vision problems, to make a guess about the

purpose of the experiment, and to indicate whether they maintained concentration

throughout the experiment.

3. Results

Ten participants who failed to achieve 90% accuracy on size judgments or who

reported on the post-experiment questionnaire a failure to maintain their effort/

concentration throughout the experiment were excluded from the analysis.

Mean similarity ratings were obtained for all possible hue comparisons. Hues seen

frequently during the training portion were labeled trained; those seen infrequently

during training were labeled untrained. A repeated measures ANOVA was

performed that included training group (1–2 group or 4–5 group) as a between-

subjects factor and the following five within-subjects factors: direction (forward

when untrained hue appeared first and trained hue appeared second, backward

when trained hue appeared first), color (blue or green), untrained hue (three values,

one for each of the three untrained hues), trained hue (two values), and test (pre-test

or post-test).

As predicted, presenting some hues more frequently than others during training

increased similarity asymmetries in the post-test relative to the pre-test: the size of

the direction effect (the difference between untrained–trained (forward) compari-

sons and trained–untrained (backward) comparisons) was significantly greater in the

post-test than in the pre-test (left panel of Fig. 1, Fð1; 33Þ ¼ 5:17, P , 0:05). After

training, participants tended to judge less frequent hues to be more similar to more

frequent hues than vice versa (Fð1; 33Þ ¼ 10:92, P , 0:005), but before training the
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comparison’s direction did not significantly affect the rated similarity

(Fð1; 33Þ ¼ 1:32, P . 0:05). The directional asymmetry also exhibited the predicted

increase when the participant groups (1–2, 4–5) and colors (Blue, Green) were

analyzed separately (four graphs on the right of Fig. 1). These analyses lacked the

power of the full analysis (they excluded half the data), but in all four cases the effect

was significant at the 0.10 level and in two of the cases (4–5 group, Blue pairs) it was

significant at the 0.05 level. As expected, training did not lead to significant changes

in similarity asymmetries for trained–trained and untrained–untrained pairs

(Fð1; 33Þ ¼ 0:75, P . 0:05; in such pairs, both members were presented with

equal frequency during training). There were no significant main effects for color

(blue vs. green, Fð1; 33Þ ¼ 0:36, P . 0:05) or for training group (1–2 vs. 4–5,

Fð1; 33Þ ¼ 0:25, P . 0:05), but there was a main effect for test with similarity

ratings being significantly higher in the post-test than in the pre-test

(Fð1; 33Þ ¼ 5:51, P , 0:05).3

4. Discussion

These results demonstrate that manipulating the frequency with which stimuli are

presented can influence directional asymmetries in similarity judgment. As

previously discussed, a standard explanation of similarity asymmetries assumes

that different features are emphasized depending on the direction of the comparison.

Can this hypothesis account for the present results? The major perceptual dimension

along which the color patches differed was their hue.4 Although it is possible that

participants emphasized hue more when making comparisons in one direction rather

than the other, it seems unlikely. Hue was by far the most salient feature, regardless

of the direction of the comparison. It is therefore unlikely that hue was system-

atically de-emphasized when the comparison was made in one direction relative to

the opposite direction.

More importantly, any hypothesis must explain why the frequency manipulation

would lead to changes in the observed asymmetry. Identical color patches were used

in the pre-test and post-test so the changes in the asymmetry cannot be attributed to
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interpretation. Most people consider the trained hues (1 & 2 or 4 & 5) to be non-focal versions of blue

and green (most people consider Blue3 and Green3 (which no one saw frequently) to be the most focal).

Assuming that presenting these non-prototypical hues more frequently does indeed increase their repre-

sentational stability, then the differences in representational stability between these non-prototypes and

more prototypical hues might be expected to be reduced leading to increased similarity ratings overall.

Another possibility is that some subjects realized that they had never been asked to compare identical hues

in the pre-test and therefore re-calibrated their ratings in the post-test to include higher ratings.
4 The color patches probably differed slightly along other perceptual dimensions as well (e.g. saturation,

brightness), because we did not adopt elaborate safeguards to ensure that they did not. (Although the

Photoshop brightness and saturation settings were the same, there is no guarantee that the stimuli on the

screen were perfectly matched.) Perfect matching of the stimuli along these other dimensions was

unnecessary, because the same stimuli were used in the pre-test and post-test and therefore served as

their own control. The observed changes in asymmetry therefore cannot be attributed to perceptual

features of the color patches themselves.



perceptual features of the color patches themselves. One possibility is that partici-

pants explicitly encoded the frequency with which different hues were presented

during the training phase, that this feature was used in the similarity comparisons,

and that it was differentially weighted depending on the direction of the comparison.

This hypothesis could potentially explain both how asymmetries could arise and

why they would depend on the frequency manipulation.

One problem with this hypothesis is that there is no evidence that participants

noticed the frequency with which different hues were presented. During the training

phase (when frequency was manipulated), the participants were performing a size

comparison task that required them to focus on the size of the color patches and to

ignore their hue. To the extent that they succeeded in ignoring hue, they would not

be expected to attend to the difference in frequencies with which the hues were

presented. Consistent with this interpretation, none of the participants mentioned the

frequency manipulation when asked (in the post-experiment questionnaire) what

they thought the experiment had been about or what strategies they had employed.

Alternatively, perhaps asymmetries were indeed due to differential weighting of a

frequency feature, but this feature was encoded implicitly rather than explicitly.

Even under this assumption, it is difficult to explain the direction of the effect that

training had on the observed asymmetry. The assumption by Medin et al. (1993) is

that people emphasize features of the second base/referent concept in a directional

comparison. Under this assumption, frequency would be emphasized in the forward

comparisons (in which the frequent hues appear in the base/referent position) more

than in the backward comparisons. Because the two patches differ in frequency, one
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Fig. 1. Average similarity rating as a function of the direction of the comparison both before and after

exposure frequency was manipulated in an irrelevant size comparison task. The graph on the left shows all

the data collapsed together and the four graphs on the right show the data broken down by color (blue trials

only, green trials only) and by participant group (1–2 group only, 4–5 group only). The directional

asymmetry in similarity ratings (the difference between forward and backward comparisons) was consis-

tently larger after training than before. Forward comparisons refer to trials in which a low frequency color

patch was compared to a high frequency color patch. Backward comparisons refer to trials in which a high

frequency patch was compared to a low frequency patch. Similarity was rated on a 0–9 scale (0 ¼ highly

dissimilar, 9 ¼ highly similar).



might expect that emphasizing frequency would lead to lower similarity ratings and

that the infrequent–frequent pairs (forward comparisons) would therefore be judged

less similar (more distinctive) than the frequent–infrequent pairs (backward compar-

isons). The opposite pattern was observed.

We are not claiming that context plays no role in similarity judgment. Indeed, in

many situations people do appear to emphasize different features depending on the

direction of the comparison (Medin et al., 1993; Ortony et al., 1985). Our point is

rather that asymmetries in the prototypicality and/or salience of representations

themselves may also play a role in similarity asymmetries, independent of context.

A natural explanation of the present results is that the frequency manipulation led to

an asymmetry in the prototypicality or salience of the color representations

(Nosofsky, 1988), and that this representational asymmetry gave rise to the observed

similarity asymmetries. We operationalized this idea in terms of the stability of

different patterns of activation in a recurrent network. This architecture is indepen-

dently motivated by a simple fact about neural computation (namely, that it is

recurrent), it is known to produce some representational states that are more stable

than others (Hopfield, 1982, 1984), and it has been found to be useful in explaining a

variety of other cognitive and neuropsychological phenomena (e.g. Becker,

Moscovitch, Behrmann, & Joordens, 1997; Cree, McRae, & McNorgan, 1999;

Farah, O’Reilly, & Vecera, 1993; Hinton & Shallice, 1991; McClelland & Rumel-

hart, 1981; Mozer & Behrmann, 1990; Mozer, Halligan, & Marshall, 1997; Plaut,

McClelland, Seidenberg, & Patterson, 1996; Plaut & Shallice, 1993; Tanaka, Giles,

Kremen, & Simon, 1998).

Acknowledgements

Thanks to Melissa Carmody, James Christensen, and Jamie Loundy for their help

in administering the experiment and to Todd Stincic and LeeAnn Mallorie for their

help in preparing this manuscript. We also gratefully acknowledge helpful conver-

sations with David Meyer and William Gehring about this manuscript as well as the

constructive comments of three anonymous reviewers. This research was supported

by a grant from the University of Michigan Rackham Graduate School and the

Office of the Vice President for Research.

Appendix A. Recurrent network simulation

A.1. Motivation

How could a recurrent network compute the similarity of two activation patterns

over the same set of units, even in principle? Intuitively, one would like to measure

the degree of overlap between the patterns (are the same units ON in both patterns)

and, although this is trivial to do as an outside observer, it is not at all clear how a

network could do this itself. Even if the network could represent the superposition of

the two patterns at the same time (which is difficult in a recurrent network because
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different patterns compete), there would then be no way to compare them. One

obvious approach is for the network to represent one pattern and then represent

the other. If the patterns overlap substantially then only a few aspects of the pattern

will need to be changed, whereas if the patterns do not overlap much then a lot more

changes will need to be made. Assuming that more changes require more work, then

switching between similar patterns will be easier than switching between dissimilar

patterns. Consequently, the ease of switching between patterns is a natural measure

of similarity. The ease of switching between patterns is also influenced by their

relative stability and it was this realization that led us to explore the possibility that

asymmetries in stability could both predict and explain asymmetries in similarity

ratings. Another independent motivation for the model’s measure of similarity is

that it maps very naturally onto the Rosch (1975) hypothesis that it is easier to

assimilate a non-prototypical concept to a prototypical concept than vice versa.

A.2. Architecture

The neural network architecture consisted of 100 units that were fully intercon-

nected except that units did not have connections to themselves. All the connection

weights between the units were initialized to 0. In addition to receiving input from

the other units in the network, each unit also received an external input signal

making it possible to control the external input to the network.

Network activity was updated synchronously at each time point t according to the

following sigmoid function:

AðtÞ ¼ 1=ð1 1 e2ðNetInputðtÞ2BiasÞÞ

A(t), NetInput(t), and Bias are all column vectors with 100 rows (one row per unit).

A(t) represents the activation level of each unit at time point t and NetInput(t)

represents the net input to each unit at time point t. This function produces activa-

tions that vary between 0 (when the NetInput to a unit is very negative) and 1 (when

the NetInput is much larger than Bias, which was set to 5 for all units). When

NetInput equals Bias, the resulting activation is 0.5. The Bias term is therefore a

kind of threshold: when NetInput exceeds Bias, the activation is between 0.5 and 1,

but when it does not the activation is between 0 and 0.5.

The NetInput to each unit at each time point t is the sum of the external input plus

the activity of all the other units weighted by the strength of the connection linking

them to the target unit:

NetInputðtÞ ¼ ExternalInput 1 WeightspAðt 2 1Þ

Here ExternalInput is a 100-row column vector representing the external input to

each unit, Weights is a 100 £ 100 matrix in which the entry at position (i,j) repre-

sents the connection strength from unit j to unit i, A(t 2 1) is the activation vector at

the previous time point t 2 1, and the * represents matrix multiplication.
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A.3. Learning

After each processing cycle, the connections between the units were modified

according to a correlation-based Hebbian learning rule. First, the activation of each

unit was converted to a (21,1) scale reflecting percentage above/below a baseline

activation level of 0.5 (by subtracting 0.5 from the activity and multiplying by 2).

Next, for each pair of units, the product of these scaled activations was computed.

This product ranged between 21 and 1 depending on the relationship between the

scaled activations: if both were very active or very inactive then the product would

be close to 1; if one were very active and the other were very inactive, then the

product would be close to 21. The product was then compared to the current

connection strength between the units. If the product of the scaled activations was

larger than the current connection strength, then the connection strength was

increased by a proportion of the difference (controlled by a PositiveLearningRate

parameter). Conversely, if the current connection strength was larger than the

product, then the connection strength was weakened (controlled by NegativeLear-

ningRate, always significantly smaller than PositiveLearningRate so that associa-

tions would get learned faster than they would be forgotten). These modifications in

connection strength were scaled by the amount of positive activation in the presy-

naptic unit so that the presynaptic unit’s activation had to be above baseline for a

connection’s strength to be modified.

A.4. Training

We trained the network by repeatedly presenting five patterns on the external

input lines. These patterns were all variants of a single prototype pattern that had ten

arbitrary units active (1.0) and the other 90 units inactive (0.0). Each of the five

training patterns had one of the active units in the prototype pattern turned off and

one of the inactive units turned on. We adopted this approach for two reasons. First,

we assumed that the patterns corresponded to specific examples of the same cate-

gory (e.g. different shades of blue) and would therefore be quite similar to each

other. That is why we used patterns that share a number of units. Second, we wanted

to be sure that all the patterns were equally stable before the frequency manipulation

was instituted (so that differences in stability after the frequency manipulation could

be unambiguously attributed to that manipulation). By making all of the patterns

equidistant from a prototype pattern, we ensured that none would be more stable

than any other to begin with.

These five patterns were presented to the network one at a time via the external

input lines to each unit and this input was weighted very strongly (connection

weights fixed at 20) so that the input pattern would be guaranteed to be instantiated

after a single processing cycle. After the presentation of each input pattern, the

connections between units were modified according to the correlation-based learn-

ing algorithm described previously and the activation was then reset to zero in all the

units. These five patterns were each presented once, in the same order, in each
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training epoch and the total number of training epochs varied from 50 to 200 in

different simulations.

After the initial training in which the five patterns were presented equally

frequently, we then adopted a skewed training regimen in which two of the five

patterns were presented more frequently than the other three. In each training epoch,

the three lower frequency patterns were presented once, and the two higher

frequency patterns were presented five, ten, or 20 times in different simulations.

The total number of these extra training epochs varied between one and five in

different simulations. Our goal was to investigate whether manipulating frequency

would lead to asymmetries

A.5. Testing

After training, we measured the number of processing cycles that the simulation

required to switch from a higher frequency pattern to a lower frequency pattern and

vice versa. We did this by first initializing the network in one of the higher frequency

patterns, setting the external input to be one of the lower frequency patterns, and

then counting the number of processing cycles the simulation required to converge

(the convergence criterion was based on the square root of the sum of squared

differences between previous and current activations being less than 0.001). Next,

we initialized the network in one of the lower frequency patterns, set the external

input to be one of the higher frequency patterns, and again counted the number of

processing cycles the simulation required to converge.

We ran a variety of simulations in which we varied the PositiveLearningRate (0.1,

0.2, and 0.4), the ratio between the PositiveLearningRate and NegativeLearningRate

(six, eight, and ten), the number of initial training epochs in which all five patterns

were presented equally frequently (50, 100, and 200), the number of extra training

epochs in which two of the patterns were presented more frequently than the other

three (one, two, and five), and the ratio of the higher frequency patterns to the lower

frequency patterns in these extra training epochs (five, ten, and 20).

A.6. Results

The simulation consistently produced a directional asymmetry in switch cost: it

required more processing cycles to switch from the more frequently trained pattern to

the less frequently trained pattern than vice versa. Indeed, in the parameter space we

searched, there were only two parameter settings that failed to produce this asymme-

try (in both settings: PositiveLearningRate ¼ 0:1, NegativeLearningRate ¼ 0:01,

and initial training epochs ¼ 50; in one of the settings, the number of extra training

epochs ¼ 1 and the ratio of higher to lower frequency patterns ¼ 10; in the other

setting, the number of extra training epochs ¼ 2 and the ratio of higher to lower

frequency patterns ¼ 5). For both of these parameter settings, the simulation required

the same number of cycles (six) to switch between patterns in both directions. It

appears that the lack of an asymmetry in these cases was an artifact of the specific

convergence threshold that we adopted: when switching from the higher frequency

pattern to the lower frequency pattern, the simulation barely managed to pass the
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convergence threshold after six cycles whereas in the other direction it had barely

failed to pass the threshold after five cycles. When we relaxed the convergence

threshold (square root of sum of squared differences less than 0.01 instead of

0.001), both of these parameter settings also produced the asymmetry.

A.7. Discussion

One way of thinking about stability in recurrent networks is to consider a network

of just two units and the connections between them. If the connections are excita-

tory, then the pattern in which both these units are ON will tend to be more stable

than a pattern in which one unit is ON and the other is OFF. Indeed, if either unit is

ON then it will excite the other unit and turn it ON as well. Consequently, with these

connection strengths, the ON–ON pattern is stable whereas the ON–OFF pattern

cannot survive without strong external input (it is extremely unstable). Furthermore,

assuming a Hebbian learning rule like the one we used, each time the ON–ON

pattern is presented it will make the connections between the units even more

excitatory, making this pattern even more stable. Exposure frequency therefore

increases stability. In the case of multiple interconnected units, one can think of

the connection strengths as soft constraints (excitatory connections want units to

have the same value, inhibitory connections do not want both units to be ON). A

pattern’s stability then corresponds to how many constraints it satisfies (and with

many units/connections, not all of the constraints have to be satisfied for a pattern to

be stable). With each presentation of a pattern, Hebbian learning makes small weight

changes that tend to lead more constraints to be satisfied, and so exposure frequency

tends to increase stability.

This analysis can also provide insight into how changes in stability influence

asymmetries in the time to switch between patterns. Suppose the network is

currently representing a pattern that is relatively stable and then receives input

that votes for a new pattern that is significantly less stable. Because the initial pattern

is stable, it requires more work (and more time) to overcome all the activation that is

reverberating within the network itself and move to the new pattern. Conversely,

switching to a stable pattern is easy (and fast) because once it gets started, the

network itself helps out. For example, in the two-unit network described previously,

the network will spontaneously move to the ON–ON pattern (it is easy and fast)

whereas it would take significant external input to overcome the internal weights and

make it stay in an ON–OFF pattern.
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