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Abstract: We study political in�uence in institutions where members choose from among several options

their levels of support to a collective goal, these individual choices determining the degree to which the goal is

reached. In�uence is assessed by newly de�ned binary relations, each of which compares any two individuals on

the basis of their relative performance at a corresponding level of participation. For institutions with three levels

of support (e.g., voting games in which each voter may vote "yes", "abstain", or vote "no"), we obtain three

in�uence relations, and show that the strict component of each of them may be cyclical. The cyclicity of these

relations contrasts with the transitivity of the unique in�uence relation of binary voting games. Weak conditions

of anonymity are su¢cient for each of them to be transitive. We also obtain a necessary and su¢cient condition

for each of them to be complete. Further, we characterize institutions for which the rankings induced by these

relations, and the Banzhaf-Coleman and Shapley-Shubik power indices coincide. We argue that the extension

of these relations to �rms would be useful in e¢ciently allocating workers to di¤erent units of production.

Applications to various forms of political and economic organizations are provided.

Keywords and Phrases: Level-based in�uence relations, Multi-choice institutions, cyclicity, anonymity,

transitivity
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1 INTRODUCTION

We study political in�uence in institutions where members choose from among several options their levels

of support to a collective goal, these individual choices determining the degree to which the goal is reached.

There have been generally two approaches to this question. The �rst approach is quantitative, and it consists of

assigning to each individual a numerical value measuring his power. It dates back to Penrose�s (1946) pioneering

work on voting power, and it has been widely adopted by most of the subsequent researches in the �eld (see, e.g.,

Shapley and Shubik 1954; Banzhaf 1965; Rae 1969; Coleman 1971; Deegan and Packel 1978; Holler and Packel

1983; Di¤o Lambo and Moulen 2000; Moulen and Di¤o Lambo 2001; also see Andjiga, Chantreuil and Lepelley

(2003) for a complete review of the literature on numerical power theories). The second approach introduced by

Isbell (1958) is qualitative. It consists of a binary relation called "replacement relation" or "in�uence relation",

which ranks players according to their a priori in�uence in a vote.1 The two approaches have been essentially

developed in the basic framework of binary voting games, where a voter may only vote "yes" or "no" (see, e.g.,

Laruelle and Valenciano 2001; Carreras and Freixas 2005; Freixas and Pons 2008).

In this paper, we extend the notion of in�uence relation to institutions that account for more than two levels

of participation. The concept of (u; v) simple games serve as a useful mathematical model for such institutions

(Freixas and Zwicker 2003). These are games in which players choose from among u options their levels of

support to a collective goal, these individual choices partitioning all the society into u coalitions, and each

possible partition facing v levels of collective approval in the output; u and v are linearly ordered.2 This class

of games emerged from the observation that in real life, several levels of participation in public decisions or

collective productions are often observed.3 The model of (u; v) simple games builds on and generalizes the

notion of binary voting games where each voter may vote "yes" or "no", the �nal outcome being "win" or "lose"

depending on whether the �nal bipartition resulting from individual choices is "winning" or "losing" (u = v = 2)

(von Neumann and Morgenstern 1944); it also generalizes the model of voting games with abstention (VGAs)

(u = 3 and v = 2) proposed by Rubinstein (1980) and Felsenthal and Machover (1997).4 Felsenthal and

Machover (1997) generalized the Banzhaf-Coleman and Shapley-Shubik power indices to VGAs, and Freixas

1Also see Maschler and Peleg (1966), Allingham (1975) and Taylor (1995).
2These games are monotonic in the sense that a player who increases his support to a collective goal also increases the degree

to which the goal is achieved, which degree is measured by one of the v values.
3For instance, in a presidential election opposing the status quo to a challenger, a voter may vote "for" or "against" the challenger,

or may "abstain" (u = 3); the �nal outcome is the victory or the defeat of the challenger (v = 2); allowing for the possibility of the
two candidates being tied implies v = 3. One may also be interested in the magnitude of a victory or defeat. The challenger may
lose, be tied with the status quo, or win by a weak, strong, or overwhelming margin (v = 5).
Another example of a game with several possible levels of participation is a public goods game consisting of raising $1M to build

a bridge. Each member of the community may contribute up to $1M (u = 106 + 1 if one can only contribute a multiple of $1), the
�nal outcome being the construction of the bridge if the necessary funds are raised, or its postponement if not (v = 2).

4Prior to the introduction of the more general models of VGAs by Rubinstein (1980) and Felsenthal and Machover (1997),
Fishburn (1973) had already modeled "abstention" as an intermediate option to "yes" and "no", but his study was restricted to
self-dual weighted voting games.
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(2005a,b) further generalized these notions to (u; v) simple games. As mentioned earlier, we extend the concept

of in�uence relation to (u; v) simple games, and study its properties for VGAs.

In de�ning the notion of in�uence relation in (u; v) simple games, we exploit the u possible levels of support

from which a player can choose, and the u(u�1)
2 possible ways by which an upward shift in the level of support

of a player within a u-partition can increase the collective value of the resulting u-partition. Formally, a player

i is said to be at least as in�uential or desirable as a player j at levels (s; r) if given that i and j have the

same level of support s in any u-partition S1, the increase in the value of the u-partition S2 resulting from an

upward shift of i from s to r must be larger than the increase in the value of the u-partition S 02 resulting from

an identical shift of j. We obtain u(u�1)
2 in�uence relations in total.5 For binary voting games (u = v = 2), we

therefore have a unique in�uence relation, which is de�ned as follows: a player i is at least as in�uential as a

player j if whenever j can transform a losing coalition S1 into a winning coalition by joining it, player i can do

the same ceteris paribus.67 In a VGA (u = 3) we obtain three distinct relations.8

We study the properties of the in�uence relations of VGAs. The symmetric components of these relations are

re�exive, symmetric, but not transitive in general (Proposition 3). So, none of them is an equivalence relation in

general, unlike the in�uence relation of binary voting games. Their strict components are not transitive either.

More interestingly, they may be cyclical: it might be the case that for each of these relations, a player i is more

in�uential than another player j, j is more in�uential than another player k, and k is more in�uential than i

(Proposition 4). This property, referred to as the "paradox of power", is somewhat reminiscent of the "paradox

of voting", which depicts a form of political instability (Condorcet 1785; also see Tchantcho et al. (2009) on

the stability of multi-choice institutions). None of these in�uence relations is therefore a preorder. But we show

that each of them becomes a preorder under a corresponding condition of level-based anonymity (Proposition

5).9 None of these relations is complete either, however we obtain a complete characterization of VGAs for

which each of them is complete (Proposition 6). These �ndings inspire a characterization of VGAs for which

each of these relations is a complete preorder (Theorem 1). We explain the cyclicity of the strict components

of these relations. Combining all the three relations leads to a more conservative generalization of the in�uence

5We call these relations (s; r)� in�uence relations or level-based in�uence relations.
6Note that a coalition S uniquely identi�es with the bipartition (S;N nS) so that joining S is equivalent to departing from N nS.
7This unique relation is the one that was discovered by Isbell (1958), generalized to any cooperative game by Maschler and

Peleg (1966), and later studied by Allingham (1975) and Taylor (1995). Our de�nition therefore can be viewed as a generalization
of Isbell�s.

8These three relations are combined into a single relation in a companion paper (Tchantcho et al. 2008). As we will see, the
level-based in�uence relations proposed here and the combined relation in Tchantcho et al. have very di¤erent properties and
appeal, so that the two studies complete each other. Also, referring to an earlier version of the current paper (Pongou et al.
2007), we acknowledge in Tchantcho et al. that a unique feature the level-based in�uence relations is that they make it possible to
examine the relative in�uence of a player at intermediate levels of participation in a multi-choice institution. We also argue that
the extension of these relations to �rms are useful in e¢ciently allocating workers to di¤erent units of production.

9Level-based anonymity means that voters play interchangeable roles only at certain levels of support. For instance, a VGA is
anonymous at the levels (s; r) if in any tripartition, switching two voters whose levels of support are s and r respectively does not
change the value of the resulting tripartition. This notion of anonymity is a weakening of the one proposed in a recent study by
Freixas and Zwicker (2009).
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relation, which is intransitive, but is not cyclical (see Tchantcho et al. 2008).

Along the line of Tomiyama (1987), Di¤o Lambo and Moulen (2002) and Tchantcho et al. (2008), we conduct

an ordinal comparison of four in�uence relations (the three obtained in this study and the combined relation in

Tchantcho et al.) with the preorderings (SS) and (BC) induced on the set of players by the Shapley-Shubik and

Banzhaf-Coleman power indices (Felsenthal and Machover 1997, Freixas 2005a, Freixas 2005b).10 We provide a

partial characterization of VGAs for which all these power theories are ordinally equivalent (Theorem 2).11

Finally, we provide some applications of the in�uence relations to real-life instances of VGAs. Applications

to the United Nations Security Council show that while a permanent member of the Council is overall more

in�uential than a non-permanent or a rotating member, this domination does not hold at all levels of support.

This is also true for the United States Senate where a senator is overall more in�uential than the vice-president,

but not at all levels. This highlights the relative usefulness of the level-based in�uence relations in accurately

describing the structure of power in an organization.

The remainder of this paper is organized as follows. We introduce some notation and preliminary de�nitions

in Section 2. The extensions of the in�uence relation to (u; v) simple games are presented in Section 3. Their

properties for VGAs are studied in Section 4. In Section 5, we introduce a further generalization of the in�uence

relation, and study the ordinal equivalence of power theories in Section 6. Applications of the in�uence relations

to real-life examples of VGAs follow in Section 7. Finally, we discuss and conclude our study in Section 8.

2 Preliminaries

In this section, we introduce some notation and preliminary de�nitions. The set N denotes a non-empty �nite

set of players. A non-empty subset of N is called a coalition, and the set 2N denotes the set of coalitions. For

any set E; jEj denotes the cardinality or the number of elements of E. Following Freixas and Zwicker (2003),

an ordered u�partition of N is a sequence S = (S1; S2; :::Su) of mutually disjoint subsets of N whose union is

N . The subset Sl (l 2 Iu) refers to the set of players of N whose vote approval level is l, and may be empty.

The members of S1 and Su respectively have the highest and the lowest degree of support. We denote by N
u

the set of all ordered u�partitions of N . If S1;S2 2 N
u, we write S1 �

u S2 to mean that either S1 = S2 or S1

may be transformed into S2 by shifting one or more players to higher levels of support.

A (u; v) hypergraph G = (N;V ) consists of a �nite set N together with a value function V : N u !

fw1; w2; :::; wvg where fw1; w2; :::; wkg is the value set of G whose elements are any v objects equipped with a

10The works of Tomiyama (1987) and Di¤o and Moulen (2002) have inspired several other studies on the topic of ordinal
equivalence and the subject of achievable hierarchies (Carreras and Freixas 2008; Freixas and Pons 2008; Bean et al. 2008;
Friedman et al. 2006), but all have been conducted in the basic framework of binary voting games.
11Tchantcho et al. (2008) compare the preorderings (SS) and (BC) with the combined in�uence relation; so our contribution in

this regard is in providing a basis for the ordinal equivalence of six relations, which is a richer result.
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strict linear ordering w1 � w2 � ::: � wv. For any ordered u�partition S1 and S2, V (S1) � V (S2) means that

the degree to which a collective goal is reached when S2 forms is at least as high as when S1 forms. � and

~~ denote respectively the strict and symmetric components of �. To illustrate this de�nition of �, consider

an absolute majority voting system where everyone votes "yes" or "no"; a candidate who is elected with the

support of 100% of the electorate (S2 = (N; ;)) enjoys a higher degree of collective support than a candidate

who is elected with the support of 55% of the electorate (S1 = (S1; S2) with
jS1j
jN j =0.55 and jS2j

jN j =0.45).

De�nition 1 : Let u; v � 2. A (u; v) simple game is a (u; v) hypergraph G = (N;V ) which is monotonic : that

is, for all ordered u�partition S1 and S2, if S1 �
u S2 then V (S1) � V (S2).

In a (u; v) simple game, each player expresses one of the u possible levels of input support, and the output

consists of one of the v possible levels of collective support.

It will be useful in the sequel to de�ne the notions of simple games (or binary voting games) and voting

games with abstention.

De�nition 2 A simple game is a couple G = (N;V) where V is a non-empty subset of 2N representing the set

of winning coalitions or majorities such that: 8S; T 2 2N , (S 2 V and S � T )) T 2 V. G is said to be proper

if 8S 2 2N , S 2 V ) N n S =2 V.

In a simple game, one may only vote "yes" or "no" (u = 2), the outcome being "win" or "lose" (v = 2). Note

a coalition S uniquely identi�es with the bipartition (S;N n S), so that V can be de�ned as the set of winning

bipartitions. A simple game is therefore a (2; 2) simple game.

Pose N = f(S1; S2) =S1 � N;S2 � N and S1 \ S2 = ;g. We recall below the de�nition of a social decision

system, a model of VGAs introduced by Rubinstein (1980).

De�nition 3 A social decision system (SDS) is a couple H = (N;W) where W is a subset of N satisfying

the following properties:

(i)W 6= ;

(ii) 8(S1; S2); (T1; T2) 2 N , if (S1; S2) 2 W; S1 � T1 and S1 [ S2 � T1 [ T2, then (T1; T2) 2 W.

(iii) 8(S1; S2) 2 N , (S1; S2) 2 W ) (N n (S1 [ S2); ;) =2 W.

In an SDS, one may vote "yes", "no" or "abstain" (u = 3), resulting in a tripartition (S1; S2; N n (S1 [ S2))

which is "winning" if (S1; S2) 2 W or "losing" if not (v = 2). S1, S2 and N n (S1 [ S2) are respectively the

set of "yes" voters, abstainers, and "no" voters. (ii) is the condition of monotonicity, and (iii) is a condition

of properness, which implies that when a tripartition is decisive or winning, its complementary set cannot be

decisive.
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We also recall the notion of ternary voting games introduced by Felsenthal and Machover (1997) as another

model of VGAs.

De�nition 4 : A tripartition or ternary division of N is a map S from N to the set {-1, 0, 1}. The inverse

image of {-1}, {0} and {1} under S are respectively :

S3 = fi 2 N : S(i) = �1g, S2 = fi 2 N : S(i) = 0g and S1 = fi 2 N : S(i) = 1g.

A ternary voting game (TVG) on N is a mapping U from the set {-1, 0, 1}N of all tripartitions of N to

{-1, 1} such that :

(1) If S is the tripartition such that S3 = N; then U(S) = �1.

(2) If S is the tripartition such that S1 = N; then U(S) = 1:

(3) If S and T are two tripartitions such that 8i 2 N; S(i) � T (i), then U(S) � U(T ).

A tripartition S uniquely identi�es with (S1; S2; S3); which under the mapping U can be a losing tripartition

(i.e. U((S1; S2; S3)) = �1) or a winning tripartition (i.e. U((S1; S2; S3)) = 1)). S1, S2 and S3 are respectively

the set of "yes" voters, abstainers, and "no" voters.

We note that the notion of TVGs relaxes the properness condition of an SDS, and thus is more general.12

We will refer to an SDS as a proper VGA and to a TVG as a VGA (note however that we shall not really need

the properness condition of an SDS in the sequel). Also, given that a tripartition (S1; S2; S3) uniquely identi�es

with the couple (S1; S2), in the sequel, we shall abuse language and call (S1; S2) a tripartition as well.

A tripartition (S1; S2) 2 W is said to be a minimal winning tripartition if 8(K1;K2) 2 N such that K1 � S1

and K1 [ K2 � S1 [ S2, if (K1;K2) 6= (S1; S2), then (K1;K2) =2 W. We denote by Wm the set of minimal

winning tripartitions.

3 The In�uence relations of (u; v) simple games

In this section, we introduce the notion of in�uence relation in a (u; v) simple game, present an illustration of

this concept, and show how it generalizes the in�uence relation of binary voting games.

3.1 De�nition

Let S = (S1; S2; :::Su) be a u-partition of N , r; s 2 Iu two levels of support with r < s, and i; j 2 N two

players. We write (S(i(s))i2N ) to mean that i is in the coalition Ss of the u-partition S; S(i(s! r)) to denote

the u-partition resulting from i shifting from s to r, and S(i(s! r); j(s)) to denote the u-partition in which i

12Condition (iii) of De�nition 2 is a properness condition absent in De�nition 3. We also observe that (ii) and (3) are equivalent.
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shifts from s to r and j supports at level s: We will say that i is at least as (s; r)� in�uential than j in a (u; v)

simple game G if i and j having the same initial level of approval s in any u-partition S, the increase in the

value of the u-partition S1 resulting from i shifting from s to r is at least as large as the increase in the value

of the u-partition S 01 resulting from an identical shift by j. This de�nition is formalized as follows.

De�nition 5 Let G = (N;V ) be a (u,v) simple game and i and j two players.

1) i is said to be at least as (s; r)� in�uential as j; denoted i �Tsr;G j; if for any u-partition S such that

i; j 2 Ss, V (S(i(s); j(s! r)) � V (S(i(s! r); j(s)):

2) i is said to be as (s; r)� in�uential as j; denoted i �Tsr;G j; if i �Tsr;G j and j �Tsr;G i:

3) i is said to be more (s; r)�in�uential than j; denoted i >Tsr;G j; if i �Tsr;G j and non(j �Tsr;G

i):

In 1), V (S(i(s); j(s ! r)) � V (S(i(s ! r); j(s)) expresses the requirement that the marginal contribution

of i measured by the shift from s to r be at least as large as that of j after an identical shift ceteris paribus.

�Tsr;G and >Tsr;G denote respectively the symmetric and the strict components of �Tsr;G. Given that only

unidirectional upward shifts are relevant, we have in total u(u�1)2 (s; r)� in�uence relations, that we also call

level-based in�uence relations.

In a (2, 2) simple game, we thus have the unique in�uence relation of simple games introduced by Isbell

(1958), and in a VGA, we have three relations, that we de�ne more explicitly below.

De�nition 6 Let H = (N;W) be a VGA, and i and j two players.

1) i is said to be at least as (3; 1)� in�uential as j; denoted i �T31;H j; (or i �T31 j for short), if 8(S1; S2) 2 N

such that i; j =2 S1 [ S2, (S1 [ fjg; S2) 2 W ) (S1 [ fig; S2) 2 W:

2) i is said to be at least as (3; 2)� in�uential as j; denoted i �T32 j; if 8(S1; S2) 2 N such that i; j =2 S1[S2,

(S1; S2 [ fjg) 2 W ) (S1; S2 [ fig) 2 W:

3) i is said to be at least as (2; 1)� in�uential as j; denoted i �T21 j; if 8(S1; S2) 2 N such that i; j =2 S1[S2,

(S1 [ fjg; S2 [ fig) 2 W ) (S1 [ fig; S2 [ fjg) 2 W:

4) Let r; s 2 I3 such that r < s. i is said to be as (s; r)� in�uential as j; denoted i �Tsr j; if i �Tsr j and

j �Tsr i:

5)Let r; s 2 I3 such that r < s. i is said to be more (s; r)� in�uential than j; denoted i >Tsr j; if i �Tsr j

and non(j �Tsr i):

Interpretation : A player i is said to be at least as (3; 1)� in�uential as a player j if whenever j can

transform a tripartition (S1; S2) into a winning tripartition by shifting from total disapproval to total approval
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((S1 [ fjg; S2; S3 n fjg) 2 W), player i can do the same by an identical shift ((S1 [ fig; S2; S3 n fig) 2 W). i

is said to be at least as (3; 2)� in�uential as j if whenever j can transform a tripartition (S1; S2) by shifting

from total disapproval to abstention, i can do the same by an identical shift. i is said to be at least as (2; 1)�

in�uential as j if whenever j can transform a tripartition (S1; S
�
2 ) where S

�
2 = S2 [ fi; jg and i; j =2 S2 (i and j

are initially abstainers in the tripartition (S1; S
�
2 )) into a winning tripartition by shifting from total disapproval

to abstention, i can do the same by an identical shift.

3.2 An illustrating example

Below is an illustration of the (s; r)� in�uence relations in the context of the United States Senate.

Example 1 The United States Senate (USS) contains 100 senators and the vice-president of the United States

who leads the Senate. Voting rules vary depending on the nature of the decision to be made. In the case of

passing an ordinary bill or amendment, which is the case that we consider here, a decision is made when the

number of senators who cast a "yes" vote is strictly greater than the number of senators who cast a "no" vote,

and vice-versa; in case of equality, the vice-president (vp for short) casts a tie-breaking vote. This social choice

context is a voting game with abstention modelled by Freixas and Zwicker (2003) as follows:

Let S = (S1; S2; S3) be an ordered 3-partition of N (N = USS):

VUSS(S) =

8

<

:

win if jS1j > jS3 n fvpgj

lose otherwise.

We have the following structure of power among the members of the Senate yielded by the (s; r)� in�uence

relations :

8fi; jg � N n fvpg;

(1) i >T31 vp and i �T31 j.

(2) i >T32 vp and i �T32 j.

(3) i �T21 vp and i �T21 j.

We note that while a senator is more in�uential than the vice-president at levels (3,1) and (3,2), both are

equally in�uential at levels (2,1). This illustrates the usefulness of the (s; r)� in�uence relations in providing a

full picture of power relations among the members of the Senate.

3.3 (s; r)�in�uence relations of VGAs as generalizations

We show that the (3; 2)�in�uence relation and the (3; 1)�in�uence relation of VGAs generalize the in�uence

relation of binary voting games. We need a few preliminary de�nitions.
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Let H = (N;W) be a VGA satisfying : 8(S; T ) 2 W, 8L � N n S, (S;L) 2 W. Thus, the coalition S of

any winning tripartition (S;L) has absolute power. This power is equivalent to the power enjoyed by a winning

coalition of a simple game. This comparison inspires the following de�nition of a simple VGA.

De�nition 7 A VGA is simple if : 8(S; T ) 2 W, 8L � N n S, we have (S;L) 2 W.

Let G = (N;V) be a simple game. We associate to G the couple HG = (N;WV) where WV is de�ned

as WV = f(S; T ) 2 N n S 2 V and T � N n Sg. Conversely, we associate to a VGA H = (N;W) the list

GH = (N;VW ) where VW is de�ned as VW = fS 2 2N j 8T � N n S, (S; T ) 2 Wg. Tchantcho et al. (2008)

show that if H is a proper VGA, then GH is a proper simple game, and that a necessary and su¢cient condition

on G for HG to be a proper VGA is that G be proper.

We show below that the (3; 2)�in�uence relation and the (3; 1)�in�uence relation generalize the in�uence

relation of simple games.

Proposition 1 For any players i; j 2 N , we have :

(1) i �T;G j () i �T31;HG
j.

(2) i �T;G j ) i �T32;HG
j.

(3) i �T;G j () i �T21;HG
j.

Proof : (1) Assume that s=3 and r=1. Suppose that i �T31;HG
j in (N;WV) and show that i �T;G j. Suppose

S 2 2N such that i; j =2 S and S [ fjg 2 V. Then (S [ fjg; ;) 2 WV . But i; j =2 S = S [ ;, i �T31;HG
j; and

(S [ fjg; ;) 2 WV imply (S [ fig; ;) 2 WV ; implying S [ fig 2 V.

Suppose now that i �T;G j and let show that i �T31;HG
j. Suppose (S1; S2) 2 N such that i; j =2 S1[S2 and

(S1 [ fjg; S2) 2 WV . It follows from the de�nition of WV that S1 [ fjg 2 V, therefore implying S1 [ fig 2 V

because i; j =2 S1 and i �T;G j: But S1 [ fig 2 V implies (S1 [ fig; S2) 2 WV by the de�nition of WV since

S2 � (N n [S1 [ fig]):

(2) Assume that s=3 and r=2. Suppose now that i �T;G j and let show that i �T32;HG
j. Suppose

(S1; S2) 2 N such that i; j =2 S1 [S2 and (S1; S2 [fjg) 2 WV . It follows from the de�nition of WV that S1 2 V,

therefore implying that (S1; S2 [ fig) 2 WV by the de�nition of WV .

(3) Assume that s=2 and r=1. Suppose that i �T21;HG
j in (N;WV) and let show that i �T;G j. Suppose

S 2 2N such that i; j =2 S and S [ fjg 2 V. Then (S [ fjg; ;) 2 WV , which implies (S [ fjg; fig) 2 WV . But

i; j =2 S = S [ ;, i �T21;HG
j and (S [ fjg; fig) 2 WV imply (S [ fig; fjg) 2 WV ; implying S [ fig 2 V.

Suppose now that i �T;G j and let show that i �T21;HG
j. Suppose (S1; S2) 2 N such that i; j =2 S1 [ S2

and (S1 [ fjg; S2 [ fig) 2 WV . It follows from the de�nition of WV that S1 [ fjg 2 V, therefore implying

10



S1 [ fig 2 V since i; j =2 S1 and i �T;G j: This implies (S1 [ fig; ;) 2 WV , implying (S1 [ fig; S2 [ fjg) 2 WV

since S2 [ fjg � (N n [S1 [ fig]). �

Note that i �T32;HG
j does not necessarily imply i �T;G j because in evaluating in�uence, �T32;HG

only

considers shifts from total disapproval to abstention, but such a shift is not possible in a simple game.

4 Properties of the in�uence relations of VGAs

In this section, we study some properties of the (s; r)�in�uence relations of VGAs.

4.1 Cyclicity, anonymity and transitivity

We show below that the symmetric components of the relations �Tsr are re�exive, symmetric, but not transitive

in general.

Proposition 2 For any (s; r) 2 f(3; 1); (3; 2); (2; 1)g, �Tsr is re�exive, symmetric, but not transitive in general.

Proof : Since the proof is similar for all the three relations, the argument will be shown only for �T31 .
13

(1) Re�exivity is obvious.

(2) Symmetry: �T31 is symmetric because for any players i and j; i �T31 j obviously implies j �T31 i.

(3) Non-transitivity: Consider the VGA H = (N;W) whereN = f1; 2; 3; 4g andWm = f(3; 24); (2; 34); (1; 34); (3; 14); (2; 14)

(note that we write (3,24) for instance for ({3},{2,4})). We have: 1 �T31 2 and 2 �T31 3; but non(1 �T31 3)

because (3; 24) 2 Wm and (1; 24) =2 Wm. Thus, �T31 is not transitive. �

We provide below a su¢cient condition for each relation �Tsr to be transitive. We �rst introduce the

de�nition of the (s; r)� anonymity of a VGA.

De�nition 8 Let H = (N;W) be a VGA, and s; r 2 I3. H is said to be (s; r)� anonymous if: 8fi; jg � N ,

8S(i(r); j(s)) 2 N 3; S(i(r); j(s)) 2 W if and only if S(i(r ! s); j(s! r)) 2 W.

A VGA is (s; r)� anonymous if the permutation of two players whose levels of support in a tripartition S

are r and s, respectively, does not change the value of the resulting tripartition.

We have the following result.

Proposition 3 Let H = (N;W) be a VGA.

(1) If H is (2,1)-anonymous, then �T31 is transitive.

13The proof for �T32 and �T21 is available from the authors upon request.
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(2) If H is (3,1)-anonymous, then �T32 is transitive.

(3) If H is (3,2)-anonymous, then �T21 is transitive.

Proof : The proof will be shown only for (1) since the proof for (2) and (3) is similar. Let H = (N;W)

be a (2,1)-anonymous VGA. Let us show that �T31 is transitive. Suppose fi; j; kg � N such that i �T31 j and

j �T31 k: Show that i �T31 k: Let us �rst show that i �T31 k: Let (S1; S2) 2 N such that i =2 S1[S2; k =2 S1[S2

and (S1 [ fkg; S2) 2 W. We need to show that (S1 [ fig; S2) 2 W. There are two cases: (a) j =2 S1 [ S2 and

(b) j 2 S1 [ S2:

(a) : Suppose that j =2 S1 [ S2: Because of i =2 S1 [ S2; k =2 S1 [ S2 and j �T31 k, (S1 [ fkg; S2) 2 W implies

(S1 [ fjg; S2) 2 W. Likewise, because of i =2 S1 [ S2; j =2 S1 [ S2 and i �T31 j, (S1 [ fjg; S2) 2 W implies

(S1 [ fig; S2) 2 W.

(b) : Suppose that j 2 S1 [ S2: There are two cases: (b1) j 2 S1 and (b2) j 2 S2:

(b1) : Suppose that j 2 S1: Pose S
0
1 = S1 n fjg: Then S1 = S

0
1 [ fjg: Our assumption (S1 [ fkg; S2) 2 W

therefore becomes (S01 [ fjg [ fkg; S2) 2 W or (S01 [ fkg [ fjg; S2) 2 W. But because of i =2 (S
0
1 [ fkg) [ S2;

j =2 (S01 [ fkg) [ S2 and i �T31 j, (S
0
1 [ fkg [ fjg; S2) 2 W implies (S01 [ fkg [ fig; S2) 2 W or equivalently

(S01 [ fig [ fkg; S2) 2 W. Likewise, because of j =2 (S01 [ fig) [ S2; k =2 (S01 [ fig) [ S2 and j �T31 k,

(S01 [ fig [ fkg; S2) 2 W implies (S01 [ fig [ fjg; S2) 2 W, therefore implying (S1 [ fjg; S2) 2 W since

S1 = S
0
1 [ fjg:

(b2) : Suppose that j 2 S2: Pose S
0
2 = S2 n fjg: Then S2 = S

0
2 [ fjg: Our assumption (S1 [ fkg; S2) 2 W

therefore becomes (S1[fkg; S
0
2[fjg) 2 W, thus implying (S1[fjg; S

0
2[fkg) 2 W by the assumption that H is

(2,1)-anonymous. But because of i =2 (S1 [fkg)[S
0
2; j =2 (S1 [fkg)[S

0
2 and i �T31 j, (S1 [fjg; S

0
2 [fkg) 2 W

implies (S1[fig; S
0
2[fkg) 2 W, which by the assumption thatH is (2,1)-anonymous implies (S1[fkg; S

0
2[fig) 2

W. Similarly, because of j =2 (S1 [ fig) [ S
0
2; k =2 (S1 [ fig) [ S

0
2 and j �T31 k, (S1 [ fkg; S

0
2 [ fig) 2 W implies

(S1 [ fjg; S
0
2 [ fig) 2 W, which by the assumption that H is (2,1)-anonymous implies (S1 [ fig; S

0
2 [ fjg) 2 W

or equivalently (S1 [ fig; S2) 2 W.

We just showed that i �T31 k:We obtain k �T31 i by a circular permutation of i; j and k: So i �T31 k: �

We show below that the strict component of each of the (s; r)� in�uence relations of a VGA may be cyclical,

which implies that it is not transitive in general.

Proposition 4 For any (s; r) 2 f(3; 1); (3; 2); (2; 1)g, there exists a VGA H = (N;W) for which >Tsr is cyclical.

Proof : For (s; r) = (3; 1), consider the VGA H = (N;W) where N = f1; 2; 3; 4; 5g and Wm = f(15; 34);

(24; 15); (34; 25)g: We have : 1 >T31 2, 2 >T31 3 and 3 >T31 1: So >T31 is cyclical.

For (s; r) = (3; 2), consider the VGA H = (N;W) where N = f1; 2; 3; 4; 5; 6; 7g and Wm = f(34; 15);
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(15; 26); (26; 37); (16; 37); (16; 27)g. We have : 1 >T32 2, 2 >T32 3 and 3 >T32 1: So >T32 is cyclical

For (s; r) = (2; 1), consider the VGA H = (N;W) where N = f1; 2; 3; 4; 5g andWm = f(25; 1); (15; 2); (35; 1);

(14; 2); (24; 3); (14; 3); (34; 1)g. We have : 1 >T21 2, 2 >T21 3 and 3 >T21 1: So >T21 is cyclical. �

Proposition 4 implies a "paradox of power" in voting games with abstention. This type of paradox does

not occur in binary voting games where voters may cast only a "yes" or a "no" vote.14 It also follows from

Propositions 2 and 4 that none of the (s; r)� in�uence relations of a VGA is a preorder (i.e. re�exive and

transitive) in general, as stated in the following corollary.

Corollary 1 For any (s; r) 2 f(3; 1); (3; 2); (2; 1)g, �Tsr is not a preorder in general.

Next, we provide a su¢cient condition for each (s; r)�in�uence relation to be a preorder.

Proposition 5 Let H = (N;W) be VGA.

(1) If H is (2,1)-anonymous, then �T31 is a preorder.

(2) If H is (3,1)-anonymous, then �T32 is a preorder.

(3) If H is (3,2)-anonymous, then �T21 is a preorder.

Proof : For (s; r) = (3; 1), given that �T31 is re�exive, �T31 is too. The proof of transitivity is similar to that of

Proposition 3. The proof is similar for �T32 and �T21 : �

4.2 Completeness

It can be shown that in a VGA, it is not always possible to compare any two voters by the (s; r)� in�uence

relations, which means that these relations are not complete in general. Our goal in this section is to provide a

necessary and su¢cient condition for each of these relations to be complete. Prior to this, we need to introduce

some notions of swap-robustness.15

De�nition 9 Let H = (N;W) be a VGA, and (S1; S2) 2 W and (T1; T2) 2 W .

1-a) A permutation of two voters i 2 S1 n (T1 [ T2) and j 2 T1 n (S1 [ S2) between (S1; S2) and (T1; T2)

results in the tripartitions (S01; S
0
2) = ([S1 n fig] [ fjg; S2) and (T

0
1; T

0
2) = ([T1 n fjg] [ fig; T2).

1-b) The VGA H = (N;W) is said to be (3, 1)-swap-robust if at least one of the tripartitions (S01; S
0
2) and

(T 01; T
0
2) is winning.

2-a) A permutation of two voters i 2 S2 n (T1 [ T2) and j 2 T2 n (S1 [ S2) between (S1; S2) and (T1; T2)

results in the tripartitions (S01; S
0
2) = (S1; [S2 n fig] [ fjg) and (T

0
1; T

0
2) = (T1; [T2 n fig] [ fjg).

14 In fact, Taylor (1995) shows that the in�uence relation of binary voting games is transitive.
15Also see Taylor and Zwicker (1999) for binary voting games, and Tchantcho et al. (2008) for a stronger version of swap-

robustness in VGAs.
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2-b) The VGA H = (N;W) is said to be (3, 2)-swap-robust if at least one of the tripartitions (S01; S
0
2) and

(T 01; T
0
2) is winning.

3-a) A permutation of two voters i 2 S1 \ T2 and j 2 S2 \ T1 between (S1; S2) and (T1; T2) results in the

tripartitions (S01; S
0
2) = ([S1 n fig] [ fjg; [S2 n fjg] [ fig) and (T

0
1; T

0
2) = ([T1 n fjg] [ fig; [T2 n fig] [ fjg).

3-b) The VGA H = (N;W) is said to be (2, 1)-swap-robust if at least one of the tripartitions (S01; S
0
2) and

(T 01; T
0
2) is winning.

Given a VGA H = (N;W) and two winning tripartitions (S1; S2) and (T1; T2), 1-a) and 1-b) mean that if

a "yes" voter i in (S1; S2) and a "yes" voter j in (T1; T2) are permuted, and if at least one of the resulting

tripartition is still winning, then H is said to be (3, 1)-swap-robust. The interpretation of (3, 2) and (2,1)-swap-

robustness is similar.

We have the following Lemma.

Lemma 1 Let H = (N;W) be a VGA, (S1; S2); (T1; T2) 2 W, and i; j 2 N two voters.

1- Let (S01; S
0
2) = ([S1 n fig] [ fjg; S2) and (T

0
1; T

0
2) = ([T1 n fjg] [ fig; T2): Then,

1-a) if i �T31 j; then (S
0
1; S

0
2) 2 W and (T 01; T

0
2) 2 W.

1-b) if i >T31 j; then (T
0
1; T

0
2) 2 W.

1-c) if (S01; S
0
2) =2 W and (T 01; T

0
2) =2 W, then i and j are not comparable by the in�uence relation �T31 :

2- Let (S01; S
0
2) = (S1; [S2 n fig] [ fjg) and (T

0
1; T

0
2) = (T1; [T2 n fig] [ fjg): Then,

2-a) if i �T32 j; then (S
0
1; S

0
2) 2 W and (T 01; T

0
2) 2 W.

2-b) if i >T32 j; then (T
0
1; T

0
2) 2 W.

2-c) if (S01; S
0
2) =2 W and (T 01; T

0
2) =2 W, then i and j are not comparable by the in�uence relation �T32

3- Let (S01; S
0
2) = (S1; [S2 n fig] [ fjg) and (T

0
1; T

0
2) = (T1; [T2 n fig] [ fjg): Then,

3-a) if i �T21 j; then (S
0
1; S

0
2) 2 W and (T 01; T

0
2) 2 W.

3-b) if i >T21 j; then (T
0
1; T

0
2) 2 W.

3-c) if (S01; S
0
2) =2 W and (T 01; T

0
2) =2 W, then i and j are not comparable by the in�uence relation �T21 :

Proof : Again, the proof will be shown only for part 1). We assume all the hypotheses of Lemma 1.

1-a) Suppose i �T31 j and let us show that (S01; S
0
2) 2 W and (T 01; T

0
2) 2 W. Pose K 0

1 = S1 n fig and

L01 = T1 n fjg: Then (S
0
1; S

0
2) = (K

0
1 [ fjg; S2) and (T

0
1; T

0
2) = (L

0
1 [ fig; T2); (S1; S2) = (K

0
1 [ fig; S2) 2 W and

(T1; T2) = (L
0
1 [fjg; T2) 2 W. Given that i =2 K

0
1 [S2, j =2 K

0
1 [S2 and i �T31 j; we have (K

0
1 [fig; S2) 2 W )

(K 0
1 [ fjg; S2) 2 W, which implies (S

0
1; S

0
2) 2 W. Likewise, because of i =2 L

0
1 [ T2, j =2 L

0
1 [ T2 and i �T31 j; we

have (L01 [ fjg; T2) 2 W ) (L01 [ fig; T2) 2 W, which implies (T
0
1; T

0
2) 2 W.
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1-b) is obtained similarly as 1-a).

1-c) We use the notation in part 1-a). If (S01; S
0
2) =2 W and (T 01; T

0
2) =2 W, then (K

0
1 [ fjg; S2) =2 W and

(L01 [ fig; T2) =2 W. But (K
0
1 [ fig; S2) 2 W and (L01 [ fjg; T2) 2 W. Because of i =2 K

0
1 [ S2, j =2 K

0
1 [ S2,

(K 0
1[fig; S2) 2 W and (K 0

1[fjg; S2) =2 W, we have non(j �T31 i): Also i =2 L
0
1[T2, j =2 L

0
1[T2, (L

0
1[fjg; T2) 2 W

and (L01[fjg; T2) =2 W imply non(i �T31 j): It follows that i and j are not comparable by the in�uence relation

�T31 . �

We are now ready to provide a full characterization of VGAs for which the (s; r)�in�uence relations are

complete.

Proposition 6 Let H = (N;W) be a VGA. For any (s; r) 2 f(3; 1); (3; 2); (2; 1)g, the (s; r)�in�uence relation

is complete if and only if H is (s; r)�swap-robust.

Proof : We show the proof only for (s; r) = (3; 1). Let H = (N;W) be a VGA.

Suppose that H is (3, 1)-swap-robust and let us show that �T31 is complete. If �T31 is not complete, there

exist two players i and j such that non(i �T31 j) and non(j �T31 i): It follows that there exist (S1; S2) 2 W and

(T1; T2) 2 W such that i =2 [S1[S2][ [T1[T2]; j =2 [S1[S2][ [T1[T2]; (T1[fjg; T2) 2 W and (T1[fig; T2) =2 W,

and (S1 [ fig; S2) 2 W and (S1 [ fjg; S2) =2 W. Pose T
�
1 = T1 [ fjg; T

�
2 = T2, S

�
1 = S1 [ fig and S

�
2 = S2:

Then we have (S�1 ; S
�
2 ) 2 W, (T

�
1 ; T

�
2 ) 2 W, i 2 S

�
1 n (T

�
1 [ T

�
2 ) and j 2 T

�
1 n (S

�
1 [ S

�
2 ): Given that H is (3,

1)-swap-robust, it follows that ([S�1 n fig] [ fjg; S
�
2 ) 2 W or ([T �1 n fjg] [ fig; T

�
2 ) 2 W, which is equivalent to

(S1 [ fjg; S2) 2 W or (T1 [ fig; T2) 2 W, contradicting (S1 [ fjg; S2) =2 W and (T1 [ fig; T2) =2 W. We then

conclude that �T31 is complete.

Suppose that �T31 is complete and let us show that H is (3, 1)-swap-robust. Assume by contradiction

that H is not (3, 1)-swap-robust. Then there exist two winning tripartitions (S1; S2) 2 W and (T1; T2) 2 W,

and two players i and j such that i 2 S1 n (T1 [ T2), j 2 T1 n (S1 [ S2), ([S1 n fig] [ fjg; S2) =2 W and

([T1 n fjg] [ fig; T2) =2 W. Pose S01 = S1 n fig; S
0
2 = S2, T1 = T1 n fjg and T

0
2 = T2: It follows that i =2

[S01[S
0
2][ [T

0
1[T

0
2]; j =2 [S

0
1[S

0
2][ [T

0
1[T

0
2]; (S

0
1[fjg; S

0
2) =2 W and (S01[fig; S

0
2) 2 W, and i =2 [S

0
1[S

0
2][ [T

0
1[T

0
2];

j =2 [S01 [ S
0
2] [ [T

0
1 [ T

0
2]; (T

0
1 [ fjg; T

0
2) 2 W and (T 01 [ fig; T

0
2) =2 W, implying respectively non(j �T31 i) and

non(i �T31 j). It follows that i and j are not comparable by the in�uence relation �T31 ; which contradicts the

fact that �T31 is complete. We conclude that H is (3, 1)-swap-robust. �

Let f be a permutation on the set f(3; 1); (3; 2); (2; 1)g de�ned as follows: f((3; 1)) = (2; 1), f((3; 2)) = (3; 1),

and f((2; 1)) = (3; 2). As a direct consequence of Propositions 5 and 6, we have the following characterization

of VGAs for which each of the (s; r)�in�uence relations is a complete preorder.

Theorem 1 Let (s; r) 2 f(3; 1); (3; 2); (2; 1)g, and H = (N;W) be an f((s; r))�anonymous VGA. The (s; r)�in�uence

15



relation is a complete preorder on the set of voters if and only if H is (s; r)�swap-robust.

4.3 Understanding cycles in the (s; r)� in�uence relations of VGAs

We have shown that the strict components of the (s; r)� in�uence relations of VGAs may be cyclical (Proposition

4). While this property may be justi�ed and even seen as positive for certain types of organizations, it requires

some explanation in the context of VGAs. In VGAs, cycles in the (s; r)� in�uence relations are due to the fact

that these relations evaluate the relative in�uence of voters only at speci�c levels of participation, abstracting

away from other levels. To be clear, let us consider the example given in the proof of Proposition 4 showing that

the strict component of the (3; 1)� in�uence relation may be cyclical. We have 1 >T31 2, 2 >T31 3 and 3 >T31 1.

Note that in that example, we also have non(3 �T32 1) and non(2 �T32 3). It can be easily shown that if we had

3 �T32 1 and 2 �T32 3, given 1 >T31 2, it wouldn�t have been possible to have 3 >T31 1 (because other minimal

winning tripartitions would have been generated, which would have eventually cancelled 3 >T31 1), and there

would have been no cycle. This shows that >T31 is cyclical because it evaluates the relative in�uence of voters

only at the �rst and third levels of support. The same reasoning helps understand why >T32 and >T21may be

cyclical, and why the combined in�uence relation de�ned in Tchantcho et al. (2008) is not. A unique advantage

of the (s; r)� in�uence relations however is that they allow a full assessment of the structure of power among the

members of an organization, by evaluating their relative in�uence at various levels of participation (see Section

7 for illustration).

5 A further generalization of the in�uence relation

In this section, we introduce a more conservative generalization of the in�uence relation in (u; v)� simple games.

We have the following de�nition.

De�nition 10 Let G = (N;V ) be an (u; v) simple game and i and j two players.

1) i is said to be at least as in�uential as j; denoted i �T;G j; if for any u-partition S and any r; s 2 Iu such

that r < s and i; j 2 Ss, V (S(i(s); j(s! r)) � V (S(i(s! r); j(s)):

2) i is said to be as in�uential as j; denoted i �T;G j; if i �T;G j and j �T;G i:

3) i is said to be more in�uential than j; denoted i >T;G j; if i �T;G j and non(j �T;G i):

Interpretation: i is said to be at least as in�uential as j if i is at least as (s; r)� in�uential as j for all r;

s 2 Iu such that r < s: This extension is simply a combination of the (s; r)� in�uence relations.
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Restricting this generalization to voting games with abstention leads to the following in�uence relation

proposed in Tchantcho et al. (2008).

De�nition 11 Let H = (N;W) be a VGA and i and j two players.

1) i is said to be at least as in�uential as j; denoted i �T;H j; if 8(S1; S2) 2 N such that i; j =2 S1 [ S2;
8

>

>

>

<

>

>

>

:

(S1 [ fjg; S2) 2 W ) (S1 [ fig; S2) 2 W

(S1; S2 [ fjg) 2 W ) (S1; S2 [ fig) 2 W

(S1 [ fjg; S2 [ fig) 2 W ) (S1 [ fig; S2 [ fjg) 2 W

2) i is said to be as in�uential as j; denoted i �T;H j; if i �T;H j and j �T;H i:

3) i is said to be more in�uential than j; denoted i >T;H j; if i �T;H j and non(j �T;H i):

It is shown in Tchantcho et al. (2008) that the indi¤erence component of this relation is an equivalence

relation; its strict component is not transitive in general, but is not cyclical either. For a detailed examination

of the structure of power among players, the (s; r)� in�uence relations would be more useful than this combined

relation, as we will show in Section 7.

6 Ordinal equivalence of power theories in VGAs

In this section, we compare the (s; r)� in�uence relations with the preorderings (SS) and (BC) respectively

induced on the set of players by the Shapley-Shubik and Banzhaf-Coleman indices. These indices were obtained

by Felsenthal and Machover (1997) and Freixas (2005a, 2005b) for VGAs.16 We characterize VGAs for which

these power theories yield similar rankings.

Let �i be the indicator function of i, that is, �i (k) = 1 if k = i; and 0 if k 6= i: Let S 2 2
N , (S1; S2) 2 N ,

i; j 2 N:

Pose �ijS =

8

>

>

>

<

>

>

>

:

S if fi; jg � S or fi; jg \ S = ;

[S n fig] [ fjg if i 2 S and j =2 S

[S n fjg] [ fig if i =2 S and j 2 S

; and �ij(S1; S2) = (�ijS1; �ijS2).

�ijS and �ij(S1; S2) are respectively the permutation of i and j over coalition S and tripartition (S1; S2).

We de�ne the degree of support of i in a tripartition (S1; S2) as a(i; (S1; S2)) = 1 if i 2 S1, 0 if i 2 S2, and

�1 if i 2 S3 = N n (S1 [ S2). If a(i; (S1; S2)) = 1 and a(j; (S1; S2)) = �1, we say that i and j are totally or

strongly opposed in the tripartition (S1; S2; S3).

We recall below the notion of equitable VGAs �rst introduced in Tchantcho et al. (2008).

16Felsenthal and Machover (1997) and Freixas (2005a,b) obtained the same generalizations of these notions, but Freixas (2005b)
obtained an additional generalization of the Banzhaf-Coleman index, which can be shown to have the same ordinal ranking as the
other one. For our purpose, we therefore only use the generalizations obtained by Felsenthal and Machover (1997).
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De�nition 12 : 1) A VGA H is said to be equitable if 8i; j 2 N;8T 2 f�1; 0; 1gN such that T (i) = 1 and

T (j) = �1, the following condition is satis�ed:

H(T ) = H(�ijT ))

8

<

:

H(T � �i) = H(�ij(T � �i)) and

H(T + �j) = H(�ij(T + �j))

2) A VGA H is said to be weakly equitable if 8i; j 2 N;8T 2 f�1; 0; 1gN such that T (i) = 1 and T (j) = �1,

(a) and (b) are satis�ed:

a)
H(T ) = 1

H(�ijT ) = 1

9

=

;

) H(T � �i) = H(�ij(T � �i)),

b)
H(T ) = �1

H(�ijT ) = �1

9

=

;

) H(T + �j) = H(�ij(T + �j))

Interpretation : A VGA is equitable if any two voters who are equally desirable when strongly opposed

in a tripartition are still equally desirable when their views come closer. In a weakly equitable VGA, two voters

who are equally desirable when strongly opposed in a winning tripartition remain equally desirable when the

voter with the strongest support lowers her support, and two voters who are equally desirable when strongly

opposed in a losing tripartition remain equally desirable when the voter with the weakest support raises her

support. An equitable VGA is also weakly equitable.

The class of equitable VGAs, and thus weakly equitable VGAs, is a very large class of VGAs that include

the class of simple VGAs, the class of relative majority voting games, but expands beyond these well-known

classes of games to include real-life institutions such as the United Nations Security Council (also see Tchantcho

et al. for other examples).

We recall below the notion of swap-robustness introduced in Tchantcho et al. (2008).

De�nition 13 : A VGA H = (N;W) is said to be swap-robust if for any (S1; S2); (T1; T2) 2 W, and (i; j) 2

N2 such that a(i; (S1; S2)) > a(j; (S1; S2)) and a(j; (T1; T2)) > a(i; (T1; T2)), at least one of the tripartitions

�ij(S1; S2) and �ij(T1; T2) is winning.

Felsenthal and Machover (1997) extend to VGAs the Banzhaf-Coleman power index as follows.

De�nition 14 : (Banzhaf-Coleman power index) Let H be a VGA, T 2 f�1; 0; 1gN and i 2 N:

1) Player i is said to be positively critical ( resp. negatively critical) if T (i) � 0;H (T ) = 1 and H (T � �i) =

�1 (resp. T (i) � 0;H (T ) = �1 and H (T + �i) = 1)

2) The Banzhaf score of i in H, denoted ni (H), is the number of tripartitions for which i is critical either

positively or negatively. The relative and absolute Banzhaf-Coleman indices are respectively de�ned as follows:

�i =
ni(H)P

i2N

ni(H)
and �0i =

ni(H)
3n�1 .
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The relative and the absolute Banzhaf-Coleman indices de�ne on N a complete preordering denoted (BC).

Let � be the set of bijective mappings from N onto f1; :::; ng. The following extension of the Shapley-Shubik

power index to VGAs is also due to Felsenthal and Machover (1997).

De�nition 15 : Let H = (N;W) be a VGA, R = (sR; dR) 2 �� f�1; 0; 1gN and i 2 N .

1) We say that S 2 �� f�1; 0; 1gN is in agreement with R up to i if sR = sS and dR (x) = dS (x) for any

x such that sR(x) � sR(i).

Voter i is the pivot of R in H, denoted i = Piv(R;H), if i is the �rst voter in the ordering sR satisfying:

H (dS) = H (dR) for any S in agreement with R up to i.

2) The Shapley-Shubik index of i is : �i (H) =
jfR2��f�1;0;1gN ji=Piv(R;H)gj

3nn! .

The Shapley-Shubik index induces on the set of voters N a preordering (SS).

Di¤o Lambo and Moulen (2002) show that the in�uence relation and the preorderings (SS) and (BC) coincide

in a simple game if and only if the game is swap-robust. Tchantcho et al. (2008) show that in a weakly equitable

VGA, the in�uence relation �T and the preorderings (SS) and (BC) if and only if the VGA is swap-robust. We

show below a similar result for the (s; r)� in�uence relations.

Theorem 2 Let H = (N;W) be a weakly equitable and swap-robust VGA. The (s; r)� in�uence relations �Tsr ,

the in�uence relation �T , and the preorderings (SS) and (BC) coincide.

Proof : Let H = (N;W) be a weakly equitable and swap-robust VGA. It is easy to see that the in�uence

relation �T is included in each of the (s; r)� in�uence relations. In addition, since H is weakly equitable and

swap-robust, according to Theorem 1 in Tchantcho et al. (2008), the in�uence relation �T , the (SS) and the

(BC) preorderings coincide. Given that the in�uence relation �T is included in each of the (s; r)� in�uence

relations, each (s; r)� in�uence relation coincides with �T and consequently with the preorderings (SS) and

(BC). �

This result provides a characterization of VGAs for which six power theories have the same rankings. It

is intriguing because the (s; r)� in�uence relations �Tsr and the in�uence relation �T have very di¤erent

properties. It is also interesting to observe that an argument in the proof of Theorem 2 implies that swap-

robustness is a su¢cient condition for each of the (s; r)� in�uence relations to be a complete preorder in a

VGA.
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7 Some applications of the in�uence relations

In this section, we show some applications of the in�uence relations of VGAs. The �rst application is to the

United Nations Security Council.

Example 2 (The United Nations Security Council) The United Nations Security Council (UNSC) contains 5

permanent members and 10 non-permanent members. A decision is made if at least 9 members support it and

no permanent member is explicitly opposed to it. Let us denote by P = f1; 2; 3; 4; 5g the set of all permanent

members and NP = f6; 7; :::; 15g the set of non-permanent members. Following Freixas and Zwicker (2003),

the vote of the UNSC can be modelled as follows.

Let S = (S1; S2; S3) be an ordered 3-partition of N (N = UNSC):

VUNSC(S) =

8

<

:

win if jS1j � 9 and S3 \ P = ?

lose otherwise.

VUNSC is clearly a voting game with abstention. We have the following result:

8fp; p0g � fnp; np0) � P �NP;

(1) 8(s, r)2 f3g � f1; 2g, p >Tsr np; p �Tsr p
0 and np �Tsr np

0.

(2) p �T21 np; p �T21 p
0 and np �T21 np

0

(3) p >T np; p �T p
0; and np �T np

0:

Our second application is to the simple majority vote.

Example 3 (A simple majority vote) A simple majority game is a social choice context in which a candidate

is elected if the number of players who vote for her is greater than the number of players who vote against her

no matter how many players abstain. This game can be modelled as follows.

Let S = (S1; S2; S3) be an ordered 3-partition :

Vmaj(S) =

8

<

:

win if jS1j > jS3j

lose otherwise.

In a simple majority game, all players are equally in�uential by any measure of in�uence:

8fi; jg � N;

(1) 8(s, r)2 f2; 3g � f1; 2g with r < s, i �Tsr j.

(2) i �T j:

Our third application is a thought experiment.
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Example 4 Let H = (N;W) be a VGA where N = f1; 2; 3g and Wm={(1,2,3)} (note that we write (1,2,3)

for (1,2)). H might be a �rm whose �nal products are judged as "good" or "bad", and 1, 2, 3 are workers

with di¤erent ability. The three levels of participation might refer to the di¤erent levels of e¤ort (e.g., high,

medium, low) that a worker might exert, or to the amount of working time (e.g., working full time, part time

or occasionally), or might refer to three di¤erent tasks with di¤erent levels of di¢culty.

We have the following performance structure:

(1) 1�T312, 1>T313 and 2�T313.

(2) 1�T322, 1�T323 and 2>T323.

(3) 1>T212, 1>T213 and 2�T213.

(4) 1>T 2, 1>T 3 and 2>T 3.

It follows from Examples 2 and 4 that it might be misleading to rely only on the combined in�uence relation

�T;H to evaluate the relative in�uence of a player. In Example 1, while a permanent member of the U.N.

Security Council is overall more in�uential than a non-permanent member, we note that this domination is not

true at all levels of participation since p �T21 np. In Example 4, while we have 1>T 2, we have 1�T312, 1�T322

and 1>T212. This demonstrates that worker 1 is not more performant than worker 2 at all levels of participation

in the �rm despite the fact that �T;H gives 1 as strictly more performant than 2.

8 CONCLUSION

We have studied political in�uence in multi-choice institutions, which are institutions in which members choose

from among several options their levels of support to a collective goal, these individual choices determining the

degree to which the goal is reached. (u; v) simple games have served as a useful mathematical model for such

institutions. In�uence was assessed by the (s; r)� in�uence relations, which are newly de�ned binary relations,

each of which compares any two individuals of an organization on the basis of their relative performance at a

corresponding level of participation. In voting games with abstention, we have found that the strict components

of the (s; r)� in�uence relations may be cyclical, unlike in binary voting games. We have provided su¢cient

conditions of anonymity under which these relations are transitive. We have also obtained a necessary and

su¢cient condition for each of them to be complete, and have provided a partial characterization of institutions

for which the rankings induced by these relations, and the Banzhaf-Coleman and Shapley-Shubik power indices

coincide. This latter result particularly extends the ordinal equivalence theorem obtained by Tchantcho et al.

(2008) as it involves additional power relations.

We note that in general, the properties the in�uence relation of binary voting games do not extend to (u; v)
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simple games. The cyclicity of the (s; r)� in�uence relations is particularly meaningful. One however wonders

about the presence of cycles in weighted (u; v) simple games.17 It is well-known that in a weighted binary voting

game, if i has more weight than j, then i is at least as in�uential as j. It would be interesting in the future to

check whether this property holds for the (s; r)� in�uence relations of (u; v) simple games.

It is important to observe that the (s; r)� in�uence relations readily extend to economic organizations that

can also be modeled as (u; v) simple games, but where the u di¤erent roles that members can play are not

ordered.18 An example of such an organization is a soccer team where a priori, strikers cannot be viewed as

contributing more than the mid�elders or the defenders to the collective performance of the team. In this

type of (u; v) simple games, one would have u(u � 1) (s; r)� in�uence relations as bidirectional shifts should

be considered in the evaluation of players� relative performance, instead of u(u�1)2 as in organizations where u

denotes the number of ordered roles or production units.

In an organization with non-ordered roles, the (s; r)� in�uence relations would also be useful in e¢ciently

allocating workers to di¤erent units of production, contrary to the combined in�uence relation. In a soccer

team for example, the (s; r)� in�uence relations will make it possible to establish that player i is more desirable

than player j as a defender while j is more desirable than i as a striker, if this is really the case. But in such a

situation of con�icting competence, the combined in�uence relation will not be able to compare i and j at all,

and will not be useful in assigning these players to their right positions in the team.

The combined in�uence relation may be particularly appealing when units of production are ordered such as

in a voting game with abstention, although the (s; r)� in�uence relations in this context would still evaluate with

useful details the relative in�uence of each player. For example, we note that in the application of the in�uence

relations to the United States Senate (Example 1), a senator is overall more in�uential than the vice-president,

but this is not the case if the relative contribution of a senator and the vice-president is evaluated on the basis of

a shift from "abstention" to a "yes" vote, given that 8fig � N nfvpg; i �T21 vp. On all accounts, the extensions

of the in�uence relation as shown in this study provide useful tools for assessing individual performance in team

work. A study of their properties yields interesting and unexpected results, especially when compared to those

obtained in the basic framework of binary voting games.

17See Freixas and Zwicker (2003) for a characterization of weighted (u; v) simple games.
18They also extend to a more general model of organizations G = (N;V ), where V maps any u� partition of N into a real

number. A u� partition may be ordered or not.
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